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BIAS BEHAVIOUR AND ANTITHETIC SAMPLING IN MEAN-FIELD PARTICLE
APPROXIMATIONS OF SDES NONLINEAR IN THE SENSE OF MCKEAN

O. Bencheikh1 and B. Jourdain2

Abstract. In this paper, we prove that the weak error between a stochastic differential equation with
nonlinearity in the sense of McKean given by moments and its approximation by the Euler discretization
with time-step h of a system ofN interacting particles isO(N−1+h). We provide numerical experiments
confirming this behaviour and showing that it extends to more general mean-field interaction and study
the efficiency of the antithetic sampling technique on the same examples.

Introduction

According to [16], the strong rate of convergence of particle approximations of McKean-Vlasov Stochastic
differential equations with Lipschitz coefficients is O(N−1/2) when N denotes the number of particles. This
rate is driven by the statistical error and one may wonder whether the bias vanishes quicker. A parallel can be
drawn with the time discretization of standard stochastic differential equations where, for Lipschitz coefficients,
the strong rate of convergence of the explicit Euler-Maruyama scheme is O(

√
h) [12] with h > 0 denoting

the time-step. Using the Feynman-Kac partial differential equation associated with the stochastic differential
equation, Talay and Tubaro [17] checked that, for smooth coefficients, the weak error behaves in O(h) and can
even be expanded in powers of h. In the context of particles interacting through jumps, the O(N−1) behaviour
of the bias is known. According to [6], for particle approximations of generalized Boltzmann equations, the total
variation distance between the law of the path of a particle and the one of the limiting nonlinear Boltzmann
process behaves in O(N−1). For Feynman-Kac particle models, expansions in powers of 1/N are obtained in [4].

The interest in the bias introduced by particle approximations is motivated by numerical efficiency. Indeed,
the numerical experiments performed in Section 2 show a general O(N−1) behaviour of the bias, even in models
with not so smooth coefficients. Under this behaviour, simulating

√
N independent copies of the system with√

N particles leads to the same order of error (bias with the same order as the O(N−1/4×N−1/4) = O(N−1/2)
statistical error) as one simulation of the system with N particles (bias smaller than the O(N−1/2) statistical
error). And the former approach is less expensive than the latter as soon as the computational cost of the
particle system grows more than linearly with the number of particles. The behaviour of the bias is also
of interest in order to adapt to the number of particles the multilevel Monte Carlo method introduced by
Giles [7] in the context of time discretization of standard stochastic differential equations. In [10], Haji-Ali
and Tempone combine both discretizations through the Multi-index Monte Carlo method. In this perspective,
another interesting question is the possibility to take advantage of the antithetic sampling technique introduced
in [9] to reduce the variance (see [1,3] or [8] p57 for the use of this technique in nested Monte Carlo computations).
Does the variance of the difference between the empirical mean of the system with 2N particles driven by the
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i.i.d. couples (Xi
0,W

i)1≤i≤2N (Xi
0 and W i respectively denote the initial condition and the Brownian motion

of the i-th particle) and the mean of the empirical means of the two independent systems with N particles
respectively driven by (Xi

0,W
i)1≤i≤N and (Xi

0,W
i)N+1≤i≤2N converge quicker to 0 than O(N−1)?

In this paper, using the Feynman-Kac partial differential equation associated with the limiting nonlinear
process and its moments, we prove the respective O(N−1) and O(N−1 +h) behaviour of the bias for systems of
diffusive particles interacting through moments and their Euler discretization with time step h. Of course, the
computational cost of such systems is linear in the number N of particles and the above numerical motivation
is not valid. Nevertheless this result can be seen as a first step before addressing more general interactions
which could necessitate more advanced tools like the master equation for mean-field games introduced by Lions
in his seminal lectures at Collège de France and studied in [2] from a probabilistic point of view. Theorem
3.2 [13] is proved using the master equation and implies the O(N−1) behaviour of the bias for one-dimensional
stochastic differential equations with general interaction in the drift coefficient but no interaction in the diffusion
coefficient. We provide numerical experiments showing that the O(N−1) behaviour holds in more general
situations including ones with non smooth coefficients. Last, on the same examples, we check that the antithetic
variance does not generally decrease quicker than O(N−1).

1. Estimation of the bias for systems of particles interacting through
moments

Let α : Rn → Rp be Lipschitz continuous and σ = (σlj)1≤j≤n,1≤l≤d : [0, T ] × Rp × Rn → Rn×d, b =
(bj)1≤j≤n : [0, T ] × Rp × Rn → Rn be Lipschitz continuous in their p + n last components uniformly in their
first component and such that supt∈[0,T ](|σ(t, 0, 0)| + |b(t, 0, 0)|) < ∞. We consider the stochastic differential
equation in dimension n nonlinear in the sense of McKean

Xt = X0 +

∫ t

0

σ(s,E[α(Xs)], Xs)dWs +

∫ t

0

b(s,E[α(Xs)], Xs)ds, t ∈ [0, T ] (1)

where X0 is some square integrable Rn-valued random variable independent from the d-dimensional Brownian
motion (Wt)t≥0. The drift and diffusion coefficient at time s depend on the law of Xs through the moments
E [α (Xs)]. Since σ may only depend on a subset of coordinates of this expectation on b on another subset,
moments in drift and diffusion can differ as well as their respective dimensions. By a solution, we mean a
continuous process (Xt)t∈[0,T ] adapted to the filtration generated by the Brownian motion W and X0 such that
supt∈[0,T ] E[|α(Xt)|] < ∞ and the above equation holds with the integrals with respect to dWs and ds making
sense. Notice that for any solution, x 7→ (σ(s,E[α(Xs)], x), b(s,E[α(Xs)], x)) has affine growth uniformly for

s ∈ [0, T ]. With the square integrability of X0, this implies that E
[
supt∈[0,T ] |Xt|2

]
+ sup0≤s<t≤T

E[|Xt−Xs|2]
t−s <

∞ so that, by Lipschitz continuity of α, t 7→ E[α(Xt)] is Hölder continuous with exponent 1/2 on [0, T ].

The particle approximation of the SDE nonlinear in the sense of McKean (1) is given by the system with
mean-field interaction

Xi,N
t = Xi

0 +

∫ t

0

σ

(
s,

1

N

N∑
j=1

α(Xj,N
s ), Xi,N

s

)
dW i

s +

∫ t

0

b

(
s,

1

N

N∑
j=1

α(Xj,N
s ), Xi,N

s

)
ds, 1 ≤ i ≤ N, t ∈ [0, T ],

(2)
with ((Xi

0,W
i))i≥1 i.i.d. copies of (X0,W ). By the Lipschitz assumptions, existence and trajectorial uniqueness

hold for this N × n dimensional equation. The Yamada-Watanabe theorem ensures weak uniqueness and
therefore exchangeability of the particles ((Xi,N

t )t∈[0,T ])1≤i≤N . Let us also introduce the Euler discretizations
with time-step h > 0 of the SDE (1) and the particle system :
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For t ∈ [0, T ], 1 ≤ i ≤ N ,

Xh
t = X0 +

∫ t

0

σ(τhs ,E[α(Xh
τh
s

)], Xh
τh
s

)dWs +

∫ t

0

b(τhs ,E[α(Xh
τh
s

)], Xh
τh
s

)ds, where τhs = bs/hch, (3)

Xi,N,h
t = Xi

0 +

∫ t

0

σ

(
τhs ,

1

N

N∑
j=1

α(Xj,N,h
τh
s

), Xi,N,h
τh
s

)
dW i

s +

∫ t

0

b

(
τhs ,

1

N

N∑
j=1

α(Xj,N,h
τh
s

), Xi,N,h
τh
s

)
ds.

It is natural and convenient to consider that τ0s = s, (X0
t )t∈[0,T ] = (Xt)t∈[0,T ] and (Xi,N,0

t )t∈[0,T ],1≤i≤N =

(Xi,N
t )t∈[0,T ],1≤i≤N and we use these notations in what follows.
Reasoning like in the laboratory example in [16] or in Theorem 1.3 [11], one easily checks the following result.

Proposition 1.1. Strong existence and trajectorial uniqueness hold for the SDE nonlinear in the sense of
McKean (1) and its Euler discretization (3). Moreover suph≥0 E

[
supt∈[0,T ] |Xh

t |2
]
≤ C(1 + E[|X0|2]) where

the finite constant C does not depend on X0. Last, if for i ∈ N∗, (Xi,h
t )t∈[0,T ] denotes the process obtained by

replacement of (X0,W ) by (Xi
0,W

i) in (3), then

∃C <∞, ∀N ∈ N∗, sup
h≥0

max
1≤i≤N

E

[
sup
t∈[0,T ]

|Xi,N,h
t −Xi,h

t |2
]
≤ C 1 + E[|X0|2]

N
.

If for i ∈ N∗, (Xi
t)t∈[0,T ] denotes the process obtained by replacement of (X0,W ) by (Xi

0,W
i) in (1), this

implies the following estimation of the bias introduced by the particle discretization: for any function ψ : Rn → R
Lipschitz with constant Lψ and in particular for each coordinate of α,

∀s ∈ [0, T ], |E[ψ(X1,N
s )]− E[ψ(Xs)]| = |E[ψ(X1,N

s )]− E[ψ(X1
s )]| ≤ LψE[|X1,N

s −X1
s |]

≤ Lψ

(
sup
h≥0

E

[
sup
t∈[0,T ]

|X1,N,h
t −X1,h

t |2
])1/2

≤
√
CLψ

√
1 + E[|X0|2]√

N
.

The first inequality is crude since it prevents cancelations in average and one may wonder whether the bias
converges faster to 0 as N →∞. Under additional regularity, the answer is positive, which is our main result.

Theorem 1.2. Assume that
• σ is Lipschitz continuous in its p+ n last components uniformly in its first component and such that

supt∈[0,T ](|σ(t, 0, 0)|+ |b(t, 0, 0)|) <∞,
• α,ψ are two times continuously differentiable with bounded derivatives up to the order two and Lipschitz
continuous second order derivatives,

• a = σσ∗ and b are globally Lipschitz continuous, continuously differentiable with respect to their variables
with index in {2, . . . , 1+p} with derivatives Lipschitz continuous with respect to their p+n last variables
uniformly in their first variable,

• there exists d̃ ∈ N∗, σ̃ : [0, T ] × Rp × Rn → Rn×d̃ such that for all (t, y, x) ∈ [0, T ] × Rp × Rn,
a(t, y, x) = σ̃σ̃∗(t, y, x) and σ̃, b are continuous and two times continuously differentiable with respect to
their n last variables with bounded derivatives up to the order two and second order derivatives Lipschitz
continuous with respect to their n last variables uniformly in their 1 + p first variables,

Then
∃C <∞, ∀h ≥ 0, ∀N ∈ N∗, sup

t∈[0,T ]

|E[ψ(X1,N,h
t )]− E[ψ(Xt)]| ≤ C

(
1

N
+ h

)
.

The idea of the proof is, like in [17], to use the Feynman-Kac partial differential equation associated with
the nonlinear SDE (1) to first check that the estimation holds for the coordinates of α before concluding that
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it holds for each test function ψ. The following proposition ensures existence and smoothness to this Feynman-
Kac PDE which only depends on σ through a = σσ∗. In its statement and its proof based on a stochastic flow
approach, we take advantage of the flexibility given by the choice of a square root of a which explains the last
assumption in Theorem 1.2. Let (W̃t)t≥0 be a d̃-dimensional Brownian motion with coordinates (W̃ l

t )1≤l≤d̃ and
for (s, x) ∈ [0, T ]× Rn, (X̃s,x

t )t∈[s,T ] denote the solution to

X̃s,x
t = x+

∫ t

s

σ̃(r,E[α(Xr)], X̃
s,x
r )dW̃r +

∫ t

s

b(r,E[α(Xr)], X̃
s,x
r )dr, t ∈ [s, T ] (4)

where the coefficients depend on E[α(Xr)] and not E[α(X̃s,x
r )].

Proposition 1.3. Let ψ : Rn → R be two times continuously differentiable with bounded derivatives up to the
order two and Lipschitz continuous second order derivatives. Under the last assumption in Theorem 1.2, for
each t ∈ [0, T ], the function [0, t] × Rn 3 (s, x) 7→ ut,ψ(s, x) := E

[
ψ(X̃s,x

t )
]
is once (resp. twice) continuously

differentiable with respect to the time (resp. space) variable s (resp. x) and such that ut,ψ together with its
spatial derivatives up to the order two are Lipschitz continuous in x uniformly in 0 ≤ s ≤ t ≤ T . Moreover,
ut,ψ is a classical solution to the Feynman-Kac PDE


∂sut,ψ(s, x) + 1

2

∑n
j,k=1 ajk(s,E[α(Xs)], x)∂jkut,ψ(s, x) +

∑n
j=1 bj(s,E[α(Xs)], x)∂jut,ψ(s, x) = 0,

(s, x) ∈ [0, t]× Rn

ut,ψ(t, x) = ψ(x), x ∈ Rn
. (5)

Here ∂j and ∂jk denote the partial derivative with respect to the j-th coordinate of x and with respect to its j-th
and k-th coordinates.

Proof. Even if this result seems to be well-known, we could not find its proof in the literature. Therefore, we
are going to give a sketch of its proof. For notational simplicity, we set σ̃0 = b and W̃ 0

t = t.
Let for j ∈ {1, . . . , n}, ej denote the j-th vector of the canonical basis of Rn and for l ∈ {0, . . . , d̃}, ∂σ̃l =

(∂1+p+kσ̃
l
j)1≤j,k≤n where ∂1+p+k is the partial derivative with respect to the (1 + p + k)-th variable. Let also

for l ∈ {0, . . . , d̃} and y, z ∈ Rn, ∂2σ̃lyz ∈ Rn be defined by (∂2σ̃lyz)j =
∑n
k,m=1(∂1+p+k∂1+p+mσ̃

l
j)ykzm for

j ∈ {1, . . . n}. Since x 7→ [σ̃, b](r,E[α(Xr)], x) has affine growth uniformly in r ∈ [0, T ], standard moment
estimations ensure that

∀q ≥ 1, ∃C <∞, ∀(s, x) ∈ [0, T ]× Rn, E

[
sup

r∈[s,T ]

|X̃s,x
r |q

]
≤ C(1 + |x|q).

By [15], Theorem 3.3 p223 and its proof, for r ∈ [s, T ], x 7→ X̃s,x
r is twice continuously differentiable P-almost

surely with derivatives satisfying for j, k ∈ {1, . . . , n}

d∂jX̃
s,x
r =

d̃∑
l=0

∂σ̃l(r,E[α(Xr)], X̃
s,x
r )∂jX̃

s,x
r dW̃ l

r, r ∈ [s, T ], ∂jX̃
s,x
s = ej

d∂jkX̃
s,x
r =

d̃∑
l=0

(
∂σ̃l(r,E[α(Xr)], X̃

s,x
r )∂jkX̃

s,x
r + ∂2σ̃l(r,E[α(Xr)], X̃

s,x
r )∂jX̃

s,x
r ∂kX̃

s,x
r

)
dW̃ l

r, r ∈ [s, T ],
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where ∂jkX̃s,x
s = 0. Moreover, for any q ∈ [1,∞),

sup
0≤s≤r≤T

sup
x 6=y∈Rn

n∑
j=1

E
[
|∂jX̃s,x

r |q +

n∑
k=1

(
|∂jkX̃s,x

r |q +
|∂jkX̃s,x

r − ∂jkX̃s,y
r |q

|x− y|q

)]
<∞

and ∃C <∞,∀x ∈ Rn, ∀0 ≤ s ≤ s̃ ≤ r ≤ T,

E

|X̃s,x
r − X̃ s̃,x

r |q +

n∑
j=1

(
|∂jX̃s,x

r − ∂jX̃ s̃,x
r |q +

n∑
k=1

|∂jkX̃s,x
r − ∂jkX̃ s̃,x

r |q
) ≤ C(1 + |x|q)(s̃− s)q/2.

These properties ensure that x 7→ ut,ψ(s, x) is two times continuously differentiable with derivatives ∂jut,ψ(s, x) =

E[∇ψ(X̃s,x
t ).∂jX̃

s,x
t ] and ∂jkut,ψ(s, x) = E[∇ψ(X̃s,x

t ).∂jkX̃
s,x
t + ∂kX̃

s,x
t .∇2ψ(X̃s,x

t )∂jX̃
s,x
t ] bounded and Lips-

chitz continuous in x uniformly in 0 ≤ s ≤ t ≤ T . Moreover, ut,ψ and its spatial derivatives up to the order
two are continuous in the time variable. Let us now check that ut,ψ satisfies the Feynman-Kac PDE (5). Let
s ∈ (0, t] and ε ∈ (0, s]. By the flow property stated in Theorem 3.3 [15], ut,ψ(s − ε, x) = E

[
ut,ψ(s, X̃s−ε,x

s )
]
.

On the other hand, by Taylor expansion,

ut,ψ(s, X̃s−ε,x
s )− ut,ψ(s, x) = ∇xut,ψ(s, x).

(∫ s

s−ε
σ̃(r,E[α(Xr)], X̃

s−ε,x
r )dW̃r +

∫ s

s−ε
b(r,E[α(Xr)], X̃

s−ε,x
r )dr

)

+
1

2

n∑
j,k=1

∂jkut,ψ(s, x)

 d̃∑
l=0

∫ s

s−ε
σ̃lj(r,E[α(Xr)], X̃

s−ε,x
r )dW̃ l

r

 d̃∑
m=0

∫ s

s−ε
σ̃mk (r,E[α(Xr)], X̃

s−ε,x
r )dW̃m

r

+Rε

where Rε is some random reminder such that |Rε| ≤ C|X̃s−ε,x
s − x|3 with C a deterministic finite constant.

Since E
[∫ s
s−ε σ̃(r,E[α(Xr)], X̃

s−ε,x
r )dW̃r

]
= 0 and, by Itô’s isometry,

E
[ d̃∑

l=1

∫ s

s−ε
σ̃lj(r,E[α(Xr)], X̃

s−ε,x
r )dW̃ l

r

 d̃∑
m=1

∫ s

s−ε
σ̃mk (r,E[α(Xr)], X̃

s−ε,x
r )dW̃m

r

]

= E
[ ∫ s

s−ε
ajk(r,E[α(Xr)], X̃

s−ε,x
r )dr

]
,

we deduce that∣∣∣∣ut,ψ(s, x)− ut,ψ(s− ε, x)

ε
+∇xut,ψ(s, x).b(s,E[α(Xs)], x) +

1

2

n∑
j,k=1

∂jkut,ψ(s, x)ajk(s,E[α(Xs)], x)

∣∣∣∣
≤ C

( ∣∣∣∣b(s,E[α(Xs)], x)− 1

ε
E
[∫ s

s−ε
b(r,E[α(Xr)], X̃

s−ε,x
r )dr

]∣∣∣∣
+

∣∣∣∣a(s,E[α(Xs)], x)− 1

ε
E
[∫ s

s−ε
a(r,E[α(Xr)], X̃

s−ε,x
r )dr

]∣∣∣∣+
E[|X̃s−ε,x

s − x|3]

ε

+
1

ε

n∑
j,k=1

E
[∣∣∣∣ ∫ s

s−ε
bj(r,E[α(Xr)], X̃

s−ε,x
r )dr

d̃∑
m=0

∫ s

s−ε
σ̃mk (r,E[α(Xr)], X̃

s−ε,x
r )dW̃m

r

∣∣∣∣]).
By continuity and uniform integrability of r 7→ [σ̃, b](r,E[α(Xr)], X̃

s−ε,x
r ) on [s − ε, T ], the two first terms in

the right-hand side converge to 0 as ε → 0. Moreover the expectations in the two last terms are smaller than
Cε3/2. Taking into account the continuity with respect to s of
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∇xut,ψ(s, x).b(s,E[α(Xs)], x) + 1
2

∑n
j,k=1 ∂jkut,ψ(s, x)aik(s,E[α(Xs)], x), we conclude that ut,ψ is a classical

solution of the Feynman-Kac PDE (5). �

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let t ∈ [0, T ]. Applying Itô’s formula and taking into account the Feynman-Kac PDE
(5), we obtain that

ut,ψ(t,X1
t )− ut,ψ(t,X1,N,h

t ) = ut,ψ(0, X1
0 )− ut,ψ(0, X1

0 ) +

∫ t

0

∇xut,ψ(s,X1
s ).σ(s,E[α(Xs)], X

1
s )dW 1

s

−
∫ t

0

∇xut,ψ(s,X1,N,h
s ).σ

(
τhs ,

1

N

N∑
i=1

α(Xi,N,h
τh
s

), X1,N,h
τh
s

)
dW 1

s

+

∫ t

0

∇xut,ψ(s,X1,N,h
s ).

(
b
(
s,E[α(Xs)], X

1,N,h
s

)
− b

(
τhs ,

1

N

N∑
i=1

α(Xi,N,h
τh
s

), X1,N,h
τh
s

))
ds

+
1

2

n∑
j,k=1

∫ t

0

∂jkut,ψ(s,X1,N,h
s )

(
ajk(s,E[α(Xs)], X

1,N,h
s )− ajk

(
τhs ,

1

N

N∑
i=1

α(Xi,N,h
τh
s

), X1,N,h
τh
s

))
ds.

Integrability deduced from Propositions 1.1 and 1.3 and the properties of σ ensure that the expectations of the
stochastic integrals vanish. Therefore, setting for s ∈ [0, t]

eψ(s) := E
[
∇xut,ψ(s,X1,N,h

s ).

(
b
(
s,E[α(Xs)], X

1,N,h
s

)
− b

(
τhs ,

1

N

N∑
i=1

α(Xi,N,h
τh
s

), X1,N,h
τh
s

))]

eψjk(s) := E
[
∂jkut,ψ(s,X1,N,h

s )

(
ajk(s,E[α(Xs)], X

1,N,h
s )− ajk

(
τhs ,

1

N

N∑
i=1

α(Xi,N,h
τh
s

), X1,N,h
τh
s

))]
, 1 ≤ j, k ≤ n,

and using that ut,ψ(t, .) = ψ(.), we obtain

E [ψ(Xt)]− E[ψ(X1,N,h
t )] =

∫ t

0

(
eψ(s) +

1

2

n∑
j,k=1

eψjk(s)

)
ds. (6)

Let us now estimate eψjk(s) :

eψjk(s) = E
[
∂jkut,ψ(s,X1,N,h

s )
(
ajk(s,E[α(Xs)], X

1,N,h
s )− ajk(τhs ,E[α(Xτh

s
)], X1,N,h

s )
) ]

+ E
[(
∂jkut,ψ(s,X1,N,h

s )− ∂jkut,ψ(s,X1,N,h
τh
s

)
)(

ajk(τhs ,E[α(Xτh
s

)], X1,N,h
s )− ajk(τhs ,E[α(Xτh

s
)], X1,N,h

τh
s

)
)]

+ E
[
∂jkut,ψ(s,X1,N,h

τh
s

)
(
ajk(τhs ,E[α(Xτh

s
)], X1,N,h

s )− ajk(τhs ,E[α(Xτh
s

)], X1,N,h
τh
s

)
)]

+ E
[
∂jkut,ψ(s,X1,N,h

s )
(
ajk(τhs ,E[α(Xτh

s
)], X1,N,h

τh
s

)− ajk
(
τhs ,E[α(X1,N,h

τh
s

)], X1,N,h
τh
s

))]
+ E

[
∂jkut,ψ(s,X1,N,h

s )

(
ajk(τhs ,E[α(X1,N,h

τh
s

)], X1,N,h
τh
s

)− ajk

(
τhs ,

1

N

N∑
i=1

α(Xi,N,h
τh
s

), X1,N,h
τh
s

))]
.
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Let us respectively denote by e1,ψjk (s), e2,ψjk (s), e3,ψjk (s), e4,ψjk (s) and ēψjk(s) the five terms in the right-hand

side. Since, by Proposition 1.3, ∂jkut,ψ is bounded by a finite constant M (2)
ψ not depending in t and a is

Lipschitz continuous with constant La, |e1,ψjk (s)| ≤ M
(2)
ψ La

(
(s− τhs ) + |E[α(Xs)]− E[α(Xτh

s
)]|
)
. Since α is C2

with bounded derivatives and Lipschitz continuous second order derivatives, for 0 ≤ r ≤ s ≤ T , computing
α(Xs) − α(Xr) by Itô’s formula, taking expectations and remarking that the expectation of the stochastic
integral vanishes, we obtain the existence of a finite constant C not depending on r and s such that |E[α(Xs)]−
E[α(Xr)]| ≤ C(s− r). Hence |e1,ψjk (s)| ≤M (2)

ψ La(1 + C)(s− τhs ) ≤M (2)
ψ La(1 + C)h.

Since, by Proposition 1.3, ∂jkut,ψ is Lipschitz continuous in space with constant L(2)
ψ not depending on t

and ajk is Lipschitz continuous in space with constant La we have |e2,ψjk (s)| ≤ L
(2)
ψ LaE[|X1,N,h

s − X1,N,h
τh
s
|2].

Combining the fact that supN≥1,h≥0,s∈[0,T ] E[|X1,N,h
s |2] <∞ deduced from from Proposition 1.1, the Lipschitz

continuity of α and the affine growth of σ, b in their p + n last variables uniform in their first variable, one
easily checks that there is a finite constant C not depending on N and h such that for all 0 ≤ r ≤ s ≤ T ,
E[|X1,N,h

s −X1,N,h
r |2] ≤ C(s− r) and deduce that |e2,ψjk (s)| ≤ L(2)

ψ LaCh.
Remarking that the first and second order derivatives of ajk with respect to its n last variables have affine

growth under our assumptions, computing ajk(τhs ,E[α(Xτh
s

)], X1,N,h
s )− ajk(τhs ,E[α(Xτh

s
)], X1,N,h

τh
s

) by Itô’s for-

mula, multiplying by the random variable ∂jkut,ψ(s,X1,N,h
τh
s

) bounded by M
(2)
ψ , taking expectations and re-

marking that the contribution of the stochastic integral vanishes, we obtain that |e3,ψjk (s)| ≤ Ch with C not

depending on N, s, t, h. Last, |e4,ψjk (s)| ≤ M
(2)
ψ La

∣∣∣E[α(Xτh
s

)]− E[α(X1,N,h
τh
s

)]
∣∣∣. Hence there is a finite constant

C not depending on N, s, t, h such that

∀0 ≤ s ≤ t ≤ T, |eψjk(s)| ≤ C
(
h+

∣∣∣E[α(Xτh
s

)]− E[α(X1,N,h
τh
s

)]
∣∣∣)+ |ēψjk(s)|. (7)

Let us now estimate |ēψjk(s)|. Denoting by ∇2ajk the partial gradient of a with respect to its variables with
indices in {2, . . . , 1 + p}, we have

ēψjk(s) = E
[
∂jkut,ψ(s,X1,N,h

s )

(
E[α(X1,N,h

τh
s

)]− 1

N

N∑
i=1

α(Xi,N,h
τh
s

)

)

.

∫ 1

0

{
∇2ajk

(
τhs , vE[α(X1,N,h

τh
s

)] +
1− v
N

N∑
i=1

α(Xi,N,h
τh
s

), X1,N,h
τh
s

)
−∇2ajk(τhs ,E[α(X1,N,h

τh
s

)], X1,N,h
τh
s

)

}
dv

]

+ E
[(

E[α(X1,N,h
τh
s

)]− 1

N

N∑
i=1

α(Xi,N,h
τh
s

)

)
.∂jkut,ψ(s,X1,N,h

s )∇2ajk(τhs ,E[α(X1,N,h
τh
s

)], X1,N,h
τh
s

)

]
.

Let us respectively denote by e5,ψjk (s) and e6,ψjk (s) the two terms in the right-hand side. By Proposition 1.3, ∂jkut,ψ
is bounded by M (2)

ψ and Lipschitz continuous in space with constant L(2)
ψ with (M

(2)
ψ , L

(2)
ψ ) not depending on

t. By assumption ∇2ajk is bounded by M (2)
a and Lipschitz continuous in its p+ n last variables with constant

L
(2)
a . Therefore,

1

M
(2)
ψ L

(2)
a

|e5,ψjk (s)| ≤ 1

2
E
[∣∣∣∣ 1

N

N∑
i=1

α(Xi,N,h
τh
s

)− E[α(X1,N,h
τh
s

)]

∣∣∣∣2]

≤ E
[∣∣∣∣ 1

N

N∑
i=1

(α(Xi,N,h
τh
s

)− α(Xi,h
τh
s

))− E[α(X1,N,h
τh
s

)− α(X1,h
τh
s

)]

∣∣∣∣2]+ E
[∣∣∣∣ 1

N

N∑
i=1

α(Xi,h
τh
s

)− E[α(X1,h
τh
s

)]

∣∣∣∣2].
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The second term in the right-hand side of the inequality is the variance of the empirical mean of i.i.d. random
variables. It is therefore equal to 1

N

(
E[|α(X1,h

τh
s

)|2]− |E[α(X1,h
τh
s

)]|2
)
. The first term is also a variance and we

upper-bound it by the corresponding second order moment, which is not greater than
1
N

∑N
i=1 E

[∣∣∣α(Xi,h
τh
s

)− α(Xi,N,h
τh
s

)
∣∣∣2] according to Jensen’s inequality for the empirical mean. Therefore, denoting

by Lα the Lipschitz constant of α, we have

|e5,ψjk (s)| ≤M (2)
ψ L(2)

a

(
1

N

N∑
i=1

E
[∣∣∣α(Xi,h

τh
s

)− α(Xi,N,h
τh
s

)
∣∣∣2]+

1

N

(
E[|α(X1,h

τh
s

)|2]− |E[α(X1,h
τh
s

)]|2
))

≤ L2
α M

(2)
ψ L(2)

a

C

N
, (8)

with C finite and not depending on N, s, t according to Proposition 1.1.
Since E[α(X1,N,h

τh
s

)]− 1
N

∑N
i=1 α(Xi,N,h

τh
s

) is centered and by exchangeability of (Xi,N,h)1≤i≤N , we may replace

∂jkut,ψ(s,X1,N,h
s )∇2ajk(τhs ,E[α(X1,N,h

τh
s

)], X1,N,h
τh
s

) by:
1
N

∑N
i=1 ∂jkut,ψ(s,Xi,N,h

s )∇2ajk(τhs ,E[α(X1,N,h
τh
s

)], Xi,N,h
τh
s

)−E[∂jkut,ψ(s,X1,N,h
s )∇2ajk(τhs ,E[α(X1,N,h

τh
s

)], X1,N,h
τh
s

)]

in the expectation defining e6,ψjk (s). With the Cauchy-Schwarz inequality, we deduce that |e6,ψjk (s)| is upper-
bounded by:(
E
[∣∣∣∣ 1

N

N∑
i=1

α(Xi,N,h
τh
s

)− E[α(Xτh
s

)]

∣∣∣∣2]
)1/2(

E
[∣∣∣∣ 1

N

N∑
i=1

∂jkut,ψ(s,Xi,N,h
s )∇2ajk(τhs ,E[α(X1,N,h

τh
s

)], Xi,N,h
τh
s

)

− E
[
∂jkut,ψ(s,X1,N,h

s )∇2ajk(τhs ,E[α(X1,N,h
τh
s

)], X1,N,h
τh
s

)
] ∣∣∣∣2]

)1/2

.

Since Rn 3 x 7→ ∂jkut,ψ(s, x) (resp. Rn 3 x 7→ ∇2ajk(τhs ,E[α(X1,N,h
τh
s

)], x)) is bounded by M (2)
ψ (resp. M (2)

a )

and Lipschitz continuous with constant L(2)
ψ (resp. L

(2)
a ), reasoning like in the derivation of (8), we obtain

that the second factor in the right-hand side is smaller than (M
(2)
ψ L

(2)
a + M

(2)
a L

(2)
ψ ) C√

N
so that |e6,ψjk (s)| ≤

Lα(M
(2)
ψ L

(2)
a +M

(2)
a L

(2)
ψ )CN with C finite and not depending on N, s, t, ψ. With (7), we deduce that

∀0 ≤ s ≤ t ≤ T, |eψjk(s)| ≤ C
(

1

N
+ h+

∣∣∣E[α(Xτh
s

)]− E[α(X1,N,h
τh
s

)]
∣∣∣) .

Estimating eψ(s) in a similar way and using (6), we deduce the existence of a finite constant C not depending
on N and h such that

∀t ∈ [0, T ], sup
s∈[0,t]

∣∣E [ψ(Xs)]− E[ψ(X1,N,h
s )]

∣∣ ≤ C ( 1

N
+ h

)
+ C

∫ t

0

∣∣∣E[α(Xτh
s

)]− E[α(X1,N,h
τh
s

)]
∣∣∣ ds. (9)

Summing for j ∈ {1, . . . , p} this inequality applied with ψ equal to the j-th coordinate of α, remarking that
Proposition 1.1 and the Lipschitz continuity of α ensure that supt∈[0,T ]

∣∣∣E[α(Xi,N,h
t )]− E[α(Xt)]

∣∣∣ < ∞ and

applying Gronwall’s lemma, we deduce that supt∈[0,T ]

∣∣∣E[α(Xt)]− E[α(X1,N,h
t )]

∣∣∣ ≤ C ( 1
N + h

)
. We conclude by

combining this estimation and (9). �
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Remark 1.4. • A careful look at the proof shows that the Lipschitz continuity of a and b in the time
variable is not needed to obtain that supt∈[0,T ] |E[ψ(X1,N

t )] − E[ψ(Xt)]| ≤ C
N . Indeed, this property is

only used to estimate e1,ψjk (s) which vanishes when h = 0 since τ0s = s. Moreover, if a and b are only
Hölder continuous with exponent α ∈ (0, 1) in the time variable, then the above estimation deteriorates
to supt∈[0,T ] |E[ψ(X1,N,h

t )]− E[ψ(Xt)]| ≤ C
(

1
N + hα

)
.

• On the other hand, when there is no nonlinearity in the sense of McKean in the SDE (1) (p = 0), we
obtain that the weak order of convergence of the Euler scheme is 1 under mere global Lipschitz continuity
of a, b, continuity of σ, b and C2 regularity in space of σ, b, ψ with bounded and Lipschitz derivatives.
The key step is that the decomposition of e2,ψjk (s) + e3,ψjk (s) avoids to differentiate the solution to the
Feynman-Kac partial differential equation more than two times in space and only requires Lipschitz
continuity of the second order spatial derivatives.

2. Numerical Experiments

We conduct two types of numerical tests. First, we estimate the bias using regular Monte-Carlo for examples
of one dimensional (n = 1) mean-field SDEs taken from [14] to provide numerical evidence of the O(N−1)
behaviour of the bias for a fixed value of the time step h. Then we present the antithetic sampling results on
these same examples.

The code for running these experiments has a number of iterations as an input parameter. This latter is
useful to observe the behaviour of the bias when increasing the number of particles. Therefore, we give an initial
number of particles that we multiply by two from an iteration to the other. Except for the polynomial drift and
the plane rotator examples where it is respectively equal to 8 and 4, the number of iterations chosen is equal to
five and the initial number of particles is twenty so that the final number of particles is 320. The simulation is
done with 5.106 runs except for the Plane rotator example where we push further the number of Monte Carlo
runs up to 4.9× 108.

We also define the precision as half the width of the 95% confidence interval of the empirical mean i.e.
Precision = 1.96×

√
Variance

number of runs where Variance denotes the empirical variance over the runs of the empirical
mean over the particles.

In order to measure the relevance of the antithetic sampling technique for variance reduction, we compute
the variance of the difference between the empirical mean of the system with 2N particles and the mean of the
empirical means of the two independent systems with N particles:

Var

[
1

2N

2N∑
i=1

ψ(Xi,2N
T )− 1

2N

N∑
i=1

(
ψ(Xi,N

T ) + ψ(Y i,NT )
)]

. (10)

Here (Y i,Nt )1≤i≤N is the system with N particles driven by (Xi
0,W

i)N+1≤i≤2N .

2.1. Generalised Ornstein-Uhlenbeck process

Model
We consider the following generalization of the Ornstein-Uhlenbeck SDE to a linear mean-field SDE:

dXt =
[
γXt + βE[Xt]

]
dt+ υdWt, with X(0) = x0

for parameters γ, β, υ ∈ R and initial data x0 ∈ R.
The functions α(x) = x, b(t, y, x) = γx+ βy and σ(t, y, x) = υ therefore satisfy the hypotheses of regularity

of Theorem 1.2.
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The first and second moments of Xt are respectively given by E[Xt] = x0 exp
(

(γ + β)t
)

and E[X2
t ] =

x20 exp
(

2(γ + β)t
)

+ υ2

2γ

(
exp(2γt)− 1

)
.

The associated particle approximation of the SDE is given by the following system:

dXi,N
t =

[
γXi,N

t +
β

N

N∑
j=1

Xj,N
t

]
dt+ υdW i

t , 1 ≤ i ≤ N with Xi,N
0 = x0

where
(

(W i
t )t≥0

)
1≤i≤N

are independent Brownian motions.

Because of the linearity of the drift coefficient, it is possible to obtain closed form expressions for E[X1,N,h
t ]

and E[(X1,N,h
t )2] and deduce the asymptotic behaviour of the biases of the first and second order moments as

N →∞ and h→ 0.
Let h = T/K for some K ∈ N∗. For k ∈ {0, . . . ,K − 1} and i ∈ {1, . . . , N}, we have

Xi,N,h
(k+1)h = (1 + γh)Xi,N,h

kh + βhX̄N,h
kh + v(W i

(k+1)h −W
i
kh) with X̄N,h

kh =
1

N

N∑
j=1

Xj,N,h
kh .

Hence E[Xi,N,h
kh ] = (1 + (γ + β)h)kx0 so that

E[XT ]− E[Xi,N,h
T ] =

1

2
(γ + β)2Te(γ+β)Thx0 +O(h2) as h→ 0.

To compute E[(X1,N,h
kh )2], we remark that for k ∈ {0, . . . ,K − 1}

E[(X1,N,h
(k+1)h)2] = (1 + γh)2E[(X1,N,h

kh )2] + (2(1 + γh) + βh)βh

(
1

N
E[(X1,N,h

kh )2] +
N − 1

N
E[X1,N,h

kh X2,N,h
kh ]

)
+ v2h

E[X1,N,h
(k+1)hX

2,N,h
(k+1)h] = (1 + γh)2E[X1,N,h

kh X2,N,h
kh ] + (2(1 + γh) + βh)βh

(
1

N
E[(X1,N,h

kh )2] +
N − 1

N
E[X1,N,h

kh X2,N,h
kh ]

)
Since Xi,N,h

0 = x0 for all i ∈ {1, . . . , N}, subtracting the two last equations, we obtain

∀k ∈ {1, . . . ,K}, E[(X1,N,h
kh )2]− E[X1,N,h

kh X2,N,h
kh ] =

(1 + γh)2k − 1

2γ + γ2h
× v2

and deduce that

E[(X1,N,h
(k+1)h)2] = (1 + (γ + β)h)2E[(X1,N,h

kh )2] + (2(1 + γh) + βh)β
1−N
N

× (1 + γh)2k − 1

2γ + γ2h
× v2h+ v2h.

We conclude that

E[(X1,N,h
kh )2] =(1 + (γ + β)h)2kx20 +

(1 + (γ + β)h)2k − 1

2(γ + β) + (γ + β)2h

(
1 +

N − 1

N
× 2β + (2βγ + β2)h

2γ + γ2h

)
v2

+
1−N
N

× (1 + (γ + β)h)2k − (1 + γh)2k

2γ + γ2h
× v2

=(1 + (γ + β)h)2kx20 +
N − 1

N
× (1 + γh)2k − 1

2γ + γ2h
× v2 +

1

N
× (1 + (γ + β)h)2k − 1

2(γ + β) + (γ + β)2h
× v2



BIAS BEHAVIOUR IN PARTICLE APPROXIMATIONS OF MEAN-FIELD SDES 229

so that

E[(XT )2]− E[(X1,N,h
T )2] =

(
(γ + β)2Te2(γ+β)Tx20 +

e2γT − 1 + 2γTe2γT

4
v2
)
h+

(
e2γT − 1

2γ
+

1− e2(γ+β)T

2(γ + β)

)
v2

N

+O(h2 +
h

N
+

1

N2
)

as h→ 0 and N →∞. Moreover, E[(Xh
T )2]− E[(X1,N,h

T )2] = 1
N

(
(1+γh)2k−1

2γ+γ2h + 1−(1+(γ+β)h)2k

2(γ+β)+(γ+β)2h

)
× v2. The bias

of the time discretized second order moment is exactly of order 1 in 1
N .

Results
In order to illustrate the behaviour of the first and second order moments, we compute the difference between

the closed-form discretized moments and the estimated moments and expect the difference to be null up to the
statistical error. The results are shown in Tables 1 and 2 below where we denote by "Difference" that entity.
As a test case, we use this model with γ = 1

2 , β = 4
5 , υ

2 = 1
2 and x0 = 1.

Concerning the first order moment, we proved above that the bias does not depend on the number N of
particles, which is what is observe in the first row of the table below.

Nb. particles 20 40 80 160 320
Estimated first moment 1.34862 1.34861 1.34869 1.34866 1.34866

Difference 0.00003 0.00004 -0.00004 -0.00001 -0.00001
Precision 0.00016 0.00011 0.00008 0.00006 0.00004

Table 1. Generalised Ornstein-Uhlenbeck SDE: Comparison of the estimated first moments
with the closed-form discretized value 1.34865 as well as the associated precision when increasing
the number of particles for a number of 5.106 runs, 50 time steps and a time horizon T=1.

As for the second order moment, from the third row we observe that the estimation fits the closed-form
discretized value which confirms the behaviour of the bias of order 1 in 1

N .

Nb. particles 20 40 80 160 320
Closed-form discretized second moment 2.15552 2.14648 2.14195 2.13969 2.13856

Estimated second moment 2.15531 2.14655 2.14205 2.13970 2.13859
Difference 0.00021 -0.00007 -0.00010 -0.00001 -0.00003
Precision 0.00045 0.00032 0.00022 0.00016 0.00011

Table 2. Generalised Ornstein-Uhlenbeck SDE: Comparison of the estimated second moments
with their closed-form discretized values as well as the associated precision when increasing the
number of particles for a number of 5.106 runs, 50 time steps and a time horizon T=1.

Concerning the antithetic sampling of the first order moment, using the linearity of the model, one exactly
checks that for k ∈ {0, . . . ,K − 1}, X̄2N,h

kh = 1
2

(
X̄N,h
kh + Ȳ N,hkh

)
where Ȳ N,hkh denotes the empirical mean of

the discretized system driven by (W i)N+1≤i≤2N . The first row of Table 3 confirms that the variance (10) for
ψ(x) = x is null.

For the second order moment, we compute the variance (10) for ψ(x) = x2 and observe the ratio of decrease
Variance(N/2)
Variance(N) when increasing the number of particles. The results are shown in the third and forth rows of
Table 3.



230 O. BENCHEIKH & B. JOURDAIN

Nb. particles 20 40 80 160 320
Variance for the first moment 7.82256e-32 9.52151e-32 1.52652e-31 2.79857e-31 5.39704e-31

Precision 9.88245e-35 1.18553e-34 1.89269e-34 3.47065e-34 6.69575e-34
Variance for the second moment 0.000766641 0.000191654 4.77727e-05 1.19847e-05 2.99537e-06

Ratio of decrease × 4.00013 4.01179 3.98613 4.00109
Precision 2.4997e-06 6.27208e-07 1.55659e-07 3.9365e-08 9.75389e-09

Table 3. Generalised Ornstein-Uhlenbeck SDE: Evolution of the antithetic variance for both
ψ(x) = x and ψ(x) = x2 with its associated precision when increasing the number of particles
for a number of 5.106 runs, 50 time steps and a time horizon of 1.

For the second order moment, the ratio of successive variances is around 4 which means that the variance of
the antithetic estimator is roughly proportional to N−2. The antithetic sampling technique therefore shows an
important improvement for this diffusion.

2.2. Plane Rotator

Model
The following SDE refers to a model for coupled oscillators in the presence of noise, also known as the

Kuramoto model:

dXt =
[
K

∫
R

sin(y −Xt)dP
µ
t (y)− sin(Xt)

]
dt+

√
2kBTdWt

=
[
K cos(Xt)

∫
R

sin(y)dPµt −K sin(Xt)

∫
R

cos(y)dPµt − sin(Xt)
]
dt+

√
2kBTdWt

where X0 is distributed according to µ, Pµt denotes the distribution of Xt, K > 0 a coupling parameter, kB the
Boltzmann constant and T the temperature.

The functions σ(x) =
√

2kBT and α(x) =

[
sin(x)
cos(x)

]
satisfy the hypotheses of Theorem 1.2. One may also find

a function b(t, y, x) coinciding with K(cos(x)y1 − sin(x)y2) − sin(x) on [0, T ] × [−1, 1]2 × R which satisfies the
hypotheses even if (x, y) −→ cos(x)y1 − sin(x)y2 is not Lipschitz continuous.

The particle system has the following dynamics:

dXi,N
t =

[
K
(

cos(Xi,N
t )

1

N

N∑
j=1

sin(Xj,N
t )− sin(Xi,N

t )
1

N

N∑
j=1

cos(Xj,N
t )− sin(Xi,N

t )
]
dt+

√
2kBTdW

i
t

where
(

(W i
t )t≥0

)
1≤i≤N

are independent Brownian motions.

Results
We use this model with K = 1, kBT = 1

8 and initial distribution µ = N (π4 ,
3π
4 ) as a test case. The reference

value was computed for 2.5 × 108 Monte Carlo runs, 1000 particles and the same input parameters as for the
general estimation of the bias (time horizon T = 1 and time step h = 50). The value obtained is 0.737576. The
results are shown in Table 4.
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Nb. particles 20 40 80 160
First moment error 0.000725 0.000355 0.000175 0.000067
Ratio of decrease × 2.04225 2.02857 2.61194

Precision 4.79156e-05 3.38946e-05 2.39723e-05 1.69533e-05
Table 4. Plane Rotator SDE: Evolution of the first order moment errors as well as the associ-
ated precision when increasing the number of particles for a number of 4.9× 108 runs, 50 time
steps and a time horizon T=1.

These results are consistent with a bias proportional to N−1.

Table 5 exposes the results obtained for the antithetic variance.

Nb. particles 20 40 80 160
Variance 0.000119023 3.12526e-05 8.01086e-06 2.0277e-06

Ratio of decrease × 3.80842 3.90128 3.95071
Precision 2.51877e-08 6.75418e-09 1.75258e-09 4.4622e-10

Table 5. Plane Rotator SDE: Evolution of the antithetic variance and its associated precision
when increasing the number of particles for a number of 4.9 × 108 runs, 50 time steps and a
time horizon T=1.

The antithetic sampling method is therefore relevant in this example since the ratio of decrease is close to
four which means that the variance of the antithetic estimation is roughly proportional to N−2. This behaviour
has also been observed in Section 3.2.2 [10].

2.3. Polynomial Drift

Model
Let us consider the following mean-field SDE:

dXt =
[
γXt + E[Xt]−XtE[X2

t ]
]
dt+XtdWt with X(0) = x0

for a certain parameter γ ∈ R and initial data x0 ∈ R.
The function σ(t, y, x) = x satisfy the hypotheses of regularity. However, the functions b(t, y, x) = γx+y1−xy2

and α(x) =

[
x
x2

]
are not Lipschitz.

From the evolution of the Euler discretization
Xh

(k+1)h = Xh
kh

(
(1 + γh− hE[(Xh

kh)2])
)

+ hE[Xh
kh] +Xh

kh

(
W(k+1)h −Wkh

)
, we deduce that:

E[Xh
(k+1)h] =

(
1 + (γ + 1)h− E[(Xh

kh)2]h
)
E[Xh

kh]

E[(Xh
(k+1)h)2] =

(
1 + γh− E[(Xh

kh)2]h
)2

E[(Xh
kh)2] + 2

(
1 + γh− E[(Xh

kh)2]h
)
hE2[Xh

kh] + E[(Xh
kh)2]h+ E2[Xh

kh]h2

And we solve this system of inductive equations numerically to obtain reference values of the first and second
order moments.
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The idea here, once again, is to approximate E[X] and E[X2] by their empirical means in order to define the
dynamics of the particle system:

dXi,N
t =

[
γXi,N

t +
1

N

N∑
j=1

Xj,N
t −Xi,N

t

1

N

N∑
j=1

(Xj,N
t )2

]
dt+Xi,N

t dW i
t

where
(

(W i
t )t≥0

)
1≤i≤N

are independent Brownian motions.

Results
We use this model with γ = 2 and x = 1 as a test case. The reference values obtained for the time discretized

first and second moments are respectively 1.3845 and 3.13743 . For this example, we push the iterations further
until 8 so that the final number of particles is 2560. We denote by "Ratio of decrease 1" and "Ratio of decrease 2"
the respective entities First moment error(N/2)

First moment error(N) and Second moment error(N/2)
Second moment error(N) . The results are shown in Tables 6 and 7.

Nb. particles 40 80 160 320 640 1280 2560
First moment error -0.02597 -0.01561 -0.00898 -0.00492 -0.00261 -0.00138 -0.00071
Ratio of decrease 1 × 1.66368 1.73831 1.82520 1.88506 1.89130 1.94366

Precision 9.348e-05 7.402e-05 5.779e-05 4.431e-05 3.330e-05 2.459e-05 1.789e-05
Table 6. Polynomial Drift SDE: Evolution of the first order moment errors as well as the
associated precision when increasing the number of particles for a number of 5.106 runs, 50
time steps and a time horizon T=1

Nb. particles 40 80 160 320 640 1280 2560
Second moment error 0.06025 0.03575 0.02077 0.01157 0.00637 0.00333 0.00171
Ratio of decrease 2 × 1.68531 1.72123 1.79516 1.81633 1.91291 1.94737

Precision 0.0005018 0.0003940 0.0003029 0.0002297 0.0001707 0.0001251 9.063e-05
Table 7. Polynomial Drift SDE: Evolution of the second order moment errors as well as the
associated precision when increasing the number of particles for a number of 5.106 runs, 50
time steps and a time horizon T=1

We observe that the ratios of decrease of both the first and the second order moment errors seem to grow as
the number of particle increases. It confirms the behaviour of the bias in O( 1

N ) of Theorem 1.2 and even tends
towards a behaviour of order 1 in 1

N when the number of particle is large.

In order to measure the relevance of the antithetic sampling, we compute the variance (10) for the first and
second order moments. We denote by "Ratio of decrease V1" and "Ratio of decrease V2" the respective entities
Variance for first moment error(N/2)
Variance for first moment error(N) and Variance for Second moment error(N/2)

Variance for Second moment error(N) . The results are shown in Tables 8 and 9.
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Nb. particles 40 80 160 320 640 1280 2560
Variance for the first moment 0.0008910 0.0004406 0.0001930 7.474e-05 2.584e-05 8.000e-06 2.262e-06

Ratio of decrease V1 × 2.023 2.283 2.582 2.892 3.230 3.537
Precision 3.621e-06 2.260e-06 1.312e-06 6.650e-07 3.278e-07 1.294e-07 7.131e-08

Table 8. Polynomial Drift SDE: Evolution of the antithetic variance for ψ(x) = x with its
associated precision when increasing the number of particles for a number of 5.106 runs, 50
time steps and a time horizon T=1.

Nb. particles 40 80 160 320 640 1280 2560
Variance for the second moment 0.02380 0.01078 0.00440 0.00170 0.00058 0.00018 5.282e-05

Ratio of decrease V2 × 2.2074 2.45094 2.60197 2.89779 3.20462 3.44723
Precision 0.000113 6.672e-05 3.597e-05 2.415e-05 1.125e-05 5.042e-06 2.862e-06

Table 9. Polynomial Drift SDE: Evolution of the antithetic variance for ψ(x) = x2 with its
associated precision when increasing the number of particles for a number of 5.106 runs, 50
time steps and a time horizon T=1.

The results exposed in Tables 8 and 9 both show that when increasing the number of particles, the ratios of
decrease grow gradually. Therefore, the antithetic sampling method may be relevant when simulating with a
large number of particles.

2.4. Viscous Burgers equation

Model
Let us consider the following mean-field SDE for a parameter υ > 0:

dXt = F̄t(Xt)dt+ υdWt

where F̄t(x) = P(Xt ≥ x).
Using the Fokker-Planck equation satisfied by the density of Xt, we show that F̄t(x) is solution to the viscous

Burgers equation:

∂tV (t, x) =
υ2

2
∂xxV (t, x)− V (t, x)∂xV (t, x)

We now suppose that the initial condition is X(0) = 0 so that F̄0(x) = 1{x≤0}. Then the Cole-Hopf
transformation gives:

F̄t(x) =
N
(
t−x
υ
√
t

)
exp

(
2x−t
2υ2

)
N
(

x
υ
√
t

)
+N

(
t−x
υ
√
t

)
where N (x) =

∫ x

−∞
exp(−y

2

2
)
dy√
2π

.

The function σ(t, y, x) = υ and b(t, y, x) = y are regular enough to satisfy the hypotheses of Theorem 1.2.
However, this type of example is not interacting through moments but through a kernel and even a discontinuous
one.
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We approximate F̄t(x) by its associated empirical mean F̄Nt (x) := 1
N

N∑
j=1

1{Xj,N
t ≥x} calculated upon N

particles which leads to the following dynamics for the particle system:

dXi,N
t =

1

N

N∑
j=1

1{Xj,N
t ≥Xi,N

t }dt+ υdW i
t

where
(

(W i
t )t≥0

)
1≤i≤N

are independent Brownian motions.

Results
We use this model with υ = 1

4 and x0 = 0 as a test case. We estimate the solution F̄1( 1
2 ) of the viscous

Burgers equation. Since for t = 1 and x = 1
2 , t − x = x and 2x − t = 0, one has F̄1( 1

2 ) = 1
2 . The results are

shown in Table 10.

Nb. particles 20 40 80 160 320
Solution Error 0.0141425 0.0070329 0.00352185 0.00174521 0.000870359

Ratio of decrease × 2.01091 1.99693 2.01802 2.00515
Precision 9.84069e-05 6.94588e-05 4.90673e-05 3.46603e-05 2.45057e-05

Table 10. Viscous Burgers equation: Evolution of the solution errors as well as the associated
precision when increasing the number of particles for a number of 5.106 runs, 500 time steps
and a time horizon T=1.

We observe that the ratio of decrease of the solution error defined by Solution error(N/2)
Solution error(N) is consistent with an

error proportional to N−1 confirming a bias behaviour of order 1 in 1
N .

As for the antithetic sampling, we compute the corresponding variance (10) as well as the related precision
and obtain:

Nb. particles 20 40 80 160 320
Variance of the solution 0.00286895 0.00109648 0.000413156 0.000155082 5.89916e-05

Ratio of decrease × 2.61651 2.65392 2.66411 2.62889
Precision 3.98911e-06 1.49543e-06 5.52988e-07 2.04566e-07 7.65869e-08

Table 11. Viscous Burgers Equation: Evolution of the antithetic variance and its associated
precision when increasing the number of particles for a number of 5.106 runs, 500 time steps
and a time horizon T=1.

From Table 11, we observe that the ratio of decrease of the variance Variance of solution(N/2)
Variance of solution(N) is around 2.64

which is slightly greater than two. Therefore, there is a slight gain in using the antithetic sampling for this type
of diffusion.
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