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Outbreaks of infectious diseases repeatedly affected medieval Europe, leaving behind a large
number of dead often inhumed inmass graves. Human remains interred in two burial pits from
14th century CE Germany exhibited molecular evidence of Salmonella enterica Paratyphi C (S.
Paratyphi C) infection. The pathogen is responsible for paratyphoid fever, which was likely the
cause of death for the buried individuals. This finding presented the unique opportunity to
conduct a paratyphoid fever association study in a European population. We focused on
HLA-DRB1*03:01 that is a known risk allele for enteric fever in present-day South Asians. We
generated HLA profiles for 29 medieval S. Paratyphi C cases and 24 contemporaneous
controls and compared these to amodern German population. The frequency of the risk allele
was higher in the medieval cases (29.6%) compared to the contemporaneous controls (13%;
p = 0.189), albeit not significantly so, possibly because of small sample sizes. Indeed, in
comparison with themodern controls (n = 39,689; 10.2%; p = 0.005) the frequency difference
became statistically significant. This comparison also suggested a slight decrease in the
allele’s prevalence between the medieval and modern controls. Up to now, this is the first
study on the genetic predisposition to Salmonella infection in Europeans and the only
association analysis on paratyphoid fever C. Functional investigation using computational
binding prediction between HLA variants and S. Paratyphi and S. Typhi peptides supported a
reduced recognition capacity of bacterial proteins by DRB1*03:01 relative to other common
DRB1 variants. This pattern could potentially explain the disease association. Our results
suggest a slightly reduced predisposition to paratyphoid fever in modern Europeans. The
causative allele, however, is still common today, which can be explained by a trade-off, as
DRB1*03:01 is protective against infectious respiratory diseases such as severe respiratory
syndrome (SARS). It is thus possible that the allele also provided resistance to corona-like
viruses in the past.

Keywords: Salmonella enterica Paratyphi C, enteric fever, human leukocyte antigen, trade-off, antigen
binding prediction
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INTRODUCTION

In Europe, infectious diseases were particularly common in the
Middle Ages (1–6), occasionally reaching immense proportions
and wreaking havoc across the whole continent. For instance, the
infamous Black Death and subsequent plague outbreaks left
behind millions of dead who, due to the scale of the pandemic,
were often inhumed in mass burials (7). Studying past
contagions is not only of interest from the historical
perspective, but also important for our understanding of
current and future epidemics. Excavation on the grounds of
the medieval Heiligen-Geist-Hospital (HGH) in Lübeck,
northern Germany, revealed the presence of two mass graves
and two smaller burial pits (8–10). Molecular analysis of the
human remains (1370 – 1400 CE) indicated that individuals
buried in the pits were infected with Salmonella enterica subsp.
enterica serovar Paratyphi C at the time of death (11). The
pathogen is a causative agent of paratyphoid fever, which is a life-
threatening illness transmitted through contaminated food and
water (12). Nowadays S. Paratyphi C is virtually absent in
Europe, however, it can be assumed that the pathogen’s
prevalence used to be higher in the past. Discovery of S.
Paratyphi C in medieval Germany (11) and Norway (13)
suggests a change in the geographic distribution of Salmonella
enterica species over time. It is thus possible that paratyphoid
fever used to have a substantial impact on the health of
Europeans at that time (11). As the pathogen’s genome is
thought to have been stable for millennia (13), genetic factors
of the host could have contributed to the disappearance of this
infectious disease in modern Europe.

Apart from S. Paratyphi C, paratyphoid fever can be caused
by two other Salmonella serovars (S. Paratyphi A and B).
Clinically similar typhoid fever is caused by Salmonella Typhi
and together with S. Paratyphi infections, the diseases are known
under the umbrella term of enteric fever. Several genetic host
factors have been previously associated with susceptibility to the
disease (14–17). Among those factors is the polymorphic human
leukocyte antigen (HLA) region. The high level of HLA variation
together with a number of associations between HLA alleles and
a variety of infectious diseases [e. g. (18–24)] suggests that
pathogens have acted as a powerful selective pressure on the
human genome as a result of host-pathogen co-evolution (25–
27). Regarding enteric fever, the HLA alleles DRB1*03:01 and
DRB1*04:05 were identified as risk and protective factors,
respectively, in present-day Vietnamese and Nepalese (16, 17).
However, these associations were only shown for S. Typhi and S.
Paratyphi A infections; as of yet, there are no studies exploring
the genetic predisposition to S. Paratyphi C infections in modern
populations. Nowadays the disease is very rare in Europe and
usually a result of migrations from other regions of the world (12,
28, 29). Thus, analysis of susceptibility to paratyphoid fever in
European populations is only possible with an ancient DNA
(aDNA) approach. In this study, we generated HLA genotype
data for 53 skeletal remains from the HGH site and in particular
examined the frequency of the DRB1*03:01 allele to assess
whether variation at the DRB1 locus predisposed medieval
Europeans to enteric infection.
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MATERIALS AND METHODS

Materials
The skeletal material analyzed in this study was excavated from
four mass burials (contexts 4528, 4529, 4562 and 4571) located
near the Heiligen-Geist-Hospital (“Hospital of the Holy Ghost”,
HGH) in Lübeck, northern Germany (8–10). The graves were
dug between 1340 and 1370 CE (11).

DNA Extraction and Library Preparation
Seventy individuals from the HGH site were analyzed in this
study [Tables S1, Table S3 (11) for details on samples]. We
sampled almost exclusively teeth and used the whole specimens
for aDNA extraction. The DNA was isolated with the BioRobot®

EZ1 Advanced applying a custom-made version of the Large-
Volume-Protocol and the EZ1 DNA Investigator® Kit (Qiagen)
as described previously (11, 30). The DNA extracts were then
converted into indexed partial Uracil-DNA Glycosylase (UDG)-
treated libraries. The libraries were sequenced on an Illumina
HiSeq 4000 platform. To reliably exclude contamination, all
procedures were conducted in clean rooms specifically
dedicated to ancient DNA analysis, and negative controls were
included in both the extraction and library preparation steps.
Furthermore, short tandem repeat profiles at seven loci were
generated as an additional authentication criterion and to avoid
double sampling Table S2 (11).

HLA Targeted Capture and Typing
In-solution enrichment of the HLA regions was successful for 53
of the 70 samples analyzed (excavation context 4528, n = 13;
4529, n = 11; 4562, n = 6; 4571, n = 23). Genotyping was
performed using the semi-automated HLA-typing pipeline
TARGT (Targeted Analysis of sequencing Reads for
GenoTyping), which was designed for the analysis of low-
coverage sequences as found in aDNA extracts (31). The
pipeline automatically identifies and sorts target-specific reads
from sequence data. Subsequently, the sorted sequences were
manually analyzed to determine the HLA alleles (HLA calling) in
individual samples (31). In this study, the manual genotyping
was done by three researchers independently, thus increasing the
reliability of the results. In addition, we applied the algorithm
OptiType (32), which is only available for class I genes, to verify
class I allele calls obtained with the TARGT pipeline. The
OptiType software (32) was used with default parameters.
Only those samples that had alleles concordantly called by
both methods were included in the results (Table S1).

Computational Prediction of Peptide
Binding by HLA
Full proteomes of Salmonella enterica Paratyphi C RKS4594
(accession NC_012125.1, France) and S. enterica Typhi CT18
(accession NC_003198.1, Vietnam) were used to predict the
binding of 15mer peptides (967,163 and 1,201,560 possible
15mers from S. Paratyphi and S. Typhi, respectively) for all
DRB1 variants with an allele frequency >1% in the present-day
German population (AlleleFrequencies.net Database (AFND):
Germany, Population 8, n = 39,689; 33). Peptide binding
July 2021 | Volume 12 | Article 691475
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prediction was performed with the established algorithm
NetMHCIIpan v4.0, using the default threshold for ‘strong
binding’ (33). For each HLA-DRB1 variant, the total number
of bound peptides overall as well as the total number of bacterial
proteins ‘recognized’ (at least one peptide of a given protein
predicted to be bound by the given HLA-DRB1 variant)
were obtained.

Statistical Analysis
Fisher’s exact test and odds ratio calculations were performed for
the DRB*03 allele using IBM SPSS Statistics (Version 26) predictive
analytics software. Power calculations on required sample sizes were
calculated with the software G*Power, v3.1.9.2 (34). For
DRB1*03:01, the power calculation showed that an association
analysis was appropriate with our sample size. Assuming an OR
of 4 (17), an allocation ratio of 10 and an allele frequency of 10.2%
in modern controls (35), 28 alleles were required in cases to obtain
an a priori power of 75% at a significance level of 0.05.
RESULTS

In this study, we generated HLA genotype data from the skeletal
remains of 53 individuals excavated from the HGH mass burial in
Lübeck. The site consists of two mass graves (archaeological
contexts 4528 and 4529) and two burial pits (4562 and 4571,
Figure 1). Of the 70 metagenomic samples analyzed, 24 from
4528/4529 and 29 from 4562/4571 yielded HLA data after in-
solution DNA enrichment. Genotyping of the HLA alleles was
performed for the class I (HLA-A, -B and -C) and class II (HLA-
DQB1 and -DRB1) loci using the TARGT pipeline which is well
suited to the analysis of low-coverage sequences (31) (Table S1).
Despite such a dedicated pipeline, the highly degraded nature of
aDNA (36) poses a severe challenge to HLA typing so that allele
calling at the preferred 2nd-field (4-digit) resolution is not always
possible. Nevertheless, even at 1st-field level of resolution, HLA
FIGURE 1 | Heiligen-Geist-Hospital (“Holy-Ghost-Hospital”) archaeological context 4
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typing can be highly informative, as it distinguishes among major
functional groups (‘supertypes’) of classical HLA alleles. For the
same reason, it was also not always possible to call alleles at both
haplotypes, so that the total number of called alleles was lower than
2N. The investigation here was performed following the strategy
outlined for an association study with aDNA data (20). As the
individuals buried in the pits (4562/4571) had been infected with S.
Paratyphi C (11), they were considered cases in the association test
(with 27 successfully called HLA-DRB1 alleles across the 29
individuals). The individuals buried in the mass graves (4528/
4529) were used as contemporaneous controls (with 23 called
HLA-DRB1 alleles across the 24 individuals), based on the fact
that no molecular traces of the focal pathogen were observed in the
remains (11). In a secondary analysis, allele frequencies in the
historical cases were compared with a large cohort of modern
individuals (AFND: Germany, Population 8, n = 39,689; 33).

As DRB1*04:05 is protective against enteric fever, its frequency
would be expected to be lower relative to the modern controls
(0.45%, Germany, AFND Population 8, n = 39,689; 33). Thus,
DRB1*04:05 was not investigated due to the case sample being too
small for a meaningful statistical analysis based on the power
calculation. On the contrary, for the DRB1*03:01 risk allele, an
association study was feasible making it the main focus of this
investigation. Out of the 11 individuals with a DRB1*03 allele call at
1st-field resolution, calls at 2nd-field resolution were possible for four
individuals who consistently showed DRB1*03:01. Among the
known alleles of the DRB1*03 allele group, DRB1*03:01 is by far
the most common in the modern German population (freq =
10.2%), with the next frequent allele being two orders of magnitude
less frequent (DRB1*03:02, freq = 0.1%). It is therefore highly likely
that the other seven individuals with a DRB1*03 call also carried the
DRB1*03:01 allele, justifying an association analysis based on the
DRB1*03 calls. Moreover, four individuals were possibly
homozygous for the DRB1*03 type, given the available read depth
and lack of other DRB1 sequences. However, a conservative
approach was used here and these individuals were regarded as
562 in which S. Paratyphi C-positive individuals were found.
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heterozygotes. It is thus likely that the obtained frequency is
underestimated. The frequency of the DRB1*03 allele in the cases
(29.6%) was considerably higher in comparison to the
contemporaneous controls (13%, p = 0.189), albeit it did not
reach statistical significance, likely owing to the small sample sizes
for the medieval groups. In line with this suggestive association
result, the comparison of medieval cases with modern individuals
yielded a frequency difference that was highly significant (10.2%; p =
0.005, OR = 3.61) (Table S1). Interestingly, all four genotypes with a
possible 2nd field allele call of DRB1*03:01 also showed the alleles
DQB1*02:01 or DQB1*02 at the neighboring HLA-DQB1 locus
(Table S1), which could be an indication of genetic linkage between
DRB1*03:01 and DQB1*02:01, a common haplotype in present-day
populations (37).

Given the role of HLA molecules in peptide presentation for
antigen-specific immunity, the binding of S. Paratyphi and S.
Typhi peptides to common HLA-DRB1 variants was also
explored, including the risk variant DRB1*03:01. Using
computational peptide binding prediction, no particular
difference in the total number of bound bacterial peptides
was observed between the risk variant and the other DRB1
variants (Figure 2A). However, the number of ‘recognized’
bacterial proteins (defined as proteins of which at least one
peptide was bound by a given HLA variant) was among the
lowest for DRB1*03:01 compared to the other HLA variants
(for both S. Paratyphi C and S. Typhi; Figure 2B). This
peculiarity in peptide binding of DRB1*03:01 became
particularly evident when the number of proteins that were
uniquely missed by each DRB1 variant (i.e., were predicted to
be recognized by all other DRB1 variants but not the given one)
were quantified. DRB1*03:01 missed 85 S. Paratyphi proteins
that were recognized by all other DRB1 variants, more than
thrice the number compared to the other DRB1 variants
(median = 26 ± 16 SD, Figure 2C). A similar effect was
observed for S. Typhi (Figure 2C).
DISCUSSION

In this study, variation at the HLA-DRB1 locus was investigated
in the context of genetic susceptibility to S. Paratyphi C
infection in human remains from Germany dating to the 14th

century CE. The DRB1*03:01 allele has been associated with an
increased risk of enteric fever in modern Vietnamese and
Nepalese populations (in this case caused by S. Typhi and S.
Paratyphi A only) (16, 17). Up to date, no association study with
an S. Paratyphi C infection has been performed in present-day
populations, as it is relatively rare (38). However, there is
evidence suggesting a high prevalence of this infectious disease
in the Middle Ages (11, 13, 39).

HLA typing was successfully performed for 53 individuals
excavated from four archaeological contexts: two mass graves
(n = 24) and two smaller pits (n = 29). Individuals buried in the
pits were found to exhibit genetic traces of infection with S.
Paratyphi C, likely representing the cause of death. The larger
mass graves were stratigraphically older and no pathogen DNA
Frontiers in Immunology | www.frontiersin.org 4
was detected in the remains inhumed there (11). It has been
previously hypothesized that individuals in the mass graves were
victims of plague (9, 40). However, no evidence has been found
to support these claims (11). In addition, to the best of our
knowledge, no link between HLA variation and plague
susceptibility has been reported in human association studies.
Thus, even if plague was responsible for the death of the
individuals in the mass graves, the disease was not expected to
influence the frequencies of the examined allele. Based on these
assumptions, the individuals from the mass graves were treated
as contemporaneous controls for the medieval paratyphoid fever
cases buried in the small pits. The cases were also compared to a
representative modern German population from the
AlleleFrequencies.net Database (35). As genetic continuity
between the HGH Lübeck population and present-day
northern Europeans was shown previously (11), it allows for
such an analysis to be carried out. Furthermore, kinship was not
detected among the medieval individuals (11). Our results
indicate that the frequency of DRB1*03 was significantly
higher in the medieval paratyphoid fever cases in comparison
to modern controls (p = 0.005). The obtained odds ratio of 3.6 is
comparable to that in previous reports for enteric fever in
modern South Asian populations (16, 17). The DRB1*03
frequency in the cases (29.6%) was also substantially higher
relative to medieval controls (13%). Although calls at 2nd-field
resolution (i.e., DRB1*03:01) were only possible for four
individuals, all DRB1*03 calls were interpreted as DRB1*03:01,
since this allele is by far the most common within the DRB1*03
group in Germans today (35).

This is the first report of an allelic association with an S.
Paratyphi C infection. However, due to the relatively small
number of specimens available for the present study, an
inherent limitation of aDNA studies, this finding should be
confirmed in a larger sample comprised of Far Eastern
populations in which the disease is still common today (12).
Nevertheless, as paratyphoid fever is no longer endemic in
Europe, aDNA analysis is the only approach that allows us to
explore whether DRB1*03:01 is involved in genetic
predisposition to an S. Paratyphi C infection in Europeans.

The functional follow-up analysis, using a computational
algorithm for prediction of binding between HLA variants and
bacterial peptides, revealed an interesting pattern for the HLA-
DRB1 risk variant that could potentially explain its association
with susceptibility. The variant DRB1*03:01 was predicted to
miss recognition (i.e., fail to bind at least one peptide) of the
largest number of bacterial proteins that were recognized by all
other common DRB1 variants. However, it should be noted that
the number of missed proteins was small compared to the total
number of proteins in the bacterial proteomes. It thus remains to
be investigated whether this peculiar binding pattern of
DRB1*03:01 would significantly affect susceptibility of
its carriers.

The decreased frequency of the HLA risk allele in the modern
population (10.2%) relative to the medieval controls (13%) might
indicate slight negative selection. The limited available sample size
for ancient remains for both cases and contemporaneous controls
July 2021 | Volume 12 | Article 691475
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FIGURE 2 | Computationally predicted binding of common HLA-DRB1 variants to bacterial peptides. Binding prediction was performed for all HLA-DRB1 variants
with allele frequency >1% in present-day Germany (n=18), using the full proteomes of both Salmonella enterica Paratyphi C (green bars) and S. Typhi (blue bars). For
each DRB1 variant, (A) the overall number of bound peptides, (B) the total number of ‘recognized’ proteins (at least one peptide bound by a given DRB1 variant),
and (C) the number of uniquely ‘missed’ proteins (recognized by all other variants) are shown.
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prevents any strong conclusion about the potential selective effect of
this association. However, in view of the negative effect of
DRB1*03:01, it is tempting to speculate about a trade-off that
might explain as to why this allele is still present at such a high
frequency today. Interestingly, the allele was shown to be protective
against severe acute respiratory syndrome (SARS) infection in the
modern Chinese population (41–43). Although currently there is no
Frontiers in Immunology | www.frontiersin.org 5
data confirming this association for present-day Europeans, it is
possible that ancient epidemics of paratyphoid fever affected the
level of genetic resistance against SARS, predisposing present-day
Europeans to an infection with the causative coronavirus. There is
further evidence linking DRB1*03:01 with various respiratory
diseases such as resistance to tuberculosis (44). It is therefore
conceivable that this allele was protective against corona-like
July 2021 | Volume 12 | Article 691475
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viruses or other infectious agents in the past. In addition, it has been
suggested that DRB1*03:01 provides protection against allergy to
animal-derived proteins (dairy and eggs) (45, 46). Recently, we
discovered that the allele was absent in a Neolithic population of 23
individuals (47). This observation is striking when considered in the
context of dietary changes that were introduced with the Neolithic
agricultural transition. All these factors and the notable presence of
DRB1*03:01 in the current gene pool indicate that this HLA allele
has been subject to balancing selection. DRB1*03:01 is a risk factor
for type I diabetes, autoimmune hepatitis, multiple sclerosis, celiac
disease, sarcoidosis, Grave’s disease, systemic lupus erythematosus
and Sjörgen’s syndrome in modern populations across the globe
(48–55). Due to the relatively low number of pathogens in the
modern environment, negative effects of this HLA allele might now
predominate, contributing to the increasing prevalence of
inflammatory and autoimmune diseases today.
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46. Ogrodowczyk AM, Dimitrov I, Wróblewska B. Two Faces of Milk Proteins
Peptides With Both Allergenic and Multidimensional Health Beneficial
Impact- Integrated. In Vitro/In Silico Approach. Foods (2021) 10:163.
doi: 10.3390/foods10010163

47. Immel A, Pierini F, Rinne C, Meadows J, Barquera R, Szolek A, et al. Genome-
Wide Study of a Neolithic Wartberg Grave Community Reveals Distinct HLA
Variation and Hunter-Gatherer Ancestry. Commun Biol (2021) 4:113.
doi: 10.1038/s42003-020-01627-4

48. Chen QY, Huang W, She JX, Baxter F, Volpe R, Maclaren NK. HLA-
DRB1*08, DRB1*03/DRB3*0101, and DRB3*0202 are Susceptibility Genes
for Graves’ Disease in North American Caucasians, Whereas DRB1*07 is
Protective. J Clin Endocrinol Metab (1999) 84:3182–6. doi: 10.1210/
jcem.84.9.5991
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