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Epilepsy is one of the most common neurological disorders – estimated to affect
at least 65 million worldwide. Most of the epilepsy research has so far focused on
how to dampen neuronal discharges and to explain how changes in intrinsic neuronal
activity or network function cause seizures. As a result, pharmacological therapy has
largely been limited to symptomatic treatment targeted at neurons. Given the expanding
spectrum of functions ascribed to the non-neuronal constituents of the brain, in both
physiological brain function and in brain disorders, it is natural to closely consider
the roles of astrocytes in epilepsy. It is now widely accepted that astrocytes are key
controllers of the composition of the extracellular fluids, and may directly interact with
neurons by releasing gliotransmitters. A central tenet is that astrocytic intracellular Ca2+

signals promote release of such signaling substances, either through synaptic or non-
synaptic mechanisms. Accruing evidence suggests that astrocytic Ca2+ signals play
important roles in both seizures and epilepsy, and this review aims to highlight the current
knowledge of the roles of this central astrocytic signaling mechanism in ictogenesis
and epileptogenesis.
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INTRODUCTION

Epilepsy is one of the most common neurological disorders – estimated to affect around 1% of
the world’s population (Hesdorffer et al., 2011; Neligan et al., 2012; Beghi, 2016). It is a chronic
disorder, characterized by sudden, violent perturbations of normal brain function, causing social
stigma, morbidity, and risk of premature death. In spite of a multitude of drugs for the treatment
of epilepsy, about 30% of patients are not able to control their seizures with seizure suppressing
medication (French, 2007; Perucca and Gilliam, 2012).

There is a striking lack of knowledge of the pathophysiological cellular mechanisms at play
in epilepsy. For instance, the process transforming normal brain matter to a focus for epileptic
seizures – the process of epileptogenesis – is not well understood. Also, the central question
of what sets in motion an epileptic seizure – ictogenesis – remains unanswered. Most of the
epilepsy research has so far focused on how to dampen neuronal discharges and to explain how
changes in intrinsic neuronal activity or neuronal network function cause seizures. As a result,
pharmacological therapy has been limited to symptomatic treatment aiming at neuronal targets.
Given the expanding spectrum of roles ascribed to the non-neuronal constituents of the brain, it is
natural to take a closer look at astrocytes as potential targets for epilepsy treatment.

Astrocytes are critical homeostatic controllers of extracellular glutamate and K+ levels
(Rothstein et al., 1996; Larsen et al., 2014; Danbolt et al., 2016). Numerous studies have also
demonstrated that astrocytes have important roles in supporting the neurons metabolically
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(Pellerin and Magistretti, 1994; Lundgaard et al., 2015) and that
they have the capability of altering the vascular tone (Mulligan
and MacVicar, 2004; Haydon and Carmignoto, 2006; Gordon
et al., 2008). Increasing evidence suggests that astrocytes play
important roles in brain state transitions and maintenance
(Paukert et al., 2014; Poskanzer and Yuste, 2016; Szabó et al.,
2017; Bojarskaite et al., 2020). Notably, astrocytes seem to
also directly partake in brain signaling by releasing substances
that affect neurons at the so-called tripartite synapse (Perea
et al., 2009; Bindocci et al., 2017; Martin-Fernandez et al.,
2017). A central tenet is that astroglial intracellular Ca2+ signals
promote such “gliotransmitter” release, either through synaptic
or non-synaptic mechanisms (Perea et al., 2014; Bazargani and
Attwell, 2016). Glutamate, purines and D-serine are examples
of transmitter substances that are thought to be released from
astrocytes in a Ca2+ dependent manner (ibid.).

Perturbation of astrocytic Ca2+ signaling has been
demonstrated in seizures and in epileptic tissue, potentially
affecting both the homeostatic functions and signaling functions
of astrocytes. These downstream mechanisms are largely
speculative in the context of epilepsy but reflect the knowledge
of roles of astrocytic Ca2+ signaling in physiology. Here, we
discuss the relatively limited body of studies directly assessing
astrocytic Ca2+ signaling in epilepsy, and briefly discuss
potential downstream effects (Table 1). For the sake of structure
and simplification, we arrange the topic into paragraphs
on ictogenesis (i.e., the emergence of seizure activity), and
epileptogenesis (i.e., the process by which the brain develops
the predisposition of generating spontaneous seizures). These
two processes are highly interconnected (Blauwblomme et al.,
2014), but animal studies are often designed to study one of these
two facets of epilepsy, and hence provide a framework for the
further discussion.

ASTROCYTIC Ca2+ SIGNALING AND
ICTOGENESIS

Ictogenesis describes the emergence of seizure activity
(Blauwblomme et al., 2014). The interaction between astrocytes
and neurons in ictogenesis has only sparsely been investigated
and findings are to some extent ambiguous or contradictory,
potentially due to different experimental models (Table 1; Tian
et al., 2005; Fellin et al., 2006; Gómez-Gonzalo et al., 2010; Baird-
Daniel et al., 2017; Heuser et al., 2018; Diaz Verdugo et al., 2019).
Astrocytes express a plethora of functionally important receptors,
transporters and channels, and a role of these cells in ictogenesis
is highly suggestive (Agulhon et al., 2008; Patel et al., 2019;
Caudal et al., 2020). Several known astrocyte-neuron interactions
involving Ca2+ signaling can partake in ictogenesis or in the
maintenance of hypersynchronous neuronal activity, possibly by
creating excitatory feedback loops (Figure 1; Gómez-Gonzalo
et al., 2010; Henneberger, 2017).

Building upon seminal studies demonstrating that astrocytes
are able to directly interact with neurons (Nedergaard, 1994;
Parpura et al., 1994; Araque et al., 1998; Parpura and Haydon,
2000; Parri et al., 2001; Angulo et al., 2004), Fellin et al. (2006),

found that eliciting astrocytic Ca2+ signals by photolysis of
caged Ca2+ and by application of ATP agonist and mGluR5
agonist triggered slow inward currents (SICs) in nearby neurons
that were unaffected by application of the neuronal sodium
channel blocker tetrodotoxin (Fellin et al., 2004). Soon thereafter,
Tian et al. (2005) demonstrated that Ca2+ mediated glutamate
release from astrocytes during experimentally induced seizure
activity triggered slow inward currents (SICs) in neurons. These
findings proposed a role for astrocytes in synchronizing neuronal
activity and contributing to seizure generation (Tian et al., 2005).
Further exploring which astrocytic Ca2+ signaling mechanisms
were involved in this context, Kang et al. applied IP3 into
astrocytes of the CA1 hippocampal region in rats, and were
able to trigger epileptiform discharges in adjacent neurons
(Kang et al., 2005). Later, Ding et al. (2007) were able to
demonstrate increased astrocytic Ca2+ signaling in an in vivo
pilocarpine epilepsy model. They proposed that this increase in
Ca2+ signaling was due to activation of astrocytic metabotropic
glutamate receptors, and that this activation led to the release
of glutamate from astrocytes that could contribute to neuronal
SICs through the activation of extrasynaptic neuronal NMDA
receptors. By applying simultaneous patch-clamp recordings and
Ca2+ imaging in cortical slices of the rat entorhinal cortex,
Gómez-Gonzalo et al. (2010) found that Ca2+ elevations in
astrocytes correlate with initiation and maintenance of focal
seizure-like discharges, and postulated a recurrent excitatory loop
between neurons and astrocytes in ictogenesis, where astrocytes
play a role in recruiting neurons to ictal events, possibly through
the release of gliotransmitters (Gómez-Gonzalo et al., 2010).

By using two-photon microscopy and simultaneous astrocyte
and neuron Ca2+ imaging in the hippocampal CA1 region of
awake mice, we were able to show that prominent astrocytic
Ca2+ transients preceded local hypersynchronous neuronal
activity in the emergence of kainate induced generalized
epileptic seizures (Heuser et al., 2018). These findings were
in agreement with the earlier results from the study of
Tian et al. (2005), who also observed stereotypical astrocytic
Ca2+ signals typically preceding local neurons in the spread
of cortical seizure activity. A later work by Diaz Verdugo
et al. (2019) similarly demonstrated large and synchronized
astrocytic Ca2+ signals preceding ictal onset in zebrafish, and
proposed that this signaling modulated neural excitation through
glutamate release, by gap junction dependent mechanisms. In
another in vivo study, Zhang et al. (2019), provided evidence,
although correlative, that increased Ca2+ concentration in
astrocytic endfeet governed precapillary arteriole dilation during
epileptic events, suggesting a role for astrocytes in the
metabolic support of neurons in seizures. In contrast to these
previously mentioned studies, data from another model for
focal neocortical seizures in anesthetized rats using bulk-loaded
synthetic Ca2+ indicators found the astrocytic Ca2+ activation
to lag behind neuronal activation and to be unnecessary
for ictogenesis and the accompanying vascular dynamics
(Baird-Daniel et al., 2017).

An extensive array of stimuli and corresponding signaling
pathways have been shown to trigger intracellular Ca2+ signals
in astrocytes (Zhang et al., 2019; Caudal et al., 2020). To
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TABLE 1 | Key publications investigating the roles of astrocytic Ca2+ signalling in ictogenesis and epileptogenesis.

Publication Model Ca2+ indicator Main findings

Astrocytic Ca2+ signaling in ictogenesis

Kang et al., 2005 Rat hippocampal slices, 4-AP Fluo-4 AM Adding IP3 in astrocytes causes epileptiform activity due to
glutamate, and that astrocytic Ca2+ signals occur during 4-AP
seizures

Tian et al., 2005 Rat hippocampal slices: 4-AP, zero-Mg2+,
bicuculline, penicillin Mouse cortex, in vivo,
anesthetized: local injection of 4-AP

Fluo-4 AM Increased astrocytic Ca2+ signaling in vivo during spread of 4-AP
seizures, as well as showing that uncaging Ca2+ in astrocytes and
extrasynaptic sources of glutamate triggered paroxysmal
depolarization shifts

Fellin et al., 2006 Mouse cortical-hippocampal slices: zero-Mg2+

and picrotoxin, or 0.5 mM Mg2+ and 8.5 mM
K+

Indo-1 AM or
OGB-1 AM

A correlation between astrocytic Ca2+ and SICs, but activation of
extrasynaptic NMDA activation by astrocytes is not necessary for
either ictal or interictal epileptiform events

Ding et al., 2007 Mouse, in vivo, anesthetized. Pilocarpine s.c.,
350 mg/kg

Fluo-4 AM Increase in astrocytic Ca2+ signals during SE. See also under
“Epileptogenesis”

Gómez-Gonzalo
et al., 2010

Mouse entorhinal cortex slice: Picrotoxin/
zero-Mg2+ Whole guinea pig: Bicuculline

OGB-1 AM /
Rhod-2

Astrocytic Ca2+ signals are triggered by ictal but not interictal
events, and can be inhibited by blocking mGluRs and purinergic
receptors. Astrocytic Ca2+ signals contribute to the excitation of
neurons, and blocking of early ictal astrocytic Ca2+ signals prevent
spread of ictal activity.

Baird-Daniel et al.,
2017

Rat cortex, in vivo, anesthetized. 4-AP. Blocking
astrocytic Ca2+ signals and gap junctions with
fluoroacetate and carbenoxolone, respectively

OGB-1 AM or
Rhod-2 AM

Increased Ca2+ signals in astrocytes during seizures, but blocking
of these did not affect epileptiform discharges or vascular dynamics
associated with the seizures

Heuser et al., 2018 Mouse hippocampus, in vivo, unanesthetized,
“dual color” Ca2+ imaging of hippocampal
neurons and astrocytes

GCaMP6f in
astrocytes

Prominent astrocytic Ca2+ activity preceding local neuronal
recruitment to seizure activity in hippocampus

Diaz Verdugo et al.,
2019

Zebra fish: PTZ GCaMP6s in
astrocytes

Large activations of astrocytic Ca2+ signals in the pre-ictal state
and that astrocytic Ca2+ signals contribute to excitation of neurons

Zhang et al., 2019 Mouse cortex, in vivo, anesthetized: local
injection of 4-AP

OGB-1 AM Absolute levels of Ca2+ in the astrocytic endfeet correlates with
vascular tone during seizures

Astrocytic calcium signaling in epileptogenesis

Ding et al., 2007 Mouse cortex, in vivo, anesthetized: Pilocarpine
s.c. 350 mg/kg. 3D post SE

Fluo-4 AM An increase in astrocytic Ca2+ signals at day 3 after SE due to
mGluR5 signaling. Blocking this hyperactivity attenuated neuronal
death

Szokol et al., 2015 Mouse hippocampal slices: intracortical kainate
injection. Early epileptogenesis (1, 3, and
7 days after SE)

GCaMP5E Increased Ca2+ signaling in hippocampal astrocytes upon schaffer
collateral stimulation at days 1 and 3 after SE mediated by mGluR

Umpierre et al.,
2019

Mouse hippocampal slices, at 1–3, 7–9, or
28–30 days after SE

GCaMP5G mGluR5-mediated Ca2+ signaling re-emerges in epileptogenesis

Mentioned in
Shigetomi et al.
(2019): Sato et al.:
unpublished report

4 weeks after pilocarpine induced SE Not known Increased Ca2+ signaling in reactive astrocytes

Enger et al., 2015
conference
proceedings,
American Epilepsy
Society conference

Mouse hippocampus, in vivo, unanesthetized.
Chronic MTLE model of deep cortical kainate
injection, imaging at 3 months after SE

GCaMP6f Episodic spontaneous hyperactivity of reactive astrocytes
within/close to the sclerotic hippocampus

Plata et al., 2018 Rat, hippocampal slices, Lithium-pilocarpine OGB-1 AM A reduction in large size astrocytic Ca2+ events in atrophic
astrocytes

discuss all of them would go beyond the scope of this
review. One important pathway is mediated by the Inositol
1,4,5-trisphosphate (IP3) receptor in the endoplasmic reticulum,
of which the isoform 2 (IP3R2) is thought to be the key functional
IP3 receptor in astrocytes (Figure 1; Sharp et al., 1999; Parri
and Crunelli, 2003; Volterra and Steinhäuser, 2004; Scemes
and Giaume, 2006; Foskett et al., 2007). Lack of IP3R2 has
been shown to abolish a large proportion of astrocytic Ca2+

signals (Petravicz et al., 2008; Guerra-Gomes et al., 2020). In
spite of the importance of IP3 as a second messenger involved
in astrocytic Ca2+ dynamics, mice lacking this receptor are
overtly normal (Petravicz et al., 2008). Accordingly, studies
have questioned the physiological importance of IP3-mediated
astrocytic Ca2+ signaling, by for instance demonstrating normal
synaptic transmission and plasticity in mice devoid of IP3R2
(Agulhon et al., 2010; Nizar et al., 2013; Petravicz et al., 2014).
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FIGURE 1 | Potential roles of astrocytic Ca2+ signaling in epilepsy. Strong astrocytic Ca2+ signals have been shown to occur in the emergency of acute seizures (in
ictogenesis), that are probably triggered by neurotransmitters released by neurons. Ca2+ increases at the onset of seizures are known to be partly mediated by
release through IP3R2 from the endoplasmic reticulum, even though pronounced Ca2+ signaling is present also in mice devoid of IP3R2. It is thought that
intracellular Ca2+ increases may trigger proconvulsive gliotransmitter release. In astrocytic endfeet, increased Ca2+ signaling has been shown to correlate with ictal
vasodilation. Epileptogenesis triggers a pronounced increase in mGluR5 expression, mGluR5-mediated Ca2+ signaling, and increased glutamate uptake. An
increase in astrocytic Ca2+ signaling has been demonstrated in the days after status epilepticus, and aberrant Ca2+ signaling at later time points in the
epileptogenesis has been anecdotally reported. Increased Ca2+ signaling could potentially cause both the release of glutamate (pro-convulsive), purines
(pro-convulsive), and GABA (anti-convulsive, through Bestrophin-1 channels). In astrocytic endfeet in epileptic tissue a pronounced loss of aquaporin-4 (AQP4) and
the K+ inwardly rectifying channel Kir4.1 can potentially be due to Ca2+ activated proteases causing a disassembly of the dystrophin associated protein complex
(DAPC) tethering AQP4 and Kir4.1 to perivascular endfeet.

Conversely, we have demonstrated attenuated seizure activity
in mice devoid of IP3R2 compared to WT mice following
low dose intraperitoneal kainate, suggesting a proconvulsant
role of astrocytic IP3R2 mediated Ca2+ elevations (Heuser
et al., 2018). However, seizure activity in this study was only
collected for 1 h after initiation of seizures, encouraging further
investigation of the role of IP3R2 at later time points during
epileptogenesis and in chronic epilepsy. Interestingly, even
though a sizable amount of Ca2+ signals were still present
in the knockout mice, we found that the early activation
of astrocytic Ca2+ signals in the emergence of seizures, as
discussed above, was dependent on IP3R2 (Heuser et al., 2018).
These two observations underscore the potential importance of
IP3R2 in ictogenesis.

Another pathway involved in astrocytic Ca2+ signaling
attracting increasing attention for a role in epilepsy is glial
purinergic signaling (Ding et al., 2007; Wellmann et al.,
2018; Alves et al., 2019; Nikolic et al., 2020). Activation of
astrocytic purinergic receptors triggers intracellular Ca2+ signals
that could promote astrocytic release of gliotransmitters like
glutamate or ATP, which acts on neurons and modulates
excitation [reviewed in Nikolic et al. (2020)]. Importantly, Nikolic
et al. (2018) provided evidence for TNFα-driven autocrine
astrocyte purinergic signaling as a trigger of glutamatergic
gliotransmission in a model of mesial temporal lobe epilepsy
(mTLE), highlighting the complex interplay between astrocytes
and microglia in epilepsy pathogenesis, discussed elsewhere
(Bedner and Steinhäuser, 2019).
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Most of the studies above explored the role for astrocytic
Ca2+ signals in seizures in relation to gliotransmission, i.e.,
that astrocytes release transmitters that directly signal to
neurons. A growing body of evidence suggests that astrocytic
Ca2+ signals also play important roles in the control of the
homeostatic functions of astrocytes. For instance they have
been shown to be involved in the uptake of extracellular K+
through modulation of the Na+/K+ ATPase, and through the
breakdown of glycogen (Wang et al., 2012; Müller et al., 2014).
These mechanisms remain poorly explored in the context of
epilepsy but could be important downstream effects of astrocytic
Ca2+ signaling.

ASTROCYTIC Ca2+ SIGNALING AND
EPILEPTOGENESIS

Epileptogenesis refers to the gradual process by which a normal
brain develops a propensity for recurrent seizure activity. A range
of pathophysiological changes have been shown to occur during
epileptogenesis, including inflammation, neurodegeneration,
aberrant neurogenesis and dendritic plasticity, impaired blood-
brain-barrier, epigenetic changes and alterations of the molecular
composition and function of ion channels, receptors and
transporters, and more (van Vliet et al., 2007; Vezzani et al., 2011;
Steinhäuser and Seifert, 2012; Dingledine et al., 2014; Jessberger
and Parent, 2015; Hauser et al., 2018; Escartin et al., 2021).

A common denominator of astrocytic pathophysiology
associated with epileptogenesis is the process of reactive
astrogliosis (Burda and Sofroniew, 2014; Pekny and Pekna,
2016). This is a graded response to a wide array of insults,
which is a hallmark of many neurological disorders (Burda
and Sofroniew, 2014; Ferlazzo et al., 2016; Glushakov et al.,
2016; Pekny and Pekna, 2016; Fordington and Manford, 2020;
Galovic et al., 2021).

Reactive astrocytes are characterized by morphological and
molecular changes (Figure 1). Specifically they proliferate,
undergo hypertrophy and increase their expression of
intermediary filament proteins like glial fibrillary acid protein
(GFAP) and vimentin (Yang et al., 1994; Pekny and Nilsson,
2005; Sofroniew, 2009; Cregg et al., 2014; Escartin et al., 2021).
In extremis, these changes may lead to the formation of a glial
scar (Miller, 2005; Barres, 2008; Sofroniew, 2009; Burda and
Sofroniew, 2014; Ferlazzo et al., 2016; Glushakov et al., 2016;
Pekny and Pekna, 2016; Fordington and Manford, 2020; Galovic
et al., 2021). Reactive astrogliosis can be observed in several
acquired forms of epilepsy but has mostly been investigated
in the context of mTLE (Wieser and ILAE Commission
on Neurosurgery of Epilepsy., 2004; Blümcke et al., 2013;
Cendes et al., 2014).

There is ample evidence that reactive astrocytes display
aberrant Ca2+ signaling at least in the early phase of
epileptogenesis (Table 1). Ding et al. (2007) found increased
astrocytic Ca2+ activity in the days following pilocarpine-
induced SE in mice. In the same study both in vitro and in vivo
pharmacological approaches demonstrated that these Ca2+

signals could contribute to neuronal death, linking astrocytic

hyperactivity to a key hallmark of epileptogenesis (Ding et al.,
2007). We confirmed the astrocytic hyperactivity following SE
by employing genetically encoded Ca2+ indicators in acute
hippocampal slices from a mouse model of mTLE, and found
that stimulation-evoked Ca2+ transients in astrocytic endfeet
even outlasted those in cell bodies during the latent phase of
epileptogenesis (Szokol et al., 2015).

Increased astrocytic Ca2+ activity has been anecdotally
reported at even later time points after the initial insult (Enger
et al., 2015; Shigetomi et al., 2019). These increased Ca2+

signals are likely stimuli- and stage specific and may reflect
the degree of the reactive astrogliosis (Kuchibhotla et al., 2009;
Fordsmann et al., 2019), as others have shown attenuated
astrocytic Ca2+ activity in atrophic astrocytes in chronic epilepsy
(Plata et al., 2018).

The degree, development and underlying mechanisms
involved in aberrant Ca2+ signaling in epileptogenesis are still
unknown, but it is plausible that several of the physiological
signaling pathways involved in astrocytic Ca2+ dynamics
(Caudal et al., 2020), could be perturbed. A major pathway
for eliciting astrocytic Ca2+ signals is the activation of the
Gq G-protein coupled receptors (GqPCRs) and subsequent
release of Ca2+ from the endoplasmic reticulum via IP3R2
as discussed in “Astrocyte Ca2+ signaling and Ictogenesis”
(Figure 1; Foskett et al., 2007). Astrocytes express several
GqPCRs, of which mGluR5 has attracted most attention
due to an upregulation in epileptic tissue and potential
involvement in an excitatory loop comprising glutamate
induced Ca2+ dependent glutamate release from astrocytes
(Umpierre et al., 2019). While astrocytes in the adult brain
are almost depleted of mGluR5 (Sun et al., 2013), the receptor
is consistently expressed in chronic epilepsy models and
resected tissue from patients with epilepsy (Aronica et al.,
2000, 2003), and a recent study has shown that mGluR5
expression and mGluR5-dependent Ca2+ transients reemerge
during epileptogenesis along with an increase in glutamate
uptake (Umpierre et al., 2019). This reemergence of astrocytic
mGluR5 could potentially be a compensatory anti-epileptic
mechanism to handle the elevated glutamate levels in
epileptic tissue but could possibly also represent a pro-
epileptic feature triggering downstream Ca2+ mediated
gliotransmission.

Apart from these perturbations in glutamate dynamics, it has
been shown that reactive astrocytes exhibit a tonic release of
GABA, presumably through Bestrophin-1 channels (Pandit et al.,
2020). Bestrophin-1 channels are Ca2+ activated anion channels,
and increased GABA release could hence be a downstream
effect of increased Ca2+ signaling in reactive astrocytes (Lee
et al., 2010). In support of this conjecture is the finding of
an accumulation of GABA in reactive astrocytes in a model
of mTLE (Müller et al., 2020). Potentially, this is a protective
aspect of reactive astrocytes to curb epileptiform activity in this
pathological tissue.

Moreover, as mentioned in “Ictogenesis” astrocytic Ca2+

signaling has been suggested to be involved in homeostatic
mechanisms of astrocytes. These mechanisms could be important
downstream effects of astrocytic Ca2+ dyshomeostasis in
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epileptic tissue, but these effects are so far rudimentarily
investigated in epilepsy.

Loss of astrocytic gap junction coupling has been shown to
occur during early epileptogenesis in experimental models of
mTLE and in specimens of resected hippocampi from patients
with mTLE (Bedner et al., 2015; Deshpande et al., 2017, 2020;
Henning et al., 2021). It is believed that this loss of astrocytic
coupling in epilepsy may perturb the ability of astrocytes to
remove K+ from the extracellular space through the process of
K+ spatial buffering (Nwaobi et al., 2016). Notably, astrocytic
gap junctions may also allow Ca2+ signals to propagate from
cell to cell, at least during pathological conditions like seizure
activity (Scemes and Giaume, 2006). It is tempting to hypothesize
that such propagating Ca2+ waves could play a role in neuronal
synchronization and seizure generation. Potentially a loss of
astrocytic gap junctions as seen in epileptic tissue, may be
a compensatory mechanism to prevent intercellular spread of
astrocytic Ca2+ waves. Even so, to the best of our knowledge, no
direct study of astrocytic Ca2+ signaling in gap junction deficient
mice has been performed.

Loss of the highly concentrated expression of key membrane
channels in astrocytic endfoot processes, i.e., loss of astrocyte
polarization, is another pathological hallmark, which could be
a consequence of perturbed glial Ca2+ dynamics (Figure 1).
For instance AQP4 and Kir4.1 are normally densely expressed
in astrocytic endfeet, kept in place by the so-called dystrophin
associated protein complex (DAPC) (Nagelhus et al., 1998; Enger
et al., 2012), and in tissue resectates from patients with mTLE,
a striking loss of this polarized expression of both AQP4 and
Kir4.1 have been shown (Eid et al., 2005; Heuser et al., 2012). It
is possible that prolonged epileptic activity and increased Ca2+

signaling in astrocytic endfeet, as we demonstrated in Szokol et al.
(2015), activate Ca2+ dependent proteases like calpain (Nagelhus
and Ottersen, 2013), that shows affinity to dystrophin and could
cleave the DAPC (Figure 1; Shields et al., 2000).

Even though the evidence is indirect, it has been suggested
that this loss of astrocyte endfoot polarization could contribute to
epileptogenesis and hyperexcitation (Binder et al., 2012; Binder
and Carson, 2013; Crunelli et al., 2015). Notably, the loss of
the astrocyte endfoot Kir4.1 channels in tissue from mTLE
patients (Heuser et al., 2012) is expected to cause impaired K+
handling and resultant neuronal hyperexcitation due to the role
of Kir4.1 in K+ homeostasis (Bordey and Sontheimer, 1998;
Hinterkeuser et al., 2000; Kivi et al., 2000; Neusch et al., 2001;
Djukic et al., 2007; Bockenhauer et al., 2009; Scholl et al., 2009;
Steinhäuser et al., 2012).

CONCLUSION AND FUTURE
PERSPECTIVES

Here we have discussed the role of astrocyte Ca2+ signaling
in ictogenesis and epileptogenesis. These terms are used to
describe two different features of epilepsy, but do not
necessarily imply two separate processes, as mechanisms
crucial in ictogenesis could also be an integral part of
epileptogenesis, or vice versa. While we often associate

astrocytic dysfunction in epileptogenesis with the appearance
of reactive astrogliosis (Escartin et al., 2021), the term
ictogenesis seems typically to be used when studying the
interplay between neurons and astrocytes independent of
pre-existing tissue pathology. Therefore, we may overlook
the fact that ictogenesis most often would occur in tissue
that has undergone pathological transformation typical for
epileptogenesis, i.e., not normal, healthy tissue. On the other hand,
epileptogenesis comprises many pathological changes beyond
reactive astrogliosis, like alterations in transcriptional regulation,
morphological, biochemical, metabolic and physiological
remodeling ultimately resulting in gain or loss of function
(Escartin et al., 2021).

Astrocytic Ca2+ signals are today considered a main readout
of astrocytic activity and there are reasons to believe that they play
important roles in epilepsy. Evidence suggests that such signals
are neither necessary nor sufficient to maintain epileptiform
activity, but rather should be seen as modulators of the
pathophysiological process. The literature directly investigating
the role of astrocytic Ca2+ signaling in epilepsy is still sparse and
at some points contradictory, and for most proposed mechanisms
only a small subset of the signaling pathways involved are
identified. A major challenge will be to disentangle the potentially
beneficial from detrimental consequences of the different modes
of astrocyte Ca2+ signaling in reactive astrogliosis. It is even
probable that astrocyte Ca2+ signaling may carry different roles
in the large variety of epileptic entities. To decipher the roles of
astrocyte Ca2+ signaling in epilepsy, next steps should include
a rigorous study of the mechanisms mentioned above in vivo in
adult mice, leveraging new developments in both imaging and
genetics, with the aim of identifying promising targets for future
pharmacological therapy of epilepsy.
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