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STABILITY THEORY FOR SOME SCALAR FINITE DIFFERENCE SCHEMES :
VALIDITY OF THE MODIFIED EQUATIONS APPROACH ∗

Firas Dhaouadi1, Emilie Duval2, Sergey Tkachenko3 and Jean-Paul Vila4

Abstract. In this paper, we discuss some limitations of the modified equations approach as a tool
for stability analysis for a class of explicit linear schemes to scalar partial differential equations. We
show that the infinite series obtained by Fourier transform of the modified equation is not always
convergent and that in the case of divergence, it becomes unrelated to the scheme. Based on these
results, we explain when the stability analysis of a given truncation of a modified equation may yield
a reasonable estimation of a stability condition for the associated scheme. We illustrate our analysis
by some examples of schemes namely for the heat equation and the transport equation.

Résumé. Dans ce papier, nous examinons quelques limites des équations modifiées, comme outil
pour l’analyse de la stabilité d’une certaine classe de schémas numériques explicites linéaires pour des
équations aux dérivées partielles scalaires. Nous montrons que la série obtenue par transformée de
Fourier de l’équation modifiée n’est pas toujours convergente et que dans ce cas, son comportement
n’est plus lié à celui du schéma. A partir de ces résultas, nous expliquons quand l’analyse de stabilité
d’une troncature donnée peut donner des conditions de stabilité raisonnables. Cette analyse est illustrée
par quelques exemples, notamment des schémas pour l’équation de la chaleur et pour l’équation de
transport.

Introduction

Modified equations have been the subject of investigations and debates in numerical analysis. And yet,
despite being relatively easy to establish, their use has been regarded with a lot of skepticism due to the lack of
theoretical justification and the trickiness of their analysis. The first use of this technique for stability purposes is
due to Hirt [1]. He provided the first practical examples for which modified equations give relevant information,
in a heuristic manner. The pionneering work of Warming and Hyett [2] introduced how to obtain these equations
in the general case and mostly clarified the link between the stability of the scheme and the modified equations.
They provided a simple and efficient way to obtain the exact Von Neumann stability conditions from a finite
number of the modified equation coefficients, for linear scalar schemes. An alternate way to obtain modified
equations was introduced in [3]. The method permits to obtain the same modified equation through a series
expansion of a an explicitly known function rather than the elimination technique of [2]. Other works that tried
to tackle stability analysis through modified equations include [4, 5].
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In this paper, we investigate the modified equations for some finite difference schemes, in an attempt to make
it clear why this technique often fails to provide relevant information on stability. First, we present a reminder on
how to obtain modified equations for a given linear scalar scheme. We explain the basics of the heuristic stability
theory and its limitations through some examples. In the second part, we present the technical framework and
tools needed for stability analysis. We then clarify the mathematical reasons behind the frequent failures of the
heuristic stability theory by investigating the convergence of the Fourier transform of the modified equation.
We show that the latter is conditionally convergent and only then does it give significant results. Then, we
compare the stability conditions of truncated modified equations with the corresponding scheme in the region
of convergence. Finally, we present some examples to justify our analysis.

1. On modified equations and heuristic stability

1.1. Obtaining the equations

Consider as an example, the linear scalar transport equation given by :

∂ũ

∂t
+ c

∂ũ

∂x
= 0 (1)

with positive velocity c. In order to solve this equation with a finite difference scheme, we first introduce a
uniform grid of points defined as usual by (xj = j∆x, tn = n∆t) and we denote by unj = u(xj , t

n) the value
of the numerical solution in the corresponding grid point. Under these notations, take for instance the upwind
Euler scheme for equation (1) :

un+1
j − unj

∆t
+ c

unj − unj−1

∆x
= 0 (2)

Generally, in order to get relevant information on the consistency of the scheme [6] or its convergence rate, we
assume the existence of a smooth, infinitely differentiable numerical solution u(x, t) that satisfies u(xj , t

n) = unj
in each grid point. Provided this solution, we expand each term of the scheme in Taylor series in the vicinity of
(xj , t

n) which leads to an equation containing an infinite number of partial derivatives :

∂u

∂t
+

∆t

2

∂2u

∂t2
+

∆t2

6

∂3u

∂t3
+ . . . = −c∂u

∂x
+
c∆x

2

∂2u

∂x2
+
c∆x2

6

∂3u

∂t3
+ . . . (3)

This equation as is, is sufficient to prove consistency. In fact, we can clearly see that the in the limit ∆t → 0
and ∆x → 0 we recover the original transport equation. However, for further analysis of the numerical effects
induced by the scheme, it would be more intuitive to consider an evolution equation with only space derivatives.
To do that, we use the elimination procedure introduced by Warming and Hyett in [2], that is we repeatedly use
linear combinations of the equation (3) and its derivatives in order to eliminate higher order time derivatives
and finally obtain the equation :

∂u

∂t
+ c

∂u

∂x
= c

∆x

2

(
1− c∆t

∆x

)
∂2u

∂x2
− ∆x2

6

(
1− c∆t

∆x

)(
1− 2c

∆t

∆x

)
∂3u

∂x3
. . . (4)

This is called the modified equation associated with the upwind Euler scheme for the transport equation (1).
It is worth noting that this is not a partial differential equation in the conventional sense as it does not have
an order or a finite amount of partial derivatives. For a solution to exist, one also needs a proper definition of
infinitely many boundary conditions. Therefore, we restrict our analysis to solutions that are periodic [2].

1.2. Heuristic stability and limitations

Besides proving consistency, the modified equation quantifies explicitly the additional numerical effects. For
example, it tells that up to first order in ∆x and ∆t, the numerical solution rather satisfies a convection diffusion
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equation with a numerical dissipation coefficient given by c∆x
2

(
1− c∆t

∆x

)
. Note however that the sign of the

latter can be negative in which case the equation becomes ill-posed in Sobolev spaces. It follows from this that
a necessary and sufficient condition of stability for the solutions of this convection-diffusion equivalent is :

c
∆t

∆x
≤ 1 (5)

which turns out to be exactly the CFL condition for the scheme (2). This gives a lot of potential for the
modified equations to be a practical tool for stability analysis. Although the analysis is completely heuristic
and has no rigorous foundation, its results make sense for a large class of schemes. However, there are also
many examples for which this analysis fails to provide any practical stability condition. Consider for example
the one dimensional heat equation :

∂u

∂t
− α∂

2u

∂x2
= 0 (6)

where α > 0 is the diffusion coefficient. We discretize this equation using centered finite differences :

un+1
i − uni

∆t
− α

uni+1 − 2uni + uni−1

∆x2
= 0 (7)

Using the same elimination procedure we obtain the following modified equation up to 4th order :

∂u

∂t
− α∂

2u

∂x2
=
α∆x2

12

(
1− 6

∆t

∆x2

)
∂4u

∂x4
+ . . . (8)

If we choose to stop at the first non-zero truncation term as previously, the conclusions are already less straight-
forward as we have a non-vanishing second order term that comes from the heat equation itself and a 4th order
term that comes from the numerical effects. Therefore in order to look into stability of this equation, let us
shift to Fourier space. Let v(k, t) be the Fourier transform of u(x, t) then under these notations, equation (8)
yields :

∂v

∂t
= −αk2

(
1− k2∆x2

12

(
1− 6

∆t

∆x2

))
v (9)

It is reasonable to only consider the wavenumbers that are bounded by |k∆x| ≤ π, since these are the only
wavenumbers admissible by the discrete mesh. In this setting, it is easy to verify that :

−αk2

(
1− k2∆x2

12

(
1− 6

∆t

∆x2

))
≤ 0 ∀k ∈

[
− π

∆x
,
π

∆x

]
(10)

which implies that the considered truncation is unconditionally stable for all admissible ∆t and ∆x. This result
is obviously erroneous as it is well known that the Von Neumann stability analysis proves that a necessary and
sufficient stability condition for the scheme (7) is :

α
∆t

∆x2
≤ 1

2
(11)

Thus, the heuristic analysis of this truncation of the modified equation failed to provide any practical stability
condition for the scheme and truncating the equation at higher orders does not seem to do any better. This
is one of the examples that demonstrates limitations of the method. In what follows, we first introduce all
the necessary notations and setting for stability analysis before attempting to explain why the stability of the
truncation is sometimes incoherent with the stability of the scheme.
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2. Theory of stability through modified equations

2.1. Notations and assumptions

We will consider for our analysis partial differential equations that are linear, first order in time and of
arbitrary order in space :

∂ũ

∂t
+

P∑
p=1

Ap
∂pũ

∂xp
= 0 (12)

where Ap are constants. We consider explicit in time schemes, that are consistent with equation (12) and can
be written as :

un+1
j = unj + ∆t

nr∑
p=−nl

bp (∆x)unj+p (13)

where nl and nr are the number of mesh points to the left and to the right of xj respectively, used in every
iteration. The coefficients bp verify

nr∑
p=−nl

bp(∆x) = 0 (14)

for consistency purposes, so that constant solutions, which are solution of the pde (12) remain as such for the
scheme. Sometimes it is preferable to cast the scheme (13) into an equivalent form :

un+1
j = unj +

∆t

∆xq

nr∑
p=−nl

Bp (∆x)unj+p (15)

where q is the highest power of 1/∆x present in the summation. Very often, when using standard finite
differences, the coefficients bp are polynomials in 1/∆x and q is the highest degree among these polynomials
which is frequently equal to the order P of the pde (12). This formulation can be practical for stability analysis
since most stability conditions for explicit schemes are given by bounds on the quantity λq = ∆t/∆xq in the
limit ∆x→ 0 and ∆t→ 0. Therefore, setting λq as a non-vanishing parameter is a reasonable assumption that
permits to reduce the number of free small parameters, that is we can take ∆t = gq(∆x) = λq∆x

q and consider
instead λq and ∆x as free independent parameters. In what follows, in order to perform stability analysis in
Fourier space, we consider a space continuous counterpart of the scheme (15) :

un+1(x) = un(x) + λq

nr∑
p=−nl

Bp (∆x)un(x+ p∆x) (16)

Let v(k, t) be the Fourier transform in space of u(x, t). If we take θ = k∆x, then the Fourier transform of
equation (16) yields :

vn+1(k) =

(
1 + λq

nr∑
p=−nl

Bp(∆x)eipθ

)
vn(k) = S(θ, λq,∆x)vn(k) (17)

Since we will be operating most of the time in Fourier space, it seems necessary to recall consistency of the
scheme in the same setting. Therefore if we assume that the exact solution to the pde (12) satisfies in Fourier
space :

ṽ(k, t+ ∆t) = exp

(
∆t

P∑
p=1

(ik)pAp

)
ṽ(k, t) = G̃(θ,∆t)ṽ(k, t) (18)
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then the scheme (13) is consistent with the pde (12) to order s if and only if [7] :∣∣∣∣∣ G̃(θ,∆t)− S(θ, λq,∆x)

∆t

∣∣∣∣∣ = O(∆ts) (19)

Lastly, we denote the modified equation associated to the scheme (13) by :

ut =

∞∑
p=1

µp(λq,∆x)
∂pu

∂xp
(20)

where µp are constants depending on ∆x and λq.

2.2. Fourier stability analysis

In this part, we focus on the link between the modified equation and the scheme [2]. The amplification factor
of the scheme is none other than the modulus of S(θ, λq,∆x). Now, in order to recover an equivalent expression
in the continuous time for the modified equation, we apply the Fourier transform to (20). This implies that
v(k, t) satisfies the differential equation :

dv

dt
=

( ∞∑
p=1

(ik)pµp(λq,∆x)

)
v(k, t) =

( ∞∑
p=1

αp(λq,∆x)θp

)
v(k, t) = G(θ, λq,∆x)v(k, t) (21)

where αp(λq,∆x) = µp(λq,∆x)ip/∆xp. For convenience, we will say that the modified equation is stable if, for
an initial condition v(k, t = 0) = v0(k), the solution to the Cauchy problem :{

dv

dt
= G(θ, λq,∆x)v(k, t)

v(k, 0) = v0(k)
(22)

that is given by :
v(k, t) = etG(θ,λq,∆x)v0(k) (23)

remains bounded ∀t < T , where T > 0. Given this solution, one can obviously write :

v(k, t+ ∆t) = e∆tG(θ,λq,∆x)v(k, t) (24)

Now, since the solution to the scheme (13) with the same initial condition is also an exact solution to the
modified equation (20) [2], uniqueness of this solution gives :

e∆tG(θ,λq,∆x) = eλq∆xqG(θ,λq,∆x) = S(θ, λq,∆x) (25)

It follows from that the proposition :

Proposition 2.1. For any scheme that writes as (13) and that is consistent with (12), there exists a positive
number θm that depends only on λq and ∆x such that, ∀θ ∈ ]−θm, θm[ the expansion

G(θ, λq,∆x) = −
∞∑
p=1

(1− S(θ, λq,∆x))p

pλq∆xq

holds and the series
∑∞
p=1 αp(λq,∆x)θp converges to 1

λq∆xq ln(S(θ, λq,∆x)).
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Proof. The scheme (13) is consistent with the pde (12) and so we have |S(0, λq,∆x)− 1| = 0 < 1. Since S is a
continuous function with respect to θ, ∃θm(λq,∆x) > 0 such that |S(θ, λq,∆x)− 1| < 1 ∀θ ∈] − θm, θm[, and
consequently, the principal logarithm ln(S(θ, λq,∆x)) defined by the series expansion :

ln(S(θ, λq,∆x)) = ln(1− (1− S(θ, λq,∆x))) =

∞∑
p=1

− (1− S(θ, λq,∆x))p

p
(26)

is convergent and eln(S(θ,λq,∆x)) = S(θ, λq,∆x). This proves that the function :

G(θ, λq,∆x) =
1

λq∆xq
ln(S(θ, λq,∆x)) (27)

is a solution of equation (25) for θ ∈]−θm, θm[. The exponential function is locally invertible in the vicinity of 0
and so this expansion is unique in this vicinity [3] and therefore ∀θ ∈]− θm, θm[. Moreover, since S(θ, λq,∆x) is
entire (as a finite sum of exponential functions) then further expanding S into power series of θ for θ ∈]−θm, θm[
finally yields :

G(θ, λq,∆x) =

∞∑
p=1

αpθ
p =

1

λq∆xq
ln(S(θ, λq,∆x)) (28)

and hence,
∑∞
p=1 αp(λq,∆x)θp is the series expansion of 1

λq∆xq ln(S(θ, λq,∆x)). This concludes our proof. �

Remark 2.2. Equality (28) also implies that the coefficients αp(λq,∆x) are given by :

αp(λq,∆x) =
∂p

∂θp

(
ln(S(θ, λq,∆x))

p!λq∆xq

)∣∣∣∣
θ=0

(29)

Remark 2.3. θm is not the radius of convergence of the series G(θ, λq,∆x). If we denote by R the radius of
convergence, then we have R ≥ θm. The exact radius is not trivial to find in practice in the general case, since
G(θ, λq,∆x) is a series expansion of a composite function. However it is sometimes possible to give estimates
or exact values of the radius for some examples as will be shown later.

Remark 2.4. In practice, when looking for convergence, we are mainly searching for constraints in λq and ∆x,
for which the series G(θ, λq,∆x) is convergent ∀θ ∈ [−π, π], that is we want R > π. A sufficient condition is
θm > π.

So far, we have shown that for fixed parameters ∆x and λq, the series G(θ, λq,∆x) converges if θ ∈]−θm, θm[.
This being a sufficient condition of convergence, we do not know what happens for |θ| ≥ θm. On the other hand
it is worth noting that, for |θ| > R, the series is divergent and equality (25) does not hold anymore. Therefore,
the modified equation stability is not linked to that of the scheme for |θ| > R.

2.3. Scheme stability domain and series convergence domain

Generally, in the Von Neumann setting, stability conditions of the scheme are given by constraints linking
λq and ∆x so that the inequality

|S(θ, λq,∆x)| ≤ 1 ∀θ ∈ [−π, π] (30)
is verified. These constraints define a region of stability Rs in the (λq,∆x) plane, that is :

Rs =
{

(λq,∆x) ∈ R2
+ : ∀θ ∈ [−π, π] : |S(θ, λq,∆x)| ≤ 1

}
(31)

In the same manner, we can define a region Rc of the same plane, in which the series G(θ, λq,∆x) converges :

Rc =
{

(λq,∆x) ∈ R2
+ : ∀θ ∈ [−π, π] : |G(θ, λq,∆x)| <∞

}
(32)



ESAIM: PROCEEDINGS AND SURVEYS 130

which is also equivalent to :
Rc =

{
(λq,∆x) ∈ R2

+ : R(λq,∆x) ≥ π
}

(33)
In practice, it is not always possible to exactly determine Rc. It is however easier to explicitly find a subset of
this region, that is :

Ωc =
{

(λq,∆x) ∈ R2
+ : ∀θ ∈ [−π, π] : |1− S(θ, λq,∆x)| < 1

}
⊂ Rc (34)

It is worth mentioning that Ωc is always a non-empty set. Indeed, for λq = 0, we have S(θ, 0,∆x) = 1 and
consequently ∀∆x ∈ R+ there exists in R2 a neighborhood of (∆x, λq) in which we have |1− S(θ, λq,∆x)| < 1.
This means that we always have convergence for sufficiently small values of λq. Lastly, we denote by Rm the
region of stability of the modified equation :

Rm =
{

(λq,∆x) ∈ R2
+ :
∣∣∣eλq∆xqG(θ,λq,∆x)

∣∣∣ ≤ 1
}

=
{

(λq,∆x) ∈ R2
+ : Re(G(θ, λq,∆x) ≤ 0

}
(35)

Provided these definitions, we can distinguish two cases :
(1) if Rs ⊂ Rc then the stability of the modified equation provides reliable and complete information

regarding the scheme stability.
(2) If any subset of Rs lies outside of the convergence domain Rc, this means that there is information on

the stability limit of the scheme that is missed by the modified equations since its Fourier transform is
non existing outside of Rc.

The following proposition is a direct consequence :

Proposition 2.5. For any scheme that writes as (13) and that is consistent with (12) we have (Rm ∩Rc) ⊂ Rs,
that is if the modified equation is stable and its Fourier series is convergent then the scheme is also stable.

This proves that inside the convergence domain Rc, the stability of the modified equation is a sufficient
stability condition for the scheme. Furthermore, we shall add that if Rs ⊂ Rc then this condition is also
necessary. This result, literally, is not of practical interest as the stability of the full series S(θ, λq,∆x) is either
nontrivial or impossible to obtain. But we will show that the above classification permits to justify whether a
truncated version of the modified equation yields significant information on stability.

2.4. Link between the stability of the scheme and the stability of a truncation

Instead of the full series expansion, let us consider a truncated modified equation to an arbitrary order N > P
:

ut =

N∑
p=1

µp(λq,∆x)
∂pu

∂xp
, µN 6= 0 (36)

We recall that our main purpose is to know when does the stability of this truncation provide relevant information
on the stability of the corresponding scheme. This differs from the approach of Warming and Hyett [2] in the
sense that they showed how to reconstruct the exact Von Neumann amplification factor using a finite amount of
coefficients µp without actually analyzing the stability of the truncated version. Under the Fourier transform,
the previous equation writes :

dv

dt
=

(
N∑
p=1

αp(λq,∆x)θp

)
v(k, t) = PN (θ, λq,∆x)v(k, t) (37)

Here, PN (θ, λq,∆x) is a polynomial of θ of degree N which is trivially a truncation of the series G(θ, λq,∆x).
In the same manner as previously, the ordinary differential equation (37) yields :

v(k, t+ ∆t) = e∆tPN (θ,λq,∆x)v(k, t) = SN (θ, λq,∆x)v(k, t) (38)
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In contrast to the full series, the stability conditions of the truncation are obtainable in most cases through the
analysis of the polynomial function PN (θ, λq,∆x). Let RN (θ, λq,∆x) be the rest of the series defined by :

RN (θ, λq,∆x) = G(θ, λq,∆x)− PN (θ, λq,∆x) =

∞∑
p=N+1

αp(λq,∆x)θp (39)

In the convergence domain Rc, the rest RN (θ, λq,∆x) is bounded and we have :

lim
N→+∞

RN (θ, λq,∆x) ≡ 0 and lim
N→+∞

SN (θ, λq,∆x) ≡ S(θ, λq,∆x) (40)

In this setting we can state the following result :

Proposition 2.6. Assume an initial condition satisfying supp(v0) ∈ [−M,M ] and an arbitrary truncation order
N > P , then for any (∆x, λq) ∈ Rc, if the truncated modified equation is stable in the sense that there exists
C > 0 such that :

|SN (θ, λq,∆x)| ≤ 1 + C∆t (41)
then the scheme is also stable in the same sense.

Proof. For (∆x, λq) ∈ Rc we have :

S(θ, λq,∆x) = e∆tG(θ,λq,∆x) = SN (θ, λq,∆x)e∆tRN (θ,λq,∆x)

Thus, since vn = Snv0, we can write :

|vn| = |Snv0| ≤ |SN |n
∣∣∣en∑∞

N+1 αpθ
p

v0

∣∣∣
≤ (1 + C∆t)n

∣∣∣enAθN+1

v0

∣∣∣
≤ (1 + C∆t)n

∣∣∣enA(k∆x)N+1

v0

∣∣∣
≤ (1 + C∆t)n

∣∣∣enA∆xN+1−q∆tkN+1/λqv0

∣∣∣
≤ eCT

∣∣∣eAT∆xN+1−qMN+1/λqv0

∣∣∣
≤ eCT eAT∆xN+1−qMN+1/λq |v0|

That is, vn is L2-stable for initial conditions that are of compact support in the frequency domain, that is
k ∈ [−M,M ]. �

3. Examples

3.1. Heat equation - centered finite differences

Consider the centered finite differences scheme for the heat equation. It can be cast into the form :

un+1
i = uni + αλ2

(
uni−1 − 2uni + uni−1

)
(42)

We take for simplicity α = 1. The modified equations associated to this scheme up to 8th order for example is
given by :

∂u

∂t
=
∂2u

∂x2
+

∆x2

12
(1− 6λ2)

∂4u

∂x4
+

∆x4

360

(
1−30λ2

(
1−4λ2

))∂6u

∂x6
+

∆x6

20160

(
1−42λ2

(
3−40λ2

(
1−3λ2

)))∂8u

∂x8
+. . .
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Straightforward computations yield :

S(θ, λ2,∆x) = 1 + 4λ2 sin2(θ/2) (43)

Rs =

{
(λq,∆x) ∈ R2 : λ2 ≤

1

2

}
; Ωc =

{
(λq,∆x) ∈ R2 : λ2 ≤

1

4

}
(44)

∆tP8(θ, λ2,∆x) = −λ2

θ2 − 1− 6λ2

12
θ4 +

1− 30λ2 (1− 4λ2)

360
θ6 −

1− 42λ2

(
3− 40λ2

(
1− 3λ2

))
20160

θ8

 (45)

The domains of stability and convergence only depend on the parameter λ2 independently of ∆x. This permits to
take an arbitrary value of ∆x = 1 and carry on the analysis, based on only λ2. Furthermore since |S(θ, λ2,∆x)|
is an even function with respect to θ it suffices to look at θ ∈ [0, π]. Figure 1 shows a comparison between
|S(θ, λ2,∆x)| and |SN (θ, λ2,∆x)| for N = 2 and N = 8 in two cases. In the limit of stability λ2 = 1/2, the
scheme is stable but the series G(θ, λ2,∆x) is not convergent for θ > R = π/2 (See Appendix A). As displayed
in the left-hand side of figure 1, the curves begin aligned in the low frequencies, and then the truncation curves
begin to diverge completely from the function |S(θ, λ2,∆x)| once θ surpasses the threshold R. This is not the
case for λ2 = 1/4. For this value we can calculate the radius of convergence R = π (See Appendix A). In fact,
we can see on the right-hand side of the figure that for λ2, the curves remain very close ∀θ ∈ [0, π]. For N = 8,
the two curves almost overlap.
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Figure 1. Plot of the function |S(θ, λ2,∆x)| along |S2(θ, λ2,∆x)| and |S8(θ, λ2,∆x)| for the
values of λ2 = 1/2 (left) and λ2 = 1/4 (right). We can see that for λ2 = 1/2, which lies outside
of the convergence domain, the truncation curves stray away from the curve of S starting from
θ = R. For λ2 = 1/4, the truncations match well with S.

3.2. Transport equation - Upwind Euler

The scheme writes :
un+1
i = uni − cλ1(uni − uni−1) (46)

We take c = 1. In this case, the modified equation up to 4th order for example is given by :

∂u

∂t
+
∂u

∂x
= (1− λ1)

(
∆x

2

∂2u

∂x2
− ∆x2

6
(1− 2λ1)

∂3u

∂x3
+

∆x3

24
(1− 6λ1(1− λ1))

∂4u

∂x4

)
+ . . . (47)



133 ESAIM: PROCEEDINGS AND SURVEYS

Straightforward computations yield :

S(θ, λ1,∆x) = 1− λ1

(
1− e−iθ

)
(48)

Rs =
{

(λq,∆x) ∈ R2 : λ1 ≤ 1
}

; Ωc =

{
(λq,∆x) ∈ R2 : λ1 ≤

1

2

}
(49)

∆tP4(θ, λ1,∆x) = −iλ1θ + λ1(1− λ1)

(
−1

2
θ2 +

1

6
(1− 2λ1)iθ3 +

1

24
(1− 6λ1(1− λ1))θ4

)
+ . . . (50)

In contrast to the previous example for the heat equation, we could not compute explicitly the radius of
convergence for values of interest of λ1. Nevertheless, it is possible to extend Ωc to cover all the values of λ1

that are in Rs (See appendix B). Hence, as shown in figure 2, for values of λ1 ≤ 1, the amplification factor of
the truncation to 6th order |S6(θ, λ1,∆x)| seems to be a very good approximation of the scheme amplification
factor |S(θ, λ1,∆x)|, even for values of λ1 that are in the vicinity of the stability threshold.
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Figure 2. Plot of the function |S(θ, λ1,∆x)| along |S6(θ, λ1,∆x)| for different values of λ1

in the stable region (left) and in the unstable region (right). The continuous lines stand for
the amplification factor |S(θ, λ1,∆x)| and the dashed lines represent the truncated modified
equation amplification factor |S6(θ, λ1,∆x)|. We can see that for λ1 ≤ 1 the truncation curves
match well with the exact amplification factor even in the boundaries of stability. Inversely, it
seems according to the right-hand graphic that λ1 = 1 marks the threshold of convergence.

Conclusion and perspectives

We could explain throughout this work that one of the main reasons behind the failures of the modified
equations technique is non other than series divergence. Although the analysis only provides sufficient conditions
in general, it lifts some well-known ambiguities and provides some assumptions required by the technique to
be of a more justified practical use. We show that in these settings, the stability of a truncation gives already
reasonable approximations to stability conditions of the scheme. An extension of the obtained results to the
case of systems is underway. It would be also interesting to extend this approach to cover a larger class of
explicit and also implicit schemes.
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A. Computing some radii of convergence

In each of the following cases, we would like to check the convergence radius of the series :

ln(S(θ, λq,∆x) =

∞∑
p=0

αp
λq∆xq

θp =

∞∑
p=0

apθ
p (51)

For that, we use the root convergence test, that is the radius of convergence R is given by :

lim
p→+∞

|ap|1/p =
1

R
(52)

Centered scheme for the heat equation : λ2 = 1
2

We have :
S(θ, λ2,∆x) = 1− 2 sin(θ/2)2 (53)

In this case, it is possible to obtain an explicit expression of the pth term of the sequence ap which is given by :
a0 = 0

a2p = − (−4)pE2p−1(0)

2(2p)!
∀p ≥ 1

a2p+1 = 0 ∀p ≥ 0

(54)

where Ep(x) denotes the pth Euler polynomial function defined by :

2ext

et + 1
=

∞∑
n=0

En(x)
tn

n!
(55)

Since the series has only even order coefficients, it is equivalent and more convenient to check the convergence
of the series :

∞∑
p=0

bpφ
p (56)

where φ = θ2 and bp = a2p. We proceed as follows in order to check the radius of convergence. We use
Bernoulli’s number [8] :

B2p =
−pE2p−1(0)

(22p − 1)
(57)

and plug this ansatz into bp to obtain :

|bp| =
∣∣∣∣ (4)pE2p−1(0)

2(2p)!

∣∣∣∣ =

∣∣∣∣ (4)p(22p − 1)

2p(2p)!
B2p

∣∣∣∣ ∼p→∞
∣∣∣∣ 22p

p(π)2p

∣∣∣∣
Hence we can write :

|bp| ∼
p→∞

1

p

(
2

π

)2p

(58)

and so :

lim
p→+∞

|bp|1/p =

(
2

π

)2

(59)

This means that the series (56) has a radius Rφ = π2/4 which implies that the radius of convergence of the
series G(θ, 1/2,∆x) is R = π/2.
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Centered scheme for the heat equation : λ2 = 1
4

We have :
S(θ, λ2,∆x) = 1− sin(θ/2)2 (60)

The expression of the pth term ap is given by :
a0 = 0

a2p = − (−1)pE2p−1(0)

(2p)!
∀p ≥ 1

a2p+1 = 0 ∀p ≥ 0

(61)

Using the same previous notations as in (56), we have :

|bp| =
∣∣∣∣ (E2p−1(0)

(2p)!

∣∣∣∣ =

∣∣∣∣ (22p − 1)

p(2p)!
B2p

∣∣∣∣ ∼p→∞
∣∣∣∣ 2

pπ2p

∣∣∣∣ (62)

which yields :

lim
p→+∞

|bp|1/p =
1

π2
. (63)

This gives the radius of convergence of the series G(θ, 1/4,∆x) is R = π.

B. Proof of convergence for λ1 ≤ 1 of Upwind Euler for transport equation

Since Ωc =
{

(λq,∆x) ∈ R2 : λ1 ≤ 1
2

}
, then the series G(θ, λ1,∆x) is convergent ∀λ1 ≤ 1/2 and we have :

e∆tG(θ,λ1,∆x) = S(θ, λ1,∆x)

Since stability only depends on the modulus of S(θ, λ1,∆x) it is sufficient for our analysis to consider the
equality :

e∆xλ1Re(G(θ,λ1,∆x)) = |S(θ, λ1,∆x)| (64)
Next, we show the following symmetry :

|S(θ, 1/2− λ1,∆x)| = |S(θ, 1/2 + λ1,∆x)|

Indeed we have :

S(θ, 1/2− λ1,∆x) = 1− (1/2− λ1)
(
1− e−iθ

)
= (1/2 + λ1) + (1/2− λ1)e−iθ

S(θ, 1/2 + λ1,∆x) = 1− (1/2 + λ1)
(
1− e−iθ

)
= (1/2− λ1) + (1/2 + λ1)e−iθ

=
(
(1/2 + λ1) + (1/2− λ1)eiθ

)
e−iθ

= e−iθS(θ, 1/2− λ1,∆x)

where the bar denotes the complex conjugate. Hence |S(θ, 1/2− λ1,∆x)| = |S(θ, 1/2 + λ1,∆x)|. This implies
through equality (64) that :

∆x(1/2− λ1)Re(G(θ, 1/2− λ1,∆x)) = ∆x(1/2 + λ1)Re(G(θ, 1/2 + λ1,∆x)) (65)

which also implies in terms of coefficients :

(1/2− λ1)α2p(1/2− λ1,∆x) = (1/2 + λ1)α2p(1 + λ1,∆x) ∀p ≥ 1 (66)

Therefore, since the series is convergent for 0 ≤ λ1 ≤ 1/2, it is also convergent for 1/2 ≤ λ1 ≤ 1.
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