Schwingungseigenschaften und thermodynamische Funktionen von Mn₂O₇

Enrique J. Baran

Química Inorgánica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentinien

Z. Naturforsch. **42 a**, 307 – 309 (1987); eingegangen am 22. Dezember 1986

Vibrational Properties and Thermodynamic Functions of Mn_2O_7

The main force constants for Mn_2O_7 have been calculated from recently reported infrared data, using a simplified molecular model. Mean amplitudes of vibration and thermodynamic functions are also reported. The results are briefly discussed and some comparisons with related species are made.

Dimangan-Heptoxid, Mn₂O₇, ist schon seit mehr als 100 Jahren bekannt, trotzdem waren seine strukturellen und spektroskopischen Eigenschaften bis vor kurzem praktisch unbekannt. Dies ist vor allem auf die Unbeständigkeit und das hohe Explosionsvermögen dieser Substanz zurückzuführen. Einige allgemeine chemische und physikalisch-chemische Eigenschaften wurden von Glemser und Schröder [1] ermittelt (vgl. dort auch Angaben über die ältere Literatur).

Vor kurzem haben Levason et al. [2] IR-Spektren, sowohl von festem wie auch von matrixisoliertem Mn_2O_7 , aufgenommen und zugeordnet. An Hand dieser ersten schwingungsspektroskopischer Daten haben wir jetzt die wichtigsten Schwingungseigenschaften für dieses hochwertige Manganoxid berechnet um weitere Einsicht in seine Bindungs- und Struktur-Eigenschaften zu bekommen.

Die spektroskopische Untersuchung hat endgültig sichergestellt, daß dieses Oxid eine Dichromatähnliche Struktur, also $O_3Mn-O-MnO_3$, besitzt. Zu einer ähnlichen Schlußfolgerung war man bereits früher bei der Untersuchung einer sog. "Permangansäure" gekommen, welche als $Mn_2O_7 \cdot 2 H_2O$ formuliert wurde [3].

Zur Berechnung der Kraftkonstanten haben wir ein vereinfachtes Modell, welches ursprünglich von

Sonderdruckanforderungen an Prof. Dr. E. J. Baran, Facultad de Ciencias Exactas, UNLP, Calles 47 y 115, 1900-La Plata, Argentinien.

Stammreich et al. [4] vorgeschlagen wurde, benutzt und verbessert. Dabei wird das Mn₂O₇-Oxid, als ein pentatomisches O₃MO'-Molekül (C_{3v}-Symmetrie) betrachtet (O' = Brückensauerstoffatom), und es wurden die von Müller et al. [5] vorgeschlagenen *F*-G-Matrixelemente angewandt. Dieses Modell erlaubt die Berechnung von sechs Kraftkonstanten, während man nach dem ursprünglichen Vorschlag von Stammreich bloß vier Konstanten bestimmen konnte

Bereits in früheren Arbeiten mit verschiedenen X_2O_7 -Spezies haben wir diese Methode mit sehr gutem Erfolg angewandt [6-8], und auch andere Autoren konnten ihre Brauchbarkeit bestätigen (vgl. z. B. [9]).

Bei der Aufstellung der *G*-Matrix wurden folgende Strukturparameter angenommen: d(Mn-O) = 1,59 Å, d(Mn-O') = 1,75 Å und alle OMnO-Winkel = 110° . Die Mn-O-Abstände wurden durch Vergleich mit bekannten Daten von MnO_4^- , MnO_3F , CrO_4^{2-} und $Cr_2O_7^{2-}$ bestimmt (vgl. [10–13]), für die Schwingungsfrequenzen wurden die in Tab. 1 angegebenen Werte angenommen [2]. Der Wert von 200 cm^{-1} für v_5 wurde durch Vergleich mit anderen verwandten C_{3v} -Spezies [5, 7, 14] abgeschätzt, während der v_1 -Wert durch Mittelung der beiden gemessenen Brückenschwingungen [2] erhalten wurde.

Aus Tab. 2 sind die berechneten Kraftkonstanten ersichtlich, wobei sich R auf die Mn-O'- und r auf die Mn-O-Bindung bezieht und α auf die MnO₃-Winkel, während rr und $\alpha\alpha$ Bindungs/Bindungs-bzw. Winkel/Winkel-Wechselwirkungen darstellen und ϱ sich auf den O'MnO-Winkel bezieht. Die berechneten Kraftkonstanten reproduzieren die gemessenen Frequenzen ganz genau.

Zur besseren Charakterisierung der Schwingungen haben wir auf Tab. 3 auch die Werte der Verteilung der potentiellen Energie tabellarisch angeführt. Hieraus kann man deutlich erkennen, daß praktisch alle Schwingungen sehr charakteristisch

$v_1(A_1)$	v(MnO')	655
$v_2(A_1)$	$v_s (MnO_3)$	880
$v_3(A_1)$	$\delta_{\rm s} ({\rm MnO_3})$	340
v_4 (E)	$v_{as}(MnO_3)$	945
v_5 (E)	$\delta(OMnO')$	(200)
v_6 (E)	$\delta_{as}(MnO_3)$	370

Tab. 1. Grundschwingungen (in cm⁻¹) des O₃MnO'-Moleküls.

308 Notizen

Tab. 2. Kraftkonstanten, in mdyn/Å, für Mn₂O₇.

f_R	f_r	f_{rr}	f_{α}	$f_{\alpha \alpha}$	f_{ϱ}
3,19	6,11	0,14	0,48	0,05	0,14

Tab. 3. Verteilung der potentiellen Energie des O₃MnO'-Moleküls.

	f_R	f_r	f_{rr}	f_{α}	$f_{\alpha \alpha}$	f_{ϱ}
v_1	0,89	0.08	0.00	0.02	0.00	0,01
v_2	0.07	0,88	0,04	0.01	0,00	0.00
v_3	0.05	0,00	0.00	0,63	0,14	0.18
v_4	0,00	1,00	-0.02	0,02	0,00	0,00
V ₅	0,00	0,00	0,00	0,00	0,00	1,00
v_6	0,00	0,01	0,00	1,11	-0,12	0,00

T(K)	$u_{\mathrm{Mn-O}}$	<i>u</i> _O _O
0	0,0386	0,062
100	0,0386	0,063
200	0,0386	0,066
298,16	0,0391	0,071
300	0,0391	0,071
400	0,0401	0,077
500	0,0415	0,083
600	0,0432	0,089
700	0,0450	0,095
800	0,0469	0,101
900	0,0489	0,106
1000	0,0508	0,112

Tab. 4. Mittlere Schwingungsamplituden, in Å, für die endständigen MnO₃-Gruppen im Mn₂O₇.

Tab. 5. Thermodynamische Funktionen von Mn_2O_7 für den idealen Gaszustand bei 1 Atm. (in cal Mol^{-1} K^{-1}).

T(K)	C_p	$(H^0 - H_0^0)/T$	$-(G^0-H_0^0)/T$	S^0
100	13.99	9,86	55,02	64,88
200	26,09	15,14	63,14	78,55
298,16	33,69	20,09	70,41	90,50
300	33.80	20,17	70,53	90,70
400	38,69	24,24	76,91	101,15
500	41,79	27,46	82,68	110,14
600	43,82	30.03	87,92	117,95
700	45,18	32,10	92,71	124,82
800	46,14	33,80	97,12	130,92
900	46,82	35,21	101,18	136,39
1000	47,33	36,40	104,95	141,35

sind; bloß die v_3 -Schwingung ist schwach mit der v_5 -Schwingung gekoppelt.

Erwartungsgemäß liegt die Kraftkonstante der endständigen Mn-O-Bindung $(f_r = 6,11 \text{ mdyn/Å})$ etwas höher als beim verwandten tetraedrischen Permanganat-Ion $(f_r = 5,75 \text{ mdyn/Å})$ [15]. Dies ist ganz einfach zu verstehen, da sich im Falle des tetraedrischen Anions der π -Bindungsanteil über die

vier Sauerstoffatome erstrecken muß, während er sich im vorliegenden Fall bloß über die drei endständigen Atome erstreckt, da das Brückensauerstoffatom wahrscheinlich keinen π -Anteil mehr enthält (nach Siebert [16] berechnet sich für eine einfache Mn-O-Bindung eine Kraftkonstante von ca. 3,5 mdyn/Å).

Der berechnete f_r -Wert liegt auch nur geringfügig niedriger als bei den verwandten Spezies MnO₃F [14] und MnO₃Cl [17], welche ganz ähnliche Bindungsverhältnisse aufweisen. Interessant ist auch noch, daß die Hauptkonstanten praktisch ähnliche Werte wie beim isoelektronischen und isostrukturellen Dichromat-Ion [18] aufweisen.

Ein Vergleich mit den Kraftkonstanten der homologen Tc_2O_7 und Re_2O_7 -Spezies zeigt, weiterhin, daß in diesen beiden Fällen die f_r - sowie die f_{rr} -Werte etwas höher [7] als beim Mn_2O_7 liegen. Dieses Verhalten folgt dem allgemeinen Gang, welcher auch von den einfachen verwandten MO_4^- -Spezies her bekannt ist [15], indem die M-O-Bindungen beim Übergang von der 4. zur 5. bzw. 6. Periode des Periodensystems stärker werden. Interessanterweise ist aber die f_R -Kraftkonstante bei allen drei Heptoxiden praktisch identisch [7], und auch die Werte für f_α bleiben fast unverändert.

Um noch weitere Einsicht in die Schwingungseigenschaften der Mn-O-Bindungen zu bekommen, haben wir an Hand der sog. "Methode der charakteristischen Schwingungen" [19-21] die mittleren Schwingungsamplituden für die endständigen MnO₃-Gruppen abgeschätzt. Die Ergebnisse, bei verschiedenen Temperaturen, sind in Tab. 4 ersichtlich. Diese Werte liegen ganz deutlich im für Mn-O-Bindungen charakteristischen Bereich [20].

Alle durchgeführten Rechnungen beweisen also, daß Mn_2O_7 ähnliche Struktur- und Bindungseigenschaften wie die verwandten und schwereren homologen M_2O_7 -Oxide und das isoelektrische Dichromat-Ion aufweisen.

Schließlich habe wir noch aus den spektroskopischen Daten die thermodynamischen Funktionen für den idealen Gaszustand nach den üblichen Formeln [22] unter Annahme eines harmonischen Oszillators und starren Rotators berechnet.

Zu dieser Berechnung wurde für das Mn_2O_7 die Symmetrie $C_{2\nu}$ angenommen und für den Mn-O-Mn-Winkel ein Wert von 160° [2]. Der Deformationsschwingung dieser Brücke wurde eine Frequenz von 80 cm^{-1} zugeschrieben, welche durch

Notizen 309

Vergleich mit dem Cr₂O₇²-Ion [18, 23] abgeschätzt wurde. Die Hauptträgheitsmomente (266.68 · 10⁻⁴⁰, $1502,13 \cdot 10^{-40}$ und $1594,54 \cdot 10^{-40}$ g·cm²) wurden mit dem Rechenprogramm INER von Varetti [24] berechnet. Die Symmetriezahl ist 2. Die Ergebnisse, Molwärme (C_p), reduzierte Enthalpie $(H^0 - H_0^0)/T$, reduzierte freie Enthalpie $(G^0 - H_0^0)/T$ und Entropie (S^0) , sind in Tab. 5 für den Temperaturbereich 100 bis 1000 K, wiedergegeben.

Alle Berechnungen wurden an einem IBM-4331 Computer (CESPI-UNLP) durchgeführt.

Diese Arbeit wure mit Unterstützung des "Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina" und der "Comisión de Investigaciones Científicas de la Provincia de Buenos Aires" durchgeführt.

- [1] O. Glemser u. H. Schröder, Z. anorg. allg. Chem. 271, 293 (1953).
- [2] W. Levason, J. S. Ogden u. J. W. Turff, J. Chem. Soc. Dalton Trans. 1983, 2699.
- [3] B. Krebs u. K. D. Hasse, Z. Naturforsch. 28b, 218 (1973).
- [4] H. Stammreich, D. Bassi, O. Sala u. H. Siebert, Spectrochim. Acta 13, 192 (1958).
- [5] A. Müller, B. Krebs u. W. Höltje, Spectrochim. Acta **23 A,** 2753 (1967). [6] E. J. Baran, J. C. Pedregosa u. P. J. Aymonino, J. Mol.
- Struct. 22, 377 (1974).
- [7] E. J. Baran, An. Asoc. Quim. Argent. 62, 65 (1974).
 [8] E. J. Baran, I. L. Botto, J. C. Pedregosa u. P. J. Aymonino, Monatsh. Chem. 109, 41 (1978).
- [9] R. G. Brown u. S. D. Ross, Spectrochim. Acta 28 A, 1263 (1972)
- [10] G. J. Palenik, Inorg. Chem. 6, 503 (1967).
- [11] A. Javan u. A. Engelbrecht, Phys. Rev. 96, 649 (1954).
 [12] J. S. Stephens u. D. W. J. Cruickshank, Acta Crystallogr. B26, 222 (1970).
- [13] J. K. Brandon u. I. D. Brown, Canad. J. Chem. 46, 933 (1968).

- [14] M. J. Reisfeld, L. B. Asprey u. N. A. Matwiyoff, Spectrochim. Acta 27 A, 765 (1971).
- [15] A. Müller u. B. Krebs, J. Mol. Spectroscopy 24, 180 (1967).
- [16] H. Siebert, Anwendungen der Schwingungsspektroskopie in der Anorganischen Chemie, Springer-
- Verlag, Berlin 1966.
 [17] E. L. Varetti u. A. Müller, Z. anorg. allg. Chem. 442, 230 (1978).
- [18] R. Mattes, Z. anorg. allg. Chem. 382, 163 (1971).
 [19] A. Müller, C. J. Peacock, H. Schulze u. U. Heidborn, J. Mol. Struct. 3, 252 (1969).
- [20] A. Müller, E. J. Baran u. K. H. Schmidt, in Molecular Structures and Vibrations (S. J. Cyvin, Herausgeber), Elsevier, Amsterdam 1972.
- 1] E. J. Baran, An. Asoc. Quím. Argent. 61, 41 (1973).
- [22] G. Herzberg, Molecular Spectra and Structure II. IR and Raman Spectra of Polyatomic Molecules. D. van Nostrand Co., New York 1945.
- [23] R. Mattes, F. Königer u. A. Müller, Z. Naturforsch. 29 b, 58 (1974)
- [24] E. L. Varetti, Comp. Chem. 8, 277 (1984).