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Abstract. Some image quality parameters, such as the Strehl ratio and the
optical transfer function, are analysed in the generalized phase-space, or x-p
domain, of the fractional Fourier transform associated with a modi®ed one-
dimensional pupil function. Some experimental results together with computer
simulations are performed which illustrate the tolerance to defocus of di�erent
apertures.

1. Introduction

There are several criteria for analysing the performance of an optical imaging
system for aberrations and/or focus errors. Among them we mention: Rayleigh’s
criterion [1], MareÂ chal’s treatment of tolerance [2] and the Strehl ratio [3]. In these
approachs, the on-axis image intensity is the relevant quantity. However, as
Hopkins has suggested [4, 5], the analysis of MareÂ chal can be reformulated in
order to give a tolerance criterion based on the behaviour of the optical transfer
function (spatial frequency information) instead of the point-spread function
(space information). More recently, some papers were published in which the
Wigner distribution function (WDF) or the ambiguity function (AF) are employed
to evaluate image quality parameters [6±12]. This point of view equally emphasizes
both the spatial and the spectral information contents of the di�racted wave®elds
that propagate in the optical imaging systems.

On the other hand, the concept of the fractional Fourier transform (FRT) was
introduced into optics by Mendlovic, Ozaktas and Lohmann [13±16]. From a
viewpoint based on the WDF, since an ordinary Fourier transform results from a

º=2 coordinate rotation of the input WDF, the FRT of order p can be achieved
through a WDF phase-space rotation by an angle ¿ ˆ pº=2. Thus, the information
content stored in the FRT changes from purely spatial to purely spectral as p
varies from p ˆ 0 to p ˆ 1. By taking into account the link between the FRT
formalism and the free-space di�raction [17±19], the imaging properties of a given
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optical system, both in a space and a spatial frequency domain, can be evaluated
from the FRTs of the pupil function for varying fractional order p.

In section 2 we discuss some relevant de®nitions and basic properties of the
FRT and the WDF. In section 3 we analyse some image quality parameters, such
as the Strehl ratio (SR) or the optical transfer function (OTF), from the FRT of a
given pupil aperture. Finally, in section 4 we show some results in order to
illustrate the proposed approach.

2. Basic properties of the FRT

As was previously mentioned, the FRT of order p can be achieved through a
WDF rotation in the phase-space by an angle ¿ ˆ pº=2. This operation can be
obtained by performing three successive coordinate shearings. Taking into account
that WDF shearing in the spatial coordinate means free-space propagation while
WDF shearing in the spatial frequency corresponds to lens passage, very simple
optical processors can be developed to optically realize the FRT [15, 19, 20].
Figures 1 (a) and (b) show one of these possible optical arrangements and the e�ect
of this system on the object WDF, respectively. By propagating the light ®eld, the
FRT of the input object t…¹; ²† is obtained at the output plane as the following
Fresnel integral

up…x; y† ˆ =…p†ft…¹; ²†g

ˆ exp
iº…x2 ‡ y2†

¶f0 tan ¿

… …1

¡1
t…¹; ²† exp

iº…¹2 ‡ ²2†
¶f0 tan ¿

£ exp
¡2ºi…x¹ ‡ y²†

¶f0 sin ¿
d¹ d²; …1†

f0 being a free scale parameter. For the sake of simplicity one-dimensional
functions are to be considered. It should be noted that the FRT as de®ned by
equation (1) does not hold at values of p so low that the Fresnel approximations
involved are no longer valid. However, there are other optical de®nitions of the
FRT which remain valid for p ! 0 (see [13]).

The WDF associated with the object t…¹†, which can be de®ned as

Wt…x; ¸† ˆ
…1

¡1
t…x ‡ ¹=2†t¤…x ¡ ¹=2† exp ¡2ºi¹¸… † d¹; …2†

has several interesting properties that are to be used in this paper; namely

W…x; ¸; z† ˆ Wt…x ¡ ¶z¸; ¸†; …3 a†

W
…‡†…x; ¸† ˆ Wt x; ¸ ‡ x

¶f
; …3 b†

W
…p†…x; ¸† ˆ Wt…x cos ¿ ¡ ¸ sin ¿; x sin ¿ ‡ ¸ cos ¿†; …3 c†

up…x† 2 ˆ
…1

¡1
W

…p†…x; ¸† d¸: …3 d†

Equations (3 a), (3 b) and (3 c) represent the phase-space coordinate transforms that
are applied to the input WDF for the cases of free-space propagation (shearing in
the space coordinate), passage through a thin lens (shearing in the spatial
frequency), and FRT (rotation), respectively. Equation (3 d), the spatial frequency
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projection of the WDF giving rise to the signal intensity, has a practical meaning.
As Lohmann and So�er have demonstrated [21], it also gives the Radon±Wigner
transform of the object as the squared modulus of the FRT.

3. Image quality parameters: a FRT approach

By referring to ®gure 2, a normally incident plane wave of unit amplitude
illuminates the optical imaging system denoted by L. In the neighbourhood of the
image plane, located at z ˆ 0, the ®eld amplitude distribution can be written as

u…x; z† ˆ
…1

¡1
T…¹† exp

iº

¶… f ‡ z†
…¹ ¡ x†2

d¹; …4†

where

T…¹† ˆ t0…¹† exp
¡iº

¶f
¹

2 …5†

t0…¹† being the one-dimensional version of a certain amplitude transmission pupil
function t…¹; ²†. By taking into account the properties of the WDF for both, free
space light propagation and light passage through a thin lens, the equivalent
relationships to that given by equations (4) and (5) can be expressed in terms of the
WDF as

Wu…x; y; z† ˆ WT…x ¡ ¶…f ‡ z†¸; ¸† …6†

WT…x; ¸† ˆ Wt0 x; ¸ ‡ x

¶f
; …7†

and hence
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Figure 1. (a) Optical setup to perform the FRT of t…x0† for a given fractional order p,
where: z0 ˆ f0 tan …pº=4†, f ˆ f0= sin …pº=2† is the focal distance of L, and f0 is a free
scaling factor; (b) E�ect of the optical system shown in (a) on the WDF of t…x0†.



Wu…x; ¸; z† ˆ Wt0 x ¡ ¶…f ‡ z†¸;
x

¶f
¡ z

f
¸ : …8†

In accordance with equation (8), the on-axis intensity (x ˆ 0) for varying z is
given by

I…x ˆ 0; z† ˆ
…1

¡1
W…0; ¸; z† d¸

ˆ
…1

¡1
Wt0

¡¶… f ‡ z†¸; ¡ z

f
¸ d¸: …9†

For the especial case z ˆ 0 the intensity can be expressed as

I…x ˆ 0; z ˆ 0† ˆ
…1

¡1
Wt0

…¡¶f¸; 0† d¸: …10†

By making: ± ˆ ¡z¸=f in equation (9), the Strehl ratio (SR) versus defocus is
obtained (for z 6ˆ 0)

S…z† ˆ I…x ˆ 0; z†=I…x ˆ 0; z ˆ 0†

ˆ
…1

¡1
Wt0

¶f…f ‡ z†
z

±; ± d±; …11†

i.e. the SR for variable z can be analysed in a polar fashion in the two-dimensional
domain of the WDF associated with the pupil function t0…¹†. The slope of each
slice is given by: tan ³ ˆ … f ‡ z†=z.

The imaging properties of the optical system can also be alternatively described
in a di�erent phase-space domain by making use of equations (3). The FRT
modulus squared of the pupil function results

up…x† 2ˆ
…1

¡1
Wt0

…x cos ¿ ¡ ¸ sin ¿; x sin ¿ ‡ ¸ cos ¿† d¸: …12†

Equation (12) gives the one-dimensional FRT of t0…¹† for a certain order p, but it
can also be considered as the two-dimensional representation of t0…¹† in a domain:
spatial coordinate-fractional order. This signal description is known as the Radon±
Wigner transform (RWT) and some of its properties and possible optical
implementations were recently studied [21±23]. Working in the plane …x; p†,
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Figure 2. Optical imaging system: the several components are represented by a unique
lens L, being P the exit pupil.



where up…x† 2
is displayed as the several FRTs of t0…¹† (vertical axis) for varying

order p (horizontal axis), we select x ˆ 0; i.e. we record

up…0† 2 ˆ
…1

¡1
Wt0

…¡¸ sin ¿; ¸ cos ¿† d¸

ˆ …1=cos ¿†
…1

¡1
Wt0

…¡± tan ¿; ±† d±: …13†

By properly normalizing up…0† 2
, the analogy between equations (11) and (13) is

complete whenever

p ˆ 2

p
arctan

f ‡ z

z
; …14†

and

up…0† 2ˆ S…z…p†† : …15†

Therefore, the values of the SR associated with the pupil function t0…¹† for
di�erent amount of defocus lie on the horizontal axis of the RWT of t0…¹†, between
p ˆ 1 (in-focus situation: z ˆ 0) and p ˆ 0:5 (maximum out-of-focus plane:
z ! 1); see ®gure 3.

The knowledge of the SR is useful in order to characterize the depth of focus
properties of the optical system. The quality of the image itself is better described
through the behaviour of the associated OTF. This information can also be
obtained from the RWT if we perform a one-dimensional ordinary Fourier
transform of up…x† 2

along the x-axis. By making use of the expression given by
equation (1) for the FRT it results in

=x up…x† 2
n o

ˆ
…1

¡1
dx

0
exp ¡ 2ºixx

0

¶f

£
…1

¡1
d¹ t0…¹† exp

iº¹2

¶f0 tan ¿
exp

¡2pix
0
¹

¶f0 sin ¿

2

; …16†

where f is the focal length of the Fourier transformer. By rearranging the integrals
of equation (16), it can be written as
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Figure 3. Defocus distance z versus fractional order p, as given by equation (10).
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Figure 4. Optical setup for performing the RWT of a one-dimensional input. The
cylindrical lens LC provides the illuminating converging wavefront. The free-space
propagation originates the several FRTs at di�erent planes. Each one of such is
imaged by the varifocal lens L at the output plane.

Figure 5. Radon±Wigner transforms: (a) Computer simulation for an aperture with
a=2.5 mm and b=0.0 mm; (b) experimental result for the case (a); (c) Computer
simulation for an aperture with a=2.5 mm and b=1.3 mm; (d) experimental result
for the case (c).
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Figure 6. Strehl ratio (SR) versus defocus for the three cases studied.

Figure 7. Computed one-dimensional Fourier transforms of the Radon±Wigner trans-
forms shown in ®gure 5.



=x up…x† 2
n o

ˆ
…1

¡1
d¹

0
t0 ¹

0 ‡ f0x sin ¿

2f
t
¤
0 ¹

0 ¡ f0x sin ¿

2f
exp

2ºi cos ¿x¹
0

¶f

ˆ At0

f0x sin ¿

f
;
x cos ¿

¶f
; …17†

At0
…·; y† being the ambiguity function (AF) which is also a phase-space repre-

sentation of t0…¹†. Since the AF simultaneously contains all the OTFs associated
with the optical system with varying focus errors according to the formula [6]

H…¸; w20† ˆ A ¸; y ˆ 2w20¸

¶¸2
0

; …18†

w20 being the wavefront focus error coe�cient and ¸0 the cuto� spatial frequency,
equation (17) becomes

=xfjup…x†j2g ˆ H ¸; w20 ˆ ¸2
0 cot …pº=2†

2f0
: …19†

In this way, for a given value of the fractional order p (along the horizontal axis)
there is a defocused OTF displayed along the vertical or spatial frequency axis.
This representation is quite convenient to visualize the Hopkins’s criterion [7].
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Figure 8. Optical transfer functions obtained from di�erent slices of the intensity
distributions shown in ®gure 7 (a) ((a), (c) and (e)) and ®gure 7 (b) ((b), (d) and (f )),
for the case of a uniform aperture.



4. Experimental results

The optical setup employed for obtaining the RWT of a given one-dimensional
transmittance is sketched in ®gure 4. As was discussed in [22], a cylindrical
convergent wave illuminating the input object gives rise by free-space di�raction
to the di�erent FRTs with varying order p. These FRTs are located at di�erent
planes with di�erent lateral magni®cations. The action of a varifocal lens L is to
image the FRTs in a unique output plane with (approximately) the same
magni®cation. The horizontal x-axis displays the FRT for each value of p obtained
along the vertical y-axis. Thus, the intensity distribution at this plane becomes the
RWT.

In order to illustrate the approach developed in section 3, we compare the
tolerance to defocus of a transparent but ®nite size aperture and a pupil with a
central obscuration. As in equation (4), the modi®ed one-dimensional pupil t0…¹†
becomes

t0…¹† ˆ rect ¹=a… † ¡ rect ¹=b… † ; b µ a …20†

and three cases are considered: (i) uniform aperture, b ˆ 0; (ii) annular aperture,
with b ˆ 0:52a; and (iii) annular aperture, with b ˆ 0:80a. Figure 5 shows the
RWTs numerically (a and c) and experimentally (b and d) obtained, for the cases
(i) and (ii). Accordingly with equations (14) and (15), the slices of the RWT for
x ˆ 0 give rise to the SR for variable z, which are plotted in ®gure 6 for the three
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Figure 9. Optical transfer functions obtained from di�erent slices of the intensity
distributions shown in ®gure 7 (c) ((a), (c) and (e)) and ®gure 7 (d) ((b), (d) and (f )),
for the case of an annular aperture.



cases analysed. From these results, it can be observed the higher tolerance to
defocus of the annular apertures as should be expected.

Figure 7 shows the one-dimensional Fourier transforms, taken with respect to
the x-axis (see ®gure 4), of the RWT illustrated in ®gure 5. From the analysis
carried out in section 3 to derive equation (19), the defocused OTFs are displayed
along the vertical or spatial-frequency axis. These results are shown in ®gures 8
and 9, for the pupils (i) and (ii), respectively, and for: p ˆ 0:5 (w20=¶ ˆ 0:99),
p ˆ 0:75 (w20=¶ ˆ 0:40), and p ˆ 1 (w20=¶ ˆ 0).

5. Conclusions

We have applied the FRT formalism for analysing the performance of some
optical imaging systems. This approach can be considered as a generalization of
those based on phase-space signal representations, such as the WDF or the AF.
The information about the image quality parameters is stored in the FRT modulus
squared, or RWT, associated with a one-dimensional transmittance. This one can
be considered as a modi®ed pupil function of an equivalent two-dimensional
symmetric pupil aperture. The intensity distribution along a slice of this RWT
allows one to obtain the SR versus defocus, while performing a Fourier transfor-
mation along one axis gives rise to a display of the di�erent defocused OTFs. In
order to illustrate this approach we compared the tolerance to defocus of a uniform
pupil and a pupil with a central obscuration.
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