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Posterior Cramér–Rao Bounds for
Discrete-Time Nonlinear Filtering
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Abstract—A mean-square error lower bound for the discrete-
time nonlinear filtering problem is derived based on the Van
Trees (posterior) version of the Cramér–Rao inequality. This
lower bound is applicable to multidimensional nonlinear, possibly
non-Gaussian, dynamical systems and is more general than the
previous bounds in the literature. The case of singular conditional
distribution of the one-step-ahead state vector given the present
state is considered. The bound is evaluated for three important
examples: the recursive estimation of slowly varying parameters
of an autoregressive process, tracking a slowly varying frequency
of a single cisoid in noise, and tracking parameters of a sinusoidal
frequency with sinusoidal phase modulation.

Index Terms—Adaptive estimation, Kalman filtering, nonlinear
filters, time-varying systems, tracking filters.

I. INTRODUCTION

DISCRETE-TIME nonlinear filtering or the associated
problem of adaptive system identification arise in various

applications such as adaptive control, analysis, and prediction
of nonstationary time series. As is well known, the optimal
estimator for this problem cannot be built in general, and it
is necessary to turn to one of the large number of existing
suboptimal filtering techniques [1]. Assessing the achievable
performance may be difficult, and we have to resort to simula-
tions and comparing proximity to lower bounds corresponding
to optimum performance. Lower bounds give an indication of
performance limitations, and consequently, they can also be
used to determine whether imposed performance requirements
are realistic or not.

In time-invariant statistical models, a commonly used lower
bound is the Cramér–Rao bound (CRB), given by the inverse
of the Fisher information matrix. In the time-varying systems
context we deal with here, the estimated parameter vector has
to be considered random since it corresponds to an underlying
nonlinear, randomly driven model. A lower bound that is
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analogous to the CRB for random parameters was derived in
[11]; this bound is usually referred to as the Van Trees version
of the CRB, or posterior CRB (PCRB) [16]. Some properties
of the PCRB are summarized in Section II.

Several lower bounds for nonlinear dynamical systems have
appeared in the literature; see the overview in [6]. However,
the continuous-time case has received heavy emphasis but not
the discrete-time case, which is of greater practical impor-
tance. Bobrovsky and Zakai [2] were the first to apply the
Cramér–Rao theory to scalar discrete-time systems. The bound
was later improved and generalized to the multidimensional
case by Galdos [3]. Both of these bounds were obtained by
comparing the information matrix of the original system with
an information matrix of a suitable Gaussian system. The
bound in [3] is already quite general, but it still has some
limitations (see the discussion in [6]), i.e., the assumption that
the dimension of the system and measurements are identi-
cal. Recently, the approach by Galdos has been generalized
for nonlinear th-order autoregressive processes driven by
additive Gaussian noise with state-dependent gain [4].

In Section III of this paper, a novel and simple derivation of
the posterior CRB for the discrete-time multidimensional non-
linear filtering problem that avoids any Gaussian assumptions
is presented. The derivation is obtained from first principles
and differs from other approaches that instead consider com-
parison of the original nonlinear system with an appropriate
linear Gaussian system. We present an example of a linear
Gaussian system (which is different from those in [2] and
[3]) that has the same associated information matrix as the
original system. In Section IV, the lower bound is extended
for a frequently occurring case of nonlinear filtering, where
the conditional distribution of the state one step ahead, given
the current state, is singular. Note that a special case of a
similar extension was proposed in [3]. Section V illustrates an
application of the bound for three important examples:

• recursive estimation of slowly varying parameters of an
autoregressive process;

• tracking of a slowly varying frequency of a single cisoid
in noise (a new alternate derivation of the lower bound
in [16]);

• tracking parameters of a varying frequency that is mod-
ulated by a sinusoid [17].

Conclusions are drawn in Section VI.

II. PROPERTIES OF THE PCRB (REVIEW)
Let represent a vector of measured data, let be an -

dimensional estimated random parameter, let be
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TICHAVSKÝ et al.: POSTERIOR CRAMÉR–RAO BOUNDS FOR DISCRETE-TIME NONLINEAR FILTERING 1387

the joint probability density of the pair , and let be
a function of , which is an estimate of . The PCRB on the
estimation error has the form

E (1)

where is the (Fisher) information matrix with the
elements

E (2)

provided that the derivatives and expectations in (1) and (2)
exist. The superscript “ ” in (1) denotes the transpose of a
matrix, and the inequality in (1) means that the difference

is a positive semidefinite matrix. The proof given in
[10] or [11] holds under the additional condition of

(3)

where is the estimation bias conditioned by , and

(4)

Let and be operators of the first and second-order partial
derivatives, respectively

(5)

(6)

Using this notation, (2) can be written as

E (7)

Since , it can easily be seen
that can be decomposed into two additive parts:

(8)

where represents the information obtained from the data,
and represents the a priori information

E (9)
E (10)

provided that the expectations in (9) and (10) exist. Note that
is an expectation of the standard Fisher information matrix

over the a priori distribution of .
An alternative expression for the information matrix can be

derived from the equality .
Since is an integral of over , it does not
depend any longer on ; therefore, we have

E (11)

For example, if the posterior distribution of conditioned on
the data vector is Gaussian with mean and a (regular)
covariance matrix

(12)

holds, where denotes a constant independent of . Then,
the information matrix in (11) reads

E (13)

If is estimated by E , then (1) is satisfied with
equality. This is exactly the case for the Kalman filter when
performing the task of linear filtering.

Assume now that the parameter is decomposed into two
parts as , and the information matrix is
correspondingly decomposed into blocks

(14)

It can easily be shown that the covariance of estimation of
is lower bounded by the right-lower block of , i.e.,

E
(15)

assuming that exists. In the following, the matrix
will be called the information submatrix for

parameter .

III. A LOWER BOUND FOR THE
NONLINEAR FILTERING PROBLEM

Consider the nonlinear filtering problem

(16)
(17)

where
system state at time ;
measurement process;

and independent white processes (i.e., se-
quences of mutually independent random
variables or vectors);

and (in general) nonlinear functions.
The functions and may depend on time . Further
assume that the initial state has a known probability density
function . Let the dimension of the states be .

Equations (16) and (17) together with determine
unambiguously the joint probability distribution of

and for an arbitrary [2]

(18)

In (18) as well as in the sequel, ’s refer to (uncondi-
tional and conditional) probability densities of the variables
depicted in the argument of ’s. The conditional probability
densities and follow from (16) and (17),
respectively, under suitable hypotheses.

Let be the information matrix of
derived from the above joint distribution. The problem that
we wish to solve in this section is the computation of the
information submatrix for estimating , which is denoted ,
which is given as the inverse of the right-lower block of

. The matrix will provide a lower bound on the
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mean square error of estimating . In the sequel,
is denoted by for brevity.

Decompose as and corre-
spondingly as

E E

E E
(19)

provided that the derivatives and the expectations exist. Com-
parison of (16) and (20) gives

(20)

Thus, computation of the matrix involves either
calculation of the inverse of matrix
or inverse of the full matrix .

The following proposition gives a recipe for computing
recursively without manipulating large matrices such as or

. In particular, an efficient method for computing the
limit of for follows from the recursion.

Proposition 1: The sequence of posterior informa-
tion submatrices for estimating state vectors obeys the
recursion

(21)

where

E (22)
E (23)
E (24)
E

E (25)

Proof: The joint probability function of and
can be written as

(26)

Using (26) and the notations in (19) and (22)–(25), the
posterior information matrix for can be written in block
form as

(27)

where 0’s stand for zero blocks of appropriate dimensions.
The information submatrix can be found as an inverse

of the right-lower submatrix of

(28)

Using the definition of in (20), we obtain the desired
formula (21).

Note that the recursion in (21) involves computations with
matrices of dimension . The initial information subma-
trix can be calculated from the a priori probability function

E (29)

A few remarks follow to elucidate special cases.

A. Additive Gaussian Noise
Assume that the nonlinear filtering problem in (16) and (17)

has the form
(30)
(31)

and that the noises and are Gaussian with zero
mean and invertible covariance matrices and , respec-
tively. From these assumptions, it follows that

(32)

(33)
where and are constants, and

E (34)
E (35)

E
(36)

The well-known solution of the problem in the linear case
[with linear functions and in (30) and (31)] is the
Kalman filter. This is an algorithm that computes parameters
of the conditional distribution of the state given the data

. The distribution is Gaussian, and its mean and covariance
matrix are usually denoted and , respectively. It can
easily be shown that the recursion (21) for is identical to
those that are usually derived for from the Kalman filter
equations [1].

In order to compare the result (21) with the PCRB compu-
tations in [2] and [3], we find matrices , , , and
such that the linear system

(37)
(38)

has the same information matrix as the original nonlinear
system; in (37) and (38), and are independent white
Gaussian noises with zero means and covariance matrices
and , respectively. The matrices , , , and can
be determined by comparing the matrices , , and
of the original system, which are obtained from (34)–(37) to
those of the linear system in (37) and (38), yielding

(39)
(40)
(41)
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One possible solution of the above system of equations is
(42)
(43)
(44)
(45)

where denotes the square root of a positive semidefinite
matrix , assuming that the requisite inverses in (42)–(45)
exist. Note that the above linear filter is different from those
proposed in [2] and [3].

B. A Generalization
Consider the generalization of the nonlinear system in (16)

and (17) as

(46)
(47)

where is an integer. It can easily be seen that for the
generalized system, the whole derivation of (21) can be
repeated en masse, with only two small differences: First,
in the initialization, it has to be assumed that
are known constants and second that
in (26) cannot be reduced to but merely to

. The latter term will also
replace the former one in (25).

C. Time-Invariant Solutions
Now, assume that the functions and are time

invariant (independent of ). It can easily be seen that the
matrices also do not depend on . It can be
shown that for , the matrix converges to a matrix

, which is given as a solution to the equation

(48)

Note that (48) is a discrete-time algebraic Riccati equation. A
more common form of the Riccati equation is obtained if the
recursion (21) is equivalently written as

(49)

which can be easily proved by simple algebraic manipulations.
Then, put .

Two popular methods for solving the Riccati equation are
derived in [5] and [8], respectively; for a more comprehensive
survey, see [7]. In addition, note that there is an available
software for solving the equation in Matlab, namely, a function
DARESOLV or an older function DLQR.

IV. A FREQUENT SINGULAR CASE

Computation of the information submatrix , as described
in the previous section, fails if the conditional distribution
of , given is singular, and therefore, the probability
density is not defined. In the case of the

additive Gaussian noise considered in the previous section,
this happens when the matrix is singular. In order to
deal with these cases, consider the following modification
of the original problem.

Assume that the state vector can be written in block
form as

(50)

where has the length , , with . The
filtering is described by the set of equations

(51)

(52)
(53)

where , , and are (in general) nonlinear functions.
Again, the task is to calculate the information submatrix
for . The partitioning restriction (51)–(53) of the problem
is somewhat general and includes, among others, the case

, which means that the second part of the state
vector is constant in time, and it can be considered for use
when there are unknown constant parameters in the model.
Note that in [3], the case was considered when is only a
function of .

In this section, we present first an explicit solution—a
recursive equation for —for a special case of the system
(51)–(53) with a linear function and then a conceptual
solution for general .

Case 1—Linear :
Proposition 2: Consider the linear filtering in (51)–(53),

and assume that the function is linear so that (52) can
be written as

(54)

In addition, assume that is invertible for all . Put

... (55)

Let be an information matrix derived from the
joint probability density , and let and

be the information submatrices for and for ,
respectively. Then, and obey the recursions

(56)

(57)
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where

(58)

(59)

E (60)

E (61)

E (62)

E (63)

E (64)

E (65)

and

(66)

provided that the above derivatives and expectations exist. In
(59), the ’s and 0’s stand for identity and zero matrices of
appropriate dimensions.

Proof: See the Appendix.
Note that the conditional probability function

in (66) is obtained from by
substituting for from (54).

A stationary solution for would be obtained by inserting
for and . Note that the resulting equation no longer

has the form of a Riccati equation, unlike (48) in the previous
section.

For example, consider the above-mentioned case when
is a constant unknown parameter. Comparing the equation

with (54), we have , , and
, where 0’s and ’s stand again for zero and identity

matrices of appropriate dimensions. Utilizing the special form
of the matrix in (59), from (56) and (57), the recursions

(67)

(68)

(69)

can be derived. Note that in the stationary case, where
do not depend on , the matrix sequence

converges for to the solution of the Riccati-type of
equation

(70)

The sequence either converges to a constant matrix

(71)

or diverges to infinity when at least one of the eigenvalues of
has magnitude larger or equal to one.

The matrices in (69) grow without any bound in general.
If this happens, then the limit PCRB for estimating for

is the same as if were known. Indeed, these results
can be expected because if the data bear any information about
the parameter , this information is accumulated as the time

goes to infinity.
Another example of application of Proposition 2 is given in

Example 2 in the next section.
Case 2—Nonlinear : The main idea for handling the sin-

gular case of the nonlinear filter in (51)–(53) is to “regularize”
the filter, e.g., to replace (52) by a perturbed equation

(72)

where is a sequence of pairwise independent Gaussian
random vectors with zero mean and covariance matrix ,
independent of and , with close to 0. For the
modified system, it is possible to apply the result (21) from
Section III.

Let ’s and E denote probability densities and the
expectation operator induced by the perturbed system (51),
(53), and (72). Note that

(73)

where is determined by (51), and

(74)

where is a constant. The matrices for the
regularized system can be written as

(75)

where is given as an E -expectation of the second-
order derivative of w.r.t. and , as
in (22)–(25), contains, in addition, an E -expectation
of the second-order derivative of w.r.t.

, and , are given as an E -expectation of
the same derivatives of . In particular

E (76)
E E (77)

E E

E
(78)
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where the arguments of are omitted for brevity. The infor-
mation submatrix for the original system will be obtained from
the result (21) in the limit

(79)

An example of application of (79) is given in Example 3 in
the following section.

V. EXAMPLES

Example 1—AR Process with Time-Varying Parameters:
Consider a scalar-valued random process and introduce
the notation

(80)

Let obey the recursion

(81)

where is a vector of instantaneous autoregressive coef-
ficients at time instant , and is a Gaussian white noise
with zero mean and variance . Further, assume that has
Gaussian random increments

(82)

where is white, independent of , zero mean, and
has covariance matrices .

The system (81) and (82) has the form of (46) and (47). The
information submatrix can be obtained by a straightforward
application of (21) and (34)–(37). The result is

(83)
(84)

where

E (85)

so that

(86)

Note that the optimum estimate of from the data in
the mean-of-square sense is the Kalman filter; the conditional
distribution of given is Gaussian. Let and
denote parameters of this distribution, namely, the mean and
the covariance matrix. As mentioned in the introduction, the
PCRB is tight in this case, and is equal to the expected
value of . Note that in the Kalman filter obeys the
same recursion as with the exception that in (85) is
replaced by without the expectation operator.

In order to achieve practical conclusions from the above
theory, assume that drift of the autoregressive parameter is
slow, i.e., that the trace of is much lower than 1, and

Fig. 1. Fisher information for slowly varying parameter of an AR(1) process
as a function of this parameter for Q = 10

�2; 10�3; and 10
�4 (from the

bottom up), respectively.

that fluctuates around a mean value for a considerably
long period of time. Then, the covariance function of
is approximately equal to the covariance function of an AR
process with parameter . The matrix in (85) can be
replaced by a covariance matrix of the above process,
which is a function of . Note that is independent of the
variance of innovations . Some methods for calculating the
covariance matrix of an AR process are presented, e.g., in
[14]. For example, for the first-order autoregressive process
[abbreviated as AR(1) in the sequel]

(87)

holds. Here, is restricted to the interval to assure
stability of the model. If, in addition, the matrix sequence

is constant, , and it is possible to calculate
the limit information matrix (which is a scalar, in the case of

) from the equation

(88)

In particular, for the AR(1) process, we obtain the solution

(89)

Numerical values of (89) for , , and are
plotted in Fig. 1. It is shown that the information about the
parameter increases rapidly if the pole approaches unity. For
the pole well separated from , i.e., , it holds that

.
The matrix in (88) [or the corresponding scalar in (89)

in the special case] describes the information content that
the AR process bears about the fluctuating AR parameter.
This information content depends on the actual value of the
estimated parameter. If it happens that is small and,
consequently, that the limit PCRB is large, it indicates
that the assumed data model might not be appropriate.
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Example 2—Sinusoidal Frequency Estimation: In this sub-
section, the developed methodology is applied to computation
of the posterior CRB for tracking parameters of a single noisy
cisoid with slowly varying frequency. This computation is
easier than those recently presented in [16]. Second, as a spe-
cial case of a single time-invariant frequency, the well known
Cramér–Rao bound by Rife and Boorstyn [9] is derived.

The signal is assumed to have the form

(90)

where
magnitude;
instantaneous phase of cisoid at time instant ;
noise.

The instantaneous frequency (denoted ) is defined as the
one-step increment of . Thus, the signal with randomly
varying frequency can be described by the state vector

(91)

and time update of is given by the pair of the equations

(92)
(93)

It is assumed that and are independent sequences
of independent random variables with zero mean values and
variances and , respectively; is Gaussian, and
is complex circular Gaussian (i.e., the real and imaginary parts
of are independent normally distributed with zero means
and equal variances ). Next, assume that the probability
distribution of the initial instantaneous phase and frequency
is known.

Obviously, in the standard formulation, the covariance ma-
trix of the system noise is not invertible,
and the conditional probability is singular. The
calculation of the information submatrix as in Section II fails,
but it is possible to apply the approach developed in Section III
with and . Comparing (93) with (54), we
get , and . The assumed probability
distributions of the noise and imply that

(94)

(95)

where and are normalization constants. A straightforward
calculation of (60)–(65) gives

(96)

(97)

Inserting the above relations into (56) and (57) and we get,
after some simplifications, (98), shown at the bottom of the
page, where

(99)

In (98) and (99), , , and denote elements of the
matrix .

The stationary solution of (98) can be found by putting
. After excluding the terms and ,

a fourth-order polynomial equation for is obtained. This
equation can be shown to have only one positive real-valued
root. The final result is

(100)

where

(101)
(102)

(103)

The limit PCRB on the instantaneous frequency is equal to the
left-upper corner element of , i.e.,

LPCRB

(104)

which coincides with the result derived in [16].
Finally, let us consider estimation of stationary frequency,

i.e., put . Then, (98) is reduced to

(105)

For (no a priori information about the frequency and
phase), the recursion (105) has a solution

(106)

(107)

(108)

(98)
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The PCRB on the frequency is equal to the left-upper corner
element of , i.e.,

PCRB

(109)

which coincides with the CRB for the problem [9].
Example 3—Sinusoidal Signal with Sinusoidal Phase Mod-

ulation: Consider a sinusoidal signal as in (90), define the
instantaneous frequency of the carrier as a one-step back-
ward difference of the instantaneous phase as in (93), and
assume that the frequency evolves in time like a sinusoid
within the range . We refer to this sinusoid as a
message and assume that the frequency of the message evolves
like a random walk. Note that an algorithm for tracking
parameters of signals of this kind was proposed in [17].

At each time instant, the signal can be characterized by a
state vector with three components

(110)

where
instantaneous phase of the carrier;
instantaneous phase of the message;
frequency of the message.

Assume that the instantaneous frequency of the carrier equals

(111)

where is the central frequency of the carrier, and is the
maximum deviation of the carrier frequency from .

The time update of the state vector is given by the set of
equations

(112)
(113)

(114)

As in the previous subsection, assume that is a Gaussian
white noise with variance . The filtering in (112)–(114) and
(90) is an example of the singular case from Section IV with
nonlinear function and

(115)
(116)

(117)

and

(118)

A straightforward calculation gives

(119)

(120)

(121)

(122)

(123)

where

E (124)
E (125)

An available but tedious method of computing an approximate
value of is to choose a small fixed , do a number of inde-
pendent simulations of the data according to the “regularized”
model, and replace the expectations in (124) and (125) by
corresponding sample averages. Then, evaluate as in (79).

Another approach for computing can be utilized in cases
when the rate of evolution of , i.e., the variance , and
the variance of the observation noise are small. Consider
sequences , , that obey (112)–(114) with

(this is called an “equilibrium state” in [15]), and
assume that the probability densities of , ,
are concentrated in neighborhoods of , , and .
Then, and are approximated by

(126)

(127)

Using the above approximation the limit in (79) can be
evaluated analytically. The result, which is obtained with the
aid of symbolic Mathematica, is

(128)

(129)
(130)

(131)

(132)

(133)

where

(134)
(135)
(136)

and are the elements of .
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Fig. 2. Instantaneous frequency of the carrier of a sinusoidal signal and the
PCRB on the signal frequency as functions of time in the model considered
in Example 3.

To illustrate the above result, consider a signal of the length
with the following parameters: ,

, , , , . Fig. 2 shows
the posterior CRB on parameter , which was derived from

, as a function of time. Simultaneously, the instantaneous
frequency of the carrier is plotted. Note that the nonlinear
character of the signal model implies that the PCRB does not
converge to any limit value for , but it is periodic in
time with the frequency that is twice greater than the frequency
of the message . In particular, if the frequency of the carrier
is close to its minimum or maximum and its rate of change
is low, the amount of information that the signal bears about
the possible changes of is small, the PCRB increases, and
vice versa.

VI. CONCLUSIONS

A simple and straightforward derivation of the posterior
Cramér–Rao lower bound for the discrete-time nonlinear filter-
ing problem was presented. Explicit realizations of this lower
bound were calculated for three important examples.

1) tracking a slowly varying AR parameter;
2) tracking a slowly varying sinusoidal frequency;
3) tracking a slowly varying frequency that is modulated

by a sinusoid.
The derived lower bound can be used for evaluating the
performance of existing suboptimal methods of nonlinear
filtering. It is believed that a similar bound can be derived
for a more general model of nonlinear autoregressive systems
as well.

APPENDIX
PROOF OF PROPOSITION 2

The proof of Proposition 2 utilizes the following lemma.
Lemma 1: Consider the problem of estimating a random

vector from an observation vector . Let be the
joint probability density of , and assume that information

matrix

E (137)

exists. Let , where is a constant invertible
matrix. Then, the probability density exists, and the
corresponding information matrix for estimating is given by

(138)

Proof: The proof is based on the well-known rule for
change of coordinates of the estimated parameters (see, e.g.,
[13]), is straightforward, and is therefore omitted here.

Proof of Proposition: Let denote the probability den-
sity of the triplet

(139)

It will be shown by induction that exists.
The information matrix that corresponds to the triplet

can be written in block form as

(140)

where the blocks are obtained as expecta-
tions of the second-order derivatives of with respect
to and .

The information submatrix for the state vector can
be obtained as the inverse of the right-lower submatrix of

, i.e.,

(141)

Consider the probability density of the quartet
, denoted by . Note that two vectors

(142)

obey the linear relationship. Since is assumed to be
regular, it follows that is regular as well. Applying Lemma
1, it follows by induction that in (139) exists for each , and

(143)
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Using conditional densities, can be written as the product

(144)

The second equality in (144) follows from the formulation of
the filtering problem. From (140) and (144), it follows that

(145)

where , were defined in (60)–(65). The
information submatrix for then equals

(146)

This can be rewritten using (141) as

(147)

Combining (143) and the form of in (59) and (142) implies

(148)

The statement follows.
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