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Abstract. Since the pioneering works of Lapicque [17] and of Hodgkin and Huxley [16], several types
of models have been addressed to describe the evolution in time of the potential of the membrane of a
neuron. In this note, we investigate a connected version of N neurons obeying the leaky integrate and
fire model, previously introduced in [1–3,6,7,15,18,19,22]. As a main feature, neurons interact with one
another in a mean field instantaneous way. Due to the instantaneity of the interactions, singularities
may emerge in a finite time. For instance, the solution of the corresponding Fokker-Planck equation
describing the collective behavior of the potentials of the neurons in the limit N → ∞ may degenerate
and cease to exist in any standard sense after a finite time. Here we focus out on a variant of this
model when the interactions between the neurons are also subjected to random synaptic weights. As
a typical instance, we address the case when the connection graph is the realization of an Erdös-Renyi
graph. After a brief introduction of the model, we collect several theoretical results on the behavior
of the solution. In a last step, we provide an algorithm for simulating a network of this type with a
possibly large value of N .

1. Introduction

1.1. From a model for one neuron to a model for N neurons

One of the first models for neurons was introduced by Louis Lapicque in 1907, see [17]. It is called Integrate
and Fire (IF) model. The membrane potential (X(t))t of a neuron evolves in time according to the simple
electrical equation

I(t) = C
dX(t)

dt
,

where (I(t))t is an input current that goes through the membrane. The above equation holds true up until
the neuron emits a spike. We use the generic notation τF for the spiking time. From the mathematical point
of view, τF is regarded as the first time when the membrane potential reaches a certain hard threshold value
XF , the latter being referred to as a firing value. Equivalently, the time τF is nothing but the first hitting time
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of XF . As just mentioned, it must be seen as a firing time at which the neuron emits a spike. After τF , the
dynamics are continued in the following way: At time τF , the potential is reset to a reset value XR and the
dynamics are refreshed from XR. This model serves as the basis for a large variety of other neural network
models developed in order to model more accurately certain behaviors of neurons and neural networks, such as
memory, leaking, etc. For instance, a common feature is to write the sub-threshold dynamics of the membrane
potential in the form of a stochastic (instead of ordinary) differential equation:

dXt = b(Xt)dt+ Itdt+ dWt,

for t < τF , where (It)t describes the mean trend of the input current (we here use the probabilistic convention:
the time parameter is put in index) and ( ddtWt)t is a white noise accounting for fluctuations in the input. A
typical choice for the coefficient b is b(x) = −λ(x− a), in which case λ reads for some leakage parameter. This
model is commonly referred to as a stochastic LIF model.

In this article, we address a network of N connected neurons that evolve according to a variant of the above
stochastic LIF model. We describe the discrete system of neurons through the evolution in time of the membrane
potentials of each of the neurons: The membrane potential of neuron i (for i = 1, · · · , N) is described by a
process Xi = (Xi

t)t≥0. The sub-threshold dynamics of each Xi are of the general form:

dXi
t = b

(
Xi
t

)
dt+ dIi,network

t + dW i
t , t ≥ 0, i = 1, · · · , N,

with initial conditions Xi
0 < XF . Here (Xi

0)i=1,··· ,N is a family of independent and identically distributed
random variables and (W i)i=1,··· ,N is a family of independent Brownian motions, the initial conditions and the

noises being independent. The term dIi,network
t models the current that neuron i receives at time t from the

other neurons. As above, the value XF is a firing threshold, which is assumed to be common to all the neurons:
Whenever a neuron reaches the threshold value XF , its potential is reset to XR, XR being the same for all the
neurons.

For sure, the term dIi,network
t is of great importance in the description of the model. Inspired by [18,22], we

choose dIi,network
t in the form

dIi,network
t =

N∑
j=1

∑
k≥1

Jj→iN dδ0
(
t− τ jk

)
,

where δ0 is the Dirac delta measure in 0, τ jk (for some j = 1, ..., N and k ∈ N) is the k-th time at which the

potential of neuron j reaches the threshold value XF , and Jj→iN is a synaptic weight that prescribes the influence
of neuron j onto neuron i. In case when the synaptic weight is positive, the interaction from j to i is excitatory;

otherwise, it is inhibitory. It is worth mentioning that, with the above prescription, (dIi,network
t )t is not exactly

a current since the measure dIi,network
t is singular. Differently, the term dIi,network

t account for impulses received
by neuron i from the network at time t. These impulses account for the instantaneity of the interactions: each
time neuron j spikes, neuron i feels a pulse of intensity Jj→iN .

The main purpose of this note is to address the case when the synaptic weights are of the form

Jj→iN =
β

N
αi,j ,

where β is a scaling parameter that calibrates the global connectivity of the network and αi,j represents some
variability in the synaptic weight between neurons i and j. The factor 1/N is typical of a mean field model. The
main feature is that we allow the weights (αi,j)i,j=1,··· ,N to be random, in which case the tuples (Xi

0)i=1,··· ,N ,
((W i

t )t≥0)i=1,··· ,N and (αi,j)i,j=1,··· ,N are required to be independent.
The idea below is to study the behavior of the system, when N is large, considering different kind of ran-

domness for αi,j .
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1.2. Mean field limit

The time integrated version of the dynamics may be put in the more accessible form:{
Xi
t = Xi

0 +
∫ t

0
b
(
Xi
s

)
ds+

∑N
j=1

∑
k≥1 J

j→i
N 1{τjk≤t}

+W i
t , if Xi

t− < XF ,

Xi
t = XR, if Xi

t− = XF .
(1)

The case Jj→iN = α/N , for a deterministic factor α, has been already addressed in several papers, among
which [1–3, 6, 7, 18, 22]. In all these references, authors have paid much effort to discuss the asymptotic regime
N →∞.

Because of the normalization factor α/N in the interaction term and by independence of the various sources
of noise, we may indeed expect from standard results on large particle systems with mean field interaction, see
for instance [24], that neurons become independent asymptotically, each of them solving in the limit a nonlinear
stochastic differential equation with interaction with the common theoretical distribution of the network. In
the limiting network, the membrane potential (Xt)t of a representative neuron should evolve according to the
equation: {

Xt = X0 +
∫ t

0
b
(
Xs

)
ds+ αE

[∑
k≥1 1{τk≤t}

]
+Wt, if Xt− < XF ,

Xt = XR, if Xt− = XF ,
(2)

where W = (Wt)t is the proper noise to the representative neuron and (τk)k stands for its own spike train.
Passage from (1) to (2) is usually referred to as propagation of chaos in the literature. While it may be simpler
to justify for systems with regular interactions, it turns out to be a much more challenging problem in the
current framework because of the instantaneity of the interactions between the neurons.

In fact, even equation (2) itself –which should be called a McKean Vlasov equation– is a difficult object to
study, especially in the excitatory regime α > 0. In order to address its well-posedness, two approaches are
conceivable, a PDE one and a probabilistic one. The PDE approach is based upon the description, through the
so-called Fokker-Planck equation, of the evolution of the marginal law of the potential. We refer to [1–3]. The
probabilistic route is to analyze directly equation (2), see [6, 7] and the more recent contributions [15, 19]. In
fact, both approaches face the same difficulty: Whenever the interaction parameter α is too large, the system
may blow up in some sense. Heuristically, a blow-up occurs when a large proportion of neurons in the finite
network spike at the same time; in the limit regime, a blow up occurs when the time derivative of the mean
field term in (2) is infinite. It is proven in [1, 6] that a blow up appears if the mass of the initial distribution
is too concentrated near the firing threshold XF and, conversely, that no blow up appears if the initial mass
is sufficiently far away from XF . While global existence of solutions with a blow up is addressed in [7] local
uniqueness results are shown in [6, 15, 19]: In these latter references, successive improvements are obtained on
the length of the interval on which uniqueness is known to hold.

Blow up not only matters for the limiting mean field equation. Going back to the particle system, we
understand that the difference between the two values XF and XR is certainly important because it must
influence, among others, the typical delay between two consecutive spikes. In particular, when α is large in
comparison with XF − XR, a neuron may spike at a high frequency because of the pulses received from the
others. This stylized fact is at the core of our analysis. Still, the reader must be aware that, in biological models,
an additional refractory period is usually added, during which a neuron is somehow locked after a spike. Here
we shall not include such a refractory period; for sure, it would ask for further investigations.

Whilst the case Jj→iN = α/N has received much attention in the literature, the case of random synaptic
weights has received limited attention. This is our precise objective to understand how randomness in the
synaptic weights may impact the passage from (1) to (2) and how it may impact the emergence of a blow up
in the system. In this regard, it is worth noticing that another form of inhomogeneous connection is addressed
in [20]: Therein, a finite network of distinct infinite populations is studied; inhomogeneous weights are used to
describe the connections between populations.
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1.3. Model with random synaptic weights

Throughout the text, we will take XF = 1 and XR = 0. This permits to rewrite equation (1) for the network
of N ∈ N neurons in the following more concise form:

Xi
t = Xi

0 +

∫ t

0

b(Xi
s)ds+W i

t +

N∑
j=1

Jj→iN M j
t −M i

t , (3)

where the process M i
t counts the number of times that the potential of neuron i has reached the threshold value

XF = 1; formally, we may write

M i
t =

∫ t

0

∑
k∈N∗

dδ0(s− τ ik) =
∑
k∈N∗

1[0,t](τ
i
k),

with τ ik standing for the random time at which the process Xi reaches the threshold for the k-th time.

As already announced, we will discuss the behavior of the system for different types of variables {Jj→iN }i,j=1,·,N .

Particularly, we will address the case Jj→iN = β αi,j/N , with β > 0 constant and:

(1) αi,j ∼ B(p) i.i.d.;
(2) αi,j dependent with αi,j = αiαj and αi ∼ B(p) i.i.d.;
(3) αi,j dependent with αi,j = pαi and αi ∼ B(p) i.i.d.;
(4) αi,j ∼ B(pN ) i.i.d. with limN→∞ pN = 0.

The note is organized as follows. We provide some theoretical results in Section 2. Section 3 is dedicated
to the presentation of an algorithm for simulating (a variant of) the particle system with a large value of N .
Throughout the text, all the Brownian motions are normalized, meaning that their volatility is 1.

2. Mathematical inquiries

This section is dedicated to a theoretical analysis of (3), choosing XF = 1 as firing threshold and XR = 0
as reset potential. Throughout the section, we discuss (sometimes in a pretty informal way) the form of the
limiting mean field equation together with the existence of a blow-up, as defined in the previous section.

2.1. Independent Random weights: αi,j ∼ B(p)

Let us consider the case where the connections are i.i.d. Bernoulli variables, with a parameter p that is
independent of N , namely αi,j ∼ B(p) (this is case (1) in Subsection 1.3). From a modeling point of view,
this amounts to say that the neurons are connected through the realization of an Erdös-Renyi graph. The first
purpose is to conjecture what is the limit equation, or equivalently the analogue of (2), for the network.

Observe first that, whenever p = 1, the synaptic weight takes the form Jj→i = β/N , which exactly fits the
case addressed in (2). By some heuristic calculation, we expect that, in the more general case p ∈ (0, 1], the
limiting mean field term manifests in the form:

p · β · E
[
Mt

]
.

Intuitively, the reason is that, as N → ∞, not only the neurons should become asymptotically independent
between them, but also they should become independent of the synaptic weights. Indeed a given neuron i feels
less and less the values of each αi,j as N grows up; this means that, applying a law of large numbers, the
interaction term in (3) should get closer and closer to

β

N
E

 N∑
j=1

αi,jM j
t

 =
β

N
E

∫ t

0

N∑
j=1

∑
k

αi,jdδ(s− τ jk)

 =
β

N
E

 N∑
j=1

∑
k

αi,j1{τjk≤t}

 ≈ p · β · E[Mt].
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So, as a limit equation for the network, we expect the following (at least in the sub-threshold regime):

Xt = X0 +

∫ t

0

b(Xs)ds+ β · p · E[Mt] +Wt −Mt, (4)

with Mt =
∑
k∈N∗ 1[0,t](τk). In other words, the Bernoulli parameter should scale as a linear factor in the

intensity of the interaction. In particular, if our derivation is correct, the limiting equation fits the framework
considered in [1–3,6, 7]. We will come back to this point next.

For the time being, we have in mind to justify more rigorously the conjectured equation. To do so, we propose
the following argument based on a simple model for propagation of chaos.

2.2. On the Derivation of the limit equation in a toy model

To get an idea of the behavior of particles in our setting, we consider the simpler model in which the processes
(Xi)i satisfy the following system of equations:

dXi
t =

1

N

N∑
j=1

αi,jXj
t dt+ dW i

t , i = 1, · · · , N, (5)

where (αi,j)i,j=1,...,N is a family of i.i.d. bounded random variables and (W i)i is a family of independent
standard Brownian motions. The families (αi,j)i,j and (W i)i are assumed to be independent. For simplicity,
we do not address the influence of the threshold and do as if XF was equal to +∞. Also, we take the same
deterministic initial conditions Xi

0 = x0 for all the particles.
We use the technique of coupling introduced in [24]. That is, we want to show convergence of (5) to

dX̄t = E
[
α
]
E
[
X̄t

]
dt+ dWt, X̄0 = x0, (6)

where α is another random variable with the same distribution as each αi,j and W is a standard Brownian.
Although it is not needed to state the equation, we assume for convenience that α and W are independent and
that (α,W ) is independent of the family ((αi,j)i,j , (W

i)). To prove the convergence stated above, let us also
introduce, for each i ∈ {1, · · · , N}, the SDE:

dX̄i
t = E

[
α
]
E
[
X̄i
t

]
dt+ dW i

t , X̄i
0 = x0, (7)

and let us follow the strategy consisting in comparing (6) with (7) and (7) with (5).
As for (6) with (7), we notice that X̄ and X̄i have the same law. We therefore just need to consider Xi and

X̄i. For the latter point, we observe that the processes (X̄, (X̄i)i) are independent of the family (αi,j)i,j . Using
the independence of α and X̄i, we also know that

d
(
Xi
t − X̄i

t

)
=

 1

N

N∑
j=1

αi,jXj
t −E

[
αX̄i

t

] dt

=

 1

N

N∑
j=1

αi,jXj
t −

1

N

N∑
j=1

αi,jX̄j
t

+

 1

N

N∑
j=1

αi,jX̄j
t −E

[
αX̄i

t

] dt.
Since αi,j is bounded by a constant C, we may write

∣∣Xi
t − X̄i

t

∣∣ ≤ ∫ t

0

C

N

N∑
j=1

∣∣Xj
s − X̄j

s

∣∣ ds+

∫ t

0

∣∣∣∣∣∣ 1

N

N∑
j=1

αi,jX̄j
s −E

[
αX̄i

s

]∣∣∣∣∣∣ ds.
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By summing over i and dividing by N , also defining δt to be the function 1
N

∑N
i=1

∣∣Xi
t − X̄i

t

∣∣, we get

δt ≤ C
∫ t

0

δsds+
1

N2

∫ t

0

N∑
i=1

∣∣∣∣∣∣
N∑
j=1

(
αi,jX̄j

s −E
[
αX̄i

s

])∣∣∣∣∣∣ ds.
By using Gronwall’s lemma, we then deduce that

δt ≤
exp(Ct)

N2

∫ t

0

N∑
i=1

∣∣∣∣∣∣
N∑
j=1

(
αi,jX̄j

s −E
[
αX̄i

s

])∣∣∣∣∣∣ ds.
Taking the expectation, we have the following:

E[δt] ≤
exp(Ct)

N

∫ t

0

N∑
i=1

 1

N
E

∣∣∣∣∣∣
N∑
j=1

(
αi,jX̄j

s −E
[
αX̄i

s

])∣∣∣∣∣∣
 ds.

Moreover, it is now useful to investigate the second moment of
(
αi,jX̄j

s −E
[
αX̄i

s

])
, which is a finite value C2

2 .

Hence, by independence of (αi,j)i,j and (X̄j)j , we get:

E[δt] ≤
exp(Ct)

N

∫ t

0

N∑
i=1

C2

N1/2
ds ≤ exp(Ct)

C2t

N1/2
.

Since it holds that

δt ≥W1

(
1

N

N∑
i=1

δXit ,
1

N

N∑
i=1

δX̄it

)
,

where W1(·, ·) is the 1-Wasserstein distance defined as W1(µ, ν) = infπ
∫
R2 |x − y|dπ(x, y), the infimum being

taken over all the probability measures π on R2 that have µ and ν as marginal distributions, we have also proved
that, for any T > 0,

lim
N→∞

sup
0≤t≤T

E

[
W1

(
1

N

N∑
i=1

δXit ,
1

N

N∑
i=1

δX̄it

)]
= 0.

By the law of large numbers, this implies that

lim
N→∞

sup
0≤t≤T

E

[
W1

(
1

N

N∑
i=1

δXit ,L(X̄t)

)]
= 0,

which is nothing but propagation of chaos.

2.3. Blow-up Argument

We now address the blow-up phenomenon for (4). Since (4) is similar, up to the scaling factor p, to the
equation investigated in [1, 6], we expect the same picture: If the initial condition is too close to XF = 1,
then a blow-up occurs; if it is sufficiently far away, then it cannot occur. Here we show that a blow-up indeed
exists if X0 = x0 for some deterministic x0 that is close enough to 1. Our proof is based upon the probabilistic
approach, but, in fact, it consists of a reformulation of the arguments used by Cáceres et al. in [1]. Below, we
use repeatedly the notation e(t) := E[Mt].
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Theorem 1. Assume that the drift coefficient satisfies, for some λ > 0,

b(v) ≥ −λv, for all −∞ < v ≤ 1.

If the (deterministic) initial condition X0 = x0 < 1 is sufficiently close to the threshold 1, there is no global in
time solution of the SDE

dXt = b(Xt) dt+ β p e′(t) dt+ dWt − dMt, t ≥ 0,

τk+1 = inf{t ≥ τk, Xt ≥ 1}

Mt =
∑
k≥1

1[0,t](τk)
(8)

with e(t) = E[Mt].

Proof. The idea is to retrace the proof in [1]. Assume indeed that we have a global in time solution (Xt)t≥0 to (8)
with a differentiable mean counter e. The object of our study is then Fµ(t) := E[ϕ(Xt)] with ϕ(x) = exp(µx),
where

Xt = X0 +

∫ t

0

(
b(Xs) + β p e′(s)

)
ds+Wt −Mt.

Now we apply Itô’s formula to ϕ(Xt):

ϕ(Xt) = ϕ(X0) +

∫ t

0

ϕ′(Xs)︸ ︷︷ ︸
µϕ(Xs)

(
b(Xs) + β · pe′(s)

)
ds+

∫ t

0

ϕ′(Xs)︸ ︷︷ ︸
µϕ(Xs)

dWs +
1

2

∫ t

0

ϕ′′(Xs)︸ ︷︷ ︸
µ2ϕ(Xs)

ds

+

∫ t

0

[ϕ(Xs− − 1)− ϕ(Xs−)]︸ ︷︷ ︸(
ϕ(0)−ϕ(1)

) dMs.

Taking expectation:

E [ϕ(Xt)] = E [ϕ(X0)] + µ

∫ t

0

E
[
ϕ(Xs)

(
b(Xs) + β · pe′(s)

)]
ds +

µ2

2

∫ t

0

E [ϕ(Xs)] ds +
(
ϕ(0) − ϕ(1)

)
e(t).

Recalling that Fµ(t) = E[ϕ(Xt)], we can rewrite the above expression as:

Fµ(t) = Fµ(0) + µ

∫ t

0

E
[
ϕ(Xs)

(
b(Xs) + β · pe′(s)

)]
ds+

µ2

2

∫ t

0

Fµ(s)ds+
(
ϕ(0)− ϕ(1)

)
e(t).

Then, using the hypothesis on b, we get that

Fµ(t) ≥ Fµ(0) + µ

∫ t

0

E [ϕ(Xs)(β · pe′(s)− λXs)] ds+
µ2

2

∫ t

0

Fµ(s)ds+
(
ϕ(0)− ϕ(1)

)
e(t)

≥ Fµ(0) + µ

∫ t

0

(β · pe′(s)− λ)Fµ(s)ds+
µ2

2

∫ t

0

Fµ(s)ds+
(
ϕ(0)− ϕ(1)

)
e(t),

that is

Fµ(t) ≥ Fµ(0) +

∫ t

0

µ
(
β · pe′(s)− λ+

µ

2

)
Fµ(s)ds+

(
ϕ(0)− ϕ(1)

)
e(t). (9)
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Define λ̃ as

λ̃ :=
ϕ(1)− ϕ(0)

µβp

and let us choose µ such that −λ+ µ
2 > 0. We can now proceed by stating that:

Fµ(t) ≥ Fµ(0) + p

(∫ t

0

µβe′(s)Fµ(s)ds− λ̃βµe(t)
)
≥ Fµ(0) + p

∫ t

0

µβe′(s)[Fµ(s)− λ̃]ds.

Claim: If Fµ(0) ≥ λ̃, then Fµ(t) ≥ λ̃. It suffices to define the first time T := inf{t ≥ 0 : Fµ(t) < λ̃} and to
observe from the above inequality that T = +∞.

Coming back to (9) we get that

Fµ(t) ≥ Fµ(0) +

∫ t

0

µ
(
β p e′(s)− λ+

µ

2

)
Fµ(s)ds − p λ̃βµe(t)

≥ Fµ(0) + p

∫ t

0

µβe′(s)Fµ(s)ds+

∫ t

0

µ
(
−λ+

µ

2

)
Fµ(s)ds − p λ̃βµe(t)

≥ Fµ(0) + p λ̃βµe(t) +

∫ t

0

µ
(
−λ+

µ

2

)
Fµ(s)ds− p λ̃βµe(t)

= Fµ(0) +

∫ t

0

µ
(
−λ+

µ

2

)
Fµ(s)ds.

This implies that:

Fµ(t) ≥ exp
(
µ
(
− λ+

µ

2

)
t
)
Fµ(0). (10)

But we know that

Fµ(t) ≤ exp
(
µ
)
. (11)

From (10) and (11) we get a contradiction in the following sense: If we have a global in time solution (Xt)t≥0

to (8) with a differentiable mean counter e and with an initial condition that satisfies Fµ(0) ≥ λ̃, then we get

(10) and (11). As the latter two cannot be true at the same time, we deduce that, whenever Fµ(0) ≥ λ̃, there
is no global in time solution to (8). �

Remark 2. In summary, for a fixed (β, p) the phenomena of blow up holds for initial conditions that are
concentrated around the threshold, namely for initial conditions such that

∃µ > 2λ such that Fµ(0) ≥ λ̃ with λ̃ =
ϕ(1)− ϕ(0)

µβp
.

Since we assumed for simplicity that the initial condition is deterministic, we know that Fµ(0) = exp(µx0). So,
we have a blow-up for all p such that:

p ≥ inf
µ≥2λ

eµ − 1

µβeµx0
=: p+

c (x0)

In Figure 1 we present the upper bound for the threshold p+
c , varying on the parameter of the drift λ and the

initial condition x0. The parameter β is taken equal to 1. Of course, values of p+
c (x0) that are above 1 are

irrelevant, in the sense that there cannot be any blow-up in those cases.
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Figure 1. Plot of the upper bound estimate p+
c for the threshold pc

Blow up discussion for the Brownian case

Let us focus on a particular case, in absence of drift, so λ = 0, with deterministic initial condition x0 = 0.8
and β = 1. From the previous remark, we get that p+

c ∼ 0.539. Moreover by Theorem 5.2 in [6] we get that
p−c ∼ 0.1, where p−c is a lower bound under which there is no blow-up. From simulations, we conjecture that
there exists in fact a critical threshold pc(x0) ∈ (p−c (x0), p+

c (x0)) under which there is no blow-up and above
which there is a blow up; numerically, the threshold is around 0.385 (in red the result obtained by numerics).

0.38

0.39

0 0.1 0.539 1

GG B-U B-U

In the more general case, where β 6= 1, we get that the threshold for p is simply rescaled by the factor β.

2.4. Dependent Random Weights

In this section, we will present a short analysis on the behavior of the network of neurons when the synaptic
weights are dependent. In particular, we will focus on two different forms of random connections.

First, we focus on the case when αi,j = αiαj , where (αi)i=1,...,N are independent Bernoulli random variables
with the same parameter p, in which case the dynamics of the system reads (this is case (2) in Subsection 1.3):

Xi
t = Xi

0 +

∫ t

0

b(Xi
s)ds+

αi

N

N∑
j=1

αjM j
t −M i

t +W i
t , i = 1, · · · , N. (12)
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Our first purpose is to find out the limit equation. We conjecture that the limit equation for this system is the
following:

Xt = X0 +

∫ t

0

b(Xs)ds+ αE[αMt]−Mt +Wt, (13)

where α is another Bernoulli random variable of parameter p and W is an independent Brownian motion. The
initial condition X0 has the same distribution as any of the Xi

0’s and is independent of the pair (α,W ). We
guess that (13) is the limit equation. Importantly, (13) does no longer read as a rescaled version of (2). The
reason is the processes Xi and M i should not become independent of αi, even if the network size tends to
infinity. This is the main rationale for investigating this example.

Equation (13), in fact, defines a network that consists of two different components: The first corresponds
to those neurons for which α = 1; it is a complete sub-network, composed by neurons which are all connected
among themselves, so that neurons of this sub-network feel an interaction with all the other neurons of the same
sub-network; The second component is made of isolated neurons for which α = 0. As such, the limit equation
catches out the duality of the population and the parameter p describes the relative size of the connected
sub-network within the whole population. Noticeably, neurons in the asymptotic connected sub-network evolve
according to a rescaled version of (2), see Remark 3 right below.

The second case we would like to deal with is the one with αi,j = pαi, where again (αi)i is an i.i.d. family
of Bernoulli random variables of parameter p (this is case (3) in Subsection 1.3). The rationale for this choice

is that αi,j here reads as the limit of 1
N α

i
∑N
j=1 α

j , which prompts us below to compare this example with the
previous one. In this case as well, we have a network of neurons with two different populations: one formed
by isolated neurons and the other one composed by neurons that are interact with one another with the same
deterministic synaptic weight p. The dynamics of the particle system reads:

Xi
t = Xi

0 +

∫ t

0

b(Xi
s)ds+

pαi

N

N∑
j=1

M j
t −M i

t +W i
t , i = 1, · · · , N. (14)

Using the fact that p = E[α], our guess is that the limit mean field equation equation should be given by:

Xt = X0 +

∫ t

0

b(Xs)ds+ αE[α]E[Mt]−Mt +Wt. (15)

Remark 3. In this remark, we try to make a first comparison between (13) and (15). As for (13), we observe
that

αE
[
αMt

]
= αE

[
Mt · 1{α=1}

]
= αp ·E

[
Mt | α = 1

]
,

which really says that, on the event α = 1, (13) behaves like (4).
Regarding (15), we have:

αp ·E
[
Mt

]
= αp

(
E
[
Mt

∣∣1{α=1}
]
· p+E

[
Mt

∣∣1{α=0}
]
· (1− p)

)
= αp2 ·E

[
Mt | α = 1

]
+ αp(1− p) ·E

[
Mt | α = 0

]
.

(16)

As we expect the activity of the isolated neurons to be less than the activity of the connected ones, our guess is
that the leading term in (16) for causing a blow up is

αp2 ·E
[
Mt | α = 1

]
.

So if we denote by p1
c the critical value of p (that should depend on the initial condition) for the occurrence of

a blow-up in (13) and similarly by p2
c the critical value in (15), we can expect that p2

c ≈
√
p1
c. Of course, we

make the conjecture, based on the final discussion of the previous section, that there is indeed, for each model,
a critical value of the connectivity p under which there is no blow-up and above which there is a blow-up.
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2.5. Derivation of the limit equations in the toy model

Following Subsection 2.2, we here justify the mean field term manifesting in (13) by focusing on a toy example.
To make it clear, instead of studying rigorously the limit behavior of

Xi
t = Xi

0 +

∫ t

0

b(Xi
s)ds+

αi

N

N∑
j=1

αjM j
t −M i

t +W i
t

(where αi are i.i.d. Bernoulli variables with parameter p), we consider the simpler model introduced in Subsec-
tion 2.2:

dXi
t =

αi

N

N∑
j=1

αjXj
t dt+ dW i

t ,

where Xi
0 = x0 is deterministic. We also introduce, following the notation already used, the processes X̄i

described by

dX̄i
t = αiE

[
αiX̄i

t

]
dt+ dW i

t .

Assuming that Xi and X̄i have the same initial conditions, we get

Xi
t − X̄i

t =

∫ t

0

αi

N

N∑
j=1

αj
(
Xj
s − X̄j

s

)
ds+

∫ t

0

αi
N

N∑
j=1

αjX̄j
s − αiE

[
αiX̄i

s

] ds.

Taking absolute values, multiplying by αi, summing over i and dividing by N , we can assert that

1

N

N∑
i=1

αi
∣∣∣Xi

t − X̄i
t

∣∣∣ ≤ ∫ t

0

(
1

N

N∑
i=1

(αi)2

)(
1

N

N∑
i=1

αi
∣∣∣Xi

s − X̄i
s

∣∣∣) ds
+

∫ t

0

(
1

N

N∑
i=1

(αi)2

)∣∣∣∣∣∣ 1

N

N∑
j=1

αjX̄j
s −E

[
αiX̄i

s

]∣∣∣∣∣∣ ds.
Defining δ̃t = 1

N

∑N
i=1 α

i
∣∣Xi

t − X̄i
t

∣∣, we can write that

δ̃t ≤

(
1

N

N∑
i=1

(αi)2

)∫ t

0

δ̃sds+

∫ t

0

∣∣∣∣∣∣ 1

N

N∑
j=1

αjX̄j
s −E

[
αiX̄i

s

]∣∣∣∣∣∣ ds
 .

By using Gronwall’s lemma, we obtain

δ̃t ≤

(
1

N

N∑
i=1

(αi)2

)
exp

(
1

N

N∑
i=1

(αi)2t

)∫ t

0

∣∣∣∣∣∣ 1

N

N∑
j=1

αjX̄j
s −E

[
αiX̄i

s

]∣∣∣∣∣∣ ds.
Also defining δt = E[δ̃t], A =

(
1
N

∑N
i=1(αi)2

)
, taking expectation and using Cauchy-Schwarz inequality, we

have

δt ≤
(
E
[
A2 exp

(
2At

)] )1/2
∫ t

0

E

 1

N

N∑
j=1

αjX̄j
s −E

[
αiX̄i

s

]2



1/2

ds.
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We can manage the last term in the expression above as we did before. In fact, using a standard independence
argument, we get

E


 1

N

N∑
j=1

αjX̄j
s −E

[
αiX̄i

s

]2
 =

1

N

(
E

[(
α1X̄1

s

)2]− (E [α1X̄1
s

])2 )
.

Therefore,

δt ≤
(
E
[
A2 exp

(
2At

)])1/2 · 1

N1/2

∫ t

0

(
E

[(
α1X̄1

s

)2]− (E [α1X̄1
s

])2 )1/2

ds,

and we conclude as in Subsection 2.2. The derivation of the toy version of equation (15) from the corresponding
toy version of the network of interacting neurons (14) follows from a similar argument.

2.6. Blow-up Argument

We now provide analogs to Theorem 1 for (13) and (15). Let us first consider the second case, i.e., αi,j = pαi,
with αi Bernoulli independent random variables of parameter p.

Theorem 4. Assume that the drift coefficient satisfies, for some λ > 0,

b(v) ≥ −λv, for all −∞ < v ≤ 1.

If the (deterministic) initial condition X0 = x0 < 1 is sufficiently near the threshold 1, there is no global in time
solution of the SDE

Xt = X0 +

∫ t

0

b(Xs)ds+ αp ·E [Mt] +Wt −Mt,

where α ∼ B(p) is independent of W .

Proof. The idea of the proof is very close to that of Theorem 1. We want to find an initial condition that leads
to a contradiction if we assume that t 7→ e(t) = E(Mt) is differentiable. However, the proof slightly differs since
we here focus on the quantity Fαµ (t) := E[αϕ(Xt)]. Assuming that e is indeed differentiable, applying Itô’s
formula to (ϕ(Xt))t≥0, multiplying by α and taking the expectation, we get

Fαµ (t) = Fαµ (0) +

∫ t

0

E
[
µαϕ(Xs)

(
− λ+ αpe′(s) +

µ

2

)]
ds+

(
ϕ(0)− ϕ(1)

)
E[αMt].

The random variable α takes values in {0, 1} and Mt is non-negative, which makes it possible to state that
E
[
αMt

]
≤ E

[
Mt

]
. Therefore, since

(
ϕ(0)− ϕ(1)

)
is negative,

Fαµ (t) ≥ Fαµ (0) +

∫ t

0

µ
(
−λ+

µ

2

)
Fαµ (s)ds+

∫ t

0

µpe′(s)Fαµ (s)ds+
(
ϕ(0)− ϕ(1)

)
e(t). (17)

Now, the proof exactly matches that of Theorem 1. Choose indeed −λ + µ
2 > 0 and take the initial condition

close enough to the threshold 1 so that

Fαµ (0) ≤ λ̃ with λ̃ =
1

µp
(−ϕ(0) + ϕ(1)) .

We then get

Fαµ (t) ≥ Fαµ (0) exp
(
µ
(
− λ+

µ

2

)
t
)
, t > 0.

This is a contradiction because Xt ≤ 1 and α ∈ {0, 1}, which means that Fαµ (t) ≤ eµ. �
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Figure 2. Plot of the upper bound estimate p+,2
c for the threshold pc

Remark 5. As explained in Remark 2, there is blow-up when

∃µ > 2λ such that Fµ(0) ≥ λ̃ with λ̃ =
ϕ(1)− ϕ(0)

µp
.

Assuming for simplicity that the initial condition is deterministic, we get:

Fαµ (0) = p · exp(µx0).

So, given a deterministic initial condition, we have a blow-up when p is such that:

p ≥
√

inf
µ≥2λ

eµ − 1

µeµx0
=: p+,2

c (x0).

In Figure 2, we present the upper bound for the threshold p+,2
c , varying on the parameter of the drift λ and

the initial condition x0.

Consider now the case αi,j = αiαj , with αi Bernoulli independent random variables of parameter p.

Theorem 6. Assume that the drift coefficient satisfies, for some λ > 0,

b(v) ≥ −λv, for all −∞ < v ≤ 1.

If the (deterministic) initial condition X0 = x0 < 1 is sufficiently near the threshold 1, there is no global in time
solution of the SDE

Xt = X0 +

∫ t

0

b(Xs)ds+ α ·E [αMt] +Wt −Mt,
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where α ∼ B(p) is independent of W .

Proof. The strategy is almost the same as in the previous case, namely the main tool is the function Fαµ (t) :=
E[αϕ(Xt)]. By Itô’s Formula:

Fαµ (t) = Fαµ (0) +

∫ t

0

E

[
µαϕ(Xs)

(
− λ+ αe′α(s) +

µ

2

)]
ds+

(
ϕ(0)− ϕ(1)

)
E[αMt].

with eα(t) = E[αMt]. With the same calculation as in the previous case, we get

Fαµ (t) ≥ Fαµ (0) +

∫ t

0

µ
(
−λ+

µ

2

)
Fαµ (s)ds+

∫ t

0

µe′α(s)Fαµ (s)ds+
(
ϕ(0)− ϕ(1)

)
eα(t).

The only differences with respect to the previous case are that we have eα(t) instead of e(t) and that there is
no p in the third term. �

Remark 7. As before, there is blow-up when

∃µ > 2λ such that Fαµ (0) ≥ λ̃ with λ̃ =
ϕ(1)− ϕ(0)

µ
.

Assuming for simplicity that the initial condition is deterministic, we get:

Fµ(0) = p · exp(µx0).

So, given a deterministic initial condition, we get a blow-up when p is such that:

p ≥ inf
µ≥2λ

eµ − 1

µeµx0
=: p+,1

c (x0),

which fits the formula obtained in Remark 2. So the upper bound varying on the parameters (x0, λ) is the same
of Figure 1. Observe also that

p+,2
c (x0) =

√
p+,1
c (x0),

which is consistent with our informal discussion in Remark 3.

Blow up discussion for the Brownian case

Let us focus on the case where the network includes a non complete subnetwork following the dynamics
prescribed in (15) (or equivalently case (3) in Subsection 1.3) in absence of drift, i.e. b ≡ 0, with deterministic
initial condition x0 = 0.8. From the previous remark, we get that p+,2

c ∼ 0.7201. Through simulations, we look
for the threshold value pc (with the same conjecture as before that, above this threshold, there is a blow-up
whilst there is no blow-up below the threshold). Here is the plot that we get (numerical values are in red):

0.59

0.58

0 0.7201 1

B-U B-U

Recall from the discussion right after Remark 2 the plot we get for the network of type (13) (or equivalently
case (2) in Subsection 1.3):

0.39

0.38

0.5390 1

B-UB-U

Notice that the numerical results confirm what we predict in Remarks 3, 5, 7; observe in particular that√
0.39 ∼ 0.62, which not so far from 0.59.
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2.7. Comparison between the two models

In this section we continue to investigate the differences between the two cases (2) and (3) in Subsection 1.3.
We here consider the following SDEs:

Xi
t = Xi

0 +

∫ t

0

b(Xi
s)ds+

αi

N
p

N∑
j=1

M j
t +W i

t −M i
t ,

Xi
t = Xi

0 +

∫ t

0

b(Xi
s)ds+

αi

N

N∑
j=1

αjM j
t +W i

t −M i
t ,

with the usual definitions. Recall that our guess is that the two systems converge to the limit SDEs (compare
with (13) and (15)):

Xt = X0 +

∫ t

0

b(Xs)ds+ αpE
[
Mt

]
+Wt −Mt,

Xt = X0 +

∫ t

0

b(Xs)ds+ αE
[
αMt

]
+Wt −Mt,

again with the usual definitions. Using the same conditioning argument as in Remark 3, these two last SDEs
can easily be rewritten as:

Xt = X0 +

∫ t

0

b(Xs)ds+ αp
(
p ·E

[
Mt

∣∣ α = 1
]

+ (1− p) ·E
[
Mt

∣∣ α = 0
])

+Wt −Mt,

Xt = X0 +

∫ t

0

b(Xs)ds+ α
(
p ·E

[
Mt

∣∣ α = 1
])

+Wt −Mt.

Assuming, as we did to compute thresholds numerically, that the initial condition is deterministic, i.e., X0 = x0,
and that b is zero, we finally get:

Xt = x0 +
(
αp2 ·E

[
Mt

∣∣ α = 1
]

+ αp(1− p) ·E
[
Mt

∣∣ α = 0
])

+Wt −Mt, (18)

Xt = x0 +
(
αp ·E

[
Mt

∣∣ α = 1
])

+Wt −Mt. (19)

We now study equation (18) and compare it to (19). First, let us consider the term E
[
Mt

∣∣ α = 0
]
: this is the

expectation of the process Mt given the fact that the neuron is not concerned by interaction. The good point
is that the limiting model without interaction can be solved explicitly. Namely, we can identify E

[
Mt

∣∣ α = 0
]

with E
[
M̃t

]
, where M̃t solves the SDE:

X̃t + M̃t = x0 + W̃t, M̃t =

⌊(
sup
s∈[0,t]

(
X̃s + M̃s

))
+

⌋
=

⌊(
x0 + sup

s∈[0,t]

W̃s

)
+

⌋
,

where byc is the floor part of y. Calling ft the density of the running maximum of Brownian motion until time
t, we get:

E

[
M̃t

]
=

∫
R

⌊
(x0 + x)+

⌋
ft(x)dx.
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Recalling that ft(x) =
[√

2/πt exp
(
− x2/2t

)]
1{x≥0}, the above expression becomes

E

[
M̃t

]
=

√
2

πt

∫
R+

⌊
(x0 + x)+

⌋
exp

(
−x

2

2t

)
dx

=

√
2

πt

∫ +∞

−x0∨0

⌊
(x0 + x)+

⌋
exp

(
−x

2

2t

)
dx

=
4√
π

∫ +∞(
−x0/

√
2t
)
∨0

⌊(
x0 +

√
2tx
)

+

⌋
exp

(
−x2

)
dx

=
4√
π

∑
k∈N

k

∫ ((−x0+k+1)/
√

2t
)
∨0(

(−x0+k)/
√

2t
)
∨0

exp
(
−x2

)
dx.

Particularly, since x0 < 1, it holds that −x0 + k is always positive for k ≥ 1: therefore, (−x0 + k)/
√

2t ∨ 0 =

(−x0 + k)/
√

2t. Calling e0(t) := E[M̃t], we then see that the function e0 is differentiable and its derivative is

e′0(t) =
1

t

√
2

πt
e−

x2
0

2t

∑
k∈N

k

[
(−x0 + k)e

−k2+2x0k
2t − (−x0 + k + 1)e

−(k+1)2+2x0(k+1)
2t

]
.

Since x0 < 1, we have −k2 + 2x0k ≥ 0 whenever k ≥ 2. Hence, we obtain the following:

e′0(t) ≤ 1

t

√
2

πt
e−

x2
0

2t

[
(1− x0)

[
e

−1+2x0
2t − e

−2(1−x0)
t

]
+
∑
k≥2

k

[
(−x0 + k)e

−k2+2x0k
2t − (−x0 + k + 1)e

−(k+1)2+2x0(k+1)
2t

]]
,

and then:

e′0(t) ≤ 1

t

√
2

πt
(1− x0)e−

(1−x0)2

2t +
1

t

√
2

πt
e−

x2
0

2t

∑
k≥2

k

[
(−x0 + k)e

−k2+2x0k
2T − (−x0 + k + 1)e

−(k+1)2+2x0(k+1)
2T

]
,

that is, for a finite constant Cx0,T ,

sup
0≤t≤T

e′0(t) ≤ Cx0,T .

We now come back to (18) and (19). We can rewrite (18) in the form:

Xt = x0 + αp(1− p)
∫ t

0

e′0(s)ds+
(
αp2 ·E

[
Mt

∣∣ α = 1
])

+Wt −Mt, (20)

which shows that, in comparison with (19), there is not only an additional factor p in the conditional mean
field term given the event α = 1, but there is also an additional drift e′0. In other words, if we omit the term

αp(1−p)
∫ t

0
e′0(s)ds in (20), we recover (19), but with p replaced by p2. Intuitively, this says that, if e′0 was equal

to 0, we would expect p2
c =

√
p1
c . In fact, e′0 is positive: It helps pushing the particles towards the threshold.

As a result, it makes sense to expect p2
c <

√
p1
c . Fortunately, this is exactly what shows up in the numerical

analysis performed at the end of Subsection 2.6.
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2.8. Independent Bernoulli random variables with parameter pN

We now address case (4) in Subsection 1.3, namely we deal with a neural network described by the equation

Xi
t = Xi

0 +

∫ t

0

b(Xi
s)ds+

β

pN ·N

N∑
j=1

αi,jN M
j
t +W i

t −M i
t ,

where αi,jN are i.i.d. Bernoulli random variables with parameter pN depending on N , the total number of
neurons in the network. We are interested in three cases:

• pN ·N = log1/2(N);
• pN ·N = log(N);
• pN ·N = log2(N).

The reason why we choose these three parameters follows from the theory of Erdös-Renyi for random graphs,
see [9, 10] for undirected graphs and [14, 23] for directed graphs. We indeed know that pN = log(N)/N is a
sharp threshold for connectedness, meaning that:

• If pN < (1− ε) log(N)/N , then the probability that the graph has a unique connected component tends
to 0 as N goes to infinity;

• pN > (1 + ε) log(N)/N , then the probability that the graph has a unique connected component tends
to 1 as N goes to infinity.

In contrast with more standard particle systems like those addressed in [24] or (say) of the same form as
in (5), it is here possible to have several neurons hitting the firing potential at the same instant of time, and,
most of all, it is even possible to have a neuron spiking more than once at the same instant of time, which fact
may be excluded in other models of neural networks, see for instance [6]. As exemplified in [4, 7], this requires
a sequential definition of the spikes that may occur at the same time, given by an induction with the following
initialization:

Γ0 :=
{
i ∈ {1, · · · , N} : Xi

t− = 1
}
.

We say that a spike occurs at time t if Γ0 6= ∅. Because of the interactions between the neurons, neurons in the
set Γ0 may force the others to jump at the same time t. This happens for neuron i 6∈ Γ0 if

Xi
1,t− := Xi

t− +
β

pN ·N

N∑
j=1

αi,jN 1{j∈Γ0} ≥ 1,

which prompts us to let Γ1 := {i ∈ {1, · · · , N} \ Γ0 : Xi
1,t− ≥ 1}. Iteratively, we define for any i ∈ {1, · · · , N}:

Xi
k+1,t− :=

 Xi
k,t− +

β

pN ·N

N∑
j=1

αi,jN 1{j∈Γk} if i 6∈ Γk,

Xi
k,t− − bXi

k,t−c if i ∈ Γk,

Γk+1 :=
{
i ∈ {1, . . . , N}\Γk : Xi

k+1,t− ≥ 1
}
.

And then we let

M i
t −M i

t− =
∑
k∈N

1Γk(i),

Xi
t = lim

k→∞
Xi
k,t− if the limit exists.

(21)

Intuitively, Γk is the set of neurons that spike at the kth iteration, Xi
k,t− is the potential of neuron i before the

kth iteration and Xi
k+1,t− is the potential after the kth iteration. With this rule we observe that:
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• It is possible that one neuron receives (at a given iteration) a cumulative kick (from all the other
particles) that is greater than 1, meaning that the potential of a neuron can jump from a potential less
than 1 to a potential greater than 2. With our definition of Xi

k+1,t− if i ∈ Γk, we just regard the whole
as a single spike.

Still a neuron can spike several times at the same time:

• It is indeed possible that a neuron i spikes, that its kick makes others spike and that those, in return,
make i spike again. This behavior may repeat again: when it repeats just for a finite number of times,
we call it a “finite cascade”. In that case, the limit in (21) is well defined.

• It may happen that the cascading behavior just described above goes on infinitely many times: we call
it an “infinite cascade”. In that case the limit in (21) may not exist.

Below, we choose β < 1. We then try to make a connection between neurons that spike more than twice and

neurons that have a large degree, where, by definition, the degree di of neuron i is di :=
∑N
j=1 α

i,j
N . Our guess

is based on the fact that, for a neuron that is connected to neurons that do not spike more than once at time
t, the only way for it to record more than two spikes at time t is that its degree is higher than dpNN/βe. In
particular, the first neurons that record a second spike in the inductive construction of the sets (Γk)k must have
a large degree. In this regard, we show below that the probability that a neuron has a high degree gets smaller
and smaller as N tends to ∞. We thus conjecture that, for the prescribed values of parameters, most of the
neurons can only jump once at a given time and, henceforth, that, among those that record more than two
spikes at the same time, most of them have a large degree.

We are therefore interested in computing

P

 1

N

N∑
j=1

α1,j
N ≥

pN
β

 ,
where the apex 1 may be substituted by any other index i.

Remark 8 (Estimate on the upper bound for the probability to have a multiple spikes). Observing that pN/β
is bigger than pN and using the Cramer’s Theorem (in the context of Large Deviation Theory), we find out that

P

 1

N

N∑
j=1

α1,j
N ≥

pN
β

 ≤ e−N ·Λ∗( pNβ ), (22)

where

Λ∗(x) := x log

(
x

pN

)
+ (1− x) log

(
1− x

1− pN

)
.

We have that

− log
(
e−N ·Λ

∗( pNβ )
)

=
1

β
log

(
1

β

)
logk(N) +

(
N − logk(N)

β

)
log

(
βN − logk(N)

βN − β logk(N)

)
, (23)

where k is such that pN = logk(N)/N (recall that k = 1/2, 1, 2 in the three typical cases we have in mind). The
last part above is(

N − logk(N)

β

)
log

(
βN − logk(N)

βN − β logk(N)

)
=

(
N − logk(N)

β

)
log

(
1− 1− β

β

logk(N)

N − logk(N)

)
.
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Therefore, the last expression becomes

(
N − logk(N)

β

)−1− β
β

logk(N)

N − logk(N)
+O

( logk(N)

N − logk(N)

)2
 ,

which can be rewritten as

βN − logk(N)

β

(
− (1− β) logk(N)

β
(
N − logk(N)

))+
βN − logk(N)

β
· O

( logk(N)

N − logk(N)

)2


=
βN − logk(N)

βN − β logk(N)

(
− (1− β) logk(N)

β

)

+
βN − logk(N)

βN − β logk(N)
· N − logk(N)

logk(N)
logk(N) · O

( logk(N)

N − logk(N)

)2
 .

Finally, we can again rewrite the expression above as(
βN − logk(N)

βN − β logk(N)

)(
−1− β

β
+O

(
logk(N)

N − logk(N)

))
logk(N).

Now, the first term in the expression above converges to 1 when N → +∞; similarly, the “big O” multiplied by
logk(N) goes to 0 when N → +∞; this means that, for every c < 1,(

βN − logk(N)

βN − β logk(N)

)(
−1− β

β
+O

(
logk(N)

N − logk(N)

))
logk(N) ≥ −c

(
1− β
β

)
logk(N),

for N large enough. Coming back to (23):

− log
(
e−N ·Λ

∗( pNβ )
)
≥
[

1

β

(
log

(
1

β

)
− c
)

+ c

]
logk(N).

Calling C(c, β) := 1
β

(
log
(

1
β

)
− c
)

+ c > 1
β − 1− c

β + c = ( 1
β − 1)(1− c) > 0, we deduce that

e−N ·Λ
∗( pNβ ) ≤ e−C(c,β) logk(N),

which is especially meaningful when k > 0. To conclude, we have found that, for N large enough,

P

 1

N

N∑
j=1

α1,j
N ≥

pN
β

 ≤ e−C(c,β) logk(N). (24)

Our conjecture is that, for k > 0, this should be a good approximation of the probability to observe more than
two spikes for a single neuron at the same time.

By letting c tend to 1 in (24), we get in fact the following large deviation upper bound.
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Theorem 9. Assume that β < 1 and choose pN in the form pN = logk(N)/N . Then,

lim sup
N→∞

a−1
N log

P

 1

N

N∑
j=1

α1,j
N ≥

pN
β

 ≤ −C(β), (25)

with aN = N · pN = logk(N) and C(β) := 1
β

(
log
(

1
β

)
− 1
)

+ 1.

Remark 10. As for the lower bound, we did not manage to implement the usual tilting method used in the
proof of Cramer’s theorem. The fact that (aN )N≥0 increases at a rate that is much smaller than the rate of
convergence of the law of large numbers, as given by the central limit theorem, is a hindrance.

2.9. Comparison with the Mean Field Case

A crucial question is to decide whether the mean field approximation is still valid in each of the three cases
addressed in the preliminary discussion of Subsection 2.8. Observe indeed that, since pN is assumed to get
smaller and smaller as N tends to 0, it is by no means clear that the arguments used in Subsections 2.2 and 2.5
still apply. So, we consider the network given by a family of i.i.d. Bernoulli synaptic weights (αi,jN )i,j ∼ B(pN ),
with pN as before, and we want to compare numerically the behavior of the particle system driven by the
interaction term

β

N · pN

N∑
j=1

αi,jN M
j
t (26)

with the behavior of the particle system driven by the interaction term

1

N

N∑
j=1

γi,jM j
t , (27)

where (γi,j)i,j ∼ B(β) are i.i.d. Bernoulli variables of parameter β. The comparison between both is motivated

by the fact that E[βαi,jN /pN ] = β. And for sure, our preliminary investigations have shown that (27) had the
same limit behavior as the model driven by the simpler interaction term

β

N

N∑
j=1

M j
t . (28)

We provide in the left pane in Figure 3) simulations of the interaction terms in both cases, (26) and (27), when
pN = log2(N)/N and β = 0.375. It shows that, for N large, both are indeed close. This seems to be a numerical
evidence that the mean field approximation should be valid when pN is above the Erdös-Renyi threshold for

connectedness of the interaction graph. When pN = log(N)/N and pN = log1/2(N)/N , and for the same value
of β, the center and right panes in Figure 3 suggest that the mean field approximation is no longer valid below
the Erdös-Renyi threshold. These observations seem to be in accordance with the results obtained in [8] for
the mean field approximation of another interacting diffusion model (so-called Kuramoto model) on a random
Erdös-Renyi graph: Therein, the mean field approximation is shown to hold true if pNN/ log(N)→∞.
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Figure 3. Comparison between interactions terms for pN = log2(N)/N , pN = log(N)/N and

pN = log1/2(N)/N .

3. Algorithm

3.1. Introduction

In this section, we present the algorithms used to simulate the particle system (3). We also consider a slightly
different model in Section 3.3, where the neurons no longer spike when their membrane potential crosses a fixed
deterministic threshold but they spike with rate f i(Xi

t) at time t. (see Section 3.3 for a precise definition).

Clock-driven vs. event-driven algorithm

The simulation of a very large network of neurons requires to carefully organize the program. We have used
two different methods.

Clock-driven method. We fix a time step ∆ and approximate the values of the membrane potentials
at each time step T0 + `∆ for ` ∈ N. This method is quite simple to implement, but not very fast.
The choice of the time step ∆ is crucial: it has to be very small compared to the typical length of an
InterSpike Interval (ISI).
Event-driven method. This method consists in, first, simulating the times at which events occur,
and second, updating the state of the network at these times. The advantage is that the clock is
automatically fitted to the state of the system. In our algorithm, we have chosen the spiking times to
describe the important events of this method.

We have used the clock-driven method to simulate the hard threshold model and the event-driven method for
the soft threshold model. In this case, our algorithm is an extension of Ogata’s algorithm, see [21].

3.2. Hard Threshold

We consider the finite system defined by (1), which we rewrite below for the sake of convenience:
Xi
t = Xi

0 +

∫ t

0

b(Xi
s)ds+

β

N

N∑
j=1

αi,jM j
t +W i

t − (XF −XR)M i
t ,

M i
t =

∑
k∈N

1[0,t]

(
τ ik
)
,

∀i ∈
{

1, ..., N
}
, (29)

where, as usual, τ ik represents the time at which neuron i reaches the threshold XF > 0 for the k-th time; above,
XR is the (common) reset values of the neurons.
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In this section, we simulate the network at each time step `∆, where ∆ is our fixed discretization parameter.
The network is fully described by ((X̄i

`∆, M̄
i
`∆), i ∈ {1, . . . , N}, `∆ ≤ T ).

• Initialization ` = 0.
– We set M̄ i

0 = 0 and simulate the membrane potentials X̄i
0 as independent and identically distributed

according to the initial law.
• Step `∆→ (`+ 1)∆.

– Evolution of the membrane potentials without interaction, nor spontaneous spikes:

ˆ̄Xi
(`+1)∆ = X̄i

`∆ + b(X̄i
`∆)∆ +W i

(`+1)∆ −W
i
`∆.

– Construction of the set Γ0
(`+1)∆ of those neurons that are spiking first at time (`+ 1)∆. First, set

Γ0
(`+1)∆ := {i ∈ {1, . . . , N}, ˆ̄Xi

(`+1)∆ ≥ XF }. For each neuron i /∈ Γ0
(`+1)∆, we have X̄i

`∆ ≤ XF

and ˆ̄Xi
(`+1)∆ ≤ XF but it could happen that sup`∆≤t≤(`+1)∆

ˆ̄Xi
t ≥ XF , i.e. the process crosses the

threshold during one time step but is back below the threshold at time (`+ 1)∆. We approximate
the probability of such an event by the well known corresponding probability for a Brownian bridge
(see [13]), that is

pi = exp

−2
(XF − ˆ̄Xi

(`+1)∆)(XF − X̄i
`∆)

∆

 .

More precisely, for each i /∈ Γ0
(`+1)∆, we simulate U i`+1, uniformly distributed on [0, 1], indepen-

dently of everything. If U i`+1 < pi, we add the neuron i in the set Γ0
(`+1)∆ of spiking neurons.

– Construction of the cascade. Following Subsection 2.8, we let for i 6∈ Γ0
(`+1)∆:

ˆ̄Xi
1,(`+1)∆ := ˆ̄Xi

(`+1)∆ +
∑

j∈Γ0
(`+1)∆

Jj→iN ,

and then Γ1
(`+1)∆ := {i ∈ {1, · · · , N} \ Γ0

(`+1)∆ : ˆ̄Xi
1,(`+1)∆ ≥ XF }. Iteratively, we define for any

i ∈ {1, · · · , N}:

ˆ̄Xi
k+1,(`+1)∆ :=


ˆ̄Xi
k,(`+1)∆ +

∑
j∈Γk

(`+1)∆

Jj→iN if i 6∈ Γk(`+1)∆,

ˆ̄Xi
k,(`+1)∆ −

 ˆ̄Xi
k,(`+1)∆ −XR

XF −XR

 (XF −XR) if i ∈ Γk(`+1)∆,

Γk+1
(`+1)∆ :=

{
i ∈ {1, . . . , N}\Γk(`+1)∆ : ˆ̄Xi

k+1,(`+1)∆ ≥ XF

}
.

– Final update. Call kmax the first index when Γkmax

(`+1)∆ = ∅. And then we let

M̄ i
(`+1)∆ = M̄ i

`∆ +

kmax−1∑
k=0

1Γk
(`+1)∆

(i),

X̄i
(`+1)∆ = ˆ̄Xi

kmax,(`+1)∆.
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Algorithm 1 Pseudo code for the simulation of a network of interacting neurons in case of hard threshold

Initialize the processes Xi and M i of neuron i, for each i = 1, ..., N ;
repeat

simulate the potential of each neuron for one time-step not considering interaction or resetting;
add every neuron with potential above the threshold to the list of spiking neurons;
for i neuron still below the threshold do

simulate the event “a Brownian bridge crosses the threshold” for neuron i;
update the list of spiking neurons;

repeat
update the entire network by adding kicks caused by spiking;
reset the spiking neurons;
update the list of spiking neurons;

until the cascade of spiking neurons has been exhausted
until we have simulated the network for enough time-steps

3.3. Soft threshold

We now address a new model, which leads to a new algorithm. We explain below how this new model is
connected with the previous, but, first, we want to make clear the reasons why we introduce this new model:

• One issue with the model developed previously is that it allows a cascade phenomenon; this turns out to
be a hindrance from the numerical point of view. We are thus interested in having a smoother version.

• Anyway, the model studied up to now is not perfectly adapted to biological measurements: one main
criticism (to which we already alluded in introduction) is precisely the fact that spikes are transmitted
instantaneously to the post-synaptic neurons. Indeed, in (3), the post-synaptic neuron j receives a kick

of size J i→jN exactly at the spiking time of the pre-synaptic neuron i. If its membrane potential exceeds
the threshold, the neuron j also spikes at the same time.

The idea for solving this issue is to use a point process based model (see [5, 11] for related references), with
the following main features: Neurons have a probability of spiking that is strictly less than one when their
potential reaches the threshold (which explains why the threshold is no longer hard). Also the probability of
having two spikes at the exact same time is zero (as long as the potential has a finite value) and so there is
no more possibility of a cascade. A point process based system can be difficult to simulate, but there exist
recipes for simplifying the creation of the algorithm. One of them is an algorithm developed by Ogata, see [21],
specifically designed for simulating point processes. We make it clear below.

Our soft threshold model is a Markov process based upon the following general rule. The neuron i spikes at
time t with rate f i(Xi

t), that is

lim
dt→0

1

dt
P
(
neuron i spikes in [t, t+ dt] |σ(Xi

s, s < t, i = 1, · · · , N)
)

= f i(Xi
t).

Also, given the history before t, neurons behave independently until a new neuron spikes. In particular, for such
a model, two neurons spike precisely at the same instant with probability 0, which explains why we have no
more cascades. Between two spikes in the system, the membrane potentials of the neurons evolve independently
according to the same diffusive dynamics as in (1); when a neuron spikes, all the membrane potentials receive
a kick, as prescribed by the values of the synaptic weights.

Remark 11. (1) One can think of the hard threshold model as a particular case of the soft threshold model
with the rate functions

f i(x) =

{
+∞ if x ≥ XF

0 if x < XF ,

in which case the rate functions are the same for all the neurons.
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(2) the choice f i(x) = C ((x−XF )+)
p

with a large p ∈ N and a good choice of constant C should be a
good approximation of the hard threshold model. Notice that this intensity function is equal to zero
for values of the potential that are below XF , the latter still playing the role of a threshold: biological
neurons indeed do not spike when their potential is below some threshold (actually it depends on the type
of neurons we are dealing with, but this is mostly true for cortex neurons). When the potential exceeds
XF , the probability of spiking should quickly increase with the membrane potential so that the neuron
will quickly spike.

The soft threshold model can be rigorously defined as a multivariate point process. Although we do not
provide the definition explicitly, we borrow materials from this theory to construct our algorithm.

• First, we know that, given the membrane potentials X1
t , · · · , XN

t at a time t (t being typically an event
of the multivariate point process), the first next event t+ T after t (or equivalently, the first time after
t at which a new neuron spikes) is given by the first occurrence of a new point in a point process of

intensity (
∑N
i=1 f

i(Xi
t+θ))θ≥0.

• Second, given T , the label i of the spiking neuron is distributed proportionally to f i(Xi
t+T ).

Although this construction is pretty simple, it is not possible to implement it directly in the form of a simulation
method. So, in practice, we combine the last two points with a rejection procedure. Ideally, it reads as follows:

• For all, i = 1, . . . , N , we introduce a (predictable) process (f̃ it+θ)θ≥0 such that f i(Xi
t+θ) ≤ f̃ it+θ, for all

θ ≥ 0;
• provided we can do so, we simulate, conditional on the history up until time t, the next event (or next

point) t+ T of a point process with intensity (
∑N
i=1 f̃

i
t+θ)θ≥0;

• we choose the label i0 of the spiking neuron proportionally to f̃ i0t+T ;

• we simulate the membrane potential Xi0
t+T according to the sole diffusive dynamics prescribed before;

• we accept the spike of neuron i0 at time t+T with probability f i0(Xi0
t+T )/f̃ i0t+T . In this case, we update

its membrane potential to its reset value Xi0
t+T = XR and add the kick J i0→jN to the post-synaptic

neurons j (i.e. such that J i0→jN 6= 0);
• we then restart the procedure.

Of course, the choice of the “approximation functions” (f̃ it+θ)θ≥0 is crucial, as the next event of the process

(
∑N
i=1 f̃

i
t+θ)θ≥0 should be easily simulated. In practice, functions (f̃ i)i=1,··· ,N are taken piecewise constant. We

can even think of requiring the condition f̃ it+θ ≥ f i(Xi
t+θ) for θ in a small neighborhood of t only and then of

choosing (f̃ it+θ)θ≥0 as a random function depending on the sole past of the system before t, in which case the
next event t+ T is simulated as the next event in a standard Poisson process.

In fact, the condition f̃ it+θ ≥ f i(Xi
t+θ) may be easily verified when we consider the determinisic part of the

dynamics (with the sole drift b and without the Brownian motion), as the values of the process Xi are then
easily controlled. However, because of the Brownian part in the dynamics, it is impossible to create a piecewise
constant approximation function, as the support of a non-degenerate Gaussian random variable is the whole
(−∞,+∞). However the probability that these values be very large is quite small; as a result, we can choose the

approximation function in such a way that f̃ it+θ ≥ f i(Xi
t+θ) with very high probability for θ in the neighborhood

of t.
For instance, if we consider that, between two spikes t and t + T , Xi has the following Ornstein-Ulhenbeck

dynamics:

dXi
θ = −λi

(
Xi
θ − ai

)
dθ + σidW i

θ ,

with Xi
t as initial condition and ai as attractor, then we have the following explicit expression for the membrane

potential:

Xi
θ = ai + exp(−λi(θ − t))

(
Xi
t − ai

)
+ σi

∫ θ

t

exp
(
−λi(θ − s)

)
dW i

s , θ < t+ T.
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In words, the membrane potential follows Gaussian dynamics between two spikes and, using standard confidence
intervals for the supremum of Gaussian processes, we can easily cook up the approximation function f̃ i.

Remark 12. (1) For very large N , we do not update f̃ i at each spiking times of one neuron. We only

modify the value of f̃ i0 and f̃ j for neurons j s.t. J i0→jN 6= 0.
(2) The full network is implicitly updated after a fixed time interval: the time is segmented by a coarse time

grid of scale ∆, and the f̃ i are computed within these intervals. At the end of one of these intervals,
the maxima f̃ i are updated. We use this method in order to achieve a trade-off: if ∆ is large then
the maxima f̃ i are large which means high computational cost due to the percentage of rejected points
whereas if ∆ is small then the computational cost is high due to the frequent updates of the full network.
The scale ∆ is chosen arbitrarily from experience.

Summary

The algorithm can be found in a pseudo-code form in Algorithm 2 and is represented in Figure 4. It can be
summarized in three steps: generate a spiking time t, select a neuron, apply a rejection sampling condition on
the spike. This method is applied as many times as necessary for reaching a certain condition, typically until
a final time is reached or a given number of spikes has been found. The rejection method is represented on
step (4) in Figure 4, but several preliminary steps are necessary.

The step (0) in Figure 4 is to find a time interval that should contain the next event. This step is actually
important for the speed of the algorithm. Events are exponentially separated, with the sum of the approximation
functions as parameter, see step (1) in Figure 4:

Tk+1 = Tk + T̃, with T̃ ∼ E (
∑
i

f̃ i)

This step gives the time when the event is occurring. To find the neuron responsible for the event, we use again
the sum of the approximation functions. The bigger the value of f̃i, the higher the probability that the neuron
i is the next one to spike.

Once we know which neuron spikes, we update its potential Xi(Tnext) (step (3)). In this regard, it is
important to remark that, while the event is categorized as Tnext in step (1), it is regarded in the end as an
event proper to neuron i (2 in the figure); we denote it by Ti,n.

The value of the potential Xi at time Ti,n is needed to compute the value of the rate f i(Xi(Ti,n)) and thus to
classify the event between false and true spikes (step (4)). The value of a random variable uniformly distributed

between 0 and f̃ i gives the classification: if it is less than f i(Xi(Ti,n)), the spike is a true one; if it is greater, it
is a false one. If the spike is a true one, the potential of the spiking neuron is reset to XR while the potentials
of all the postsynaptic (children) neurons are updated to the time of event Tnext. The values of the synaptic

weights (J i→j)j=1,··· ,N are then added to their potentials (step (5)) (so that the rates (f j(Xj
Ti,n

))j=1,··· ,N may

increase). If the spike was a false one, nothing happens.
The algorithms then loops back to step (0) until a given condition (number of spikes reached, time elapsed,

etc.) is met.

Comparison between clock-driven and event-driven algorithms

We now argue why the event-driven algorithm may be more advantageous than the clock-driven one.
We first recall that the clock-driven method is based upon a time discretization. The state of the system is

indeed approximated at discrete times of the form (T0 + `∆)`∈N, for a given time step ∆. The advantage is
pretty clear: The clock-driven method may be easier to implement than the event-driven one. Still, it has a
major drawback: the time mesh disregards the own clock of the system; the former is indeed uniform whilst
the latter is deeply heterogeneous since spikes may occur much more frequently at certain periods. In other
words, the time mesh chosen in the clock-driven method may not be adapted to the dynamics of the system (we
did not explore adaptive time meshes since the event-driven method is automatically adapted). As a result, it
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Figure 4. Illustration of Algorithm 2 for a system composed of 3 neurons.

The steps (0)→(1)→(2)→(3)→(4)→ (5) are described in the text.

may be harder for the clock-driven algorithm to capture the right behavior, leading to precision, stability and
complexity issues.

For instance, precision issues may arise because spikes (at least in the simplest form of the clock-driven
method) can only occur at the nodes of the time mesh. For sure, this creates a local small error, that may
accumulate on the long run. Whilst sophisticated strategies may be implemented to mitigate this effect (for
instance the dynamics between two consecutive nodes may be reconstructed a posteriori in the form of a bridge),
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Algorithm 2 Simulator (for Ornstein-Ulhenbeck subthreshold dynamics)

1: N : number of neurons
2: Set i = k = n = 0 and τ0 = T0 = 0
3: Set (T j)j∈{1,··· ,N} = (0) and (Xj)j∈{1,··· ,N} = (0)
4: Set i = i+ 1 and generate τi+1

5: Compute S =
∑N
n=1 f̃

n
τi

6: Set T̃ ∼ E (S) and ∆t = ∆t+ T̃

7: if τi−1 + T̃ > τi then
8: Set i = i+ 1 and go to 4

9: Set k = k + 1 and put Tk = Tk−1 + T̃ . System spiking time
10: Put u ∼ U ([0, 1])

11: n← argminn∈{1,··· ,N}

(∑N
j=1 f̃

j
τi ∗ u <

∑n
j=1 f̃

j
τi

)
12: Put t = Tk − Tn and Tn = Tk
13: Put Xn = an + e−λ

nt(Xn − an) + σnN (0, (1− e−2λnt)/(2λn))
14: Put u ∼ U ([0, 1])

15: if f̃nτi ∗ u < f(Xn) then
16: for all j do1N
17: if j 6= n then

18: Xj = aj + e−λ
jt(Xj − aj) + σjN (0, (1− e−2λjt)/(2λj))

19: Xj = Xj + Jn→j

20: Put τi = Tk and go to 4

a common (and simple) solution is to take a very small time step ∆. However, the smaller the step ∆ the higher
the computational cost.

For sure, choosing ∆ small has a low interest when the activity of the network is low: When spikes are rare,
the computational effort that is required for handling a small ∆ looks somewhat disproportionate.

Conversely, ∆ has to be chosen very small in order to account for blow-ups. As stated above, this increases
the complexity of the method.

These basic observations explain the need for an alternative, event-driven, method. By focusing on the spikes
generation (and only computing that), the event-driven approach may indeed reduce the global complexity.
Also, times at which the dynamics are simulated are no longer multiples of ∆ but can now potentially take
any decimal value within the precision range of the machine. The values are then easily precise up to 10−15 on
modern machines.

3.4. Graph management

The storage of the interaction matrix JN is a strong limitation in our algorithm. To simulate a network
with N neurons, we need to know the values of N2 synaptic weights J i→jN . In practice, the size of the memory
requested to store this matrix is one of the main limitation in our algorithm. For instance, in the classical
algorithm used for creating a N -node Erdös-Renyi directed graph, a matrix of size N2 is created, where each
element indicates whether there is a connection between two neurons; typically, this may be an issue when N is
greater than 106. Indeed, it is impossible to store on a laptop a graph with one million of nodes, or a network
with one million of neurons.

The main idea we propose here is to slightly change the classical method for generating the synaptic weights
(when given as the realizations of independent and identically distributed variables as it is the case in the
Erdös-Renyi graph); in a sentence, our strategy is: “instead of storing N rows of size N , store only N numbers,
namely store for each row one number that encodes the whole row”.
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We call our new algorithm a reconstruction algorithm. Let us rephrase the main idea: instead of storing the
full matrix of interaction, we store N values, say S0, SN . . . , SN(N−1) (the fact the indices are in the form Ni

is explained in Figure 5 below). The knowledge of SNi is sufficient to compute the row J i→•N of the synaptic
weights from i to all the other neurons. In other words, instead of requesting a memory stack of order N ×N ,
we just request to a smaller memory stack of order N . Of course, the price to pay for this operation is that,
each time we need the elements of the row number i, we have to recompute from scratch the whole vector of
interactions pointing from i. As we make clear below, this method is numerically efficient if, first, the matrix
is static (i.e., the values do not evolve in time), and second, we do not use it too often; in fact, both conditions
are fulfilled in our setting.

The whole trick is based on the fact that, from the numerical point of view, the matrix JN is obtained by
a simulation technique, which is in fact deterministic! Consider indeed a Pseudo Random Number Generator
(PRNG) in a state S0. If one uses this PRNG once, a random number r0 is produced and the state of the
PRNG is changed from S0 to S1. After N iterations, the PRNG is in a state SN and N random numbers have
been returned. Now if we put the PRNG back to state S0, and ask again for a number, then r0 will be returned
again and the RNG will be back in state S1; after N iterations, the PRNG is again in state SN and the N
random numbers that have been returned are the same as the N numbers that had been initially generated.
So, going back to the matrix JN , we can store the states SNi of the PRNG at the beginning of the simulation
of the row i+ 1. Each time we need the values of the weights J i0→jN , we just change the state of the PRNG to

SNi0 and generate again (with the PRNG) the pseudo-random values J i0→jN . Obviously, putting the PRNG in
the same state gives the same pseudo-random result. We make this clear in Figure 5 below.

This method is easily implemented in the case of an Erdös-Renyi graph (which is our benchmark example), see
also Algorithm 3. Instead of storing the connections in a matrix, one stores only the first states (SNi)i=0,··· ,N−1;
at the end of the day, the memory print is much lower... but the computational cost is higher. To make it
clear, this algorithm is not very efficient if one needs to often access the individual entries of the matrix, or if
one wants a dynamical system where the graph connections are allowed to evolve in time. But in our case the
connections are fixed once for all at the beginning of the simulation and the only moment we need them is to
update the potential of the children after a spike; in the latter case (and this the key point), what we want is
exactly the full row of the matrix.

Classical method :

S0

SN
...

SN(N−1)

→
→
...
→


J11 J12 · · · J1N

J21 J2N

...
...

JN1 JN2 · · · JNN

 = J

Reconstruction method : J =


S0

SN
...

SN(N−1)


→
→
...
→

J11 J12 · · · J1N

J21 J2N

...
...

JN1 JN2 · · · JNN

Figure 5. The two graph management methods summarized here. The → means “generate
the row on the right”, the (Si)i∈{0,··· ,N(N−1)} are the state of the PRNG before the generation
of the row and (·) is what is kept in memory (graph in the classical method, vector of PRNG’s
states in the reconstruction method)
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Algorithms

Algorithm 3 Generation of a vector of PRNG states

1: PRNG: Pseudo Random Number Generator
2: p: probability of connection between two neurons
3: N: number of neurons in the system
4: (Vi)i∈{1,··· ,N}: vector of PRNG status
5: for i do0N-1
6: Vi ← Si∗N
7: for j do1N
8: PRNG . State change from Si∗N+j−1 to Si∗N+j

Remark 13. We have to use another random generator number for the simulations of the Brownian motions
and the Poisson Processes.

Algorithm 4 gives a comparison between the two (classical and reconstruction) methods:

Algorithm 4 Comparison of usage between classical method and reconstruction

(Mij)(i,j)∈{1,··· ,N}2 : Interaction matrix

Neuron i is spiking
. Using matrix graph
for j do1N

if Mi,j = 1 then
Update potential of neuron j

. Using reconstruction
RNG.SetState(Vi)
for j do1N

if Bernoulli(RNG)= 1 then
Update potential of neuron j

A natural question is the question of the complexity of such a reconstruction-based method compared to the
complexity of the classical one. This is a broader matter that is addressed in the next section.

3.5. Complexity: memory and instructions

We remind the user that algorithmic complexity must be read as a function relating the input of an algorithm
(more precisely its size) and the number of steps it takes (its time complexity) or the number of storage locations
it uses (its space complexity). The asymptotic values of this function (for larger and larger sizes of the input)
are noted with a big O notation.

Of course, the reader must remember that two algorithms with the same order of complexity (or two imple-
mentations of the same algorithm) may execute with different amounts of resources because of a multiplicative
factor between the two (which will become somehow insignificant asymptotically, but which is not for inputs of
small size). Having in mind this limitation, the analysis we provide below focuses on the comparison between
the orders of complexity.
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Time complexity at creation Time complexity during usage Space complexity
Reconstruction method O(N2) O(N) O(N)

Interaction matrix O(N2) O(1) O(N2)

Table 1. Number of operations to create the matrix (col. 1); Number of operations at each
call (col. 2); Memory complexity (col. 3).

It must be stressed that the only input that we regard in the analysis of the complexity is the number N
of neurons. In particular, all the routines that do not depend explicitly on N do not really appear in the
complexity, whilst they could have a non-negligible cost. For instance, PRNG takes time, but it does not show
up in the final computation of the complexity.

The first complexity column is given as an example of how the complexity is computed. In the classical
algorithm for generating an interaction matrix, for all the parents, we must look at all the other neurons in
order to determine whether they are children of the parent. Hence the double loop, leading to N2. In the case
of the reconstruction method presented above, the number of children of a given parent is determined before
hand, and in the second loop their index.

It must be also stressed that, in practice, the time complexity at creation of the reconstruction method is
lower than the complexity of the interaction method; theoretically, this is not the case as one should take into
account the worst case scenario (i.e, the complete graph).

As for the last two columns, the space complexity is obviously smaller for the reconstruction method, making
it very relevant for big graphs. Still, the time complexity using the vector of PRNG states is worse than the
time complexity of the interaction method, but, as we already commented, this is not such a hindrance in our
case.
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