TPP 9 Determinación de metales en la cadena láctea mediante TXRF. Comunicación.

Basso, I.M.^{1*}, Cerchietti, M.L.¹, Custo, G.¹ y Mouteira, M.C.²

¹Comisión Nacional de Energía Atómica- Departamento Aplicaciones Agropecuarias. ²Universidad Nacional de La Plata - Facultad de Ciencias Agrarias y Forestales

*E-mail: <u>basso@cae.cnea.gov.ar</u>.

Metal determination in the dairy chain by TXRF. Communication.

Introducción

Numerosos metales son necesarios en niveles bajos para el funcionamiento normal de los organismos vivos; sin embargo, algunos pueden ser muy tóxicos. Diversas fuentes pueden aportar contaminantes que afecten la calidad de la leche. El objetivo de este trabajo fue la determinación cualicuantitativa de metales en la cadena de producción de leche de tres tambos de la Provincia de Buenos Aires.

Materiales y Métodos

Inicialmente, un estudio exploratorio de la calidad del agua se realizó en la localidad de Suipacha Pcia. de Bs As. Para ello, se tomaron 10 muestras de agua de pozo y de red y se analizó su composición multielemental. Posteriormente se eligió un tambo caprino y uno bovino de dicha localidad, y otro tambo bovino del Gran La Plata; se tomaron muestras de agua, del alimento de los animales (pastura, silo, malta o balanceado según el caso) y, de la leche de animales en forma individual y del tanque de frío (pool). Las muestras se trataron, según el caso, mediante digestión ácida con microondas, dilución o se realizó medición directa. El análisis cuali-cuantitativo se realizó por la técnica fluorescencia de rayos x por reflexión total (TXRF).

Resultados y Discusión

En el estudio exploratorio de aguas se hallaron elementos en el orden de trazas (Cuadro 1). En particular, el arsénico mostró valores por encima de 0,010 mg/l en todas las muestras, valor máximo recomendado para consumo humano por la OMS (2006), y por encima de 0,050 mg/l en 8 muestras, valor máximo recomendado para ganado por el NRC (2001). El máximo valor encontrado en agua de red (0,241 mg/l) supera lo publicado por otros autores para dicho partido. La concentración de vanadio superó el límite máximo recomendado para consumo animal de 0,1 mg/l en 7 muestras. Los otros metales se encontraron por debajo de los valores máximos recomendados para consumo humano y animal. En los tambos de Suipacha, se hallaron valores de arsénico por encima de 0,122 mg/l y de vanadio por encima de 0,300 mg/l en agua., y valores de arsénico de 0,100 mg/kg y 0,170 mg/kg en balanceado y en silo de sorgo respectivamente. En el tambo del Gran La Plata los valores de arsénico y vanadio estuvieron por debajo del límite de detección. Las concentraciones de los elementos evaluados en leche bovina y caprina de los tres tambos variaron entre: K= 710 a 1248 mg/l; Ca= 880 a 1290 mg/l; Fe= 480 a 1230 mg/l; Zn= 2,03 a 5,53 mg/l y Sr= 0,49 a 1,26 mg/l. Las concentraciones de arsénico en leche estuvieron por debajo del límite de detección de la técnica (0,009 mg/l). Las concentraciones de los elementos evaluados para los distintos alimentos se muestran en el Cuadro 2.

Conclusiones

Los niveles de arsénico y vanadio hallados en agua reflejan una problemática para la producción animal y para los pobladores de dicha zona que no tengan acceso a agua de calidad. Para los casos y elementos estudiados, no se halló presencia de arsénico ni de otros contaminantes en leche

Cuadro 1. Valores máximos y mínimos, y límite de detección de la técnica TXRF para aguas evaluadas

	Concentración en agua en mg/l				
	MAX	MIN	LLD (mg/l)		
K	71389	21,582	0,06		
Са	94,97	8,87	0,04		
Ti	0,202	0,082	0,03		
V	0,502	0,081	0,02		
Cr	ND/ NC	ND/ NC	0,015		
Mn	ND/ NC	ND/ NC	0,006		
Fe	0.694	0,058	0,004		
Co	ND/ NC	ND/ NC	0,005		
Ni	0.021	ND/ NC	0,003		
Cu	0.041	0,02	0,002		
Zn	0.196	0,038	0,002		
As	0.241	0,02	0,002		
Se	ND/ NC	ND/ NC	0,001		
Rb	ND/ NC	ND/ NC	0,005		
Sr	1,959	0,816	0,005		
Cd	ND/ NC	ND/ NC	0,1		
Cs	ND/ NC	ND/ NC	0,05		
Ва	1,155	0,226	0,05		
U	ND/ NC	ND/ NC	0,01		
Pb	ND/ NC	ND/ NC	0,01		

Cuadro 2. Concentraciones de los elementos evaluados para los distintos alimentos

Concentración en alimentos en mg/kg					
	Pasturas	Silo de sorgo	Malta	Balanceado	
K	19396 a 20240	9549	1099	7078	
Ca	4340 a 4348	1296	1415	4897	
Mn	28,7 a 97,1	27,8	16	114	
Fe	123 a 156	69,1	73	96	
Zn	30,7 a 26,1	15	43	98	
Rb	3,3 a 6,9	4,8	0,23	3,3	
Sr	33,4 a 51,6	11,9	9,9	24	

Bibliografía

OMS. 2006. Guías para la calidad del agua potable 3ra edición. Vol.:.1. Ed.: Organinzacion Mundial de la Salud. Disponible en: www.who.Int

NRC. 2001. Nutrient requirement of dairy cattle 7th revised edition. Ed. National Research Council.

Agradecimientos

D. Goitía, L. Terminiello y a los productores por las muestras.