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We compute the Schwinger terms in the energy-momentum tensor commutator algebra from the
anomalies present in Weyl-invariant and diffeomorphism-invariant effective actions for two dimen-
sional massless scalar fields in a gravitational background. We find that the Schwinger terms are not
sensitive to the regularization procedure and that they are independent of the background metric.
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I. INTRODUCTION

The theory of a (quantized) scalar field coupled to gravity has to follow an ad-hoc prescription: the functional
integration over the scalar field φ involves the evaluation of a determinant of the Laplace operator, which is ambigu-
ous. For massless scalar fields in two-dimensional space-time the standard prescription implements a diffeomorphism
invariant regularization that leads to the well known Polyakov action [1] ΓP[gµν ], a functional of the background
metric gµν that is indeed diffeomorphism invariant but has an (equally well known) anomaly with respect to Weyl
transformations.
Recently an alternative evaluation of the theory has been given, where a Weyl invariant regularization has been

implemented [2–5]. The resulting effective action Γ̂[gµν ], while being Weyl invariant, does not remain invariant under
general coordinate transformations, but only under those with unit Jacobian.
Gravitational and Weyl anomalies lead to anomalous contributions to the equal-time commutators of the energy-

momentum tensor [6,7] (see also [8] for the analogous fact in current algebra). So the question arises whether these
two versions of the theory lead to the same anomalous commutators. In this paper we investigate this question and
find that, indeed, the anomalous commutators coincide in both versions of the theory and lead to the well known
result from Conformal Field Theory [9]. We do this calculation both for flat and curved space-time. In the latter
case of general metric the computation is done without any gauge fixing; this is the proper procedure because gauge
fixing would be in conflict with the Weyl-invariant regularization, that breaks diffeomorphism invariance. The results,
when properly interpreted, lead to the same Schwinger terms as in the flat space-time and, therefore, show that the
Schwinger terms do not depend on the curvature.

II. DIFFEOMORPHISM-INVARIANT AND WEYL-INVARIANT REGULARIZATIONS

First we have to fix our conventions. We use the flat Minkowskian metric ηab with signature (+,−). The metric
gµν(x) is related to the zweibein via
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gµν(x) = ηabe
a
µ(x)e

b
ν(x); (1)

we also need the zweibein determinant

e(x) := deteaµ(x) =
√

|detgµν(x)| (2)

and the inverse zweibein Eµ
a (x),

Eµ
a (x) := ηabg

µν(x)ebν(x). (3)

For the curvature we use the sign convention Rµν = −∂αΓ
α
µν + . . ., where Rµν is the Ricci tensor and Γα

µν is the
Christoffel connection.
Weyl transformations act like

gµν(x) → exp(2σ(x))gµν (x), eaµ(x) → exp(σ(x))eaµ(x). (4)

When the effective action Γ is not invariant under Weyl transformations, an infinitesimal change δWσ gµν(x) =
2σ(x)gµν(x) induces a Weyl anomaly GW(x):

δWσ Γ :=

∫

d2xσ(x)GW(x), (5)

GW(x) = −2gµν(x)
δΓ

δgµν (x)
= −e(x)gµν(x)Tµν(x), (6)

where Tµν is the v.e.v. of the energy momentum tensor Θµν ,

Tµν(x) = 〈Θµν(x)〉 =
2

e(x)

δΓ

δgµν(x)
. (7)

Under an infinitesimal coordinate transformation (diffeomorphism) δDξ x
µ = −ξµ(x) the metric and zweibein trans-

form like

δDξ g
µν(x) = −Dµξν(x)−Dνξµ(x), δDξ e

a
µ(x) = ξλ∂λe

a
µ(x) + eaλ(x)∂µξ

λ (8)

and a diffeomorphism anomaly is given as

δDξ Γ :=

∫

d2xξν(x)GD
ν (x), (9)

GD
ν (x) = 2e(x)Dµ

(

1

e(x)

δΓ

δgµν(x)

)

= e(x)DµTµν(x). (10)

It will be convenient later on to use covariant derivatives acting on the combination eTµν , using the rule eDα =
(Dα − Γλ

αλ)e. Thus we rewrite GD
ν as

GD
ν (x) = (Dµ − gµρΓλ

ρλ)(e(x)Tµν (x)). (11)

Further we will frequently use the following variational formulae,

δgµν(x)

δeaα(y)
= −ηace

c
λ(x)(g

µα(x)gνλ(x) + gνα(x)gµλ(x))δ(2)(x− y), (12)

δe(x)

δgµν(y)
= −

1

2
e(x)gµν(x)δ

(2)(x − y), (13)

δR(x)

δgµν(y)
= [Rµν(x) + (DµDν − gµν✷)(x)]δ

(2)(x− y), (14)
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where R is the curvature scalar and Rµν is the Ricci tensor.

The classical action of the theory reads

S =

∫

d2x
e(x)

2
gµν(x)∂µφ(x)∂νφ(x). (15)

When a diffeomorphism invariant path integration with respect to φ is chosen, one obtains the Polyakov effective
action [1]

ΓP[gµν ] = −
1

96π

∫

d2xd2ye(x)R(x)✷−1(x, y)e(y)R(y), (16)

where ✷
−1(x, y) is the scalar symmetric Green function of the covariant Laplacian (satisfying ✷(x)✷

−1(x, y) =

e−1(x)δ(2)(x− y)). ΓP is diffeomorphism invariant,

GD
ν (x) = 0, (17)

and posseses the well known Weyl anomaly (for a comprehensive review, see for instance [10] and references therein),

GW(x) = −
1

24π
e(x)R(x). (18)

The alternative, Weyl invariant evaluation that was discussed in [2–5] relies on the observation that the classical
action (15) depends only on the Weyl invariant quantity γµν , where

γµν(x) = e(x)gµν(x), γµν(x) =
1

e(x)
gµν(x). (19)

As the breaking of the classical Weyl invariance in Polyakov’s path integration may be traced back to a diffeomorphism-
invariant and Weyl non-invariant normalization for the path integral measure,

∫

Dφ exp(i

∫

d2xe(x)φ2(x)) = 1, (20)

the Weyl invariant evaluation can be achieved by choosing instead
∫

Dφ exp(i

∫

d2xφ2(x)) = 1. (21)

This leads to a Weyl-invariant effective action Γ̂[gµν ] which depends on gµν(x) only through the combination γµν . By

construction the two effective actions ΓP and Γ̂ coincide for metrics with unit determinant, therefore

Γ̂[gµν ] ≡ ΓP[γµν ] = −
1

96π

∫

d2xd2yR̂(x)✷−1(x, y)R̂(y), (22)

where R̂(x) is the curvature scalar evaluated from γµν (notice that R̂(x) is not a true scalar).

Γ̂ is Weyl-invariant, but it acquires an anomaly under coordinate transformations with Jacobian not equal to unity.
This anomaly may actually be easily computed from the Weyl anomaly of the Polyakov action. The v.e.v. of the
energy-momentum tensor computed from Γ̂ is

T̂µν(x) =
2

e(x)

δΓ̂

δgµν(x)
= 2

δΓ̂

δγµν(x)
− γµνγ

αβ δΓ̂

δγαβ(x)

= TP
µν(γ)−

1

2
γµνγ

αβTP
αβ(γ). (23)

Here TP
µν(γ) is the energy-momentum tensor TP

µν , as computed from the Polyakov action, evaluated at gµν = γµν .

Obviously, there is no Weyl anomaly, gµν T̂µν = 0.

In order to evaluate the diffeomorphism anomaly we need the identity Dµ(g
µν T̂να) =

1
e
D̂µ(γ

µν T̂να), which may be

easily proven by using the tracelessness and symmetry of T̂µν (here D̂µ is the covariant derivative for the metric γµν).
We then find for the diffeomorphism anomaly
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ĜD
α = eDµ(g

µν T̂να)

= D̂µ

(

γµνTP
να(γ)−

1

2
γµνγναγ

βδTP
βδ(γ)

)

= −
1

2
D̂α(γ

βδTP
βδ(γ))

= −
1

48π
∂αR̂. (24)

Here we have used the vanishing of the diffeomorphism anomaly for ΓP and the fact that D̂α reduces to the ordinary
derivative on scalars. The anomaly is a pure divergence because only the symmetry with respect to transformations
with non-unit Jacobian is broken (see [3]).

III. SCHWINGER TERMS

In this section we want to relate the anomalies of the previous section to the equal-time commutators (ETCs) of the
energy-momentum tensor, both in flat and curved space-time. Here we will follow a method that was developed in [11]
and used there for the calculation of ETCs in the flat space-time limit. We want to find the Schwinger terms in the
general case of a non flat space-time, too, which makes things slightly more complicated. We choose the hypersurface
x0 = 0 as a quantization surface. For ETCs we write

δ(x0 − y0)[e(x)Θµ
a(x), e(y)Θ

ν
b (y)] = Θµν

ab (x, y) + S
µν
ab (x, y), (25)

where we have used the zweibein formalism in order to conform with [11] (i.e. µ, ν are space-time indices whereas a,
b are Lorentz indices). In eq. (25) Θµν

ab is the canonical part, depending again on the regularized energy-momentum
operators Θµ

a(x), whereas S
µν
ab are c-numbers (the Schwinger terms). In the flat case regularization means just normal

ordering, and therefore the v.e.v. of eq. (25) arises only from S
µν
ab in the r.h.s. In the general case this is no longer

true [12] but our knowledge of the flat case will still enable us to identify the individual pieces.
In the flat case it is well known that the canonical part is proportional to the first spatial derivative of the delta

function, e.g. Θ00
01(x, y) ∼ i(Θ0

0(x) + Θ0
0(y))δ(x

0 − y0)δ′(x1 − y1), whereas the Schwinger term is proportional to a
triple spatial derivative, S00

01(x, y) ∼ cδ(x0 − y0)δ′′′(x1 − y1) (c is a constant).
In the general case both the expression for the classical energy-momentum tensor (see (15)) and the regularization

will introduce a dependence on the metric and its derivatives in eq. (25). However, we will assume that the number
of derivatives on the delta function remains unchanged, i.e. we will continue to identify the δ′′′ piece of the v.e.v.
of eq. (25) with the Schwinger term. By treating the deviation from the flat space-time action (15) as interaction,
SI = S[gµν ]− S[ηµν ], Γ = −i ln < 0|T ∗ exp iSI|0 >= −i lnZ = −i ln < out|in > we find for the two point function

− i
δ2Γ

δeaµ(x)e
b
ν(y)

= < out|T ∗(e(x)Θµ
a(x)e(y)Θ

ν
b (y))|in >

− < out|e(x)Θµ
a(x)|in >< out|e(y)Θν

b (y)|in >

+ < out|
1

i

δ((e(x)Θµ
a(x))

δebν(y)
|in >

:= T
µν
ab (x, y) + Ωµν

ab (x, y), (26)

where T
µν
ab (x, y) is the connected, time-ordered two-point function

T
µν
ab (x, y) = < out|T (e(x)Θµ

a(x)e(y)Θ
ν
b (y))|in >

− < out|e(x)Θµ
a(x)|in >< out|e(y)Θν

b (y)|in > (27)

and Ωµν
ab contains the remaining pieces and is local (i.e. proportional to δ(x− y) and derivatives thereof).

Now we want to relate this two-point function to functional derivatives of the anomalies in eqs. (6,10). Defining
these functional derivatives as

Iαab(x, y) := −iEµ
a

δGD
µ (x)

δebα(y)
, (28)

Πα
b (x, y) := −i

δGW(x)

δebα(y)
, (29)
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we find the relations

− Iαab(x, y) +Aα
ab(x, y) = (Dρ − Γλ

ρλ)(x)(T
ρα
ab (x, y) + Ωρα

ab (x, y))

= S0α
ab (x, y) + (Dρ − Γλ

ρλ)(x)Ω
ρα
ab (x, y) (30)

and

Πα
b (x, y) +Bα

b (x, y) = eaµ(x)Ω
µα
ab (x, y). (31)

Here Aα
ab(x, y) and Bα

b (x, y) stem from variations of the anomalies (6,10) that do not vary the one-point function

e(x)Tµν(x) (e.g. Bα
b (x)(x, y) = −

(

δgµν (x)
δebα(y)

)

e(x)Tµν(x)). They produce δ functions and first derivatives thereof and

vanish in the flat limit. They are unimportant in the sequel. Further, we have assumed in eqs. (30,31) that the
anomalies of the Heisenberg operators Θa

µ are themselves c-numbers. Under this assumption the anomalies do not
contribute to the connected two-point function, e.g. < T ((DµΘµν(x))Θαβ(y)) >c= 0. (Here we slightly differ in
the conventions from [11]. They treat the operator Θµ

a(x) as an interaction picture operator and, therefore, obtain
additional commutators [Θ0

a(x), LI(x
0)] in their relations.)

As we use the zweibein formalism, we need the corresponding equation for the Lorentz anomaly, even though the
latter vanishes in both regularizations of our theory. Under infinitesimal Lorentz transformations the zweibein changes
as

δLαe
a
µ = −αa

be
b
µ, (32)

inducing a variation of the effective action

δLαΓ :=

∫

d2xαabGL
ab(x) (33)

where

GL
ab(x) = −

1

2
(ηace

c
µ

δ

δebµ
− ηbce

c
µ

δ

δeaµ
)Γ. (34)

Then, defining

Lα
cab(x, y) := −i

δGL
ab(x)

δecα(y)
(35)

we find a further set of equations

Lα
cab(x, y) + Cα

cab(x, y) = ηcde
d
µΩ

µα
ab (x, y)− ηade

d
µΩ

µα
cb (x, y) (36)

(where Cα
cab is irrelevant, analogous to the above A and B).

Next we need the explicit expressions for the functional derivatives of the anomalies (Lα
cab being zero in both cases

of interest). For the Polyakov action ΓP we have GD = 0 and

δGW(x)

δebα(y)
= −

1

24π

∫

d2z
δ(e(x)R(x))

δgµν(z)

δgµν(z)

δebα(y)
(37)

=
1

24π
ηbce

c
λ(y)(g

µαgνλ + gµλgνα)(y)(DµDν − gµν✷)(x)δ
(2)(x− y),

whereas for the Weyl-invariantly regularized effective action Γ̂ we find ĜW = 0 and

δĜD
λ (x)

δebα(y)
= −

1

48π
∂x
λ

∫

d2zd2z′
δR̂(x)

δγρσ(z)

δγρσ(z)

δgβδ(z′)

δgβδ(z′)

δebα(y)

=
e(y)

48π
(δρµδ

σ
ν −

1

2
gµνg

ρσ)(y)ηbce
c
ǫ(y)(g

βαgδǫ + gδαgβǫ)(y)

×∂x
λ(D̂ρD̂σ − γρσ✷̂)(x)δ

(2)(x− y). (38)

Now the procedure of [11] for evaluating the Schwinger terms S0α
ab consists in expanding all the local functions of

eqs. (30,31,36) into derivatives of δ functions, e.g.
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Iαab(x, y) =
∑

n,k

I
α(k,n−k)
ab (x)∂k

0 ∂
n−k
1 δ(2)(x − y). (39)

The index k = 0, · · · , n counts the number of time derivatives, while n − k counts space derivatives. In particular,
S0α
ab (x, y) has only spatial derivatives of δ functions,

S0α
ab (x, y) =

∑

n

S
0α(n)
ab ∂n

1 δ
(2)(x− y). (40)

Thus, one obtains a system of linear equations for the unknown coefficient functions S
0α(n)
ab and Ω

µα(k,n−k)
ab .

First let us briefly review the flat space-time computation that was done in [11] (they used it for chiral fermions,
too, where diffeomorphism and Weyl anomalies are present). In this case all derivatives only act on the δ functions.
Therefore the explicit expression analogous to (38) for Iαab contains only terms with three derivatives, and the corre-
sponding expression (37) for Πα

a only terms with two derivatives. Further, the covariant derivative in eq. (30) turns
into an ordinary derivative. As a consequence, the resulting system of equations may be solved separately for each
fixed number of derivatives (n derivatives for I, S and n − 1 derivatives for Π, Ω); for each fixed n the number of

unknowns S
0α(n)
ab and Ω

µα(k,n−k)
ab equals the number of equations. As only Π

α(k,2−k)
a and I

α(k,3−k)
ab are non-zero, one

finds a non-zero result only for S
0α(3)
ab , Ω

µα(k,2−k)
ab (even in the non-flat case, we will only consider the coefficient of

the triple derivative of the Schwinger term, therefore we drop the superscript (3)). Eliminating the Ωs, one arrives at
the flat space result

S0α
0b = −I

α(0,3)
0b − I

α(1,2)
1b − I

α(2,1)
0b − I

α(3,0)
1b −Π

α(1,1)
b , (41)

S0α
1b = −I

α(0,3)
1b − I

α(1,2)
0b − I

α(2,1)
1b − I

α(3,0)
0b −Π

α(0,2)
b −Π

α(2,0)
b . (42)

These equations we have to evaluate for the two versions ΓP and Γ̂ of our theory in the flat limit. In the first case
only Πα

b are non-zero, in the second case only Îαab. Both versions lead to the same Schwinger terms,

S00
00 = S00

11 = 0, (43)

S00
01 = S00

10 =
i

12π
. (44)

For the Weyl anomaly this result was in fact already computed in [11] (we differ in signs because of different metric
and curvature conventions). For the diffeomorphism anomaly we find the same result, showing that the Schwinger
terms are not sensitive to the regularization prescription.

Next we want to discuss the case of general metric. In this case one has covariant derivatives in eqs. (30,37,38), and
therefore the system of equations (30,31,36) mixes different number of derivatives. However, Iαab and Πα

b still contain
at most three and two derivatives, respectively, acting on δ functions. If one also assumes that Ωαµ

ab contains at most

two derivatives (which is a very reasonable assumption, as all diagrams contributing to < T (e(x)Θa
µ(x)e(y)Θ

b
ν(y)) >

are at most quadratically divergent), it still holds that the subsystem of equations containing the maximal number of
derivatives (three for I, S and two for Π, Ω) may be solved separately.
This system of equations is a little bit more complicated and leads again to the same solution for both the Weyl

anomaly of ΓP or the diffeomorphism anomaly of Γ̂. The coefficients of ∂3
1δ

(2)(x − y) in the Schwinger terms read

S00
00 = S00

11 = −
i

6π

e01e
1
1

(g11)2
,

S00
10 = S00

01 =
i

12π

(e01)
2 + (e11)

2

(g11)2
, (45)

and (defining κ = i
12πe(g11)3

)

S01
00 = κ(−e00e

0
1g01g11 − e00e

1
1eg11 + (e01)

2((g01)
2 + e2) + 2e01e

1
1eg01),

S01
01 = κ(e01e

1
0g01g11 + e10e

1
1eg11 − e01e

1
1((g01)

2 + e2)− 2(e11)
2eg01),

S01
10 = κ(e00e

1
1g01g11 + e00e

0
1eg11 − e01e

1
1((g01)

2 + e2)− 2(e01)
2eg01),

S01
11 = κ(−e10e

1
1g01g11 − e01e

1
0eg11 + (e11)

2((g01)
2 + e2) + 2e01e

1
1eg01).

(46)
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Although some components look rather ugly, this result is precisely what one expects, as we want to discuss now.
Let us transform S

µα
ab to pure space-time indices via

S
µ′α′

ab = Eν
aE

β
b g

µ′µgα
′αSµναβ . (47)

Notice that we cannot invert this relation because we do not know all the components of Sµα
ab . However, due to the

symmetries Sµναβ = Sνµαβ = Sαβµν , Sµναβ actually consists of six independent components. The expressions (45,46)

for Sµ′α′

ab lead to five independent equations for Sµναβ . Therefore we are able to express all components of Sµναβ in
terms of one unknown function Λ, where the form of Λ is restricted by the requirement that all Sµναβ tend to their
well known Minkowski space version in the flat limit. We obtain

S0000 =
4ie3g00g01
12π(g11)3

−
8ie3(g01)

3

12π(g11)4
+

(g01)
5

(g11)4
Λ,

S0001 =
ie3g00

12π(g11)2
−

4ie3(g01)
2

12π(g11)3
+

(g01)
4

(g11)3
Λ,

S0101 = S0011 = −
2ie3g01

12π(g11)2
+

(g01)
3

(g11)2
Λ,

S0111 = −
ie3

12πg11
+

(g01)
2

g11
Λ,

S1111 = g01Λ, (48)

where Λ may be non-zero (but finite) in the flat limit.
For a proper interpretation of this result we need some basic facts about canonical quantization in curved space-

time. We chose the hypersurface x0 = const as a quantization surface. The direction of the (arbitrarily chosen) time
coordinate is not an intrinsic property of this surface, and, therefore, time components of tensors are not invariant
under coordinate transformations that do not change the coordinates on the hypersurface. Instead one has to choose
the projection of the time components onto the timelike vector lµ orthogonal to the surface, e.g. (Tµν is a general
tensor, i is the space index)

Tµν → Tij , lµTµj , lνTiν , lµlνTµν (49)

(see e.g. [13]). The vector lµ is given by

lµ = eg0µ. (50)

Here we chose the normalization lµlµ = −g11, which is the proper normalization in order to obtain the correct
commutator algebra on the quantization surface, see e.g. [6,14] (this normalization corresponds to the requirement
that lµ is a vector, not a vector density: for a general tangent vector bµ1 to the hypersurface, the orthogonal covector
lµ is lµ = ǭµνb

ν
1 , where ǭµν = eaµe

b
νǫab = eǫµν is a tensor. For our specific choice b

µ
1 = δ

µ
1 one finds precisely (50) for

lµ). Further we should remember that S
µν
ab was defined as the commutator of [e(x)Θµ

a(x), e(y)Θ
ν
b (y)] (see eq. (25)),

i.e. to obtain the commutators of the Θµ
a themselves we still have to divide by e2. Doing so, and performing the

projections, we recover precisely the central extension of the Virasoro algebra [15]

lµlν lαlβSµναβ = lµlνSµν11 = lµlαSµ1α1 = 0 (51)

e−2(x)lµlν lαSµνα1 = e−2(x)lµSµ111 =
i

12π
(52)

and the arbitrary function Λ cancels out in all expressions (51, 52). The pure space component S1111 = g01Λ, which
is not related to any symmetry generator, remains undetermined by our procedure.

IV. CONCLUSIONS

We have analyzed the anomalous Schwinger terms in the equal-time energy-momentum tensor algebra in two
different regularizations of 2-d scalar field theory in a curved background.
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The usual computations make use of the conformal gauge, which is of course appropriate for the diffeomorphism-
invariant regularization. Once the metric is set to its conformally flat form, all the machinery of Conformal Field
Theory can be applied essentially as in flat space-time [16]. In contrast, the gauge fixing can not be performed in
the Weyl-invariant version of the theory. In order to compare both regularizations one then needs a more general
framework, in which no gauge fixing is made at any step.
In this framework we have achieved a two-fold result. On the one hand, we have shown that the energy-momentum

operators continue to obey the Virasoro algebra in the case of a general metric, without using any gauge fixing for the
computation. On the other hand, we have proven that both versions of the theory, eq. (16) and eq. (22), obey the
same commutation relations, regardless of the symmetries broken by the regularization procedures.
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