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Abstract

We perform a self-consistent relativistic RPA calculation for the
isobaric analogue and Gamow-Teller resonances based on relativistic
mean field theory results for the ground states of *®Ca, °Zr and 2°*Pb.
We use the parameter set NL1 for the o, w and p mesons, and exper-
imental values for the pion and nucleon. An extra parameter, related
to the intensity of the contact term in the pion-exchange interaction,
is crucial to reproduce the latter resonances.
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In recent years the relativistic mean field theory (RMFT) has been suc-
cessfully applied to account for both: i) the bulk features of nuclear matter
(saturation, equation of state, efc.) and ii) the ground state properties of
finite nuclei, including unstable ones up to the nucleon drip lines [[l]. (For
reviews, see refs. [, B, @, B].) A nice feature of the model is that the
same restricted set of parameters can be used for all these systems. Even
though some excited nuclear states, including certain giant resonances, have
also been calculated in the relativistic random phase approximation (RRPA)
based on RMFT, this has never been done for charge-exchange excitations.
The aim of the present work is to explore to what extent this relativistic
model, whose parameters have been fitted to ground state properties, can
describe the charge-exchange collective states, such as the isobaric analogue
state (IAS) and the Gamow-Teller resonance (GTR).

Both TAS and GTR have been extensively calculated in the context of
traditional, i.e., nonrelativistic, nuclear structure theory, usually in the ran-
dom phase approximation (RPA) or extensions of it, making use of, not
only completely phenomenological interactions, but also more realistic ones
based on meson exchange. While the TAS is easily reproduced, the GTR is
more problematic, especially with respect to its strength that turns out to
be quenched to ~ 60% of the Ikeda sum-rule value. (For a review of GTR,
see ref. [[J].) Two mechanisms have been proposed for the absorption of the
unseen strength: i) the excitation of the A resonance, which has the same
quantum numbers as the GTR, or ii) the influence of 2p-2h and higher exci-
tations, not included in RPA. We shall not dwell on such finer points in this
paper, since this would require, anyway, a more sophisticated treatment than
the simple version of RRPA we are using, but rather will concentrate on the
quality of the reproduction of excitation energy and strength as compared
with similar nonrelativistic calculations [[2, [4].

Relativistic mean field theory (RMFT) always takes as a starting point
some version of an effective quantum field theory describing a system of inter-
acting hadrons, coupled also to the electromagnetic (or to the electroweak)
field, generally referred to as quantum hadrodynamics (QHD) B, B, B. Al
Historically, QHD was introduced as a renormalizable quantum field the-
ory, which severely limited the number of admissible terms in its Lagrangian
[B]. However, despite its many successes, it had difficulties with its renor-
malization program. Thus, in the last years, it began to be formulated as
an effective, nonrenormalizable quantum field theory representing the low-



energy limit of the fundamental theory of strong interactions, namely, quan-
tum chromodynamics (QCD). Consequently, all terms compatible with the
symmetries of QCD were now admissible, and one had to find appropriate
expansion parameters and a criterion of naturalness to select the most im-
portant ones. Even thus, the number of terms increased significantly. Their
coupling constants were adjusted to a judicious selection of nuclear properties
that should be well reproduced at the mean field level and, while this was
successful in the sense that they turned out to be natural, on the other hand
there are clear indications that their full set is underdetermined [{]. Since
our main purpose here is not to test the foundations of QHD, but rather to
assess its ability to reproduce some new nuclear properties, and we want to
keep the number of free parameters to a minimum, we will include only the
most important terms, and work with the following nonrenormalizable QHD
Lagrangian density:
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in standard notation (A = ¢ = 1), where v is the spin—%, isospin—% nucleon
field, o, w*, ™ and p* denote the meson fields, and A* is the electromagnetic

field [B]. The field tensors for the vector particles read

Q= MY — 0"wH,
RY = 0'p" = 0"p" —g,p" x p”, (2)
Fr = 9rAY — 9" A~

To reproduce the experimental values of the nuclear incompressibility and

surface diffuseness in RMFT, it has been found important [] to allow the
sigma meson to self-interact. This is done through the cubic and quartic



terms, in o, appearing in eq. ([J). All couplings are taken to be of the direct,
nonderivative kind, except in the pion-nucleon case, where both the phe-
nomenology and theoretical reasons (related to chiral symmetry) definitively
favor the pseudovector coupling. It is true that phenomenology would also
recommend that a certain amount of derivative coupling should be mixed in
for the vector mesons to the nucleon [[[1]. Yet, for simplicity, we followed the
general trend in RMFT calculations [fl, [i, ] and did not include such terms
in eq. ([J). For the omega meson, this can be justified since that term would
be rather small [IJ], but for the rho meson, while unimportant for the nu-
clear ground state, the corresponding term would give a sizable contribution
to excitations of the Gamow-Teller type. Finally, the photon is minimally
coupled to the proton to take care of the important Coulomb interaction
inside nuclei, but not to the charged mesons since this would be of much
less relevance for the properties of interest here and is hence ignored in this
model Lagrangian.

The nucleon mass [], M, the proton charge, e, the pion mass, m,, and
coupling constant, f., are fixed at their experimental values. Thus, the
masses of the remaining mesons included in eq. (), my, m, and m,, their
coupling constants, ¢,, g, and g,, and the self-interaction strengths for the
sigma meson, g, and g3, give a total of only 8 free parameters for this model.

RMFT results from an approximation scheme to solve the Euler-Lagrange
equations derived from £, which consists in taking advantage of the high
values of the densities inside nuclei to replace the meson and photon fields
by classical fields satisfying these equations with the source terms replaced
by their expectation values in the nuclear ground state of interest. This is
equivalent to compute the meson self-energies in the Hartree approximation
disregarding the negative-energy, i.e., antiparticle, states, which is sometimes
referred to as the no-sea approximation.

The RMFT equations simplify considerably if one takes advantage of
known symmetries of the nuclear ground state. Firstly, as it always has
a definite parity, the pion, due to its pseudoscalar nature, completely dis-
appears from these equations. Secondly, the definite charge of the nucleus
eliminates all but the third component of the isovector mesons. Also, we
are interested here only in spherical nuclei, and their rotational invariance
implies that the spatial components of the currents in the source terms van-

IThe proton mass is used here.



ish in RMFT. So, the corresponding components of the vector fields can be
ignored. Finally, we are looking only for stationary solutions in the nuclear
rest frame. Thus, the meson and photon fields are taken as time-independent
and the nucleon field has merely time-dependent phase factors, i.e.,

Zaa o (1) exp(—iE4t), (3)

where the no-sea approximation has been made, and a, is the annihilation
operator in the particle state with (positive) energy FE,. With these simpli-
fications, the RMFT equations become
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are the scalar and vector potentials, and
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the scalar, vector, isovector (third component) and proton densities. The
expectation values are taken in the nuclear ground state, constructed by
putting Z protons and N neutrons, (Z + N = A), in the lowest particle
states with 73 equal to +1 and —1, respectively, obtained by solving the
Dirac equation (f]). This yields the following results for the densities
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The set of egs. (f])—(§) should be solved self-consistently.

Alternatively, the RMFT equations could have been obtained by extrem-
ization of an energy functional built from eq. ([) and involving only valence
nucleons and classical photon and meson fields. This density functional ap-
proach is sometimes preferred when working strictly within the context of
an effective field theory, since it becomes clear in this case that much of the
effects of vacuum dynamics and of certain many-body correlations beyond
the Hartree level are absorbed in the renormalized coupling constants in the
Lagrangian, when fitted to experimental data [B, f.

The RRPA equations have been derived several times in the literature and
applied, both to nuclear matter [[[f], and to finite nuclei [-[R1]. For our
purpose here, they can be obtained from the equations of motion formalism
of Rowe [BZ. One introduces charge-exchange excitation operators of the

form 23, B4, B9
Ol = 2 X (w'an) , = SV (a5'an) (9)

pn np

where p and p (n and n) label unoccupied and occupied proton (neutron)
positive-energy, single-particle RMFT states. J is the total angular momen-
tum, and A runs from 1 to 7 4+ v, with 7 and v being the number of pn and
np excitations, i.e., those having 3, [ X7 - s [V ? equal to +1 and
—1, respectively. Following the standard procedure one arrives at the RRPA

equations
AT B XA XA
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The submatrices are given in terms of the residual interaction V' by

Apnpn’ = (E — Ex )5pp’5nn <( )J|V|( 'n'~ 1) >>

Dopwy = (En = Ep)duwdpp + {(np )4 [VI(W'F ™)), (11)
By = (=) (pn ) o, (D) g, V).

The excitation energies E7, (A\y = 1,---7) in the odd-odd (N — 1,7 + 1)
nucleus (measured from the target ground state) are the highest m eigenvalues
wyx in ([0). In the same way the excitation energies E;, (A_=1,---v) in
the (N 4+ 1,Z — 1) nucleus are the remaining v eigenvalues wy, taken with



opposite sign. The corresponding total transition strengths are:
2
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A
where wy = 1 and w; = o. They fulfill the well known sum rules:
ST —8;=02J+1)(N-2). (13)

For a self-consistent calculation, V' must be obtained from the same La-
grangian, given in eq. ([J), which was used for the mean field part. Also,
to be compatible with RMFT, one must consider only the direct terms in
eq. (), leading, in fact, to a ring approximation. Hence, only the isovector
mesons contribute to isovector excitations like IAS and GTR. Furthermore,
when the instantaneous approximation is made, the interaction, V' = V;+V,,
reads

VW(1,2) = — <7{1—:> T1 ( V1 g9 - VQ)Y(mﬂ—,T’),
Vp(l, 2) = 9p27'1 Ty (1 —ay - 012)Y(mpa7“)> (14)

with 7 = |ry — 75| and Y (m,r) = exp(—mr)/(47r).

We performed our numerical calculations taking *4Ca, %°Zr and 2°*Pb as
the target nuclei. To get a discretized set of single-particle RMFT states, we
solved eqs. (H)—(B) by expanding the different fields in truncated harmonic os-
cillator bases, following the method of P. Ring and collaborators as described
in ref. [[d], where the details can be found. For the RMFT parameters we
chose the set NL1, which is widely used for nuclear ground state calculations
M, [@, B]. The RRPA equations were solved for J™ = 0" and 171 states in a
model-space including only 0A€2 and 2h$2 excitations. Furthermore, since the
continuum is not well represented by an expansion in a harmonic oscillator
basis, we tried to avoid it as much as possible. To this end, we included
only those RMF'T single-particle states that are bound at least for neutrons.
(Of course, for consistency, we had to include the corresponding states for
protons, even when unbound.) That this model-space is not too restricted is
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attested by the fact that, in all the cases considered here, the sum rule ([J)
was obeyed at the level of 99.5% (92.8% ) or better for the IAS (GTR).

Our results for the TAS of 2%Pb give an excitation energy (always mea-
sured from the target ground state) of 18.6 MeV and a strength of 99% of
the sum-rule prediction of (N — Z), which compare well with the experimen-
tal values of 18.8 MeV and ~ 100%, as quoted in [P7]. These results are of
the same quality as those of Colo et al. [[4], who perform a nonrelativistic
calculation that is also self-consistent, in the sense that they use the same
interaction (Skyrme force) for the excitations as for the target ground state
and single-particle basis.

Since the GTR’s are rather broad, having experimental widths of ~
4 MeV, the theoretical results we report here correspond to a smoothed
strength function, constructed by replacing the spikes in the RRPA strength
distribution by Lorentzian peaks of conveniently chosen width. The excita-
tion energy and strength of the GTR are then obtained by fitting a Lorentzian
to the main peak in this strength function. When the interaction ([4) is used
we get that the excitation energy and the strength of the GTR in 2°®Pb are,
respectively, ~ 6 MeV and 56% of the Ikeda sum-rule, while the correspond-
ing experimental values are 19.2 MeV and 60 — 70% [B7q]. Therefore, as it
stands, the relativistic calculation would underestimate the GTR by more
than 10 MeV, putting it much lower than the IAS,; in blatant opposition to
experiment. The nonrelativistic calculation of Colo et al. does much better,
though it overestimates the excitation energy by 2 — 3 MeV.

It is still possible, however, to improve the GTR results in our calculation,
without losing the self-consistency between the excitation and the mean field
parts. In fact, when dealing with the pion contribution, we might follow
the general practice and eliminate the contact term, which comes from the
derivative (pseudovector) coupling and is thought to be suppressed by the
short-range correlations between nucleons. (As such it should disappear when
a form factor is used to account for finite nucleon and meson sizes.) More,
to reproduce the energetics of the GTR within a nonrelativistic calculation
based on 7- and p- exchanges, Krewald et al. [[J] were forced to add a
zero-range Landau-Migdal interaction of adjustable strength. In our case
this would correspond to gauge the contact term in the bare m-exchange



interaction, given by ([[4), or equivalently to add the term

Je

2
5Vﬂ(1,2):g, <m ) T1-T2071" 02 5(7"1—7"2), (15)

which for ¢’ = 1/3 completely cancels the contact part in ([[4)). This term was
found to play an important role in the RRPA calculation of unnatural parity
states in 10 made by Blunden and McCorquodale [[7], who used the purely
phenomenological value ¢’ = 0.7, in analogy to nonrelativistic calculations.
Since we are neglecting exchange contributions, 6V has no effect on the IAS,
but is of overwhelming importance for the GTR, as illustrated in Fig. [[] for
the case of 2%Ph. One sees that the theoretically justified coupling ¢’ = 1/3
leads to better results than the bare interaction (¢’ = 0). Yet, the agreement
with experiment is only achieved with ¢’ = 0.7. Thus, we found it necessary
to incorporate 0V, with ¢’ = 0.7, into the residual interaction.

The results obtained in our calculation, with this choice of residual in-
teraction, for the IAS and GTR, excited from the closed-shell nuclei **Ca,
9Z7r and 2%Pb, are summarized in Table . One can see that they are of
the same quality as those obtained in similar nonrelativistic calculations [[4].
The agreement with experiment is very good for the excitation energies of
both resonances, but less so for the strengths, specially for the GTR. This
was already expected, since our model does not include either 2p-2h or A-h
excitations, and therefore is unable to reproduce the quenching of the GTR.
For similar reasons, and also because we do not treat the continuum prop-
erly, we get very little strength at higher excitation energies beyond the GTR
peak. In the case of “°Zr, for instance, our calculated strength function is
decaying well below 0.45 MeV ™! already for ~ 25 MeV excitation, while the
experimental one [R9] stays at about this value up to ~ 60 MeV.

We conclude that both the TAS and the GTR excited from closed shell
nuclei can be well reproduced in the context of quantum hadrodynamics,
with the ground state parametrization for the o, w and p mesons, and ne-
glecting the exchange contributions. For the GTR, however, the pion with
pseudovector coupling to the nucleon also must be included, and it is essential
to use for the strength ¢’ of the contact term 6V, a value close to that used
in similar nonrelativistic calculations. An alternative approach, to account
for the energies of the GTR’s, might be the mixed coupling of the rho meson
to the nucleon. Yet, such a parametrization for ground state properties is
available only in the Hartree-Fock approximation [[[Q].
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Table 1: RRPA results for excitation energies and strengths of charge-
exchange resonances calculated with isovector interaction including a
Landau-Migdal-type contact term of intensity ¢’ = 0.7, as described in the
text. Experimental values are given for comparison.

Parent RRPA Experiment

and Energy Strength Energy Strength
resonance  [MeV]  [% of sum rule] [MeV] [% of sum rule]
208Pbﬂ

IAS 18.6 99 18.83 £ 0.02 ~ 100
GTR 18.9 80 19.2+0.2 60 — 70
QOZI.H

IAS 11.9 101.3 12.0+£ 0.2 ~ 100
GTR 16.0 80 15.6+0.3 28
48Caﬁ

IAS 7.48 100.4 7.17 ~ 100
GTR 11.0 82 ~ 10.5 35

%Experimental values taken from Refs. , 1)
YExperimental values taken from Refs. , 29
.

“Experimental values taken from Ref.
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Figure 1: Theoretical Gamow-Teller strength distribution for the parent
nucleus 2°Pb obtained with an isovector interaction including a Landau-
Migdal-type contact term of strength ¢’ = 0, 1/3 and 0.7. The spikes give the
raw RRPA results and the continuous curve, the strength function smoothed
out as explained in the text. The strength function for the resonance peak
extracted from experiment [R7 is drawn in dotted line.
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