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Abstract

We study N = 2 supersymmetric Born-Infeld-Higgs theory in 3
dimensions and derive Bogomol’nyi relations in its bosonic sector. A
peculiar coupling between the Higgs and the gauge field (with dynam-
ics determined by the Born-Infeld action) is forced by supersymmetry.
The resulting equations coincide with those arising in the Maxwell-
Higgs model. Concerning Bogomol’nyi bounds for the vortex energy,
they are derived from the N = 2 supersymmetry algebra.
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1 Introduction

The supersymmetric extension of the Born-Infeld theory [1]-[2] was studied
in refs. [3]-[4] by means of superspace techniques. Remarkably, connections
between Euler-Heisenberg effective Lagrangians derived from certain super-
symmetric theories and the Born-Infeld Lagrangian were discovered [3],[5].
More recently, supersymmetric extensions of 10-dimensional Born-Infeld the-
ory have been shown to play a central rôle in the dynamics of D-branes
[6]-[12].

Closely related to the issue of supersymmetry completion of the Born-
Infeld theory, the study of Bogomol’nyi relations and BPS solutions in this
theory is the main object of the present work. To this end, we center the
analysis in the study of a N = 2 supersymmetric Born-Infeld theory in d = 3
dimensions, which, when coupled to a Higgs field, has a bosonic sector which
admits Bogomol’nyi equations [13]-[14] 1. Interestingly enough, the Born-
Infeld BPS equations coincides with those of the Maxwell theory and hence
the exact vortex solutions found in this last case [16] also solve the more
involved Born-Infeld theory.

As it is well-known, Bogomol’nyi relations can be found just by estab-
lishing an inequality between the energy and the topological charge [15] or
by analysing the conditions under which a bosonic theory with topological
solutions can be extended to a N = 2 supersymmetric theory in which the
central charge coincides with the topological charge [17]. In this respect, it is
very enlighting to derive, via the Noether method, the explicit supersymmet-
ric algebra from which the origin and properties of BPS relations becomes
transparent. This was done for the Maxwell-Higgs model in [19] and for the
case of local supersymmetry in [20]-[21]. In the present work we proceed to a
similar analysis with the case of a supersymmetric Born-Infeld-Higgs theory.

The plan of the paper is the following: in Section 2 we present the N = 1
supersymmetric Born-Infeld theory in d = 4 dimensions giving an explicit
formula for the fermionic Lagrangian which will be necessary for construct-
ing the SUSY charges. Then, in Section 3 we proceed to a dimensional
reduction to d = 3 thus obtaining a N = 2 supersymmetric Born-Infeld
theory with a bosonic sector obeying first order Bogomol’nyi equations. The

1Originally, Bogomol’nyi equations were discovered in a d = 3 model with a Maxwell
Lagrangian determining the dynamics of the gauge field [15]- [16]. Already in [16] the
connection with supersymmetry is signaled
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N = 2 supersymmetric algebra is constructed in section 4 where Bogomol’nyi
bounds are discussed. Finally in section 5 we present a discussion of our re-
sults. The explicit expressions for superfields in components are detailed in
an Appendix.

2 Supersymmetric Born-Infeld theory

In this section we shall start by writing the N = 1 supersymmetric version
of the Born-Infeld (BI) theory in four dimensional space-time. Then, by
dimensional reduction, we shall obtain in the next section a 3-dimensional
N = 2 supersymmetric Lagrangian which will then be coupled to a Higgs
scalar.

The 4-dimensional Born-Infeld Lagrangian is

LBI =
β2

e2



1−

√

√

√

√− det

(

gµν +
1

β
Fµν

)



 (1)

(The signature of the metric gµν is (+,−,−,−)).
Use of the identity

det

(

gµν +
1

β
Fµν

)

= −1 −
1

2β2
F µνFµν +

1

16β4

(

F µνF̃µν

)2
(2)

allows to write (1) in the form

LBI =
β2

e2

(

1−

√

1 +
1

2β2
F µνFµν −

1

16β4

(

F µνF̃µν

)2
)

(3)

Here, F̃µν ≡ 1
2
εµνρσF

ρσ

In order to construct the SUSY extension of the Born-Infeld Lagrangian,
we shall follow [3]-[4]. Although the complete derivation of the bosonic part
of the SUSY model has been presented in these references (see also [9]-[10])
we shall here give a detailed description of the supersymmetric construction
since, for our purposes, knowledge of the explicit form of certain fermion and
fermion-boson terms is necessary.

We start by writing the BI Lagrangian (1) in the form

LBI =
β2

e2

∞
∑

n=0

qn

(

1

2β2
F µνFµν −

1

16β4

(

F µνF̃µν

)2
)n+1

(4)
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where

q0 = −
1

2

qn =
(−1)n+1

4n
(2n− 1)!

(n+ 1)! (n− 1)!
for n ≥ 1 (5)

Eq.(4) can be rewritten as

LBI =
∞
∑

n=1

qn−1
n
∑

j=0

(

n

j

)(

1

2β2
F µνFµν

)j (

−
1

16
(
1

β2
F µνF̃µν)

2

)n−j

(6)

The basic ingredient for the supersymmetric extension of the BI action is the
curvature supermultiplet

Wα = −
1

4
D̄β̇D̄

β̇DαV (7)

where V is the gauge vector superfield which in the Wess-Zumino gauge reads

V = −θσµθ̄Aµ + iθθθ̄λ̄− iθ̄θ̄θλ +
1

2
θθθ̄θ̄D (8)

Here Aµ is a vector field, λ and λ̄ are two-component spinors which can be
combined to give a four-component Majorana fermion and D is an auxiliary
field. The covariant derivatives Dα and D̄α̇ act on chiral variables

yµ = xµ + iθσµθ̄

yµ† = xµ − iθσµθ̄ (9)

where we use α, β, . . . for spinor indices and µ, ν, . . . for Lorentz indices. As
usual, σµ = (I, ~σ) with σi the Pauli matrices. Explicitly,

Dα =
∂

∂θα
+ 2i

(

σµθ̄
)

α

∂

∂yµ

D̄α̇ = −
∂

∂θ̄α̇
(10)

are the covariant derivatives acting on functions of (y, θ, θ̄) and

Dα =
∂

∂θα

D̄α̇ = −
∂

∂θ̄α̇
− 2i (θσµ)α̇

∂

∂ȳµ
(11)
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are the corresponding covariant derivatives on functions of (y†, θ, θ̄).
As it is well known, one can construct the N = 1 supersymmetric Maxwell

Lagrangian in terms of the chiral superfield Wα and its hermitic conjugate
W̄α̇ by considering

L0 =
1

4

[∫

d2θW 2 (y, θ) +
∫

d2θ̄W̄ 2
(

y†, θ̄
)

]

(12)

since the last F -components in W 2 and W̄ 2 contain the terms D2 − 1
2
(F 2±

iF F̃
)

. Now, in order to get higher powers of F 2 and FF̃ necessary to

construct the BI action, it has been shown [3] that one has to include powers
of superfields X and Y defined as

X =
1

8
(D2W 2 + D̄2W̄ 2) (13)

Y = −
i

16
(D2W 2 − D̄2W̄ 2) (14)

Note that, as shown in the Appendix, one can write

X|θ=θ̄=0 = −(
1

β2
D2 −

1

2β2
F µνFµν − iλ/∂λ̄− iλ̄/̄∂λ) (15)

Y |θ=θ̄=0 =
1

2
(
1

2β2
F µνF̃µν + λ/∂λ̄− λ̄/̄∂λ) (16)

Hence, lowest components of X and Y include the invariants F 2 and FF̃ .
Thus, we consider the following supersymmetric Lagrangian whose boso-

nic part, as we shall see, leads to the BI theory

LSUSY
BI =

β2

4e2

[

1

β2

∫

d2θW 2 +
1

β2

∫

d2θ̄W̄ 2

]

+
∞
∑

r,s,t=0

arst

∫

d4θ
(

W 2W̄ 2
)r
XsY t

(17)
(here arst are coefficients to be determined). Concerning the last term in (17),
note that higher powers of F 2 and FF̃ are necessary for the construction
of the BI Lagrangian, not only W 2 and W̄ 2 should be considered but also
products and powers of these chiral superfields have to be introduced. Now,
since the highest component of W 2W̄ 2 takes the form

W 2W̄ 2|θθθ̄θ̄ = θθθ̄θ̄
(

(D2 −
1

2
FµνF

µν)2 + (
1

2
F̃µνF

µν)2
)

(18)
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one can see that powers of this general superfield can be used to reproduce
the expansion in (6).

As stated above, coefficients arst should be chosen so as to get the BI
Lagrangian from the bosonic part of (17). Since the product XsY t contains
derivatives of F and F̃ in its D-component, a0st must vanish in order to
eliminate unwelcome purely bosonic terms. Moreover, one can see that the
simplest choice leading to the BI action is to take arst = 0 for r > 1. Then,
in superfield notation, the SUSY BI Lagrangian that we shall consider is:

LSUSY
BI =

1

4e2

[∫

d2θW 2 +
∫

d2θ̄W̄ 2
]

+
∞
∑

s,t=0

a1st

∫

d4θW 2W̄ 2XsY t (19)

One can see that this Lagrangian coincides with those proposed in [3]-[4].
It remains to determine coefficients a1st so that the bosonic sector of the

theory does coincide with the BI Lagrangian. We then concentrate in the
purely bosonic terms of LSUSY

BI and this we do by putting fermions to zero.
At this stage, we shall impose

LSUSY
BI

∣

∣

∣

BOS
≡ L̃BI

=
β2

e2

(

1−

√

1 +
1

2β2
F µνFµν −

1

16β4

(

F µνF̃µν

)2
−

1

β2
D2

)

(20)

Note that when the equation of motion for the D field (which in the present
case gives D = 0) is used, the bosonic part of the supersymmetric Lagrangian
coincides with the BI Lagrangian, i.e. L̃BI [D = 0] = LBI .

Coefficients a1st can be now computed by imposing identity (20). From
the bosonic components of W 2W̄ 2 (given in the Appendix) one finds a re-
currence relation which connects the a′s coefficients in SUSY BI Lagrangian
expansion with coefficients q′s (eq.(5)) in the expansion of the BI Lagrangian,

a100 =
1

8β2

a1 n−2m 2m =
(−1)m

β2n+4

m
∑

j=0

4m−j
(

n+ 2− j

j

)

qn+1−j

a1 n 2m+1 = 0 (21)
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With the knowledge of coefficients a′s, the supersymmetric Born-Infeld La-
grangian can be explicitly written in the form

LSUSY
BI = L̃BI + Lfer + Lfb (22)

where Lfer contains self-interacting fermion terms while Lfb includes kinetic
fermion and crossed boson-fermion terms. Both Lfer and Lfb can be calcu-
lated as expansions in increasing powers of fermionic and bosonic fields. For
our purposes, namely the discussion of Bogomol’nyi relations through the
supersymmetry algebra, only certain terms, quadratic in fermion fields, will
be necessary.

In fact, as will become clear in section (IV) , only quadratic terms of the
form λ∂µλ̄ and λ̄∂µλ will give a contribution to the current algebra (higher
order terms vanish when fermions are put to zero). Then, we shall only give
the explicit form of those terms in Lfb which will be necessary in what follows
(terms in Lfer do not contribute to the SUSY algebra). Denoting Lfb[λ, ∂λ̄]
the sum of relevant terms (other terms of equal or higher order in fermionic
fields can be calculated straightforwardly), we have

Lfb = LI
fb[λ, ∂λ̄] + LII

fb[λ̄, ∂λ] + other terms (23)

LI
fb

[

λ, ∂λ̄
]

= −
i

2
λ/∂λ̄− i

∞
∑

s,t=0

a1stλσ
ν∂µλ̄(XBOS)

s−1(YBOS)
t−1

(

−2iXBOSYBOS + A∗(isYBOS +
t

2
XBOS)

)(

Aδµν +
1

2
Ω∗µρΩρν

)

(24)

LII
fb[λ̄, ∂λ] = LI

fb

[

λ, ∂λ̄
]†

(25)

Here A and Ω∗µρΩρν , calculated in the Appendix, are given by

A = D2 −
1

2
F µνFµν −

i

2
F µνF̃µν (26)

Ω∗νρΩρµ =
(

D2 +
1

2
FαβF

αβ

)

δνµ − 2DηνρF̃ρµ + 2F νρFρµ (27)

We end this section by rewriting LSUSY
BI defined in eq.(22), which was

worked out in terms of the two component fermions λ and λ̄, using a four
component fermion Λ,

Λ =

(

λα
λ̄α̇

)

(28)
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Concerning 4 dimensional Dirac matrices Γµ, we use

Γµ =

(

0 σµ

σ̄µ 0

)

(29)

Then, instead of eq.(23), we have for Lfb

Lfb = −
i

2
Λ̄/∂Λ +

∞
∑

s,t=0

β2(s+2t+1)a1stX
s−1
BOSY

2t−1
BOS

(

iΛ̄/∂ΛYBOS

[

s(X2
BOS + 4Y 2

BOS)−XBOS (ZBOS − 2XBOS)
]

+2iΛ̄Γµ∂νΛ(DF̃νµ − FνρF
ρ
µ)
[

XBOSYBOS + 2
(

2sY 2
BOS + tX2

BOS

)]

+Λ̄Γ5/∂ΛXBOS

[

t(X2
BOS + 4Y 2

BOS) + 4Y 2
BOS + YBOSZBOS(s− 2t)

]

−2Λ̄Γ5Γµ∂νΛ(DF̃νµ − FνρF
ρ
µ)XBOSYBOS(s− 2t)

)

(30)

where

XBOS = −D2 +
1

2
FµνF

µν

YBOS =
1

4
FµνF̃

µν

ZBOS = D2 +
1

2
FµνF

µν (31)

With this, the complete supersymmetric Born-Infeld Lagrangian (22)

LSUSY
BI = L̃BI + Lfer + Lfb

is invariant under the following N = 1 supersymmetry transformations

δAµ = −iǭΓµΛ δΛ = i(−ΣµνFµν + Γ5D)ǫ

δD = iǭΓ5/∂Λ (32)

where Σµν = i
4
[Γµ,Γν ] and Γ5 = iΓ1Γ2Γ3Γ0.

3 The Supersymmetric Born-Infeld Higgs

model and Bogomol’nyi equations

In the previous section we have constructed the d = 4, N = 1 supersymmetric
Born-Infeld theory. Now, since we are seeking for Bogomol’nyi relations for
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a spontaneously broken gauge theory, one has to consider, in addition to the
Lagrangian already derived, a SUSY Higgs Lagrangian. This can be done
by considering a chiral supermultiplet Φ coupled to the vector superfield (8)
in the usual gauge invariant way. Also, one adds a Fayet-Iliopoulos term to
break the gauge symmetry. We shall not give the details here but directly
give the resulting SUSY Higgs Lagrangian.

The first part of this section is devoted to a dimensional reduction to
d = 3 space-time thus obtaining a N = 2 supersymmetric theory. It is in this
model that Bogomol’nyi relations for vortices arise. Then, we shall discuss
Bogomol’nyi equations.

Now, as it is well known, enlargement of supersymmetry from N = 1 to
N = 2 leads to a bosonic sector obeying first order Bogomol’nyi equations
[18]-[19]. These equations are obtained at the end of this section while the
supersymmetry algebra (leading to Bogomol’nyi bounds) is discussed in the
next one.

The dimensional reduction proceeds as follows. We take A3 = N and N
will play the role of an additional scalar field in the 3-dimensional model.
Concerning the fermion Λ defined in eq.(28), its components can be acco-
modated into a couple of two-component 3-dimensional Majorana fermion
χ and ρ Four dimensional Γ matrices are related to 2 × 2 Dirac matrices in
three dimensions γi (i = 0, 1, 2) as follows

Γi = γi ⊗ τ3 , Γ3 = 1⊗ iτ2 , Γ5 = 1⊗ τ1

Σij = σij ⊗ 1 , Σi3 = −Σ3i = γi ⊗ τ1 (33)

where σij = 1/2[γi, γj].
With this, the dimensionally reduced N = 2, d = 3 action takes the form

S(3) = S
(3)
bos + S

(3)
fb + S

(3)
fer (34)

Here

S
(3)
bos = −

β2

e2

∫

d3x
(
√

1−
1

β2
D2 +

1

2β2
F ijFij −

1

β2
∂iN∂iN −

1

β4
(εijkF ij∂kN)2 − 1

)

(35)
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Concerning S
(3)
fb , it can be written in the form

Sfb = −
i

2

∫

d3xΣ̄/∂Σ + i
∞
∑

s,t=0

a1st
β2s+4t+2

(

X(3)
)s−1 (

Y (3)
)2t−1

{

Σ̄/∂Σ
[

s
(

(

X(3)
)2

+
(

Y (3)
)2
)

Y (3) +
(

X(3) − 2Z(3)
)

X(3)Y (3)+

1

2
tX(3)

(

(

X(3)
)2

+
(

Y (3)
)2
)

+
(

Y (3)
)2
X(3)

]

− Σ̄γi∂jΣ
(

X(3)ηij + 2FikF
k
j

) [

X(3)Y (3) (FikF
k
j +

s

2
− t)

+
(

s
(

Y (3)
)2

+ t
(

X(3)
)2
)]

+ Σ̄∂jΣDF̃j

[

(

Y (3)
)2

+ 2t
(

X(3)
)2

− (1 + 2s− 4t)X(3)Y (3)
]}

(36)

where

X(3) =
1

2
FijF

ij −D2 − (∂iN)2 (37)

Y (3) = F̃ i∂iN (38)

Z(3) = D2 +
1

2
FijF

ij (39)

and Σ is a Dirac fermion constructed from the two Majorana fermions χ and
ρ,

Σ = χ + iρ (40)

Finally, S
(3)
fer is the dimensionally reduced purelly fermionic action whose

explicit form is irrelevant for our main purpose, namely the evaluation of the
supersymmetry algebra.

As announced, we shall add a N = 2, d = 3 Higgs action S
(3)
H for the

Higgs field whic takes the form [19]

S
(3)
H =

∫

d3x
(

1

2
|Diφ|

2 +
i

2
ψ̄ 6Dψ +

1

2
|F |2 +

i

2
(ψ̄Σφ − Σ̄ψφ∗)+

D

2
(|φ|2 − ξ2) +

1

2
N(Fφ∗ + F ∗φ− ψ̄ψ)

)

(41)
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φ is a complex charged scalar, ψ a Dirac spinor, N a real scalar and F a
complex auxiliary field. The covariant derivative

Di = ∂i + iAi (42)

Using the equation of motion for the auxiliary field F , action (41) reads

S
(3)
H =

∫

d3x
(

1

2
|Diφ|

2 +
i

2
ψ̄ 6Dψ +

i

2
(ψ̄Σφ− Σ̄ψφ∗) +

D

2
(|φ|2 − ξ2)−

1

2
N2|φ|2 −

1

2
Nψ̄ψ

)

(43)

The complete N = 2, d = 3 supersymetric Born-Infeld-Higgs action is
then given by

S
(3)
SUSY = S

(3)
bos + S

(3)
fb + S

(3)
fer + S

(3)
H (44)

where the different actions have been defined through eqs.(34)-(36) and (43).

Dimensions of parameters and fields in units of mass are: [β] = m2, [e] = m
1

2 ,

[ξ] = m
1

2 , [(Aµ, N,Σ, D)] = (m,m,m
3

2 , m2) and [(φ, ψ, F ))] = (m
1

2 , m,m
3

2 ).
Action (44) remains invariant under the following N = 2 supersymmetry

transformations (with Dirac fermion parameter ǫ)

δφ = ǭψ δψ = −(i 6Dφ+Nφ)ǫ δN = iǭΣ + h.c.
δAi = ǭγiΣ δΣ = (1

2
εijkF

ijγk +D + i/∂N)ǫ δD = 1
2
ǭ/∂Σ− h.c.

(45)

Since we have already used the equation of motion of the F field, eqs.(45)
correspond to an on-shell invariance. In order to have an off-shell invari-
ance one just has to use (41) instead of (43) and supplement (45) with the
transformation law for F

δF = iǭ 6Dψ + (iǭΣφ + h.c.) (46)

The connection between supersymmetry and Bogomol’nyi equations is by
now well-known. In the “normal” Maxwell-Higgs theory, imposing the super-
symmetry variation of the gaugino to be zero gives one of the Bogomol’nyi
equations (that for the gauge curvature) while the vanishing of the Higgsino
supersymmetry variation leads to the second Bogomol’nyi equation, the one
for the Higgs field. The same happens in the present case. Indeed, suppose
we want to obtain the Bogomol’nyi equations for the bosonic theory defined

11



by action (44) with all fermion fields put to zero. If we use the equation of
motion for the auxiliary field D,

D = −
e2

2

φ2 − ξ2
√

1 + e4

4β2 (φ2 − ξ2)2
×

√

1 +
1

2β2
F ijFij −

1

β2
∂iN∂iN −

1

β4
(εijkF ij∂kN)2 (47)

the bosonic action becomes

S ≡ S
(3)
bos + S

(3)
H =

β2

e2
−

β2

e2

∫

d3x

√

√

√

√

(

1 +
1

2β2
F ijFij −

1

β2
∂iN∂iN −

1

β4
(εijkF ij∂kN)2

)

V [φ]

(48)

where V [φ] is the resulting symmetry breaking potential

V [φ] = 1 +
e4

4β2
(φ2 − ξ2)2 (49)

It is interesting to note that in our treatment, the symmetry breaking poten-
tial appears as a multiplicative factor inside the BI square root as a result
of searching the supersymmetric extension of the bosonic theory. That is,
N = 2 supersymmetry forces this functional form for the action (the same
happens if one remains in d = 4 dimensions with the N = 1 theory). In ref.
[13] this functional form was selected from the infinitely many possibilities
of adding to the BI theory a Higgs field and its symmetry breaking potential
just by trying to obtain the usual (i.e. Maxwell+Higgs) Bogomol’nyi equa-
tions. Thus, supersymmetry explains the rationale of the choice associated
with the Born-Infeld-Higgs model.

Let us now write, exploiting supersymmetry, the first order equations for
the Born-Infeld-Higgs theory which are the analogous to the Bogomol’nyi
equations for the “normal” Nielsen-Olesen model. To this end we consider
the static case with A0 = N = 0.

From the supersymmetry point of view, Bogomol’nyi equations follow
from the analysis of the gaugino and Higgsino supersymmetry variations.
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More precisely, one decomposes the (Dirac) parameter of the supersymmetry
transformation into its chiral components ǫ±. Then, by imposing the vanish-
ing of half of the supersymmetry variations, say those generated by ǫ+ (ǫ−)
one gets the Bogomol’nyi equations in a soliton (anti-soliton) background.
The other half supersymmetry is broken. In the present case this amounts,
for a vortex with positive magnetic flux, to the conditions

δǫ+Σ = 0 →
1

2
ε0ijF

ij = −D (50)

δǫ+ψ = 0 → D1φ = iD2φ (51)

δǫ
−

Σ 6= 0

δǫ
−

ψ 6= 0 (52)

Using the explicit expresion given by (47), we can rewrite (50) in the form

1

2
ε0ijF

ij =
e2

2

φ2 − ξ2
√

1 + e4

4β2 (φ2 − ξ2)2

√

1 +
1

2β2
F ijFij (53)

From this equations, we obtain a simple expression for the magnetic field
which in fact coincides with that corresponding to the “normal” (i.e. with
Maxwell dynamics) Bogomol’nyi equation

B ≡ (1/2)ε0ijF
ij =

e

2
(|φ|2 − ξ2) (54)

This equation, together with (51) are the Bogomol’nyi equations for the Born-
Infeld-Higgs system. They coincide with those arising in the Maxwell-Higgs
system, i.e., the original Bogomol’nyi equations [15]-[16] and hence they have
the same exact solutions originally found in [16]

4 SUSY algebra

Given the 3 dimensional model defined by action (34), one can easily con-
struct the associated conserved supercurrent and from it the supercharge
commutators. The corresponding supercharges Q̄ and Q can be written in
the following form

Q̄ǫ ≡
∫

d2x(
∂L

∂(∂0Σ)
δΣ +

∂L

∂(∂0ψ)
δψ) (55)
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Q ≡ γ0Q̄† (56)

After some work one gets

Q̄ =
i

2e2

∫

d2xΣ†
(

1 + 2
∞
∑

0

a1s0β
−2(s+1)(B2 −D2)s((2s+ 3)D2−

B2 − 2(s+ 1)γ0BD)

)

(γ0B +D) +
i

2

∫

d2xψ† 6Dφ (57)

Q = −
i

2e2

∫

d2x(B + γ0D)

(

1 + 2
∞
∑

0

a1s0β
−2(s+1)(B2 −D2)s

((2s+ 3)D2 − B2 − 2(s+ 1)γ0BD)

)

Σ−
i

2

∫

d2x( 6Dφ)∗ψ (58)

As in the previous section, we have considered Nielsen-Olesen vortices by
putting A0 = N = 0 after differentiation (We also restrict ourselves to the
static case). More important, we have only included terms linear in the
fermionic fields, this because we are interested in extracting, from the SUSY
charge algebra, just the pure bosonic term from which the (bosonic) Bogo-
mol’nyi equations will be derived. That is why, after computing the algebra,
all fermion fields should be put to zero (Non-linear fermionic terms in the
charges necessarily give fermionic contributions to the algebra which vanish
when fermions are put to zero).

Our purpose is to compute the Born-Infeld SUSY charge algebra and,
from it, to explicitly obtain the Bogomol’nyi bounds in terms of energy and
central charge. Since the expansion of the Born-Infeld Lagrangian in pow-
ers of 1/β2 leads to Maxwell, Euler-Heisenberg, ... Lagrangians, it will be
instructive to show how the algebra reproduces, in a 1/β2 expansion, the cor-
responding Maxwell, Euler-Heisenberg, ... SUSY algebra and then present
the arguments leading to the complete result. Indeed, to zero order in 1/β2

one gets for the SUSY charges, which we denote to this order as Q̄(0) and
Q(0),

Q̄(0) =
i

2e2

∫

d2xΣ†(γ0B +D) +
i

2

∫

d2xψ† 6Dφ (59)

With this and Q(0) which can be computed from eq.(56), one can compute
the SUSY algebra which takes the form

{Q(0), Q̄(0)} = 6P + Z (60)
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with Pµ the 4-momentum and Z the central charge. Using the explicit forms
for Q̄(0) and Q(0) obtained above one can compute the Poisson bracket cor-
responding to the l.h.s. in (60) and, comparing with the r.h.s. in this last
equation one can identify

P 0 = tr(γ0{Q(0), Q̄(0)}) =
∫

d2x

(

1

2e2
B2 +

1

2
|Diφ|

2 +
e2

8
(φ2 − ξ2)2

)

(61)

Z = tr({Q(0), Q̄(0)}) =
∫

d2x
(

B(φ2 − ξ2) + εijDiφ(Djφ)
∗
)

= ξ2
∮

Aµdx
µ

(62)
As it is well-known [17], hermiticity of anticommutator (60) leads to a Bogo-
mol’nyi bound which in the present case corresponds to the Maxwell-Higgs
theory,

P 0 = E ≥ |Z| (63)

or
E ≥ ξ22πn (64)

where n is the number of flux lines measured by Z [19].
We now consider the next order in the 1/β2 expansion, namely the Euler-

Heisenberg theory. In that case, instead of (59) we have

Q̄(1) = Q̄(0) +
i

2e2

∫

d2xΣ†
(

1

4β2
(3D2 −B2)−

1

2β2
γ0BD

)

(γ0B +D) (65)

The SUSY charges anticommutator leads in this case to

P 0 = E =
∫

d2x

(

1

2e2
B2 +

1

2
|Diφ|

2 +
e2

8
(φ2 − ξ2)2−

1

8β2e2

(

B2 −
e4

4
(φ2 − ξ2)2

)2


 (66)

Z is still given by (62) and eq.(64) also holds in this case.
The next order leads to the following results

Q̄(2) = Q̄(1) +
i

2e2β4

∫

d2xΣ†
1

2
(B2 −D2)

(

(5D2 −B2)−
1

4
γ0BD

)

(γ0B +D) (67)

15



P 0 = E =
∫

d2x
1

2e2

(

B2 +
e4

4
(φ2 − ξ2)2

)(

1

2
|Diφ|

2 −
1

4β2

(

B2−

e4

4
(φ2 − ξ2)2

)

+
1

16β4e2

(

B2 −
e4

4
(φ2 − ξ2)2

))

(

B2 +
e4

4
(φ2 − ξ2)2

)2

(68)

Again, Z is given by eq.(62), the same expression as in the Maxwell and
Euler-Heisenberg case. In fact, this coincidence is not accidental and one
can understand it as follows. If one were to obtain the Bogomol’nyi bound
not from supersymmetry but as originally done by Bogomol’nyi, one should
look at the purely bosonic Born-Infeld-Higgs theory and write the energy as
a sum of squares plus a surface term. This surface term is responsible for
the appearence of the topological charge as the bound for the energy. Now,
the surface term is not modified by the fact that one deals with a BI and not
a Maxwell gauge field Lagrangian. Moreover, the Bogomol’nyi equations do
coincide for these two theories. Viewed from the supersymmetry side, the
bound for the energy is provided by the central charge which again does not
depend on the form of gauge field kinetic energy term.

Coming back to the complete SUSY algebra, let us write the charge Q̄
given by eq.(57) in the form:

Q̄ =
i

2e2

∫

d2xΣ†(1 + f + γ0g)(γ0B +D) +
i

2

∫

d2xψ† 6Dφ (69)

with

f = −1 +
B2 +D2

B2 −D2
M −

2BD

(B2 −D2)2
N (70)

g =
B2 +D2

B2 −D2

(

N −
2BD

(B2 −D2)2
M

)

(71)

with

M = 2

(

β2 +B2

r
− β2

)

(72)

N =
2BD

r
(73)

r =

√

1 +
1

β2
(B2 +D2) (74)
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With this, we can compute the SUSY algebra

{Q, Q̄} = 6P + Z (75)

and identify the energy and central charge in terms of f and g,

E =
1

2e2

∫

d2x
(

(B2 +D2)(f + 1) + 2gBD
)

+
1

2

∫

d2x|Diφ|
2 (76)

Z =
1

2e2

∫

d2x
(

(B2 +D2)g + 2(f + 1)BD
)

+
1

2

∫

d2xεijDiφ
∗Djφ (77)

Now, using the equation of motion for the auxiliary field D (eq.(47) one can
see that the r.h.s. in eqs.(76)-(77) take the form

E =

√

√

√

√

(

(1 +
B2

β2
)(1 +

e4

4β2
(φ2 − ξ2)2)

)

−
β2

e2
+

1

2
|Diφ|

2 (78)

Z =
∫

d2x
(

B(φ2 − ξ2) + εijDiφDjφ
∗
)

= ξ2
∮

Aµdx
µ = ξ2n (79)

and then squaring (75) one again gets the Bogomol’nyi bound

E ≥ |Z| (80)

this showing the consistency of our supersymmetric construction. We stress
that the results summarized in eqs.(69)-(80) correspond to the exact super-
symmetric Born-Infeld model and not just some approximation in powers of
1/β2.

5 Summary and Discussion

Studying the N = 2 supersymmetric completion of the Born-Infeld-Higgs
model in d = 3 dimensions, we have found the Bogomol’nyi relations for the
bosonic theory. The interest in d = 3 dimensions arises from the fact that
in such space-time dimensions vortex solutions to Bogomol’nyi equations are
known to exist. Remarkably, we have found that the same set of equations
(and hence of solutions) hold when a Born-Infeld Lagrangian determines the
dynamics of the gauge field.
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Originally, supersymmetric extensions of the Born-Infeld theory were con-
structed using the superfield formalism [3]-[4] and only the bosonic sector was
explicitly written in component fields. Since one of our goals was to derive
Bogomol’nyi relations from the supersymmetry N = 2 algebra, we needed
the explicit form of the fermionic Lagrangian, at least, up to quadratic terms
in the fermion fields which in turn lead to linear terms in the Noether current
which give the sole non-vanishing contributions to the algebra in the bosonic
background sector.

Our analysis shows that supersymmetry forces a particular functional
form of the bosonic action in which the Higgs potential enters in the Born-
Infeld square root (see eq.(48) in such a way as to ensure that the same
Bogomol’nyi relations hold both for the Maxwell and the Born-Infeld theory.

As it was to be expected, the central charge of the N = 2 SUSY algebra
coincides with the topological charge (the number of vortex magnetic flux
units) of the model this ensuring that the Bogomol’nyi bound is not modified
when one has a Born-Infeld theory. This was explicitly shown by constructing
the SUSY algebra and deriving from Bogomol’nyi inequality in the usual way.

Acknowledgments: We would like to thank A. Lugo for helpful comments
and discussions. F.A.S. is partially supported by CICBA, CONICET and
Fundación Antorchas, Argentina and a Commission of the European Com-
munities contract No:C11*-CT93-0315.
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Appendix: Superfields in components

We start from the standard form for the chiral superfieldWα (see for example
ref. [22])

Wα

(

y, θ, θ̄
)

= −iλα + θαD −
i

2
(σmσ̄nθ)α Fmn + θθ

(

σm∂mλ̄
)

α
(81)

where λ, λ̄, D, F and F̃ are functions of the variable ym = xm + iθσmθ̄
and xm is the usual 4-vector position (It will be convenient to write all the
superfields in terms of the variable x instead of y.). The covariant derivatives
are defined in eqs.(10) and (11).

Components of W αWα and W̄α̇W̄
α̇

W 2 (x)
∣

∣

∣

0
= −λλ (82)

W 2 (x)
∣

∣

∣

θ
= −2iθλD + θσµσ̄νλFµν (83)

W 2 (x)
∣

∣

∣

θθ
= θθ

(

−2iλ/∂λ̄+ A
)

(84)

W 2 (x)
∣

∣

∣

θθ̄
= −iθσµθ̄∂µ (λλ) (85)

W 2 (x)
∣

∣

∣

θθθ̄
= −θθ∂µ

(

Ωµνηνρλσ
ρθ̄
)

(86)

W 2 (x)
∣

∣

∣

θθθ̄θ̄
=

1

4
θθθ̄θ̄✷ (λλ) (87)

with

A = D2 −
1

2
F µνFµν −

i

2
F µνF̃µν

A∗ = D2 −
1

2
F µνFµν +

i

2
F µνF̃µν

Ωµν = Dηµν + iF µν − F̃ µν (88)

where σµ and σ̄ν are the Pauli matrices, defined as in ref. [22]. Everywhere,
except if explicitly stated, D,Fµν , F̃µν and λ depend on x.
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The components of W̄ 2 can be obtained from the former expressions by
calculating the adjoint of the matrix elements.

Components of W 2W̄ 2(x)

W 2W̄ 2 (x)
∣

∣

∣

0
= λλλ̄λ̄ (89)

W 2W̄ 2 (x)
∣

∣

∣

θ
= 2iλ̄λ̄

(

θλD −
i

2
θσµσ̄νλFµν

)

(90)

W 2W̄ 2 (x)
∣

∣

∣

θθ
= −θθλ̄λ̄

[

−2iλ/∂λ̄+ A
]

(91)

W 2W̄ 2 (x)
∣

∣

∣

θθ̄
= −iθσmθ̄ (λλ)

←→

∂m
(

λ̄λ̄
)

+ 4
(

θλD −
i

2
θσµσ̄νλFµν

)

(

θ̄λ̄D +
i

2
θ̄σ̄ρσσλFρσ

)

(92)

W 2W̄ 2 (x)
∣

∣

∣

θθθ̄
= θθ

{(

2iθ̄λ̄D − λ̄σ̄µσν θ̄Fµν

) (

−2iλ/∂λ̄+ A
)

+
(

θ̄σ̄mλΩpqηqm
) ←→

∂p
(

λ̄λ̄
)

}

(93)

with

W 2W̄ 2
∣

∣

∣

θθθ̄θ̄
= θθθ̄θ̄

{

−
1

4

(

λλ✷λ̄λ̄+ λ̄λ̄✷λλ
)

+
1

2
∂µ (λλ) ∂

µ
(

λ̄λ̄
)

−4
(

λ/∂λ̄
) (

λ̄/̄∂λ
)

−2iA∗λ/∂λ̄− iΩ∗νρΩρµλσ
µ∂ν λ̄−

2iAλ̄∂̄λ− iΩνρΩ∗ρµλ̄σ̄
µ∂νλ

−i∂ν (Ω
∗νρ)Ωρµλσ

µλ̄− i∂ν (Ω
νρ) Ω∗ρµλ̄σ̄

µλ+ AA∗
}

where
A
↔

∂ B = A∂B − (∂A)B

Ω∗νρΩρµ =
(

D2 +
1

2
FαβF

αβ

)

δνµ − 2DηνρF̃ρµ + 2F νρFρµ (94)

and

Im (∂ν (Ω
∗νρ) Ωρµ) = −D∂νF

νµ + ∂ν (F
να) F̃αµ + F̃ να∂νFαµ +

1

2
∂µ(Fαβ)F̃

αβ

(95)
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(we will see later that we do not need the real part of this expression)

Components of X (x) ≡ 1
8

(

D2W 2(x) + D̄2W̄ 2(x)
)

X|0 =
(

i
(

λ/∂λ̄+ λ̄/̄∂λ
)

−D2 +
1

2
F 2
)

(96)

X|θ = −ηqt (θσp)α̇ ∂q
(

λ̄α̇Ω∗tp
)

(97)

X|θ̄ = −ηqt
(

θ̄σ̄p
)α
∂q (λαΩtp) (98)

X|θθ̄ = −iθσpθ̄∂p

(

i
(

λ/∂λ̄+ λ̄/̄∂λ
)

−D2 +
1

2
F 2
)

(99)

X|θθ = −
1

2
θθ✷

(

λ̄λ̄
)

(100)

X|θ̄θ̄ = −
1

2
θ̄θ̄✷ (λλ) (101)

X|θθθ̄ = −
1

2
iθθ

[

✷

(

θαaαβλ
β
)

− ∂m∂
t (θσmσ̄nλΩtn)

]

(102)

X|θθ̄θ̄ = −
1

2
iθ̄θ̄

[

✷

(

θαaαβλ
β
)

− ∂m∂
t (θσmσ̄nλΩtn)

]

(103)

X|θθθ̄θ̄ = −
1

4
✷

(

i
(

λ/∂λ̄ + λ̄/̄∂λ
)

−D2 +
1

2
F 2
)

(104)

Components of Y (x) ≡ − i
16

(

D2W 2(x)− D̄2W̄ 2(x)
)

Y |0 =
1

2

(

(

λ/∂λ̄− λ̄/̄∂λ
)

+
1

2
FF̃

)

(105)

Y |θ =
i

2
ηqt (θσp)α̇ ∂q

(

λ̄α̇Ω∗tp
)

(106)

Y |θ̄ = −
i

2
ηqt

(

θ̄σ̄p
)α
∂q (λαΩtp) (107)
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Y |θθ̄ = −
i

2
θσpθ̄∂p

(

(

λ/∂λ̄− λ̄/̄∂λ
)

+
1

2
FF̃

)

(108)

Y |θθ = −
i

4
θθ✷

(

λ̄λ̄
)

(109)

Y |θ̄θ̄ =
i

4
θ̄θ̄✷ (λλ) (110)

Y |θθθ̄ = −
1

4
θ̄θ̄
[

✷

(

θαaαβλ
β
)

− ∂m∂
t (θσmσ̄nλΩtn)

]

(111)

Y |θθθ̄θ̄ = −
1

8
✷

(

(

λ/∂λ̄− λ̄/̄∂λ
)

+
1

2
FF̃

)

(112)
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[21] J.D. Edelstein, C. Núñez and F.A. Schaposnik, Nucl. Phys. B 458

(1996) 165.

[22] J.Lykken, Introduction to Supersymmetry, hep-th 9612114.

24


