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HYDRODYNAMIC LIMIT OF A COUPLED CUCKER-SMALE SYSTEM

WITH STRONG AND WEAK INTERNAL VARIABLE RELAXATION

JEONGHO KIM, DAVID POYATO, AND JUAN SOLER

Abstract. In this paper, we present the hydrodynamic limit of a multiscale system de-
scribing the dynamics of two populations of agents with alignment interactions and the
effect of an internal variable. It consists of a kinetic equation coupled with an Euler-type
equation inspired by the thermomechanical Cucker–Smale (TCS) model. We propose a
novel drag force for the fluid-particle interaction reminiscent of Stokes’ law. Whilst the
macroscopic species is regarded as a self-organized background fluid that affects the ki-
netic species, the latter is assumed sparse and does not affect the macroscopic dynamics.
We propose two hyperbolic scalings, in terms of a strong and weak relaxation regime of
the internal variable towards the background population. Under each regime, we prove
the rigorous hydrodynamic limit towards a coupled system composed of two Euler-type
equations. Inertial effects of momentum and internal variable in the kinetic species disap-
pear for strong relaxation, whereas a nontrivial dynamics for the internal variable appears
for weak relaxation. Our analysis covers both the case of Lipschitz and weakly singular
influence functions.

1. Introduction

Uncovering the mechanisms responsible for the cooperation in a group of agents is a topic
of great interest and current relevance. These processes involve qualitatively different emer-
gent phenomena such as reaching consensus without centralized control or the formation
of cooperative clusters within a collective group. Further examples of collective dynamics
are the emergence of common languages in primitive societies, the collective migration of
animal populations, the biochemical interactions leading to the activation of target genes,
or the way social populations reach a consensus of social opinion.

Cooperation occurs when the interacting agents exchange information about their state.
As active particles, not only mechanical state is involved, but also their microstate, defined
by internal activation variables or behavioral variables [3, 13, 34, 36, 51]. The final state
manifests a rich appearance of consensus patterns that can lead to a process of aggregation
or clustering induced by motility. In this paper, we are interested in a Cucker-Smale-type
flocking model that contains the effect of some internal variables.

To include a microstate in the modeling of the Cucker-Smale system, we were inspired
by how the internal variable associated with temperature acts in the recently proposed
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thermomechanical Cucker-Smale model [36]. In addition, we consider a multiscale meso-
macro coupled system composed of two types of populations. They respectively represent
the ensemble of a gas of interacting particles at the kinetic/mesoscopic scale and a back-
ground population at the fluid/macroscopic scale, both including the effect of alignment
interactions and the internal or behavioral variable. We account for two types of interac-
tions: one is given by “local” mean-field self-interactions within the same population, and
the other determines “global” mean-field cross-interactions between populations. Further
previous fluid-particle systems have been proposed in the literature in different settings, see
e.g. [2, 7, 14, 15, 28, 29, 38]. For simplicity, we assume that the population described by
the background fluid is much larger than that of the particle ensemble. This implies that
whilst the macroscopic species self-organizes and affects the kinetic species, the latter can be
considered sparse and does not affect the background dynamics. Of course, a non-negligible
effect of particles over the fluid could be considered if both populations were comparable in
size. The novelty of the newly introduced multiscale model is the systematic derivation of
the interacting meso-macro model from the micro-micro interacting particle model, using
the appropriate weight assumption for the mean-field scaling.

To make these ideas more concrete, let us recall some collective behavior models of self-
propelled individuals that have been studied extensively for the last decades. The main
interest in those systems is the emergence of aggregation, swarming, and flocking of agents.
Among them, the Cucker-Smale (C-S) model is one of the most well-known systems in
flocking dynamics [19]. It can be described as a system of ODEs governing the dynamics of
the position and velocity pair (xi, vi) ∈ R

2d of the i-th agent using Newton’s law:

dxi
dt

= vi, i = 1, 2, . . . , N, t > 0,

dvi
dt

=
κ

N

N∑

j=1

φ(xi − xj)(vj − vi).
(1.1)

Here, κ is a positive constant called coupling strength, and φ : Rd → R+ is called an
influence function, which is a general radially symmetric function, and non-increasing with
respect to the radius of the argument, providing the spatial dependency of communication
between agents. When the number of particles is large enough, the dynamics of C-S system
(1.1) can be described effectively from the mesoscopic and macroscopic points of view. Let
f = f(t, x, v) be the one-particle density function on the state space R

2d at time t. Then,
the evolution of f is governed by the following Vlasov-type equation [37]:

∂tf + v · ∇xf +∇v · (F [f ]f) = 0, (t, x, v) ∈ R+ × R
2d,

F [f ](t, x, v) := κ

∫

R2d

φ(x− x∗)(v∗ − v)f(t, x∗, v∗) dx∗ dv∗.
(1.2)

In the same literature, the macroscopic (or hydrodynamic) description of C-S model was
also derived from the kinetic equation (1.2) by taking the following macroscopic variables:

ρ(t, x) :=

∫

Rd

f(t, x, v) dv, (ρu)(t, x) :=

∫

Rd

vf(t, x, v) dv,
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and using formal mono-kinetic ansatz f(t, x, v) = ρ(t, x)δu(t,x)(v):

∂tρ+∇ · (ρu) = 0, (t, x) ∈ R+ × R
d,

∂t(ρu) +∇ · (ρu⊗ u) =

∫

Rd

φ(x− x∗)(u(t, x∗)− u(t, x))ρ(t, x)ρ(t, x∗) dx∗.
(1.3)

Due to its possible application in engineering, in particular, controlling UAVs or space-
ships [60], the C-S model has been extensively studied from various point of view. For
example, emergent behaviors [12, 37, 35], mean-field limit [35, 57], hydrodynamic limit
[27, 48, 61] of the C-S model have been studied. For details, we refer to the survey paper
[16] on the C-S model and the references therein.

This type of interaction between agents is reminiscent of the dynamics of opinion, whose
development was a pioneer in this field. Hegselmann and Krause [50, 39] introduced a
nonlinear opinion dynamics model in which each individual’s opinion is influenced by other
close opinions. In this context, the expected emergent phenomenon is the asymptotic for-
mation of one or several clusters of individuals with very similar opinions. In recent years,
the study of this model has once again attracted attention in the scientific community, see
for example [24, 43, 54, 68] and the references therein. The C-S model (1.1) can be consid-
ered as an extension of the Krause model in which consensus (here named flocking) means
that the spatial distances between individuals remain bounded globally in time and their
velocities converge asymptotically towards a collective one. An extension of the emergence
of flocking behavior to the case of nonsymmetric communication weights has been proposed
by Motsch and Tadmor [56].

However, the C-S model and its variants only describe the dynamics of mechanical vari-
ables, such as the position and velocity of agents, and the internal variables of agents are
disregarded. Including internal or behavioral variables in the swarm dynamics, that can
control or measure the degree of activation of individuals or clusters of individuals towards
consensus, is of great importance. In this sense, variables such as excitation levels, tem-
perature, emotional affinity, spin, phase, or biochemical signaling in cell motility, among
others, may have a role in this context. Among many possible ways to include the effect
of the internal variable, the C-S model was recently generalized by Ha and Ruggeri [36]
so that it incorporates an additional internal variable, usually referred to as temperature.
They used general conservation laws for a mixture of Euler systems, and using the entropy
principle and Galilean invariance to find the production terms, they derived the following
thermomechanical Cucker-Smale (TCS) model:

dxi
dt

= vi, i = 1, 2, · · · , N, t > 0,

dvi
dt

=
κ

N

N∑

j=1

φ(xi − xj)

(
vj
θj

−
vi
θi

)
,

dθi
dt

=
ν

N

N∑

j=1

ζ(xi − xj)

(
1

θi
−

1

θj

)
.

(1.4)

Note that, when all the internal variables are identical, i.e., θi ≡ θ0, then the TCS model
(1.4) reduces to the C-S model (1.1). Then, it is straightforward to derive the mesoscopic
equation for the TCS model, analogous to (1.2) for the C-S model. Precisely, it is given by
following Vlasov-type equation:
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∂tf + v · ∇xf +∇v · (F [f ]f) + ∂θ(G[f ]f) = 0, (t, x, v, θ) ∈ R+ × R
2d × R+,

F [f ](t, x, v, θ) := κ

∫

R2d×R+

φ(x− x∗)

(
v∗
θ∗

−
v

θ

)
f(t, x∗, v∗, θ∗) dx∗ dv∗ dθ∗,

G[f ](t, x, v, θ) := ν

∫

R2d×R+

ζ(x− x∗)

(
1

θ
−

1

θ∗

)
f(t, x∗, v∗, θ∗) dx∗ dv∗ dθ∗.

(1.5)

The kinetic description of the TCS ensemble (1.5) has been analyzed recently in the
literature. To name a few results: uniform-in-time mean-field limit [32], well-posedness
and asymptotic behavior of the particle-fluid coupled systems [14, 15, 49], interaction with
chemotactic movement [33] or propagation of mono-kinetic solutions [46] have been studied.
We also refer [1, Section 4] for an overview of the TCS model.

When the TCS ensemble interacts with the surrounding environment or is affected by
further self-interaction forces, there will be additional effects on the dynamics (1.5). In
this paper, we consider the case when this ensemble f is affected by a given background
fluid species (ρ̄, ū, ē), which also obeys the hydrodynamic TCS equations [31] obtained
through the mono-kinetic closure of (1.5), and self-interaction attractive/repulsive aggre-
gation forces. Precisely, we consider the following coupled meso-macro multiscale system:

∂tf + v · ∇xf +∇v · (F [f ] f +H[f ] f + Fc[ρ̄, ū, ē]f) + ∂θ(G[f ] f +Gc[ρ̄, ē] f) = 0,

H[f ](t, x, v, θ) := −

∫

R2d×R+

∇W (x− x∗)f(t, x∗, v∗, θ∗) dx∗ dv∗ dθ∗,

Fc[ρ̄, ū, ē](t, x, v, θ) :=

∫

Rd

(
ū(t, x∗)

ē(t, x∗)
−
v

θ

)
ρ̄(t, x∗) dx∗,

Gc[ρ̄, ē](t, x, v, θ) :=

∫

Rd

(
1

θ
−

1

ē(t, x∗)

)
ρ̄(t, x∗) dx∗.

(1.6)

∂tρ̄+∇ · (ρ̄ ū) = 0,

∂t(ρ̄ ū) +∇ · (ρ̄ ū⊗ ū) =

∫

Rd

φ(x− x∗)

(
ū(t, x∗)

ē(t, x∗)
−
ū(t, x)

ē(t, x)

)
ρ̄(t, x) ρ̄(t, x∗) dx∗,

∂t(ρ̄ ē) +∇ · (ρ̄ ē ū) =

∫

Rd

ζ(x− x∗)

(
1

ē(t, x)
−

1

ē(t, x∗)

)
ρ̄(t, x) ρ̄(t, x∗) dx∗,

(1.7)

where W : Rd −→ R is an aggregation potential and coupling strengths κ and ν have been
normalized to 1 for simplicity. We note that in the coupled multiscale system (1.6)-(1.7), the
dynamics of the ensemble f is affected by the velocity and internal variable alignment self-
interactions F [f ], G[f ], the aggregation self-interactions H[f ] and the cross-interactions
Fc[ρ̄, ū, ē], Gc[ρ̄, ē] with the background fluid species; while the background fluid (ρ̄, ū, ē)
only interacts with itself, and is not affected by the kinetic ensemble as a consequence of
our sparseness assumption on the kinetic species. We also note that the governing equation
(1.7) is nothing but the hydrodynamic description of the TCS model, which was introduced
and studied in [31]. We refer to Section 2 for the detailed procedure to derive the meso-
macro multiscale system (1.6)-(1.7) from the micro-micro system of interacting particles.
In particular, we justify the specific Stokes-type drag forces Fc and Gc for the fluid-particle
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interaction. Also, we mention [17, 18, 25, 52] for similar models with coupled alignment
and aggregation effects.

The main interest of this paper is to derive some hydrodynamic approximation of the
kinetic equation (1.6) through an appropriate scaling limit. We consider two types of
limiting processes: strong and weak relaxation of the internal variable. More precisely, we
first consider the following scaling for (1.6):

∂tfε + v · ∇xfε +
1

ε
∇v · (F [fε] fε +H[fε]fε + Fc[ρ̄, ū, ē]fε)

+
1

ε
∂θ(G[fε] fε +Gc[ρ̄, ē] fε) = 0.

(1.8)

We refer to Section 2.4 for the derivation of the scaled equation (1.8) under appropriate
assumptions on the scales of the parameters. In this scaling, the system undergoes both
strong alignment 1

εG[fε] and strong relaxation 1
εGc[ρ̄, ē] of the internal variable. Thus, the

internal variable is expected to converge very fast toward a common value θ∞, which is
given by an averaged internal variable for the background fluid:

θ∞(t) :=

(∫

Rd

ρ̄(t, x)

ē(t, x)
dx

)−1

.(1.9)

Then, our goal is to show that the system (1.8) asymptotically converges to the following
macroscopic equation as ε→ 0:

∂tρ+∇ · (ρu) = 0, (t, x) ∈ R+ × R
d,

u− u∞(t) + θ∞(t)∇W ∗ ρ = φ ∗ (ρu)− (φ ∗ ρ), (t, x) ∈ R+ × R
d,

(1.10)

where u∞ is defined as an averaged velocity for the background fluid:

(1.11) u∞(t) := θ∞(t)

∫

Rd

ρ̄(t, x)ū(t, x)

ē(t, x)
dx.

This is reminiscent of the vanishing inertia limiting system obtained in [61] (see also [25])
as hyperbolic hydrodynamic limit of the Cucker-Smale model. Indeed, the forcing term is
now determined by the background values θ∞(t) and u∞(t) of internal variable and velocity
in the background fluid, and the aggregation force ∇W ∗ ρ.

On the other hand, the other scaling that we consider is the case when strong alignment
is assumed for the internal variable, but the relaxation of the internal variable is not strong.
Thus, in this regime, we consider the following alternative scaled equation:

∂tfε + v · ∇xfε +
1

ε
∇v · (F [fε] fε +H[fε]fε + Fc[ρ̄, ū, ē]fε)

+ ∂θ

(
1

ε
G[fε] fε +Gc[ρ̄, ē] fε

)
= 0.

(1.12)

Again, we refer Section to 2.4 for deriving the scaled equation (1.12). In this case, we expect
that the internal variable will become homogeneous in space due to the strong alignment
term 1

εG[fε]fε, but it slowly relaxes toward the average background internal variable θ∞(t).
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The precise asymptotic macroscopic equation as ε→ 0 will be

∂tρ+∇ · (ρu) = 0, (t, x) ∈ R+ × R
d,

u−
θ(t)

θ∞(t)
u∞(t) + θ(t)∇W ∗ ρ = φ ∗ (ρu)− (φ ∗ ρ), (t, x) ∈ R+ × R

d,
(1.13)

where θ(t) is now given by the following relaxation ODE converging to θ∞(t):

θ̇(t) =
1

θ(t)
−

1

θ∞(t)
.

In this paper, we will work initially with bounded influence functions φ, ζ for alignment
interactions and bounded potential forces −∇W for aggregation interactions. Specifically,
we assume that:

φ, ζ are radially symmetric, non-increasing, φ(0) = ζ(0) = 1,

φ, ζ ∈W 1,∞(Rd) and ∇W ∈W 1,∞(Rd,Rd).
(1.14)

Under those regularity conditions (1.14), we can apply the results in [11, 47] to derive well-
posedness of weak solutions to (1.6). Also, the fluid species (1.7) is expected to be well
posed as we explain in Remark 1.7. However, we note that it is also possible to consider the
case of non-local alignment interactions F [f ] and G[f ] whose influence functions φ and ζ are
replaced by scaled versions φε and ζε that become weakly singular at the origin as ε → 0,
in the spirit of [61]. Similarly, we can also consider non-local aggregation interactions H[f ]
whose potential W is replaced by scaled version Wε that becomes weakly singular at the
origin as ε→ 0. We propose these weakly singular regimes in Section 2.4.2 and we address
some of the corresponding hydrodynamic limits in Sections 3.5 and 4.5.

The rest of the paper is organized as follows. In Section 2, we present a formal derivation
of the meso-macro multiscale system (1.6)-(1.7) and appropriate dimensional analysis to
derive the scaled systems (1.8) and (1.12). Section 3 provides the rigorous hydrodynamic
limit in the strong relaxation regime. More precisely we will derive the limiting macroscopic
equation (1.10) from (1.8) after obtaining the estimate for the support of internal variable
and velocity moments. In Section 4, we prove a similar result on the hydrodynamic limit
for the weak relaxation regime for (1.12) toward (1.13). Section 5 present the numerical
simulations for the limiting macroscopic systems (1.10) and (1.13). Finally, in Appendix A
we recall some necessary duality representation of weak Lebesgue–Bochner spaces that will
be useful throughout the paper.

Notation. Throughout the paper, we use the following conventions:
• Variables: We use abbreviated variables z = (x, v, θ) ∈ R

d ×R
d × R+ and dz = dx dv dθ.

• Function spaces: For any open subset Ω ⊂ R
k, M(Ω) denotes the Banach space of finite

Radon measures on Ω endowed with the total variation norm. P(Ω) is the metric space
consisting of probability measures endowed with narrow topology. Cc(Ω), C0(Ω) and Cb(Ω)
respectively represent the Banach spaces of continuous functions with compact support,
continuous functions vanishing at ∂Ω and bounded continuous functions, endowed with the
uniform norm. Finally, for any p ∈ [1,∞], Lp(Ω) and W 1,p(Ω) denote the usual Lebesgue
and Sobolev spaces, whilst Lp(0, T ;X) stands for the Lebesgue–Bochner space associated
with any T > 0 and any Banach space X.
• Partial supports: Given any probability measure f ∈ P(R2d × R+), we define the partial
support with respect to x, v and θ respectively as the projections suppx f := πx(supp f) ⊂
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Figure 1. Chain of multiscale systems

R
d, suppv f := πv(supp f) ⊂ R

d and suppθ f := πθ(supp f) ⊂ R+, where πx, πv and πθ
stand for the standard projections of z into the corresponding variables x, v and θ.

2. Formal derivation of the meso-macro system and scaling

Our goal in this section is to introduce a formal derivation of the multiscale meso-macro
system (1.6)-(1.7) of interest in this paper. That will be a consequence of appropriate
chained scaling limits (mean-field and hydrodynamic limits) on a two-species coupled system
as depicted in Figure 1. More specifically, we will pay special attention to the choice of cross-
interactions between both species in a compatible way with TCS dynamics. For simplicity,
we shall justify the simpler case in the absence of noise, although obvious modifications
could be applied for a more general system under the effect of a thermal bath.

2.1. A micro-micro system with self and cross interactions. Our starting point is a
micro-micro model for the interactions of agents in two distinguished microscopic species.
More specifically, we will consider N = N1+N2 agents distributed into two different species
with N1 and N2 agents for each species. We advance here that the main scaling assumption
is that the first species has considerably fewer agents than the second one, i.e.,

N1 ≪ N2.

Then, the dynamics we will propose is based on the heuristic idea that the small species
should essentially not affect the large one. Conversely, the small species should be both
affected by agents in the small species itself and the agents in the large species. To describe
our micro-micro system, we denote positions, velocities, and internal variables of each species
by

zi = (xi, vi, θi) ∈ R
d × R

d × R+, i = 1, . . . , N1,

z̄k = (x̄k, v̄k, θ̄k) ∈ R
d × R

d ×R+, k = 1, . . . , N2.

We will assume that the whole group of N1 +N2 agents interact weakly all-to-all through
TCS-type interactions. In addition, we suppose that agents in the first species also interact
weakly all-to-all via aggregation attractive/repulsive interactions. Specifically, by dividing
into self-interactions for agents in the same species and cross-interactions for agents in
different species, we can propose the following system of coupled ODEs:
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dxi
dt

= vi,

m1
dvi
dt

= w1
κ1
N

N1∑

j=1

φ1(xi − xj)

(
vj
θj

−
vi
θi

)
− w1

κa
N1

N1∑

j=1

∇W1(xi − xj)

+
κc
N

N2∑

l=1

φc(xi − x̄l)

(
v̄l
θ̄l

−
vi
θi

)
,

dθi
dt

= w1
ν1
N

N1∑

j=1

ζ1(xi − xj)

(
1

θi
−

1

θj

)
+
νc
N

N2∑

l=1

ζc(xi − x̄l)

(
1

θi
−

1

θ̄l

)
,

(2.1)

dx̄k
dt

= v̄k,

m2
dv̄k
dt

= w2
κ2
N

N2∑

l=1

φ2(x̄k − x̄l)

(
v̄l
θ̄l

−
v̄k
θ̄k

)
+
κc
N

N1∑

j=1

φc(x̄k − xj)

(
vj
θj

−
v̄k
θ̄k

)
,

dθ̄k
dt

= w2
ν2
N

N2∑

l=1

ζm(x̄k − x̄l)

(
1

θ̄k
−

1

θ̄l

)
+
νc
N

N1∑

j=1

ζc(x̄k − xj)

(
1

θ̄k
−

1

θj

)
,

(2.2)

for every i = 1, . . . , N1 and k = 1, . . . , N2. Here, κ1, ν1 ∈ R+ are coupling strength coef-
ficients for the self-interactions between agents in the first species. We remark that those
interactions are of TCS-type and are regulated by influence functions φ1, ζ1. Similarly,
for the second microscopic species, κ2, ν2 ∈ R+ are the coupling strength for their self-
interactions, whilst φ2, ζ2 stand for the associated influence functions. We couple both
systems via TCS-type cross-interactions between agents in two different species, that are
modulated by the coupling strength coefficients κc, νc ∈ R+ and the influence functions
φc and ζc. Finally, κa indicates the coupling strength for the aggregation self-interactions
between agents in the first species. We remark that both self-interactions within the same
species and cross-interactions between different ones are symmetric and compatible with
Newton’s laws of motion. The weights w1 = w1(N1, N2) and w2 = w2(N1, N2) in (2.1)–
(2.2) are dimensionless coefficients depending only on the amount of agents N1 and N2.
They allow modifying the weak mean-field all-to-all interactions by an appropriate scaling
so that stronger self-interactions might be considered. Specifically, we will assume here that
weights are given by

(2.3) w1 =
N

N1
and w2 =

N

N2
.

Remark 2.1 (A weighted mean-field scaling). Notice that the usual mean-field scaling has
been avoided in (2.1)-(2.2) by introducing the scaling weights (2.3). The reason behind this
correction relies on a typical constraint of the mean-field scale with regards to groups with
considerably different sizes. Indeed, let us assume for a moment that w1 = w2 = 1 so
that the interactions are reduced to weak mean-field all-to-all interactions. In such a case,
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equations (2.1)2-(2.2)2 would take the form

m1
dvi
dt

=
N1

N

κ1
N1

N1∑

j=1

φ1(xi − xj)

(
vj
θj

−
vi
θi

)
−
N1

N

κa
N1

N1∑

j=1

∇W1(xi − xj)

+
N2

N

κc
N2

N2∑

l=1

φc(xi − x̄l)

(
v̄l
θ̄l

−
vi
θi

)
,

m2
dv̄k
dt

=
N2

N

κ2
N2

N2∑

l=1

φ2(x̄k − x̄l)

(
v̄l
θ̄l

−
v̄k
θ̄k

)
+
N1

N

κc
N1

N1∑

j=1

φc(x̄k − xj)

(
vj
θj

−
v̄k
θ̄k

)
,

for i = 1, . . . , N1 and k = 1, . . . , N2. Since we are assuming N1 ≪ N2, we obtain that

N1

N
≈ 0 and

N2

N
≈ 1.

Thus, the small species essentially does not affect the large one. However, we also observe
that the presence of a large species almost halts the dynamics of the small one. Namely,
TCS- and aggregation-type self-interactions within the small species become negligible. This
violates the basic principle of locality of interactions, see [66]. Our correction in (2.1)-(2.2)
keeps mean-field cross-interactions, but self-interactions are scaled according to the number
of particles in the corresponding species. We shall see that the above unrealistic behavior
disappears and agents in the small species will be affected both by self and cross interactions
in the same order.

2.2. From micro-micro to meso-meso. Here, we sketch the formal coupled mean-field
limit as N1 → ∞ and N2 → ∞ under the constraint N1 ≪ N2. This will justify the
meso-meso system. Notice that since N1 ≪ N2, we can set N2 = σ(N1) for an appropriate
function σ : N −→ N such that

(2.4) lim
N1→∞

σ(N1)

N1
= ∞.

We will see that our limiting meso-meso system will not depend on the specific function σ
linking N2 to N1. Associated with each species, we can define the empirical measures

µN1(t, x, v, θ) :=
1

N1

N1∑

i=1

δxi(t)(x)⊗ δvi(t)(v)⊗ δθi(t)(θ),

µ̄N1(t, x, v, θ) :=
1

σ(N1)

σ(N1)∑

k=1

δx̄k(t)(x)⊗ δv̄k(t)(v)⊗ δθ̄k(t)(θ),

where we have omitted the dependence on σ for simplicity. Using (2.1)-(2.2), standard
arguments show that µN1 and µ̄N1 satisfy the following Vlasov-type kinetic equations in
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distributional sense

∂tµ
N1 + v · ∇xµ

N1 +
1

m1
∇v ·

(
F1[µ

N1 ]µN1 +H1[µ
N1 ]µN1 +

σ(N1)

N1 + σ(N1)
Fc[µ̄

N1 ]µN1

)

+ ∂θ

(
G1[µ

N1 ]µN1 +
σ(N1)

N1 + σ(N1)
Gc[µ̄

N1 ]µN1

)
= 0,

∂tµ̄
N1 + v · ∇xµ̄

N1 +
1

m2
∇v ·

(
F2[µ̄

N1 ] µ̄N1 +
N1

N1 + σ(N1)
Fc[µ

N1 ] µ̄N1

)

+ ∂θ

(
G2[µ̄

N1 ] µ̄N1 +
N1

N1 + σ(N1)
Gc[µ

N1 ] µ̄N1

)
= 0,

(2.5)

where the operators Fi, Gi and H1 take the form

Fi[f ](t, x, v, θ) := κi

∫

R2d×R+

φi(x− x∗)

(
v∗
θ∗

−
v

θ

)
f(t, z∗) dz∗,

Gi[f ](t, x, v, θ) := νi

∫

R2d×R+

ζi(x− x∗)

(
1

θ
−

1

θ∗

)
f(t, z∗) dz∗,

H1[f ](t, x, v, θ) := −κa

∫

R2d×R+

∇W1(x− x∗)f(t, z∗) dz∗,

for any curve of probability measures t ∈ R+ 7→ f(t, ·) ∈ P(Rd × R
d × R+) and each index

i = 1, 2, c. The mean-field limit as N1 → ∞ allows showing that, if µN1(0, ·) → f(0, ·) and
µ̄N1(0, ·) → f̄(0, ·) appropriately in the sense of probability measures, then

µ̄N1(t, ·) → f̄(t, ·) and µN1(t, ·) → f(t, ·),

for each t ∈ R+. Under such condition, it is clear that we can formally pass to the limit
as N1 → ∞ in the above equation (2.5) and find a closed equation in terms of the limiting
probability distributions f = f(t, x, v, θ) and f̄ = f̄(t, x, v, θ). Indeed, notice that the size
relation (2.4) implies that

lim
N1→∞

σ(N1)

N1 + σ(N1)
= 1 and lim

N1→∞

N1

N1 + σ(N1)
= 0.

Then, whilst self and cross interactions persist in the first mesoscopic species, only self-
interactions remain in the second mesoscopic species. To conclude, the joint final mean-field
limit of system (2.1)-(2.2) as N1 → ∞ and N2 → ∞ with N1 ≪ N2 takes the form of the
following meso-meso system

∂tf + v · ∇xf +
1

m1
∇v · (F1[f ] f +H1[f ]f + Fc[f̄ ]f) + ∂θ(G1[f ] f +Gc[f̄ ] f) = 0,

∂tf̄ + v · ∇xf̄ +
1

m2
∇v · (F2[f̄ ] f̄) + ∂θ(G2[f̄ ] f̄) = 0.

(2.6)

2.3. From meso-meso to meso-macro. Now, our goal is to find a hydrodynamic closure
for the second species f̄ in the meso-meso system (2.6). Typically, one looks at moments of



HYDRODYNAMIC LIMIT OF A COUPLED CUCKER-SMALE SYSTEM 11

the distribution function, e.g.,

ρ̄(t, x) :=

∫

Rd×R+

f̄(t, x, v, θ) dv dθ,

(ρ̄ ū)(t, x) :=

∫

Rd×R+

vf̄(t, x, v, θ) dv dθ,

(ρ̄ ē)(t, x) :=

∫

Rd×R+

θf̄(t, x, v, θ) dv dθ.

Specifically, multiplying (2.6)2 by (1, v, θ) and integrating with respect to v and θ yields a
non-closed hierarchy of PDEs for moments ρ̄, ū and ē. Although it is not closed, a typical
method is to assume the mono-kinetic distribution of f̄ , i.e.,

f̄(t, x, v, θ) = ρ̄(t, x)⊗ δū(t,x)(v) ⊗ δē(t,x)(θ).

By doing so, we obtain the following meso-macro multiscale system

∂tf + v · ∇xf +
1

m1
∇v · (F1[f ] f +H1[f ]f + Fc[ρ̄, ū, ē]f) + ∂θ(G1[f ] f +Gc[ρ̄, ē] f) = 0,

Fc[ρ̄, ū, ē](t, x, v, θ) := κc

∫

Rd

φc(x− x∗)

(
ū(t, x∗)

ē(t, x∗)
−
v

θ

)
ρ̄(t, x∗) dx∗,

Gc[ρ̄, ē](t, x, v, θ) := νc

∫

Rd

ζc(x− x∗)

(
1

θ
−

1

ē(t, x∗)

)
ρ̄(t, x∗) dx∗,

(2.7)

∂tρ̄+∇ · (ρ̄ ū) = 0,

∂t(ρ̄ ū) +∇ · (ρ̄ ū⊗ ū) =
κ2
m2

∫

Rd

φ2(x− x∗)

(
ū(t, x∗)

ē(t, x∗)
−
ū(t, x)

ē(t, x)

)
ρ̄(t, x) ρ̄(t, x∗) dx∗,

∂t(ρ̄ ē) +∇ · (ρ̄ ē ū) = ν2

∫

Rd

ζ2(x− x∗)

(
1

ē(t, x)
−

1

ē(t, x∗)

)
ρ̄(t, x) ρ̄(t, x∗) dx∗.

(2.8)

Remark 2.2 (A Stokes drag force compatible with TCS interactions). The meso-macro
system (2.7)-(2.8) is a particular instance of the dynamics of particles interacting with a
fluid. This is an old-standing issue that has been treated in the literature for specific problems
both from the points of view of fluid mechanics and kinetic theory. For instance, we refer
to [7, 28, 29, 38] for the interaction of aerosols with a viscous fluid. In [2, 30] the authors
studied the interaction of Cucker-Smale particles with a viscous fluid. Also, the interaction
of TCS particles with a viscous fluid has been considered recently in [14, 15]. In the above
setting, particles interact with a viscous ideal fluid so that the cross-interaction terms are
described by the so-called Stokes drag force (Stokes’ law)

Fd(t, x, v) = ū(t, x)− v.

See [4, 5, 9, 22, 40, 44], for some results on its mathematical derivation. In our case, the
macroscopic species is no longer a Newtonian viscous fluid. Instead, it is replaced by the
pressureless and inviscid hydrodynamic TCS model, which describes the active dynamics of
a large population of agents through TCS alignment interactions. Also, the particle species
is described through a TCS-aggregation kinetic equation weakly coupled with the former one.
Given the different nature of the macroscopic equation, Stokes’ drag force is not necessarily
admissible. In fact, our microscopic derivation of (2.7)-(2.8) suggests a different coupling
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in terms of the nonlinear and nonlocal drag forces Fc[ρ̄, ū, ē] and Gc[ρ̄, ē] exerted by the
macroscopic species. In particular, if we assume that f is supported at θ = θ0, ē ≡ θ0 for
some θ0 ∈ R+, and φc = ζc ≡ 1, then cross-interactions reduce to an averaged drag force

F̄d(t, v) =
1

θ0

(∫

Rd

ρ̄(t, x)ū(t, x) dx − v

)
.

2.4. Dimensional analysis and scaling. Now, we will introduce a dimensionless version
of (2.7)-(2.8) in terms of characteristic units of the system and we will propose the main
scaling assumptions. Here, we do not assume an explicit form of the influence functions
φi and ζi and the aggregation potential W1. Instead, we suppose that they are given by
proper scaling of general influence functions φ, ζ, and aggregation potential W verifying
the regularity conditions (1.14). Specifically, we assume that

(2.9) φi(x) = φ

(
x

σi

)
, ζi(x) = ζ

(
x

σi

)
, W1(x) = σaW

(
x

σa

)
, x ∈ R

d,

for i = 1, 2, c, where σ1, σ2, σc ∈ R+ are length units representing the effective range of
TCS (self and cross) interactions. Similarly, σa ∈ R+ represents the effective range of
aggregation self-interactions in the kinetic species. Consider T,L, V,Θ ∈ R+ characteristic
values for time, length, velocity, and internal variable to be described later. Notice that no
further effects (e.g. thermal bath) is applied to velocity apart from the TCS and aggregation
interactions. Then, it is natural to assume the relation V := L

T . In addition, consider the
following rescaled (dimensionless) variables

t̂ :=
t

T
, x̂ :=

x

L
, v̂ :=

v

V
, θ̂ :=

θ

Θ
.

For consistency, we also define

f̂(t̂, ẑ) = LdV dΘf(t, z), ̂̄ρ(t̂, x̂) = Ldρ̄(t, x),

̂̄u(t̂, x̂) = ū(t, x)

V
, ̂̄e(t̂, x̂) = ē(t, x)

Θ
.
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Inserting them into (2.7)-(2.8) and dropping the hats for simplicity of notation, we obtain
the following dimensionless system

∂tf + v · ∇xf +∇v ·

(
Tκ1
m1Θ

F1,δ1 [f ] f +
Tκa
m1LV

H1,δa [f ]f +
Tκc
m1Θ

Fc,δc [ρ̄, ū, ē]f

)

+ ∂θ

(
Tν1
Θ2

G1,δ1 [f ] f +
Tνc
Θ2

Gc,δc [ρ̄, ē] f

)
= 0,

F1,δ1 [f ](t, x, v, θ) :=

∫

R2d×R+

φ

(
x− x∗
δ1

)(
v∗
θ∗

−
v

θ

)
f(t, z∗) dz∗,

H1,δa[f ](t, x, v, θ) := −

∫

R2d×R+

∇W

(
x− x∗
δa

)
f(t, z∗) dz∗,

G1,δ1 [f ](t, x, v, θ) :=

∫

R2d×R+

ζ

(
x− x∗
δ1

)(
1

θ
−

1

θ∗

)
f(t, z∗) dz∗,

Fc,δc [ρ̄, ū, ē](t, x, v, θ) :=

∫

Rd

φ

(
x− x∗
δc

)(
ū(t, x∗)

ē(t, x∗)
−
v

θ

)
ρ̄(t, x∗) dx∗,

Gc,δc [ρ̄, ē](t, x, v, θ) :=

∫

Rd

ζ

(
x− x∗
δc

)(
1

θ
−

1

ē(t, x∗)

)
ρ̄(t, x∗) dx∗,

(2.10)

∂tρ̄+∇x · (ρ̄ ū) = 0,

∂t(ρ̄ ū) +∇x · (ρ̄ ū⊗ ū) =
Tκ2
m2Θ

∫

Rd

φ

(
x− x∗
δ2

)(
ū(t, x∗)

ē(t, x∗)
−
ū(t, x)

ē(t, x)

)
ρ̄(t, x) ρ̄(t, x∗) dx∗,

∂t(ρ̄ ē) +∇x · (ρ̄ ē ū) =
Tν2
Θ2

∫

Rd

ζ

(
x− x∗
δ2

)(
1

ē(t, x)
−

1

ē(t, x∗)

)
ρ̄(t, x) ρ̄(t, x∗) dx∗,

(2.11)

where we have denoted the scaled effective range of interactions

δ1 :=
σ1
L
, δ2 :=

σ2
L
, δc :=

σc
L
, δa :=

σa
L
.

We now chose the characteristic values as follows:

(2.12) L := σ2, T :=
m2

κ2
=

1

ν2
, Θ := 1.

Specifically, L is taken as the effective range of self-interactions of the macroscopic species,
T is taken as the relaxation time under such TCS interactions of the second species, Θ is
set to any constant dimensionless value, say 1. On the one hand, since those are the typical
units of the second species, all the parameters in (2.11) disappear. On the other hand, we
can define the following rescaled parameters for the first species

(2.13) µ :=
m2

m1
, τv :=

κ2
κ1
, τa :=

κ2LV

κa
, τvc :=

κ2
κc
, τ θ :=

ν2
ν1
, τ θc :=

ν2
νc
.

We substitute the choice (2.12) and notation (2.13) into (2.10)-(2.11) to obtain

∂tf + v · ∇xf + µ∇v ·

(
1

τv
F1,δ1 [f ] f +

1

τa
H1,δa[f ] f +

1

τvc
Fc,δc [ρ̄, ū, ē]f

)

+ ∂θ

(
1

τ θ
G1,δ1 [f ] f +

1

τ θc
Gc,δc [ρ̄, ē] f

)
= 0,

(2.14)
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∂tρ̄+∇x · (ρ̄ ū) = 0,

∂t(ρ̄ ū) +∇x · (ρ̄ ū⊗ ū) =

∫

Rd

φ(x− x∗)

(
ū(t, x∗)

ē(t, x∗)
−
ū(t, x)

ē(t, x)

)
ρ̄(t, x) ρ̄(t, x∗) dx∗,

∂t(ρ̄ ē) +∇x · (ρ̄ ē ū) =

∫

Rd

ζ(x− x∗)

(
1

ē(t, x)
−

1

ē(t, x∗)

)
ρ̄(t, x) ρ̄(t, x∗) dx∗.

(2.15)

Note that the second species is decoupled and can be fixed as an a priori given fluid.
We conclude this part by proposing the different scaling limits of the first species that we
shall study throughout this paper. For simplicity, we shall make a long-range assumption
for cross-interactions between species. Specifically, we will assume that agents in the first
species interact with agents in the second species within an effective range that is much
larger than the effective range of self-interactions in the second species. In other words, we
assume that δc → ∞. Notice that, as a consequence of (1.14) we obtain φ(x/δc) → φ(0) = 1
and ζ(x/δc) → ζ(0) = 1, so that operators Fc,δc and Gc,δc get substantially simplified into

Fc[ρ̄, ū, ē](t, x, v, θ) :=

∫

Rd

ρ̄(t, x)ū(t, x)

ē(t, x)
dx−

v

θ
,

Gc[ρ̄, ē](t, x, v, θ) :=
1

θ
−

∫

Rd

ρ̄(t, x)

ē(t, x)
dx.

Note that the operators Fc and Gc are now independent with the spatial variable x. To
conclude, let us finally introduce the specific scale relation between the effective range of
self-interactions for the first and second species, using the scaling parameter ε. This leads
to two distinguished regimes as follows.

2.4.1. (Regular influence functions). In this case, we assume that the effective range
of TCS and aggregation self-interactions in the first species is comparable to that of the
second species, i.e.,

δ1 = O(1), δa = O(1),

as ε → 0. Then, we can propose two different scalings, depending on the relation between
the strength of relaxation and TCS-aggregation interactions in each species.

• (Strong relaxation of θ) In this case, we assume that

(2.16) µ = O(1), τv = τa = τvc = τ θ = τ θc = O(ε),

as ε → 0. This means that both species consist of particles with comparable mass. In
addition, TCS, aggregation and relaxation interactions for the first species are stronger
than for the second one. In particular, the relaxation of the internal variable of the first
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species towards the second one is strong. This choice leads to the system

∂tfε + v · ∇xfε +
1

ε
∇v · (F [fε] fε +H[fε] fε + Fc[ρ̄, ū, ē]fε)

+
1

ε
∂θ (G[fε] fε +Gc[ρ̄, ē] fε) = 0,

F [f ](t, x, v, θ) :=

∫

R2d×R+

φ(x− x∗)

(
v∗
θ∗

−
v

θ

)
f(t, z∗) dz∗,

H[f ](t, x, v, θ) := −

∫

R2d×R+

∇W (x− x∗)f(t, z∗) dz∗,

G[f ](t, x, v, θ) :=

∫

R2d×R+

ζ(x− x∗)

(
1

θ
−

1

θ∗

)
f(t, z∗) dz∗,

Fc[ρ̄, ū, ē](t, x, v, θ) :=

∫

Rd

ρ̄(t, x)ū(t, x)

ē(t, x)
dx−

v

θ
,

Gc[ρ̄, ē](t, x, v, θ) :=
1

θ
−

∫

Rd

ρ̄(t, x)

ē(t, x)
dx.

(2.17)

• (Weak relaxation of θ) In this case, we assume that

(2.18) µ = O(1), τv = τa = τvc = τ θ = O(ε), τ θc = O(1),

as ε → 0. This has similar implications as (2.16) except for the fact that relaxation of the
internal variable of the first species towards the second one is slow and it occurs at the same
scale as alignment interactions in the second species. This choice leads to the system

∂tfε + v · ∇xfε +
1

ε
∇v · (F [fε] fε +H[fε] fε + Fc[ρ̄, ū, ē]fε)

+ ∂θ

(
1

ε
G[fε] fε +Gc[ρ̄, ē] fε

)
= 0,

(2.19)

Remark 2.3. Note that the parameters κi, νi and κa for coupling strengths are absorbed by
the scaling parameter ε in the dimensionless versions of the meso-macro multiscale systems
(2.17) and (2.19). Thus, from now on, we focus on the case when these coupling strengths
are normalized to 1, i.e., κi = νi = κa = 1 as in (1.8) and (1.12).

2.4.2. (Singular influence functions). In this case, we assume that the effective range
of TCS self-interactions in the first species is much smaller than in the second species, but,
for simplicity, aggregation self-interactions are of the same order, i.e.,

δ1 = O(ε), δa = O(1),

as ε → 0. Again, we propose two different scalings depending on the relation between the
strength of relaxation and alignment interactions in each species. Here, we consider the
following choices of φ and ζ inspired by the typical influence functions of the C-S model

(2.20) φ(x) =
1

(1 + cλ1 |x|
2)λ1/2

, ζ(x) =
1

(1 + cλ2 |x|
2)λ2/2

, x ∈ R
d,

for general parameters λ1, λ2 > 0. The coefficients cλi = 22/λi − 1 have been chosen so that
the tails of influence functions φ1 and ζ1 in (2.9) are small. Namely, we obtain that

φ1(x) = φ

(
x

σ1

)
≤

1

2
, ζ1(x) = ζ

(
x

σ1

)
≤

1

2
,



16 KIM, POYATO, AND SOLER

whenever |x| ≥ σ1. Hence, σ1 really reflects an effective range of TCS self-interactions in
the first species.

• (Strong relaxation of θ) In this case, we assume that

(2.21) µ = O(1), τv = O(ε1+λ1), τ θ = O(ε1+λ2), τa = O(ε), τvc = τ θc = O(ε),

as ε → 0. This means that both species consist of particles with comparable mass. In
addition, TCS, aggregation and relaxation interactions for the first species are stronger
than for the second one. In particular, relaxation of the internal variable of the first species
towards the second one is weak. This choice leads to the system

∂tfε + v · ∇xfε +
1

ε
∇v · (Fε[fε] fε +H[fε]fε + Fc[ρ̄, ū, ē]fε)

+
1

ε
∂θ (Gε[fε] f +Gc[ρ̄, ē] fε) = 0,

Fε[f ](t, x, v, θ) :=

∫

R2d×R+

φε(x− x∗)

(
v∗
θ∗

−
v

θ

)
f(t, z∗) dz∗,

Gε[f ](t, x, v, θ) :=

∫

R2d×R+

ζε(x− x∗)

(
1

θ
−

1

θ∗

)
f(t, z∗) dz∗,

(2.22)

where φε and ζε are now the singularly scaled influence functions

(2.23) φε(x) =
1

(ε2 + cλ1 |x|
2)λ1/2

, ζε(x) =
1

(ε2 + cλ2 |x|
2)λ2/2

, x ∈ R
d.

Here, W is a generic aggregation potential verifying the regularity condition (1.14).

• (Weak relaxation of θ) In this case, we assume that
(2.24)

µ = O(1), τv = O(ε1+λ1), τ θ = O(ε1+λ2), τa = O(ε), τvc = O(ε), τ θc = O(ελ2),

as ε → 0. This has similar implications as (2.21) except for the fact that relaxation of
the internal variable of the first species towards the second one is slow and it occurs at an
intermediate scale. This choice leads to the system

∂tfε + v · ∇xfε +
1

ε
∇v · (Fε[fε] fε +H[fε] fε + Fc[ρ̄, ū, ē]fε)

+ ∂θ

(
1

ε
Gε[fε] fε +Gc[ρ̄, ē] fε

)
= 0.

(2.25)

Remark 2.4 (Singular influence functions). Notice that in the singular regime, the scale
influence functions φε and ζε become singular at the origin asymptotically when ε → 0. In
fact, they take the form

φ0(x) :=
1

c
λ1/2
λ1

|x|λ1
, x ∈ R

d \ {0},

ζ0(x) :=
1

c
λ2/2
λ2

|x|λ2
, x ∈ R

d \ {0}.

(2.26)

Remark 2.5 (Singular aggregation potentials). Due to our scaling assumption δa = O(1),
the limiting potential W remains smooth in the limit. However, we could also assume
δa = O(ε) and a specific form of W , so that we recover meaningful singular potentials in
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Figure 2. Singular aggregation potential W0 with λ3 = 0.5, λ3 = 1 and
λ3 = 2.

the limit. For instance, Cucker and Dong [18] proposed a novel alignment-aggregation model
with similar choices of potentials W like the influence functions (2.20) in C-S model:

(2.27) W (x) =





1

(1− λ3)c
1/2
λ3

(1 + cλ3 |x|
2)

1−λ3
2 , if λ3 ∈ R+ \ {1},

1

2c
1/2
λ3

log(1 + cλ3 |x|
2), if λ3 = 1.

These are attractive potentials, but a similar argument builds repulsive ones. Taking δa =
O(ε) and τa = O(ελ3) when ε→ 0, we note that H[fε] in (2.22) and (2.25) is replaced by

Hε[fε](t, x) := −

∫

R2d×R+

∇Wε(x− x∗)fε(t, z∗) dz∗,

where the scaled aggregation potentials Wε take the form

(2.28) Wε(x) =





1

(1− λ3)c
1/2
λ3

(ε2 + cλ3 |x|
2)

1−λ3
2 , if λ3 ∈ R+ \ {1},

1

2c
1/2
λ3

log(ε2 + cλ3 |x|
2), if λ3 = 1.

Note that we find various singular potentials when ε → 0, ranging from Hölder-continuous
Lennard-Jones potentials with sublinear growth, to Riesz and Newtonian potentials with
logarithmic and algebraic singularities, see Figure 2. We skip the analysis of singular ag-
gregation kernels in this paper, but we shall briefly elaborate on some cases in Section 3.5.

3. Hydrodynamic limit in the strong relaxation regime

In this section, we derive the hydrodynamic limit of system (1.8) towards (1.10). To this
end, we first prove that the internal variable support of fε shrinks fast enough so that θ
concentrates at the background mean value θ∞(t) (see (1.9)), after some very small initial
time layer. With such control in hand, we obtain appropriate a priori estimates for the
velocity moments. Finally, we combine the estimates for velocity moments and the internal
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variable support to derive the rigorous hydrodynamic limit. Throughout this part, we will
always assume the following hypothesis on initial data:

f0ε (x, v, θ) ≥ 0 and f0ε ∈ C∞
c (R2d × R+),

‖f0ε ‖L1(R2d×R+) = 1 and ρ0ε
∗
⇀ ρ0 in M(Rd),

‖|x|f0ε ‖L1(R2d×R+) ≤M0, ‖|v|
2f0ε ‖L1(R2d×R+) ≤ E0 and suppθ f

0
ε ⊆ [θ0m, θ

0
M ],

(3.1)

for each ε > 0, where M0, E0, and θ
0
m < θ0M are positive ε-independent constants. In addi-

tion, we will assume that (ρ̄, ū, ē) is any fixed strong (Lipschitz) solution to the macroscopic
species (1.7), which verifies the following properties within a time interval [0, T ]

θ̄m ≤ ē(t, x) ≤ θ̄M ,

|ū(t, x)| ≤ v̄M ,
(3.2)

for any t ∈ [0, T ] and x ∈ supp ρ̄(t, ·), where θ̄m < θ̄M and v̄M are positive ε-independent
constants. Finally, assume the compatibility condition

(3.3) θ0M − θ0m <
min{θ0m, θ̄m}

2

max{θ0M , θ̄M}
.

Remark 3.1 (Strong solutions of the background fluid (1.7)). We emphasize that we are
assuming the existence of a strong solution to (1.7) verifying the uniform control (3.2).

• (Periodic domain) This is justified when the spatial domain is the periodic box T
d.

Indeed, in [31] the authors proved the existence of unique local-in-time strong solutions to
the hydrodynamic equations (1.7) under mild assumptions on the initial data (ρ̄0, ū0, ē0) ∈
Hs(Td)×Hs+1(Td)×Hs+1(Td), for any integer s > d

2+1 and Lipschitz-continuous influence
functions φ and ζ. In particular, this suggests the existence of a small enough T > 0 such
that assumptions (3.2) fulfill due to the compactness of the domain. Indeed, for small enough
initial data, solutions were proved to be global in time, so that we could indeed set T = ∞.

• (Free space) For the free space R
d an analogue well-posedness result is not available

in the literature. However, we still expect the coexistence of blow-ups and global strong
solutions. Note that the persistence of strong solutions is guaranteed as long as ∇xū(t, x)
remains uniformly bounded. This has been exploited in [67] for the Euler-alignment system
(1.3) in R

d. Namely, the authors found an explicit critical threshold so that sub-critical
initial configurations lead to global strong solutions whilst super-critical ones imply finite
time blow-ups. In fact, for influence function φ with slow tails (i.e. λ1 ∈ (0, 1)) global
strong solutions must flock, according to Theorem 2.2 in [67]. Then, we recover similar
uniform control (3.2) up to T = ∞ for sub-critical initial configurations.

Remark 3.2 (Control on θ∞ and u∞). Under conditions (3.2) on the solution (ρ̄, ū, ē) to
(1.7), we obtain extra regularity θ∞ ∈W 1,∞(0, T ) and u∞

θ∞ ∈ L2(0, T ). Specifically,

θ̄m ≤ θ∞(t) ≤ θ̄M ,

0 ≤
dθ∞

dt
≤ ‖ζ‖L∞

θ̄2M
θ̄5m

(θ̄M − θ̄m)
2

(3.4)

for all t ∈ [0, T ] and

(3.5)

∫ T

0

∣∣∣∣
u∞(t)

θ∞(t)

∣∣∣∣
2

dt < T

∣∣∣∣
v̄M
θ̄m

∣∣∣∣
2

=: F 2
0 .
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On the one hand, (3.4)1 follows by integrating in (3.2)1 against ρ̄. On the other hand, using
the hydrodynamic equations for the background fluid

dθ∞

dt
=

d

dt

(∫

Rd

ρ̄

ē
dx

)−1

= −(θ∞)2
d

dt

∫

Rd

ρ̄

ē
dx = −(θ∞)2

∫

Rd

(
∂tρ̄

ē
−
ρ̄∂tē

ē2

)
dx

= −(θ∞)2
∫

Rd

(
∇ · (ρ̄ū)

ē
−
ρ̄ū · ∇ē

ē2

)
dx

+
(θ∞)2

2

∫

R2d

ζ(x− x∗)

(
1

ē2(t, x)
−

1

ē2(t, x∗)

)

×

(
1

ē(t, x)
−

1

ē(t, x∗)

)
ρ̄(t, x)ρ̄(t, x∗) dx dx∗,

for every t ∈ [0, T ]. By integrating by parts, the first term in the right-hand side vanishes.
Using the preceding control on θ∞ along with the upper and lower bounds of ē in (3.2)1 we

conclude (3.4)2. In particular, the smaller (θ̄m, θ̄M ), the flatter the slope dθ∞

dt . Similarly, it
follows from the definition of u∞(t) that

∣∣∣∣
u∞(t)

θ∞(t)

∣∣∣∣ =
∣∣∣∣
∫

Rd

ρ̄(t, x)ū(t, x)

ē(t, x)
dx

∣∣∣∣ ≤
∣∣∣∣
v̄M
θ̄m

∣∣∣∣ ,

for every t ∈ [0, T ], which implies the claimed L2 estimate (3.5).

3.1. Hierarchy of moments. Under the above assumptions (3.1), (3.2), there exists a
unique strong solution fε to system (1.8) with initial data f0ε . Then, we can define the
following hierarchy of moments

ρε(t, x) :=

∫

Rd×R+

fε dv dθ, Svε (t, x) :=

∫

Rd×R+

v ⊗ vfε dv dθ,

jε(t, x) :=

∫

Rd×R+

vfε dv dθ, Sθε (t, x) :=

∫

Rd×R+

v θfε dv dθ,

hε(t, x) :=

∫

Rd×R+

θfε dv dθ, Aε(t, x) :=

∫

Rd×R+

v

θ
fε dv dθ,

Bε(t, x) :=

∫

Rd×R+

1

θ
fε dv dθ.

(3.6)

We notice that, given the strong nonlinearity of the forcing terms F , Fc, G and Gc in (1.8),
many nonlinear moments are involved in the dynamics. By multiplying (1.8) by 1, v and
θ and integrating by parts, and using the definition of moments in (3.6), we obtain the
following hierarchy of equations

∂tρε +∇ · jε = 0,

ε∂tjε + ε∇ · Svε +Aε(φ ∗ ρε)− ρε(φ ∗ Aε) + (∇W ∗ ρε)ρε +Aε − ρε
u∞(t)

θ∞(t)
= 0,

ε∂thε + ε∇ · Sθε + ρε(ζ ∗Bε)−Bε(ζ ∗ ρε) +
ρε

θ∞(t)
−Bε = 0,

(3.7)

where θ∞ and u∞ are the background mean value of the internal variable and velocity
respectively, see (1.9) and (1.11). Our final goal is to show rigorously that we can close the
above hierarchy (3.7) of equations when ε→ 0. As a consequence of the scaling, the inertial
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terms ε∇x · S
v
ε and ε∇x · S

θ
ε in second and third equations will disappear in the limit, see

e.g. [25, 61] for the Cucker-Smale model.

3.2. Concentration of the internal variable support. In this part, we present the
exponential concentration of the internal variable support of fε. To such an end, we define

Dε
x(t) := diam(suppx fε(t)),

Dε
v(t) := diam(suppv fε(t)),

Dε
θ(t) := diam(suppθ fε(t)),

(3.8)

for every t ∈ [0, T ] and ε > 0. Recall that the characteristic system of (1.8) consists in the
trajectories Zε(t; 0, z0) = (Xε(t; 0, z0), Vε(t; 0, z0),Θε(t; 0, z0)) solving

dXε

dt
= Vε,

dVε
dt

=
1

ε
F [fε](t, Zε) +

1

ε
H[fε](t, Zε) +

1

ε
Fc[ρ̄, ū, ē](t, Zε),

dΘε

dt
=

1

ε
G[fε](t, Zε) +

1

ε
Gc[ρ̄, ē](t, Zε),

Zε(0; 0, z0) = z0,

(3.9)

for t ∈ [0, T ] and any z0 ∈ R
2d × R+.

Lemma 3.1 (Concentration of internal variable). Let fε be the solution of (1.8) subject to
initial data f0ε . Suppose that initial data verify (3.1) and (ρ̄, ū, ē) verifies (3.2). Consider
the constants 0 < θm < θM defined by

(3.10) θM := max{θ0M , θ̄M}, θm := min{θ0m, θ̄m}.

Then, the following estimates hold:

(1) (Confinement of support)

suppθfε(t) ⊂ (θm, θM ), for all t ∈ [0, T ].

(2) (Exponential concentration)

Dε
θ(t) ≤ Dε

θ(0)e
− 1

εθ2
M

t
, for all t ∈ [0, T ].

(3) (Deviation from the background mean value θ∞(t))

suppθfε(t) ⊂ (θ∞(t)− ηε(t), θ
∞(t) + ηε(t)), for all t ∈ [0, T ].

Here, the error ηε(t) is given as

ηε(t) = Ce−
c
ε
t + Cε, t ∈ [0, T ],

where C, c ∈ R+ only depend on parameters θ0M , θ̄M and ‖θ∞‖W 1,∞(0,T ).

Proof. Recall that by the upper and lower bounds on ē, we readily infer analogue estimates
θ̄m ≤ θ∞ ≤ θ̄M for the mean value θ∞(t) of the internal variable in the background species,
see (3.4) in Remark 3.2. We shall systematically use such a control along the proof. Let us
define the maximum and minimum value of the phase support

θMε (t) := max suppθ fε(t) = max
z0∈supp fε(0)

Θε(t; 0, z0),

θmε (t) := min suppθ fε(t) = min
z0∈supp fε(0)

Θε(t; 0, z0),
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where Θε = Θε(t; 0, z0) is the θ-component of the characteristic system (3.9). We notice
that it is not necessarily true that maximum and minimum is propagated along a fixed
characteristic; in other words, θMε (t) and θmε (t) are not necessarily characteristics. How-
ever, since the flow (t, z0) 7→ Θε(t; 0, z0) is continuous, differentiable with respect to t with
continuous derivative, then a usual argument (see e.g. [21, Corollary 3.3, Chapter 1]) yields

d+θMε (t)

dt
= max

z0∈Mε(t)

∂Θε

∂t
(t; 0, z0),

d+θmε (t)

dt
= min

z0∈mε(t)

∂Θε

∂t
(t; 0, z0),

(3.11)

for every t ∈ [0, T ], where d+/dt stands for the right sided derivative, and the critical sets
Mε(t) and mε(t) take the form

Mε(t) := {z0 ∈ suppθ fε(0) : θ
M
ε (t) = Θε(t; 0, z0)},

mε(t) := {z0 ∈ suppθ fε(0) : θ
m
ε (t) = Θε(t; 0, z0)}.

We fix any t ∈ [0, T ] and zM0 ∈Mε(t) and use the characteristic system (3.9) to achieve:

∂Θε

∂t
(t; 0, zM0 ) =

1

ε

(
G[fε](t, Zε(t; 0, z

M
0 )) +Gc[ρ̄, ē](t, Zε(t; 0, z

M
0 ))

)

=
1

ε

∫

R2d×R+

ζ(Xε(t; 0, z
m
0 )− x∗)

(
1

θMε (t)
−

1

θ∗

)
fε(t, z∗) dz∗

+
1

ε

(
1

θMε (t)
−

1

θ∞(t)

)

≤
1

ε

∫

R2d×R+

ζ(Dε
x(t))

(
1

θMε (t)
−

1

θ∗

)
fε(t, z∗) dz∗ +

1

ε

(
1

θMε (t)
−

1

θ∞(t)

)
,

(3.12)

where we used a maximality of θMε in the last inequality. Since zM0 ∈ Mε(t) is arbitrary,
(3.11) implies

d+θMε
dt

≤
1

ε

∫

R2d×R+

ζ(Dε
x(t))

(
1

θMε (t)
−

1

θ∗

)
fε(t, z∗) dz∗ +

1

ε

(
1

θMε (t)
−

1

θ∞(t)

)

≤
1

ε

(
1

θMε (t)
−

1

θ∞(t)

)
≤

1

ε

(
1

θMε (t)
−

1

θ̄M

)
=

1

ε

θ̄M − θMε (t)

θ̄MθMε (t)
,

(3.13)

for every t ∈ [0, T ]. A similar argument with θmε yields

d+θmε
dt

≥
1

ε

∫

R2d×R+

ζ(Dε
x(t))

(
1

θmε (t)
−

1

θ∗

)
fε(t, z∗) dz∗ +

1

ε

(
1

θmε (t)
−

1

θ∞(t)

)

≥
1

ε

(
1

θmε (t)
−

1

θ∞(t)

)
≥

1

ε

(
1

θmε (t)
−

1

θ̄m

)
=

1

ε

θ̄m − θmε (t)

θ̄mθmε (t)
,

(3.14)

for every t ∈ [0, T ].

• Step 1. We claim that

θMε (t) ≤ max{θ0M , θ̄M} =: θM , for t ∈ [0, T ].

To show this result, we show that θMε (t) < θM + δ for any δ > 0 and t ∈ [0, T ]. We define

t2 := sup{t ∈ [0, T ] : θMε (s) < θM + δ for 0 ≤ s ≤ t}.
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Assume by contradiction that t2 < +∞. Then, we can define

t1 := inf{t ∈ [0, t2] : θM +
δ

2
≤ θMε (s), for t ≤ s ≤ t2}.

By continuity along the fact that θMε (0) ≤ θM , we obtain that 0 < t1 < t2 and

θMε (t1) = θM +
δ

2
, θMε (t2) = θM + δ,(3.15)

θM +
δ

2
≤ θMε (t) ≤ θM + δ, for t1 ≤ t ≤ t2.(3.16)

On the one hand, by (3.15) we obtain

θMε (t2)− θMε (t1)

t2 − t1
=

δ

2(t2 − t2)
> 0.

On the other hand, by (3.13) and (3.16), we achive

d+θMε
dt

(t) ≤
1

ε

θM − θMε (t)

θ̄MθMε (t)
≤ 0,

for each t ∈ [t1, t2]. Consequently, by the mean value theorem adapted to one sided deriva-
tives (see e.g. [55]) we infer

θMε (t2)− θMε (t1)

t2 − t2
≤ sup

t∈(t1,t2)

d+θMε
dt

(t) ≤ 0,

which yields a contradiction. Therefore, we conclude our claim. An analogous continuity
argument can be applied to the minimal value θmε (t) and we obtain

θmε (t) ≥ min{θ0m, θ̄m} =: θm, for t ∈ [0, T ].

• Step 2. To estimate the diameter of the internal variable, we notice that

Dε
θ(t) = θMε (t)− θmε (t),

for each t ∈ [0, T ]. Taking the difference between estimates (3.13) and (3.14) we obtain

d+Dε
θ

dt
≤ −

1

ε
ζ(Dε

x(t))
Dε
θ(t)

θMε (t)θmε (t)
−

1

ε

Dε
θ(t)

θMε (t)θmε (t)
≤ −

Dε
θ(t)

εθ2M
,

for each t ∈ [0, T ], where we have used the uniform bounds in the previous step. This
implies the desired exponential decay for the diameter of internal variable.

• Step 3. Finally, we estimate the distance of the support of fε(t) to θ
∞(t). To such an

end, we apply the ideas (3.11) and similiar ideas as in (3.12) to obtain

d+

dt
(θMε − θ∞) ≤

∫

R2d×R+

ζ(Dε
x(t))

(
1

θMε (t)
−

1

θ∗

)
fε(t, z∗) dz∗

−
1

ε

θMε (t)− θ∞(t)

θMε (t)θ∞(t)
−
dθ∞

dt
≤ −

CMε (t)

ε
(θMε (t)− θ∞(t)) +

∣∣∣∣
dθ∞

dt

∣∣∣∣ ,

d+

dt
(θmε − θ∞) ≥

∫

R2d×R+

ζ(Dε
x(t))

(
1

θmε (t)
−

1

θ∗

)
fε(t, z∗) dz∗

−
1

ε

θmε (t)− θ∞(t)

θmε (t)θ∞(t)
−
dθ∞

dt
≥ −

Cmε (t)

ε
(θmε (t)− θ∞(t))−

∣∣∣∣
dθ∞

dt

∣∣∣∣ ,
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for every t ∈ [0, T ], where again we have neglected the first term in the right-hand sides by
the definition of θMε and θm and we have defined the time dependent coefficients

CMε (t) :=

{
1

θM θ̄M
, if θMε (t)− θ∞(t) ≥ 0,

1
θmθ̄m

, if θMε (t)− θ∞(t) < 0.

Cmε (t) :=

{
1

θmθ̄m
, if θmε (t)− θ∞(t) ≥ 0,

1
θM θ̄M

, if θmε (t)− θ∞(t) < 0.

By using Grönwall’s lemma for θMε and use a similar argument for θmε , we obtain

θMε (t)− θ∞(t) ≤ (θM + θ̄M )e
− 1

εθM θ̄M
t
+ θM θ̄M

∥∥∥∥
dθ∞

dt

∥∥∥∥
L∞(0,T )

ε,

θmε (t)− θ∞(t) ≥ −(θM + θ̄M)e
− 1

εθM θ̄M
t
− θM θ̄M

∥∥∥∥
dθ∞

dt

∥∥∥∥
L∞(0,T )

ε,

for each t ∈ [0, T ]. Then, we recover the desired error estimate for appropriate coefficients
C and c depending on θM , θ̄M and ‖θ∞‖W 1,∞(0,T ), that is finite by the property (3.4) in
Remark 3.2. �

Notice that relaxation is exponential with rate O(ε−1). Then, we can simplify the above
estimates to achieve the following polynomial control for the concentration of internal vari-
able support and its deviation from the background mean value θ∞, in terms of ε, after a
very short initial time layer.

Corollary 3.1 (Initial time layer). Let fε be the solution of (1.8) subject to initial data f0ε .
Suppose that initial data verify (3.1) and (ρ̄, ū, ē) verifies (3.2). Then, for any α > 0 and
0 < β < 1, there exists a constant C ∈ R+, such that the internal variable support Dε

θ(t)
and the error ηε(t) in Lemma 3.1 verify

(3.17) Dε
θ(t) ≤ Cεα, ηε(t) ≤ Cεmin{α,1},

for every t ∈ [εβ , T ]. Here, C depends on the exponents α, β along with the parameters θ0M ,
θ0m, θ̄M , θ̄m, ‖ζ‖L∞ and ‖θ∞‖W 1,∞(0,T ).

Proof. Taking t ∈ [εβ , T ] and using Lemma 3.1, we obtain

Dε
θ(t) ≤ (θ0M − θ0m)e

− 1

ε1−βθ2
M ,

ηε(t) ≤ Ce
− c

ε1−β + Cε.

Since all the above negative exponential functions decay faster than any polynomial εα, we
conclude the claimed result by appropriately modifying C if necessary. �

To summarize, the previous results show that after a small initial time layer ε0 := εβ , the
diameter of suppθfε(t) is smaller than Cεα and its distance to the background mean value

θ∞(t) is smaller than Cεmin{α,1}. This justifies that, as ε → 0, fε will concentrate around
θ = θ∞(t). That will be crucially used to derive the rigorous hydrodynamic limit.
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3.3. Moment estimates. In this part, we prove a priory estimates for the moments of fε.
We start by controlling the k-th order velocity moment of fε.

Lemma 3.2 (k-th order velocity moment). Let fε be a solution of (1.8) subjects to initial
data f0ε . Suppose that initial data verify (3.1) and (ρ̄, ū, ē) verifies (3.2). Then, for any
k ≥ 1, the following estimate

k

(
1

θM
− ‖φ‖L∞

Dε
θ(0)

θ2m

)
‖|v|kfε‖L1(0,T ;L1(R2d×R+))

+
k

2θM

∫ T

0

∫

R4d×R2
+

φ(x− x∗)(|v|
k−2v − |v∗|

k−2v∗) · (v − v∗)fε(t, z)fε(t, z∗) dz dz∗ dt

≤ ε‖|v|kfε(0)‖L1(R2d×R+) + k

∥∥∥∥
(∣∣∣∣
u∞(t)

θ∞(t)

∣∣∣∣+ ‖∇W‖L∞

)
‖|v|k−1fε‖L1(R2d×R+)

∥∥∥∥
L1(0,T )

,

(3.18)

holds, where the constants θm and θM are given by formula (3.10) in Lemma 3.1.

Proof. We multiply the kinetic equation (1.8) by |v|k and integrate over R2d×R+ to obtain

ε
d

dt

∫

R2d×R+

|v|kfε dz

= k

∫

R2d×R+

|v|k−2v · Fc[ρ̄, ū, ē] fε dz + k

∫

R2d×R+

|v|k−2v ·H[fε]fε dz

+ k

∫

R2d×R+

|v|k−2v · F [fε] fε dz =: I11 + I12 + I13.

(3.19)

• Estimate of I11: We first recall that

Fc[ρ̄, ū, ē](t, x, v, θ) =

∫

Rd

ρ̄ū

ē
dx−

v

θ

Therefore, I11 is estimated as

I11 = k

∫

R2d×R+

|v|k−2v ·

(∫

Rd

ρ̄ū

ē
dx−

v

θ

)
fε dz

≤ k

∣∣∣∣
u∞(t)

θ∞(t)

∣∣∣∣
∫

R2d×R+

|v|k−1fε dz −
k

θM

∫

R2d×R+

|v|kfε dz,

where θM is given in the diameter estimate in Lemma 3.1.

• Estimate of I12: Similarly, by the regularity assumption (1.14) we note that

|H[fε](t, x)| =

∣∣∣∣
∫

R2d×R+

∇W (x− x∗)fε(t, z∗) dz∗

∣∣∣∣ ≤ ‖∇W‖L∞ .

Therefore, we derive the following estimate for I12:

I12 ≤ k‖∇W‖L∞

∫

R2d×R+

|v|k−1fε dz.

• Estimate of I13: Recall now that

F [fε](t, x, v, θ) =

∫

R2d×R+

φ(x− x∗)

(
v∗
θ∗

−
v

θ

)
fε(t, z∗) dz∗.
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By the change of variables (x, v, θ) ⇌ (x∗, v∗, θ∗) in the integrals in I13, we obtain the usual
symmetrized form

I13 =
k

2

∫

R4d×R2
+

φ(x− x∗)(|v|
k−2v − |v∗|

k−2v∗) ·

(
v∗
θ∗

−
v

θ

)
fε(t, z)fε(t, z∗) dz dz∗

=
k

2

∫

R4d×R2
+

φ(x− x∗)
1

θ
(|v|k−2v − |v∗|

k−2v∗) · (v∗ − v) fε(t, z)fε(t, z∗) dz dz∗

+
k

2

∫

R4d×R2
+

φ(x− x∗)(|v|
k−2v − |v∗|

k−2v∗) · v∗
θ − θ∗
θ∗θ

fε(t, z)fε(t, z∗) dz dz∗

=: I131 + I132.

⋄ Estimate of I131: It is straightforward to see that for k ≥ 1,

(|v|k−2v − |v∗|
k−2v∗) · (v − v∗) = |v|k + |v∗|

k − (|v|k−2 + |v∗|
k−2) v · v∗

≥ |v|k + |v∗|
k − (|v|k−2 + |v∗|

k−2)|v||v∗|

= (|v|k−1 − |v∗|
k−1)(|v| − |v∗|) ≥ 0.

Therefore, we directly obtain that I131 ≤ 0. We move it to the left-hand side of (3.19).

⋄ Estimate of I132: To estimate I132, we use the contraction of the internal variable
support in Lemma 3.1 to observe that

|I132| =
k

2

∣∣∣∣∣

∫

R4d×R2
+

φ(x− x∗)
(
|v|k−2v − |v∗|

k−2v∗

)
· v∗

θ − θ∗
θ∗θ

fε(t, z)fε(t, z∗) dz dz∗

∣∣∣∣∣

≤
k‖φ‖L∞Dε

θ(t)

2θ2m

∫

R4d×R2
+

(
|v|k−1|v∗|+ |v∗|

k
)
fε(t, z)fε(t, z∗) dz dz∗

≤
k‖φ‖L∞Dε

θ(t)

2θ2m

∫

R4d×R2
+

(
k − 1

k
|v|k +

1

k
|v∗|

k + |v∗|
k

)
fε(t, z)fε(t, z∗) dz dz∗

≤
k‖φ‖L∞Dε

θ(t)

θ2m

∫

R2d×R+

|v|kf dz.

Combining all the preceding estimates for I11, I12 and I13 into (3.19), we derive

ε
d

dt

∫

R2d×R+

|v|kfε dz − I131 ≤ k

(∣∣∣∣
u∞(t)

θ∞(t)

∣∣∣∣+ ‖∇W‖L∞

)∫

R2d×R+

|v|k−1fε dz

− k

(
1

θM
−

‖φ‖L∞Dε
θ(0)

θ2m

)∫

R2d×R+

|v|kfε dz.

(3.20)

Finally, we integrate (3.20) from t = 0 to t = T to achieve the desired estimate. �

Then, under the assumption on the initial diameter of internal variable so that the co-

efficient 1
θM

−
‖φ‖L∞Dε

θ
(0)

θ2m
is positive, we find uniform-in-ε bounds for the first and second

velocity moments of fε, along with the first-order position moment.

Corollary 3.2 (Velocity and position moments). Let fε be the solution of (1.8) subject
to initial data f0ε . Assume that the initial data verify (3.1), (ρ̄, ū, ē) verifies (3.2) and the
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parameters fulfill the compatibility condition (3.3). Then,

‖|x|fε‖L∞(0,T ;L1(R2d×R+)) ≤M0 + T 1/2‖|v|fε‖L2(0,T ;L1(R2d×R+)),

‖|v|fε‖L2(0,T ;L1(R2d×R+)) ≤
(
‖|v|2fε‖L1(0,T ;L1(R2d×R+))

)1/2
,

‖|v|2fε‖L1(0,T ;L1(R2d×R+)) ≤ C
(
εE0 + CG2

0

)
,

(3.21)

for every ε > 0, where G0 := F0 + T 1/2‖∇W‖L∞. In addition, the next estimate holds

(3.22)
1

θM

∫ T

0

∫

R4d×R2
+

φ(x− x∗)|v − v∗|
2 fε(t, z)fε(t, z∗) dz dz∗ dt ≤ εE0 + CG2

0.

Proof. Multiplying (1.8) by |x| and integrating by parts we achieve the inequality

d

dt

∫

R2d×R+

|x| fε(t, z) dz ≤

∫

R2d×R+

|v| fε(t, z) dz,

for each t ∈ [0, T ]. Integrating with respect to time from 0 to t we obtain

‖|x|fε(t)‖L1(R2d×R+) ≤ ‖|x|f0ε ‖L1(R2d×R+) +

∫ T

0
‖|v|fε(t)‖L1(R2d×R+) dt,

for every t ∈ [0, T ]. Hence, the assumption (3.1) on the initial data and the Cauchy-Schwartz
inequality yields the first estimate in (3.21). Again, by the Cauchy-Schwartz inequality and
the conservation of mass, we readily obtain the second estimate in (3.21). We finally focus
on the third estimate in (3.21) and (3.22). To such an end, we apply (3.18) in Lemma 3.1
with k = 2 and recover

2

(
1

θM
−

‖φ‖L∞Dε
θ(0)

θ2m

)
‖|v|2fε‖L1(0,T ;L1(R2d×R+))

+
1

θM

∫ T

0

∫

R4d×R2
+

φ(x− x∗)|v − v∗|
2 fε(t, z)fε(t, z∗) dz dz∗ dt

≤ ε‖|v|2f0ε ‖L1(R2d×R+) + 2

∥∥∥∥
(∣∣∣∣
u∞(t)

θ∞(t)

∣∣∣∣+ ‖∇W‖L∞

)
‖|v|fε‖L1(R2d×R+)

∥∥∥∥
L1(0,T )

≤ ε‖|v|2f0ε ‖L1(R2d×R+) + 2‖|v|fε‖L2(0,T ;L1(R2d×R+))

∥∥∥∥
u∞

θ∞
+ ‖∇W‖L∞

∥∥∥∥
L2(0,T )

≤ εE0 + 2
(
F0 + T 1/2 + ‖∇W‖L∞

)
‖|v|2fε‖

1/2

L1(0,T ;L1(R2d×R+))
,

(3.23)

where in the last line we have used the assumptions (3.1) on initial data and (3.2) for the
macroscopic species (see also Remark 3.2), along with the second estimate in (3.21). We
now define the parameter

δ :=
1

θM
−

‖φ‖L∞Dε
θ(0)

θ2m
> 0,

which is positive thanks to the assumption (3.3). Using Young’s inequality in the second
term of the last line in (3.23) we obtain

2G0‖|v|
2fε‖

1/2

L1(0,T ;L1(R2d×R+))
≤
G2

0

δ
+ δ‖|v|2fε‖L1(0,T ;L1(R2d×R+)).
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We substitute the above estimate on (3.23) to derive

(3.24)

(
2

θM
−

2‖φ‖L∞Dε
θ(0)

θ2m
− δ

)
‖|v|2fε‖L1(0,T ;L1(R2d×R+))

+
1

θM

∫ T

0

∫

R4d×R2
+

φ(x− x∗)|v − v∗|
2 fε(t, z)fε(t, z∗) dz dz∗ dt ≤ εE0 +

G2
0

δ
.

To conclude, we choose C := δ−1 and we obtain the desired estimates. �

The preceding estimates for the internal variable support in Lemma 3.1 and the position
and velocity moments in Lemma 3.2 will conform to the key tool in order to derive compact-
ness of the system as ε → 0. That will be the first step with regards to the hydrodynamic
limit of system (1.8) and will be addressed in the next section.

3.4. Hydrodynamic limit of (1.8). Our goal here is to present the rigorous hydrodynamic
limit of (1.8) whose explicit statement takes the following form:

Theorem 3.1. Let fε be a solution to the equation (1.8) subject to the initial data f0ε .
Assume that the initial data verify (3.1), (ρ̄, ū, ē) verifies (3.2) and the parameters fulfill
the compatibility condition (3.3). Then,

ρε → ρ, in C([0, T ],M(Rd)− narrow),

jε
∗
⇀ j, in L2

w(0, T ;M(Rd)d),

when ε → 0, for some probability measure ρ, some finite Radon measure j and some sub-
sequence of {ρε}ε>0 and {jε}ε>0 that we denote in the same way. In addition, (ρ, j) solves
the following problem

∂tρ+∇ · j = 0, (t, x) ∈ [0, T )× R
d,

j − u∞(t)ρ+ θ∞(t)(∇W ∗ ρ)ρ = ρ(φ ∗ j)− j(φ ∗ ρ), (t, x) ∈ (0, T ) ×R
d,

ρ(t = 0) = ρ0, x ∈ Rd,

in distributional sense, where θ∞(t) and u∞(t) are the background mean value of the internal
variable and velocity, see (1.9) and (1.11).

We refer to Appendix A for a summarized presentation of weak-* Lebesgue-Bochner
spaces Lpw(0, T ;X∗) for a Banach space X∗, their comparison with classical Lebesgue-
Bochner spaces Lp(0, T ;X∗) along with their duality properties.

Remark 3.3 (Weak formulations). Notice that the first and second equation of the above
limiting system are verified in distributional sense in [0, T )×R

d and (0, T )×R
d respectively.

That is, the following equations fulfill
∫ T

0

∫

Rd

∂tϕρ(t, dx) dt +

∫ T

0

∫

Rd

∇ϕ · j(t, dx) dt = −

∫

Rd

ϕ(0, ·)ρ0(dx),

∫ T

0

∫

Rd

ψ(j(t, dx) − u∞(t)ρ(t, dx) + θ∞(t)(∇W ∗ ρ)ρ(t, dx)) dt

=

∫ T

0

∫

Rd

ψ(φ ∗ j)ρ(t, dx) dt −

∫ T

0

∫

Rd

ψ(φ ∗ ρ)j(t, dx) dt,

for any ϕ ∈ C1
c ([0, T ) × R

d) and ψ ∈ C1
c ((0, T ) × R

d). Whilst the former involves generic
test functions ϕ, in the latter test functions ψ must vanish at t = 0. Moreover, notice that



28 KIM, POYATO, AND SOLER

the regularity of the influence function φ guarantees that φ ∗ ρ and φ ∗ j belong to Cb(R
d),

so that the nonlinear terms in the right-hand side are well defined.

Now, we derive the proof of Theorem 3.1.

Proof of compactness. From the conservation of mass, Lemma 3.1 and Corollary 3.2 we
obtain the following uniform estimates for moments

‖ρε‖L∞(0,T ;L1(Rd)) = 1,

‖|x|ρε‖L∞(0,T ;L1(Rd)) ≤M0 + (CT (εE0 + CG2
0))

1/2,

‖jε‖L2(0,T ;L1(Rd)) ≤
(
C
(
εE0 + CG2

0

))1/2
,

‖Svε ‖L1(0,T ;L1(Rd)) ≤ C(εE0 + CG2
0),

‖Sθε‖L2(0,T ;L1(Rd)) ≤ θM
(
C
(
εE0 + CG2

0

))1/2
,

(3.25)

for every ε > 0. As a consequence of the first and third inequalities in (3.25), we obtain
that {ρε}ε>0 is bounded in L∞(0, T ;L1(Rd)) and {jε}ε>0 is bounded in L2(0, T ;L1(Rd)).
In addition, by the representation Theorem A.2 in Appendix A we obtain that

L∞(0, T ;L1(Rd)) ⊆ L∞
w (0, T ;M(Rd)) ≡ L1(0, T ;C0(R

d))∗,

L2(0, T ;L1(Rd)) ⊆ L2
w(0, T ;M(Rd)) ≡ L2(0, T ;C0(R

d))∗.

Hence, by Alaoglu–Bourbaki’s theorem

ρε
∗
−⇀ ρ, in L∞

w (0, T ;M(Rd)),

jε
∗
−⇀ j, in L2

w(0, T ;M(Rd)d),
(3.26)

as ε→ 0, modulo subsequence, for some (ρ, j) ∈ L∞
w (0, T ;M(Rd))× L2

w(0, T ;M(Rd)d). In
fact, an argument like in [61, Theorem 3.8] allows proving a gain of time regularity of ρε.
Combining it with (3.25) we indeed obtain that

(3.27) ρε → ρ in C([0, T ],M(Rd)− narrow),

that is,

lim
ε→0

sup
t∈[0,T ]

∣∣∣∣
∫

Rd

ϕ(ρε(t, dx) − ρ(t, dx))

∣∣∣∣ = 0,

for any test function ϕ ∈ Cb(R
d).

Proof of the limit. Writing the first equation in (3.7) in weak form, we achieve
∫ T

0

∫

Rd

∂tϕρε dx dt+

∫ T

0

∫

Rd

∇ϕ · jε dx dt = −

∫

Rd

ϕ(0, ·)ρ0ε dx,

for any ϕ ∈ C1
c ([0, T ) × R

d). By (3.26) we readily identify the limit of the terms in the
left-hand side. In addition, restricting (3.27) to t = 0, we can also identify the initial datum
ρ(t = 0) = limε→0 ρ

0
ε = ρ0 in order to pass to the limit in the right-hand side. Putting

everything together yields
∫ T

0

∫

Rd

∂tϕρ(t, dx) dt +

∫ T

0

∫

Rd

∇ϕ · j(t, dx) dt = −

∫

Rd

ϕ(0, ·)ρ0(dx).
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We focus on the remaining equations of the hierarchy (3.7). In weak formulation, they read

ε

∫ T

0

∫

Rd

∂tψ jε dx dt+ ε

∫ T

0

∫

Rd

Svε ∇ψ dx dt

=

∫ T

0

∫

Rd

ψ(φ ∗ Aε)ρε dx dt−

∫ T

0

∫

Rd

ψ(φ ∗ ρε)Aε dx dt(3.28)

−

∫ T

0

∫

Rd

ψ(∇W ∗ ρε)ρε dx dt+

∫ T

0

∫

Rd

ψ
u∞(t)

θ∞(t)
ρε dx dt−

∫ T

0

∫

Rd

ψAε dx dt,

ε

∫ T

0

∫

Rd

∂tψ hε dx dt+ ε

∫ T

0

∫

Rd

Sθε∇ψ dx dt

=

∫ T

0

∫

Rd

ψ(ζ ∗ ρε)Bε dx dt−

∫ T

0

∫

Rd

ψ(ζ ∗Bε)ρε dx dt(3.29)

+

∫ T

0

∫

Rd

ψBε dx dt−

∫ T

0

∫

Rd

ψ
ρε

θ∞(t)
dx dt,

for any ψ ∈ C1
c ((0, T ) × R

d). Notice that the inertial terms in the left-hand sides of (3.28)
and (3.29) vanish as ε → 0 thanks to (3.25). However, the right-hand sides yield to a not
closed system as they depend on the nonlinear moments Aε, Bε. Then, the last step will be
to identify their limits in terms of ρ and j. Indeed, recall that the internal variable support
of fε shrinks rapidly and concentrates on the relaxation value θ∞(t) after very short initial
layer t = ε0, see Corollary 3.1. This suggests that

Aε ≈
j

θ∞(t)
and Bε ≈

ρ

θ∞(t)
,

after a short initial time layer t > εβ . In fact, we have the following result.

Lemma 3.3 (Identifying nonlinear moments). Let fε be a solution to the equation (1.8)
subject to the initial data f0ε . Suppose that initial data verify (3.1), (ρ̄, ū, ē) verifies (3.2)
and parameters fulfill the compatibility condition (3.3). Then, for any ε0 > 0 we obtain

Aε
∗
−⇀

j

θ∞(t)
, in L2

w(ε0, T ;M(Rd)d),

Bε →
ρ

θ∞(t)
, in C([ε0, T ],M(Rd)− narrow),

when ε→ 0.
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Proof. Fix any ε0 > 0 and let ψ ∈ L2(ε0, T ;C0(R
d)) be any test functions. Then,

∣∣∣∣
∫ T

ε0

∫

Rd

ψ(t, x)

(
Aε(t, dx)−

j(t, dx)

θ∞(t)

)
dt

∣∣∣∣

≤

∣∣∣∣
∫ T

ε0

∫

R2d×R+

ψ(t, x)
θ∞(t)− θ

θ∞(t)θ
vfε dz dt

∣∣∣∣

+

∣∣∣∣
∫ T

ε0

∫

Rd

ψ(t, x)
1

θ∞(t)
(jε(t, dx)− j(t, dx)) dt

∣∣∣∣

≤
‖ηε‖L∞(ε0,T )

θ̄mθm
‖ψ‖L2(ε0,T ;C0(Rd))‖|v|fε‖L2(0,T ;L1(R2d×R+))

+

∣∣∣∣
∫ T

ε0

∫

Rd

ψ(t, x)

θ∞(t)
(jε(t, dx)− j(t, dx)) dt

∣∣∣∣ ,

where in the last step we have used the uniform lower bound on θ∞(t) and the concentration
estimate of suppθ fε in Lemma 3.1. Since ‖|v|fε‖L2(0,T ;L1(R2d×R+)) is uniformly bounded

by Corollary 3.2 and ‖ηε‖L∞(ε0,T ) ≤ Cεmin{α,1} for ε ≤ ε
1/β
0 by Corollary 3.1, then the

first term vanishes as ε → 0. Likewise, since jε
∗
−⇀ j in L2

w(0, T ;M(Rd)d) by (3.26) and
ψ
θ∞ ∈ L2(ε0, T ;C0(R

d)), the second term also vanishes as ε→ 0. In conclusion, we have

lim
ε→0

∫ T

ε0

∫

Rd

ψ(t, x)

(
Aε(t, dx) −

j(t, dx)

θ∞(t)

)
dt = 0,

which implies the desired weak convergence. For the convergence of Bε, using that ρε
∗
⇀ ρ

in L∞
w (0, T ;M(Rd)) by (3.26), a similar argument shows that

Bε
∗
⇀

ρ

θ∞(t)
, in L∞

w (ε0, T ;M(Rd)).

However, we can improve the convergence as follows. Take any ϕ ∈ Cb(R
d) and compute

sup
t∈[ε0,T ]

∣∣∣∣
∫

Rd

ϕ

(
Bε(t, dx)−

ρ(t, dx)

θ∞

)∣∣∣∣ ,

≤ sup
t∈[ε0,T ]

∣∣∣∣
∫

R2d×R+

ϕ(x)

(
1

θ
−

1

θ∞(t)

)
fε(t, z) dz

∣∣∣∣ + sup
t∈[ε0,T ]

∣∣∣∣
∫

Rd

ϕ(x)

θ∞(t)
(ρε(t, dx) − ρ(t, dx))

∣∣∣∣

≤
‖ηε‖L∞(ε0,T )

θ̄mθm
‖ϕ‖Cb(Rd) +

1

θ̄m
sup

t∈[ε0,T ]

∣∣∣∣
∫

Rd

ϕ(x) (ρε(t, dx)− ρ(t, dx))

∣∣∣∣ .

By the same argument, the first term vanishes, as ε→ 0. Since ρε → ρ in C([0, T ],M(Rd)−
narrow) by (3.27), the second term also vanishes, as ε→ 0, and we end the proof. �

The convergence of the nonlinear moments Aε also implies the convergence of the non-
linear term ρε ⊗Aε.

Lemma 3.4 (Weak convergence of tensor product). Let fε be a solution to the equation
(1.8) subject to the initial data f0ε . Assume that the initial data verify (3.1), (ρ̄, ū, ē) verifies
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(3.2) and the parameters fulfill the compatibility condition (3.3). Then, we obtain

ρε ⊗Aε
∗
−⇀

ρ⊗ j

θ∞(t)
, in L2

w(ε0, T ;M(R2d)),

ρε ⊗ ρε
∗
−⇀ ρ⊗ ρ, in C([0, T ],M(R2d)− narrow),

for any ε0 > 0, as ε→ 0.

Proof. • Step 1. Recall that by Appendix A we obtain the following representation

L2
w(ε0, T ;M(R2d)) = L2

w(ε0, T ;C0(R
2d))∗.

In order to derive the first convergence we set any test function ϕ ∈ L2(ε0, T ;C0(R
2d)). By

a density argument, it suffices to deal with the case when ϕ takes the following form:

ϕ(t, x, x∗) = χ(t)σ(x)ψ(x∗),

for each t ∈ (ε0, T ) and x, x∗ ∈ R
d, where χ ∈ L2(ε0, T ) and σ, ψ ∈ C0(R

d).

Iε :=

∫ T

ε0

∫

R2d

ϕ(t, x, x∗)

(
(ρε(t, dx))(Aε(t, dx∗))− ρ(t, dx)

j(t, dx∗)

θ∞(t)

)

=

∫ T

ε0

χ(t)

(∫

Rd

σ(x)(ρε(t, dx) − ρ(t, dx))

)(∫

Rd

ψ(x∗)

(
Aε(t, dx∗)−

j(t, dx∗)

θ∞(t)

))
dt

+

∫ T

ε0

χ(t)

(∫

Rd

σ(x)(ρε(t, dx)− ρ(t, dx))

)(∫

Rd

ψ(y)
j(t, dy)

θ∞(t)

)
dt

+

∫ T

ε0

χ(t)

(∫

Rd

σ(x)ρ(t, dx)

)(∫

Rd

ψ(x∗)

(
Aε(t, dx∗)−

j(t, dx∗)

θ∞(t)

))
dt

=: Iε,1 + Iε,2 + Iε,3.

To show the desired convergence we need to show that Iε,i → 0 as ε → 0. We will restrict
to the first term Iε,1 since the reasoning in the remaining two terms is similar. Since ρε → ρ

in C([0, T ],M(Rd)− narrow) by (3.27) and χ ∈ L2(ε0, T ), we have that

χ(t)

∫

Rd

σ(x)(ρε(t, dx) − ρ(t, dx)) → 0, in L2(ε0, T ).

Consequently,

χ(t)

(∫

Rd

σ(x)(ρε(t, dx)− ρ(t, dx))

)
ψ(x∗) → 0, in L2(ε0, T ;C0(R

d)).

Moreover, since Aε
∗
−⇀ j

θ∞ in L2
w(ε0, T ;M(Rd)) by Lemma 3.3, we have that Iε,1 → 0 as

ε→ 0.

• Step 2. The convergence of ρε⊗ ρε in L
∞
w (0, T ;M(Rd)) can be attained by applying a

similar argument. However, its convergence in C([0, T ],M(Rd) − narrow) requires a more
delicate treatment. Specifically, set any δ > 0 and ϕ ∈ C0(R

2d), and apply the Stone-
Weierstrass theorem to find functions σ1, . . . , σn and ψ1, . . . , ψn in C0(R

d) so that

(3.30)

∣∣∣∣∣ϕ(x, x∗)−
n∑

k=1

σk(x)ψk(x∗)

∣∣∣∣∣ ≤ δ,
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for each x, x∗ ∈ R
d. Then, we obtain the decomposition

Iε := sup
t∈[0,T ]

∣∣∣∣
∫

R2d

ϕ (ρε ⊗ ρε − ρ⊗ ρ) dx dx∗

∣∣∣∣

≤ sup
t∈[0,T ]

∣∣∣∣∣

n∑

k=1

∫

R2d

σk ⊗ ψk (ρε − ρ)⊗ ρε dx dx∗

∣∣∣∣∣

+ sup
t∈[0,T ]

∣∣∣∣∣

n∑

k=1

∫

R2d

σk ⊗ ψk ρ⊗ (ρε − ρ) dx dx∗

∣∣∣∣∣

+ sup
t∈[0,T ]

∣∣∣∣∣

∫

R2d

(
ϕ−

n∑

k=1

σk ⊗ ψk

)
(ρε ⊗ ρε − ρ⊗ ρ) dx dx∗

∣∣∣∣∣ =: Iε,1 + Iε,2 + Iε,3.

On the one hand, by (3.30) we obtain Iε,3 ≤ 2δ. On the other hand, we find that

Iε,1 ≤
n∑

k=1

‖ψk‖L∞ sup
t∈[0,T ]

∣∣∣∣
∫

Rd

σk(x)(ρε(t, dx) − ρ(t, dx))

∣∣∣∣ ,

and a similar estimate holds for Iε,2. Since ρε → ρ in C([0, T ],M(Rd) − narrow), by
(3.27) we obtain that Iε,1 → 0 and Iε,2 → 0, as ε → 0. Moreover, given that δ > 0 is

arbitrary, we have that Iε → 0 when ε→ 0. Thus, by arbitrariness of ϕ ∈ C0(R
2d), we find

that ρε ⊗ ρε → ρ ⊗ ρ in the weaker space C([0, T ],M(R2d) − weak∗). To improve such a
convergence into narrow convergence, we a use standard cut-off argument and the uniform
tightness of ρε in (3.25)2, thus ending the proof. �

We are now ready to end the proof of Theorem 3.1. Fix any ψ ∈ C1
c ((0, T )×R

d) and set
ε0 > 0 small enough so that suppψ ⊂ [ε0, T ] × R

d. Then, passing to the limit as ε → 0 in
the weak formulation (3.28) for velocity we obtain

0 = lim
ε→0

{∫ T

ε0

∫

Rd

ψ(φ ∗ Aε)ρε dx dt−

∫ T

ε0

∫

Rd

ψ(φ ∗ ρε)Aε dx dt

}

− lim
ε→0

∫ T

0

∫

Rd

ψ(∇W ∗ ρε)ρε dx dt

+ lim
ε→0

{∫ T

0

∫

Rd

ψ
u∞(t)

θ∞(t)
ρε dx dt−

∫ T

ε0

∫

Rd

ψAε dx dt

}
.

On the one hand, the linear terms in the second line easily pass to the limit, which can be
identified in terms of ρ and j by virtue of (3.27) and Lemma 3.3, thus obtaining

lim
ε→0

{∫ T

0

∫

Rd

ψ
u∞(t)

θ∞(t)
ρε dx dt−

∫ T

ε0

∫

Rd

ψAε dx dt

}

=

∫ T

0

∫

Rd

ψ
u∞(t)

θ∞(t)
ρ(t, dx) dt−

∫ T

0

∫

Rd

ψ

θ∞(t)
j(t, dx) dt.
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On the other hand, let us restate the nonlinear terms in the first line as follows
∫ T

ε0

∫

Rd

ψ(φ ∗ Aε)ρε dx dt−

∫ T

ε0

∫

Rd

ψ(φ ∗ ρε)Aε dx dt

=

∫ T

ε0

∫

R2d

ψ(t, x)φ(x − x∗)(ρε(t, x)Aε(t, x∗)−Aε(t, x)ρε(t, x∗)) dx dx∗ dt

=
1

2

∫ T

ε0

∫

R2d

Kψ(t, x, x∗)(ρε(t, dx)Aε(t, dx∗)−Aε(t, dx)ρε(t, dx∗)) dt,

whereKψ(t, x, x∗) := (ψ(t, x)−ψ(t, x∗))φ(x−x∗) and we have used the usual symmetrization

of the integral in the last term. Since Kψ ∈ L2(ε0, T ;C0(R
2d)), we can then apply Lemma

3.4 to pass to the limit and we find

lim
ε→0

∫ T

ε0

∫

Rd

ψ(φ ∗ Aε)ρε dx dt−

∫ T

ε0

∫

Rd

ψ(φ ∗ ρε)Aε dx dt

=
1

2

∫ T

ε0

∫

R2d

1

θ∞(t)
Kψ(t, x, x∗)(ρ(t, dx)j(t, dx∗)− j(t, dx)ρ(t, dx∗)) dt

=

∫ T

0

∫

Rd

ψ

θ∞(t)
(φ ∗ j)ρ(t, dx) dt −

∫ T

0

∫

Rd

ψ

θ∞(t)
(φ ∗ ρ)j(t, dx) dt,

where we have undone the symmetrization. Similarly, we use the convergence of ρε ⊗ ρε to
obtain the limit of the nonlinear term in the second line:

lim
ε→0

∫ T

0
ψ(∇W ∗ ρε)ρε dx dt =

∫ T

0
ψ(∇W ∗ ρ)ρ dx dt.

Putting everything together yields the equation

0 =

∫ T

0

∫

Rd

ψ
u∞(t)

θ∞(t)
ρ(t, dx) dt−

∫ T

0

∫

Rd

ψ

θ∞(t)
j(t, dx) dt,

+

∫ T

0

∫

Rd

ψ

θ∞
(φ ∗ j)ρ(t, dx) dt −

∫ T

0

∫

Rd

ψ

θ∞(t)
(φ ∗ ρ)j(t, dx) dt

−

∫ T

0

∫

Rd

ψ(∇W ∗ ρ)ρ(t, dx) dt,

for each ψ ∈ C1
c ((0, T ) × R

d), then identifying the limiting velocity equation. Regarding
the internal variable equation, it suffices to show that the limit of the first term of the
right-hand side in (3.29) vanishes as ε→ 0. Indeed, we have

∣∣∣∣
∫ T

0

∫

Rd

ψ(t, x)(ζ ∗ ρε)Bε dx dt−

∫ T

0

∫

Rd

ψ(t, x)(ζ ∗Bε)ρε dx dt

∣∣∣∣

≤ ‖ψ‖Cc((0,T )×Rd)

∫ T

ε0

∫

R4d×R2
+

ζ(x− x∗)

∣∣∣∣
1

θ
−

1

θ∗

∣∣∣∣ fε(t, z)fε(t, z∗) dz dz∗ dt

≤
‖ζ‖L∞‖ψ‖Cc((0,T )×Rd)

θ2m

∫ T

ε0

Dε
θ(t) dt ≤ C

‖ζ‖L∞‖ψ‖Cc((0,T )×Rd)

θ2m
Tεα,

for any ε < ε1/β , where we have used the concentration estimate of the diameter of internal
variable in Corollary 3.1. Therefore, the full right-hand side of (3.29) vanishes as ε → 0,
which concludes the proof of Theorem 3.1.
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3.5. Weakly singular influence functions. We emphasize that the fact that φ, ζ, and
∇W are uniformly bounded with respect to ε has strongly be used in many parts of the
proof in the previous subsection. In particular, the hydrodynamic limit of the system (2.22),
where influence functions φ, ζ are replaced by the singularly scaled φε, ζε in (2.23), does
not immediately follow from the previous Theorem 3.1, but appropriate modifications are
required. In this section we sketch the main ideas guaranteeing that the corresponding
hydrodynamic limit of (2.22) holds rigorously when W still verifies the strong regularity
condition (1.14). We will briefly elaborate on the case of singularly scaled potentials Wε like
in (2.28) later in Remark 3.5. Unless otherwise specified, we will only assume conditions
(3.1) on the initial data and assumption (3.2) on (ρ̄, ū, ē).

• Concentration of internal variable support.
In this case, the characteristic system associated with (2.22) takes a similar form

dXε

dt
= Vε,

dVε
dt

=
1

ε
Fε[fε](t, Zε) +

1

ε
H[fε](t, Zε) +

1

ε
Fc[ρ̄, ū, ē](t, Zε),

dΘε

dt
=

1

ε
Gε[fε](t, Zε) +

1

ε
Gc[ρ̄, ē](t, Zε),

Zε(0; 0, z0) = z0,

for t ∈ [0, T ] and any z0 ∈ R
2d × R+, where the operators Fε and Gε now contain the

information about the scaled influence functions φε and ζε, which become singular as ε→ 0.
Note that the operator H with the Lipschitz aggregation force ∇W remains. By inspection
in the proofs of Lemma 3.1 and Corollary 3.1 we notice that the terms coming from Gε in
the estimate of the internal variable were neglected. Therefore, Lemma 3.1 and Corollary
3.1 remain valid for the singular regime under the same assumptions.

• A priori estimates.
Unfortunately, by inspection on the proofs of Lemma 3.2 and Corollary 3.2, we notice that
there is a delicate point where the uniform-in-ε bound of φ and W are used. Specifically,
we apply (3.19) with k = 2, integrate over [0, T ] and use the control of the internal variable
concentration in Lemma 3.1 and Corollary 3.1 to derive

(3.31) 2

(
1

θM
−

‖φε‖L∞Dε
θ(0)

θ2m

)∫ T

0

∫

R2d×R+

|v|2fε dz dt

+
1

θM

∫ T

0

∫

R4d×R2
+

φε(x− x∗)|v − v∗|
2fε(t, z)fε(t, z∗) dz dz∗ dt

≤ ε

∫

R2d×R+

|v|2f0ε (z) dz + 2

∫ T

0

∣∣∣∣
u∞(t)

θ∞(t)

∣∣∣∣
∫

R2d×R+

|v|fε dz dt

− 2

∫ T

0

∫

R4d×R2
+

∇W (x− x∗) · vfε(t, z)fε(t, z∗) dz dz∗ dt.

On the one hand, by the control of u∞/θ∞ in Remark 3.2 and the Cauchy–Schwartz in-
equality, we obtain

2

∫ T

0

∣∣∣∣
u∞(t)

θ∞(t)

∣∣∣∣
∫

R2d×R+

|v|fε dz dt ≤ 2F0‖|v|
2fε‖

1/2

L1(0,T ;L1(R2d×R+))
.
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On the other hand, by the uniform bound of ∇W a similar argument yields

− 2

∫ T

0

∫

R4d×R2
+

∇W (x− x∗) · vfε(t, z)fε(t, z∗) dz dz∗ dt

≤ 2T 1/2‖∇W‖L∞‖|v|2fε‖
1/2

L1(0,T ;L1(R2d×R+))
.

Plugging both bounds into (3.31), using Young’s inequality and noting that ‖φε‖L∞ = 1/ε,
we recover an analogue estimate like (3.24)

(
2

θM
−

2Dε
θ(0)

εθ2m
− δ

)
‖|v|2fε‖L1(0,T ;L1(R2d×R+))

+
1

θM

∫ T

0

∫

R4d×R2
+

φ(x− x∗)|v − v∗|
2 fε(t, z)fε(t, z∗) dz dz∗ dt ≤ εE0 +

G2
0

δ
,

for any δ > 0 and any ε > 0. Then, the compatibility condition (3.3) is not enough and
further information on Dε

θ(0) is necessary in order to compensate the new factor 1
ε coming

from singularities. Specifically we shall assume that the initial diameter of the internal
variable shrinks asymptotically at a specific rate, namely,

(3.32) lim sup
ε→0

Dε
θ(0)

ε
<
θ2m
θM

.

Under this conditions, we recover the a priori estimates in Lemma 3.2 and Corollary 3.2
modulo an appropriate subsequence, that we denote in the same way for simplicity.

Remark 3.4 (Strong initial concentration). We emphasize that the new compatibility con-
dition (3.32) is more restrictive than the previous one (3.3), as it does not account for
generic initial data f0ε with uniformly bounded internal variable supports. Instead, suppθ f

0
ε

must shrink fast enough. Then, the concentration phenomenon does not only rely on the
dynamics itself but also on the choice of initial data. This suggests that the initial layer
in Corollary 3.1 is no longer necessary for the asymptotic concentration of the internal
variable, that shrinks instantaneously after t = 0 at rate O(ε).

• Passing to the limit.
The above estimates suggest that an analogue of Theorem 3.1 also holds.

Theorem 3.2. Let fε be a solution to the equation (2.22) subject to the initial data f0ε with
parameters λ1 ∈ (0, 1), λ2 > 0. Assume that the initial data verify (3.1), (ρ̄, ū, ē) verifies
(3.2) and the parameters fulfill the stronger compatibility condition (3.32). Then,

ρε → ρ, in C([0, T ],M(Rd)− narrow),

jε
∗
⇀ j, in L2

w(0, T ;M(Rd)d),

as ε → 0, for some probability measure ρ, some finite Radon measure j and some subse-
quence of {ρε}ε>0 and {jε}ε>0 that we denote in the same way. In addition, (ρ, j) solves
the following problem

∂tρ+∇ · j = 0, (t, x) ∈ [0, T ) × R
d,

j − u∞(t)ρ+ θ∞(t)(∇W ∗ ρ)ρ = ρ(φ0 ∗ j)− j(φ0 ∗ ρ), (t, x) ∈ (0, T ) × R
d,

ρ(t = 0) = ρ0, x ∈ R
d,
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in distributional sense, for an appropriate meaning of the nonlinear term. Here, φ0 is the
singular influence function in (2.26) and, θ∞(t), u∞(t) are the background mean value of
internal variable and velocity, see (1.9) and (1.11).

Most of the steps in the previous proof remains unchanged. In fact, since Corollary
3.2 remains true under (3.32), similar a priori estimates as in (3.25) fulfill. Then, we still
recover the same compactness results in (3.26) and (3.27) along with the identification of
the nonlinear moments in Lemma 3.3 and Lemma 3.4. Indeed, passing to the limit in
all the linear terms of (3.28)-(3.29) in weak formulation is identical. The only delicate
point concerns the identification of the nonlinear terms. Recall that given any test function
ψ ∈ C1

c ((0, T ) × R
d), and ε0 > 0 small enough so that suppψ ⊂ [ε0, T ]× R

d, the nonlinear
alignment term in the right-hand side of the weak formulation for the velocity equation
(3.28) can be restated in a symmetrized way as follows

∫ T

0

∫

Rd

ψ(φε ∗Aε)ρε dx dt−

∫ T

0

∫

Rd

ψ(φε ∗ ρε)Aε dx dt

=

∫ T

ε0

∫

R2d

ψ(t, x)φε(x− x∗)(ρε(t, x)Aε(t, x∗)−Aε(t, x)ρε(t, x∗)) dx dx∗ dt

=
1

2

∫ T

ε0

∫

R2d

Kψ,ε(t, x, x∗)(ρε(t, dx)Aε(t, dx∗)−Aε(t, dx)ρε(t, dx∗)) dt,

where Kψ,ε(t, x, x∗) := (ψ(t, x) − ψ(t, x∗))φε(x− x∗). Consider the integral

Iε :=
1

2

∫ T

ε0

∫

R2d

Kψ,ε(ρε ⊗Aε −Aε ⊗ ρε) dx dx∗ dt

−
1

2

∫ T

ε0

∫

R2d

Kψ,0

(
ρ⊗

j

θ∞
−

j

θ∞
⊗ ρ

)
dx dx∗ dt

=
1

2

∫ T

ε0

∫

R2d

(Kψ,ε −Kψ,0)(ρε ⊗Aε −Aε ⊗ ρε) dx dx∗ dt

+
1

2

∫ T

ε0

∫

R2d

Kψ,0

[
(ρε ⊗Aε −Aε ⊗ ρε)−

(
ρ⊗

j

θ∞
−

j

θ∞
⊗ ρ

)]
dx dx∗ dt

=: Iε,1 + Iε,2.

(3.33)

Our goal is to show that Iε,i → 0, as ε → 0. On the one hand, since λ1 ∈ (0, 1), then
the smoothness of the test function ψ kills the singularity at the diagonal and Kψ,0 ∈

L2(0, T ;C0(R
2d)). Thus, using the weak-∗ convergence of tensor product ρε⊗Aε in L

2
w(0, T ;

M(R2d)) in Lemma 3.4, we obtain that Iε,2 → 0, as ε → 0. On the other hand, by the
mean value theorem and the smoothness of ψ we obtain the following error estimate

|Kψ,ε(t, x, x∗)−Kψ,0(t, x, x∗)| ≤ Cε1−λ1‖∇xψ‖Cc((0,T )×Rd),

for each t ∈ (0, T ), each x, x∗ ∈ R
d and each ε > 0. Therefore,

|Iε,1| ≤ Cε1−λ1‖∇ψ‖Cc((0,T )×Rd)T
1/2‖Aε‖L2(0,T ;L1(Rd)).

Hence, the a priori estimates allow concluding that Iε,1 → 0, when ε → 0. Second, the
convergence of the aggregation nonlinear term involving W can be obtained in a sim-
ilar way by using the regularity assumption (1.14) and the convergence of ρε ⊗ ρε in
C([0, T ],M(R2d) − narrow) obtained in Lemma 3.4. Finally, the nonlinear term for the
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internal variable equation in the weak formulation (3.29) can be estimated by the same
argument as in the regular influence function case. Precisely, by Corollary 3.1, we obtain

∣∣∣∣
∫ T

ε0

∫

Rd

ψ(t, x)(ζε ∗ ρε)Bε dx dt−

∫ T

ε0

∫

Rd

ψ(t, x)(ζε ∗Bε)ρε dx dt

∣∣∣∣

≤ C
‖ζε‖L∞‖ψ‖Cc((0,T )×Rd)

θ2m
Tεα ≤ C

‖ψ‖Cc((0,T )×Rd)

θ2m
Tεα−λ2 ,

for any ε < ε
1/β
0 . Since α in Corollary 3.1 can be taken larger than λ2, the right-hand

side again vanishes as ε → 0. Therefore, the limit of the internal variable equation (3.29)
becomes trivial again, which conclude the proof.

• Non-concentration for λ1 = 1. Notice that only coefficients λ1 in the restricted
range (0, 1) have been considered in the preceding proof of Theorem 3.2. Indeed, Kψ,0 in
the symmetrized formulation (3.33) of the nonlinear term becomes discontinuous at diagonal
points x = x∗ for any value λ1 ≥ 1. However, notice that Kψ,0 remains bounded for λ1 = 1.
In this part we extend the proof of Theorem 3.2 to this limiting singular regime. On the
one hand, using the previous extra dissipation estimate (3.22) in Corollary 3.2 and arguing
as in [61, Lemma 3.10] for the singular Cucker–Smale model, we obtain the following non-
concentration of the commutator ρε ⊗Aε −Aε ⊗ ρε at diagonal points:

lim inf
δ,ε→0

|ρε(t, ·) ⊗Aε(t, ·)−Aε(t, ·)⊗ ρε(t, ·)|(∆ +Bδ) = 0,(3.34)

for a.e. t ∈ [0, T ], where ∆ := {(x, x) ∈ R
2d : x ∈ R

d} is the diagonal set.
On the other hand, let us show the rigorous passage to the limit in (3.33). Thanks to the

nonconcentration property (3.34) and [61, Proposition 3.11] we can pass to the limit on Iε,2
in (3.33) and we obtain Iε,2 → 0 when ε → 0. Also, since λ1 = 1 we obtain the following
estimate by the mean value theorem

|Kψ,ε(t, x, x∗)−Kψ,0(t, x, x∗)| ≤ Cφε(x− x∗)
1/2ε1/2,

for each t ∈ (0, T ), any x, x∗ ∈ R
d and appropriate C ∈ R+. Therefore, we estimate Iε,1 by

splitting it into two terms as follows

|Iε,1| ≤ Cε1/2
∫ T

ε0

∫

R4d×R2
+

∣∣∣∣
v

θ
−
v∗
θ∗

∣∣∣∣φε(x− x∗)
1/2fε(t, z)fε(t, z∗) dz dz∗ dt

≤ Cε1/2
∫ T

ε0

∫

R4d×R2
+

φε(x− x∗)
1/2 1

θ∗
|v − v∗|fε(t, z)fε(t, z∗) dz dz∗ dt

+ Cε1/2
∫ T

ε0

∫

R4d×R2
+

φε(x− x∗)
1/2|v|

∣∣∣∣
1

θ
−

1

θ∗

∣∣∣∣ fε(t, z)fε(t, z∗) dz dz∗ dt

≤
C

θm
ε1/2

∫ T

ε0

∫

R4d×R2
+

φε(x− x∗)
1/2|v − v∗|fε(t, z)fε(t, z∗) dz dz∗ dt

+
C

θ2m

∫ T

ε0

Dε
θ(t)

∫

R2d×R+

|v|fε(t, z) dz dt,



38 KIM, POYATO, AND SOLER

where in the last line we have used that ‖φε‖L∞ = 1
ε . Hence, using Jensen’s and the

Cauchy–Schwartz inequality in the right-hand side we obtain

|Iε,1| ≤
CT 1/2

θ2m
ε1/2

(∫ T

0

∫

R4d×R2
+

φε(x− x∗)|v − v∗|
2fε(t, z)fε(t, z∗) dz dz∗ dt

)1/2

+
C

θ2m

(∫ T

ε0

Dε
θ(t)

2 dt

)1/2

‖|v|fε‖L2(0,T ;L1(R2d×R+))

≤
CT 1/2

θ2m
(θM (E0 + CG2

0))
1/2ε1/2 +

C

θ2m
(C(E0 + CG2

0))
1/2T 1/2εα,

for any ε < ε1/β , where we have used the estimates in Corollary 3.2 and the concentration
of the internal variable support in Corollary 3.1. Then, Iε,1 → 0, as ε→ 0.

Remark 3.5 (Hydrodynamic limit with singular aggregation potentials). We emphasize
that uniform bound assumption for ∇W in (1.14) has been critical in two steps:

• The control of second order velocity moment (3.31).
• The identification of the nonlinear aggregation term in the weak formulation of the
velocity equation (3.28).

However, the scaled aggregation potentials Wε in (2.28) (leading to singular aggregation

potentials) can also be addressed in the special case λ3 = λ1
2 . In fact, a similar result like

in Theorem 3.2 holds true for the choice of parameters λ1 ∈ (0, 1], λ2 > 0 and λ3 = λ1/2.
On the one hand, note that identifying the limit of the singular nonlinear aggregation term
can be addressed using the same usual symmetrization method, that kills singularities, for
any value λ3 ∈ (0, 1) (note that ∇Wε is anti-symmetric). On the other hand, although
∇Wε cannot be bounded uniformly in ε, the last term in the right-hand side of (3.31) can
be controlled by the dissipation term:

2

∣∣∣∣∣

∫ T

0

∫

R4d×R2
+

∇Wε(x− x∗) · vfε(t, z)fε(t, z∗) dz dz∗ dt

∣∣∣∣∣

=

∣∣∣∣∣

∫ T

0

∫

R4d×R2
+

∇Wε(x− x∗) · (v − v∗)fε(t, z)fε(t, z∗) dz dz∗ dt

∣∣∣∣∣

≤

∫ T

0

∫

R4d×R2
+

φε(x− x∗)
1/2|v − v∗|fε(t, z)fε(t, z∗) dz dz∗ dt

≤

∫ T

0

(∫

R4d×R2
+

φε(x− x∗)|v − v∗|
2fε(t, z)fε(t, z∗) dz dz∗

)1/2

dt

≤
T

2δ
+ δ

∫ T

0

∫

R4d×R2
+

φε(x− x∗)|v − v∗|
2fε(t, z)fε(t, z∗) dz dz∗ dt,

for any δ > 0. In the second line, we have symmetrized the integral, in the third line we
have noticed that |∇Wε(x)| ≤ φε(x) for λ3 = λ1

2 , and in the last steps we have applied the
Cauchy–Schwartz and Young inequalities. By virtue of the above strong initial concentration
condition (3.32), we can chose a suitable δ > 0 leading to an analogue control (3.24) for
the second-order velocity moment and the dissipation estimate.
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4. Hydrodynamic limit in the weak relaxation regime

In this section, we derive the hydrodynamic limit of system (1.12) towards (1.13). We
follow a similar procedure as in Section 3. First, we prove that the internal variable support
of fε still shrinks fast enough, as ε → 0. Notice that in contrast with the previous scaling
(1.8), under the new scaling (1.12) we no longer have strong relaxation of the internal
variable. In turns, such a relaxation term Gc[ρ̄, ē]f involves a weaker scale now. Despite
this defect, we still preserve a strong alignment term 1

εG[f ]f . Therefore, we expect that
the internal variable support will rapidly concentrate at some value θ(t) when ε→ 0 after a
small enough time layer. Although θ(t) does not instantaneously agree with the background
mean value θ∞(t) (see (1.9)) due to the weak relaxation scale, θ(t) asymptotically converges
to θ∞(t) after sufficiently long time. With such control in hand, we recover appropriate a
priori estimates for the velocity moments. Finally, we combine the estimates for velocity
moments and the internal variable support to derive the rigorous hydrodynamic limit.

Along this part, we will assume again the previous hypothesis (3.1) for initial data f0ε , the
properties (3.2) for the solution (ρ̄, ū, ē) and the compatibility condition (3.3) for param-
eters. Since the weak relaxation regime is technically more involved, we will need further
assumptions that we list here. On the one hand, define the spatial and velocity radii

Rεx(t) := sup{|x| : x ∈ suppx fε(t)},

Rεv(t) := sup{|v| : v ∈ suppv fε(t)},
(4.1)

for any t ∈ [0, T ]. Then, we will assume the initial uniform confinement of supports

(4.2) Rεx(0) ≤ r0M and Rεv(0) ≤ v0M ,

for all ε > 0 and some constants r0M , v
0
M > 0 not depending on ε > 0. On the other hand,

some asymptotic control on the initial value of the internal variable is required to fully
characterize its dynamics. Specifically, we will assume that there exists some value θ0 ∈ R+

and a parameter γ > 0 such that

(4.3)

∫

R2d×R+

θf0ε (z) dz = θ0 +O(εγ), (as ε→ 0).

4.1. Hierarchy of moments. Again, associated with the hierarchy of moments ρε, jε, hε,
Aε, Bε,S

v
ε and Sθε in (3.6), we obtain the following hierarchy of equations

∂tρε +∇ · jε = 0,

ε∂tjε + ε∇ · Svε +Aε(φ ∗ ρε)− ρε(φ ∗ Aε) + (∇W ∗ ρε)ρε +Aε − ρε
u∞(t)

θ∞(t)
= 0,

ε∂thε + ε∇ · Sθε + ρε(ζ ∗Bε)−Bε(ζ ∗ ρε) + ε

(
ρε

θ∞(t)
−Bε

)
= 0,

(4.4)

where θ∞ and u∞ are the background mean value of the internal variable and velocity
respectively, see (1.9) and (1.11). Our final goal is to show rigorously that we can close the
above hierarchy of equations (4.4) when ε→ 0. Note the difference with the hierarchy (3.7)
coming from the weak relaxation scale of the internal variable. Indeed, whilst the inertial
terms ε∂jε + ε∇ · Svε in the velocity equation will disappear again in the limit ε → 0, we
will see that a non-trivial dynamics for the internal variable is found due to the weaker
relaxation of internal variable.
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4.2. Concentration of the internal variable support. We recall the definitions of
Dε
x(t), D

ε
v(t) and D

ε
θ(t) in (3.8) for the diameters of the position, velocity and internal vari-

able supports. Also, we recall that under the new scaling (1.12), the characteristic system
(3.9) is modified and consists of trajectories Zε(t; 0, z0) = (Xε(t; 0, z0), Vε(t; 0, z0),Θε(t; 0, z0))
solving

dXε

dt
= Vε,

dVε
dt

=
1

ε
F [fε](t, Zε) +

1

ε
H[fε](t, Zε) +

1

ε
Fc[ρ̄, ū, ē](t, Zε),

dΘε

dt
=

1

ε
G[fε](t, Zε) +Gc[ρ̄, ē](t, Zε),

Zε(0; 0, z0) = z0,

(4.5)

for t ∈ [0, T ] and any z0 ∈ R
2d × R+.

Lemma 4.1 (Concentration of internal variable I). Let fε be the solution of (1.12) subject
to initial data f0ε . Assume that the initial data verify (3.1) and (ρ̄, ū, ē) verifies (3.2).
Consider the constants 0 < θm < θM defined by (3.10). Then, the following estimates are
verified:

(1) (Confinement of support)

suppθfε(t) ⊂ (θm, θM ), for all t ∈ [0, T ].

(2) (Exponential concentration)

(4.6)
d+Dε

θ(t)

dt
≤ −

1

θ2M

(
ζ(Dε

x(t))

ε
+ 1

)
Dε
θ(t) ≤ 0, for all t ∈ [0, T ].

Proof. The proof is similar to that of Lemma 3.1. In fact, a similar argument as in the
derivation of (3.13) and (3.14) yields the following estimates

d+θMε
dt

≤
1

ε

∫

R2d×R+

ζ(Dε
x(t))

(
1

θMε (t)
−

1

θ∗

)
fε(t, z∗) dz∗ +

(
1

θMε (t)
−

1

θ∞(t)

)
,(4.7)

d+θmε
dt

≥
1

ε

∫

R2d×R+

ζ(Dε
x(t))

(
1

θmε (t)
−

1

θ∗

)
fε(t, z∗) dz∗ +

(
1

θmε (t)
−

1

θ∞(t)

)
,(4.8)

for every t ∈ [0, T ], where we recall that θMε (t) = max suppθ fε(t) and θ
m
ε (t) = min suppθ fε(t).

Then, we infer two different results.

• Step 1. On the one hand, since the first terms in the right-hand sides of (4.7) and
(4.8) have the appropriate sign, we neglect them and we recover

d+θMε
dt

≤
1

θMε (t)
−

1

θ∞(t)
≤

1

θMε (t)
−

1

θ̄M

d+θmε
dt

≥
1

θmε (t)
−

1

θ∞(t)
≥

1

θmε (t)
−

1

θ̄m
,

for every t ∈ [0, T ], where we have used the uniform control (3.4) of θ∞ in Remark 3.2 as
a consequence of assumption (3.2). By the same continuity argument as in Lemma 3.1,
the preceding estimates ensure that θMε (t) ≤ θM := max{θ0M , θ̄M} and θmε (t) ≥ θm :=
min{θ0m, θ̄m}, for any t ∈ [0, T ], thus proving the confinement of internal variable support.
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• Step 2. Now, we take the difference between (4.7) and (4.8) and recall that Dε
θ(t) =

θMε (t)− θmε (t). This implies the inequality

d+Dε
θ

dt
≤

(
1

ε
ζ(Dε

x(t)) + 1

)(
1

θMε (t)
−

1

θmε (t)

)
≤ −

1

θ2M

(
1

ε
ζ(Dε

x(t)) + 1

)
Dε
θ(t),

for each t ∈ [0, T ], where in the last step we have used the previous uniform estimates of
θMε and θmε . This ends the proof. �

Therefore, we still have monotonicity of the internal variable support of fε. Indeed, it
relaxes exponentially fast with rate of order O(1), as ε→ 0. Unfortunately, this is too weak
in comparison with the results in Section 3 since the dynamics would take a large initial
time layer in order for the internal variable support of fε to shrink and concentrate at a
single value. In order to circumvent this problem, we have to ensure an adequate behavior
of the spatial support as ε→ 0. Otherwise, if Dε

x(t) diverged as ε→ 0, then the rate O(ε−1)
could be lost. In the sequel, we obtain such a uniform-in-ε control under the aforementioned
confinement condition (4.2) of initial data.

Lemma 4.2 (Concentration of internal variable II). Let fε be the solution of (1.12) subject
to initial data f0ε . Assume that the initial data verify (3.1), (ρ̄, ū, ē) verifies (3.2) and the
parameters fulfill the compatibility condition (3.3). In addition, assume the initial uniform
control (4.2) of the spatial and velocity supports. Then, there exists vM ≥ v0M such that

Rεx(t) ≤ r0M + vMT,

Rεv(t) ≤ vM ,

for every t ∈ [0, T ] and ε > 0. In addition, there exists CT ∈ R+ depending on initial
parameters and T such that the following decay takes place

Dε
θ(t) ≤ Dε

θ(0)e
−

CT
ε
t, for all t ∈ [0, T ].

Proof. Let us define the critical sets

M ε
x(t) := {z0 ∈ supp f0ε : |Xε(t; 0, z0)| = Rεx(t)},

M ε
v (t) := {z0 ∈ supp f0ε : |Vε(t; 0, z0)| = Rεv(t)},

and notice that

Rεx(t) = max
z0∈Mε

x(t)
|Xε(t; 0, z0)|,

Rεv(t) = max
z0∈Mε

v (t)
|Vε(t; 0, z0)|,

for every t ∈ [0, T ]. Again, we notice that it is not necessarily true that the maximum is
propagated along fixed trajectories. However, since the flow (t, z0) 7→ Zε(t; 0, z0) is contin-
uous, differentiable with respect to t with continuous derivative, we obtain an analogous
identity as in (3.11) from the usual argument in [21, Corollary 3.3, Chapter 1], namely,

d+

dt

Rεx(t)
2

2
= max

z0∈Mε
x(t)

Vε(t; 0, z0) ·Xε(t; 0, z0),

d+

dt

Rεv(t)
2

2
= max

z0∈Mε
v (t)

∂Vε
∂t

(t; 0, z0) · Vε(t; 0, z0),

(4.9)

for every t ∈ [0, T ], where again d+/dt denotes the right derivative.
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• Step 1. Estimate of the velocity radius.
Fix any time t ∈ [0, T ] and any z0 ∈M ε

v (t). For simplicity of notation, let us denote

zMε := (xMε , v
M
ε , θ

M
ε ) := (Xε(t; 0, z0), Vε(t; 0, z0),Θε(t; 0, z0)).

Then, we obtain

∂Vε
∂t

(t; 0, z0) · Vε(t; 0, z0) = vMε ·

(
1

ε
F [fε](t, z

M
ε ) +

1

ε
H[fε](t, z

M
ε ) +

1

ε
Fc[ρ̄, ū, ē](t, z

M
ε )

)

=
1

ε
vMε ·

(∫

R2d×R+

φ(xMε − x∗)

(
v∗
θ∗

−
vMε
θMε

)
fε(t, z∗) dz∗

)

−
1

ε
vMε ·

(∫

R2d×R+

∇W (xMε − x∗)fε(t, z∗) dz∗

)
+

1

ε
vMε ·

(
u∞(t)

θ∞(t)
−
vMε
θMε

)

≤ −
1

ε

|vMε |2

θM
+

1

ε

∫

R2d×R+

φ(xMε − x∗)
vMε · (v∗ − vMε )

θ∗
fε(t, z∗) dz∗

+
1

ε
|vMε |2

∫

R2d×R+

φ(xMε − x∗)

(
1

θ∗
−

1

θMε

)
fε(t, z∗) dz∗

+
1

ε
|vMε |

(
|u∞(t)|

θ∞(t)
+ ‖∇W‖L∞

)

≤ −
1

ε

(
1

θM
− ‖φ‖L∞

Dε
θ(t)

θ2m

)
Rεv(t)

2 +
1

ε

(
|u∞(t)|

θ∞(t)
+ ‖∇W‖L∞

)
Rεv(t).

In the last inequality we have neglected the second term in the left-hand side, thanks to the
property

vMε · (v∗ − vMε ) ≤ |vMε |
(
|v∗| − |vMε |

)
≤ 0,

for each v∗ ∈ suppv fε(t), due to the fact that |vMε | = Rεv(t). Thanks to Lemma 4.1, the
internal variable diameter is non-increasing, i.e., Dε

θ(t) ≤ Dε
θ(0) ≤ θ0M − θ0m. Thus, putting

everything together into (4.9) and by arbitrariness of z0 ∈M ε
v (t), we have

d+

dt
Rεv(t) ≤ −

C1

ε
Rεv(t) +

C2

ε
,

for every t ∈ [0, T ], where we denote

C1 :=
1

θM
− ‖φ‖L∞

(θ0M − θ0m)

θ2m
, C2 := sup

t∈[0,T ]

|u∞(t)|

θ∞(t)
+ ‖∇W‖L∞ .

Notice that C2 is finite by Remark 3.2 and hypothesis (1.14), and C1 is positive by the
compatibility condition (3.3). Thereby, Grönwall’s lemma concludes that

Rεv(t) ≤ Rεv(0)e
−

C2
ε
t +

C2

C1
(1− e−

C1
ε
t) ≤ v0M +

C2

C1
=: vM ,

for every t ∈ [0, T ].

• Step 2. Estimate of the spacial radius.
From (4.9)2 and the Cauchy–Schwartz inequality, we infer

d+

dt
Rεx(t) ≤ Rεv(t),

for ech t ∈ [0, T ]. By the control on Rεv(t) in Step 1, we attain the claimed bound of Rεx(t).
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• Step 3. Strong concentration of the internal variable diameter.
Notice that by the preceding estimate we obtain

ζ(Dε
x(t)) ≥ ζ(2Rεv(t)) ≥ ζ(2(r0M + vMT )) =: CT ,

for every t ∈ [0, T ] and each ε > 0. Then, by Lemma 4.1 we conclude

d+

dt
Dε
θ(t) ≤ −

1

θ2M

(
CT
ε

+ 1

)
Dε
θ(t),

for every t ∈ [0, T ] and this ends the proof. �

Therefore, as in the strong relaxation regime in Section 3, we notice that relaxation of
the internal variable diameter is still exponential with rate O(ε−1). However, there is a
crucial difference between both scalings. In fact, notice that since the relaxation term of
the internal variable in (1.12) toward θ∞(t) is weak, we cannot expect the same deviation
estimate around θ∞(t) as in Corollary 3.1. Instead, we show that, after a small initial time
layer, the internal variable support is concentrated on a small neighborhood of a value θ(t),
which relaxes towards θ∞(t) according to an appropriate ODE.

Corollary 4.1 (Initial time layer). Let fε be the solution of (1.12) subject to the initial
data f0ε . Assume that the initial data verify (3.1), (ρ̄, ū, ē) verifies (3.2) and the parameters
fulfill the compatibility condition (3.3). In addition, assume the initial uniform confinement
(4.2) and the initial asymptotic control (4.3), for some value θ0 ∈ R+ and some parameter
γ > 0. Then, there exists a constant C ∈ R+ such that

Dε
θ(t) ≤ Cεα,

supp fθ(t) ⊂ (θ(t)− Cεmin{β,γ}, θ(t) + Cεmin{β,γ}),

for any α > 0 and 0 < β < 1, and for every t ∈ [εβ, T ], where θ = θ(t) is the solutions to
the following relaxation ODE:

θ̇(t) =
1

θ(t)
−

1

θ∞(t)
, t ∈ [0, T ],

θ(0) = θ0.

(4.10)

Here, C depends on the exponents α and β along with the parameters θ0M , θ0m, θ̄m, θ̄M ,
‖ζ‖L∞ and ‖θ∞(t)‖W 1,∞(0,T ).

Proof. The control on Dε
θ(t) after a small initial time layer t ≥ εβ is obtained from Lemma

4.2 in the same way as in Corollary 3.1. Then, we just focus on the deviation estimate
of suppθ fε around the solution θ(t) of the initial value problem (4.10). By an analogous
argument like in Step 3 in the proof of Lemma 3.1, we have the following estimates

d+

dt
(θMε (t)− θ(t)) ≤

1

ε

∫

R2d×R+

ζ(Dε
x(t))

(
1

θMε
−

1

θ∗

)
fε(t, z∗) dz∗ +

(
1

θMε
−

1

θ∞(t)

)
−
dθ

dt
,

d+

dt
(θmε (t)− θ(t)) ≥

1

ε

∫

R2d×R+

ζ(Dε
x(t))

(
1

θmε
−

1

θ∗

)
fε(t, z∗) dz∗ +

(
1

θmε
−

1

θ∞(t)

)
−
dθ

dt
,

for every t ∈ [0, T ], where we recall that

θMε (t) = max suppθ fε(t), θmε (t) = min suppθ fε(t).
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Now, since the first terms in the right-hand sides have the correct sign, we can neglect them.
In addition, we substitute dθ

dt by the ODE (4.10) to find

d+

dt
(θMε (t)− θ(t)) ≤

1

θMε (t)
−

1

θ(t)
≤ −CMε (t)(θMε (t)− θ(t)),

d+

dt
(θmε (t)− θ(t)) ≥

1

θmε (t)
−

1

θ(t)
≥ −Cmε (t)(θmε (t)− θ(t)),

(4.11)

for every t ∈ [0, T ]. Here, we have used the uniform estimates for θMε and θmε in Lemma
4.1 and similar control θm ≤ θ(t) ≤ θM coming from the ODE (4.10), the information on
θ0 ∈ [θm0 , θ

M
0 ] from (4.3) and the uniform bounds (3.4) of θ∞(t) in Remark 3.2. Specifically,

the time-dependent functions CMε (t) and Cmε (t) are given by

CMε (t) :=

{
1
θ2
M

, if θMε (t) ≥ θ(t),
1
θ2m
, if θMε (t) < θ(t),

Cmε (t) :=

{
1
θ2m
, if θmε (t) ≥ θ(t),

1
θ2
M

, if θmε (t) < θ(t).

We now use Gronwall’s lemma in (4.11) to deduce

θMε (t)− θ(t) ≤ |θMε (t∗)− θ(t∗)|e
− t−t∗

θ2
M ≤ |θMε (t∗)− θ(t∗)|,

θmε (t)− θ(t) ≥ −|θmε (t∗)− θ(t∗)|e
− t−t∗

θ2
M ≥ −|θmε (t∗)− θ(t∗)|,

(4.12)

for any 0 ≤ t∗ < t ≤ T . Let us define the average of internal variable

θε(t) :=

∫

R2d×R+

θfε(t, z) dz, t ∈ [0, T ].

Then, we have

|θMε (t∗)− θ(t∗)| ≤ |θMε (t∗)− θε(t∗)|+ |θε(t∗)− θ(t∗)|

≤ Dε
θ(t∗) + |θε(0)− θ(0)|+

∣∣∣∣
∫ t∗

0

d

ds
(θε(s)− θ(s)) ds

∣∣∣∣

≤ Dε
θ(t∗) + |θε(0)− θ(0)|+

2

θm
t∗.

Note that the last inequality has been obtained by computing
∣∣∣∣
d

ds
(θε(s)− θ(s))

∣∣∣∣ =
∣∣∣∣
∫

R2d×R+

1

θ
fε(t, z) dz −

1

θ(t)

∣∣∣∣ ≤
2

θm
,

for any s ∈ (0, T ), where we have used the kinetic equation (1.12) and the relaxation ODE
(4.10) to derive above estimate. Setting t∗ = εβ , using the above polynomial control of
Dε
θ(t∗) and hypothesis (4.3) and putting everything together into (4.12) yields

θMε (t)− θ(t) ≤ C(εα + εβ + εγ),

for each t ∈ [εβ , T ]. Since α > 0 is arbitrary, this ends the upper bound and a similar lower
estimates for θmε (t)− θ(t) concludes the proof. �

To summarize, the previous results show that after a small initial time layer ε0 = εβ ,
the diameter of suppθfε(t) is smaller than Cεα and its distance to θ(t) is smaller than

Cεmin{β,γ}. This justifies that fε will concentrate around θ = θ(t), as ε → 0, although
the relaxation to the background mean value θ∞(t) does not occurs instantaneously (as in
Section 3), but it actually occurs slowly according to the relaxation ODE (4.10).
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For clarity, we sketch in Figure 3 the main difference in the dynamics of the internal
variable support for both the strong and weak relaxation regimes. On the one hand, blue
and red lines denote the relaxation of internal variable support in the strong and weak
relaxation regimes respectively. Dashed lines are used for the background mean value θ∞(t),
whilst dotted lines represent the solution θ(t) of the relaxation ODE (4.10). Finally, the
vertical dotted line determines the initial time layer ε0 = εβ , after which the internal variable
support becomes very narrow with the size of order O(εα) and O(εmin{β,γ}) respectively.

Figure 3. Relaxation of internal variable in the weak and strong regimes.

4.3. Moment estimates. In this part, we derive again a priori estimates for the moments
of fε. We notice that under the hypothesis in the preceding part guaranteeing the concen-
tration of the internal variable support, the same arguments in Section 3 can be applied to
derive the estimates. In particular, an analogue of Corollary 3.2 holds true.

Corollary 4.2 (Velocity and position moments). Let fε be the solution of (1.8) subject to
initial data f0ε . Suppose that initial data verify (3.1), (ρ̄, ū, ē) verifies (3.2) and parameters
fulfill the compatibility condition (3.3). Then,

‖|x|fε‖L∞(0,T ;L1(R2d×R+)) ≤M0 + T 1/2‖|v|fε‖L2(0,T ;L1(R2d×R+)),

‖|v|fε‖L2(0,T ;L1(R2d×R+)) ≤
(
‖|v|2fε‖L1(0,T ;L1(R2d×R+))

)1/2
,

‖|v|2fε‖L1(0,T ;L1(R2d×R+)) ≤ C
(
εE0 + CG2

0

)
,

(4.13)

for every ε > 0. In addition, the estimate

(4.14)
1

θM

∫ T

0

∫

R4d×R2
+

φ(x− x∗)|v − v∗|
2 fε(t, z)fε(t, z∗) dz dz∗ dt ≤ εE0 + CG2

0

holds.
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Indeed, notice that by Lemma 4.2 both spatial and velocity supports have uniformly
bounded radii. Then, it is apparent that (4.13) can be improved into

‖|x|fε‖L∞(0,T ;L1(R2d×R+)) ≤ sup
0≤t≤T

Rεx(t) ≤ r0M + vMT,

‖|v|fε‖L∞(0,T ;L1(R2d×R+)) ≤ sup
0≤t≤T

Rεv(t) ≤ vM ,

‖|v|2fε‖L∞(0,T ;L1(R2d×R+)) ≤ sup
0≤t≤T

Rεv(t)
2 ≤ v2M .

Since they will not be necessary, we stick to the initial (weaker) estimates as in Section 3.

4.4. Hydrodynamic limit of (1.12). In this subsection, we present the rigorous hydro-
dynamic limit of (1.12), whose explicit statement takes the following form:

Theorem 4.1. Let fε be the solution of (1.12) subject to initial data f0ε . Assume that the
initial data verify (3.1), (ρ̄, ū, ē) verifies (3.2) and the parameters fulfill the compatibility
condition (3.3). In addition, assume the initial uniform confinement (4.2) and the initial
asymptotic control (4.3), for some value θ0 ∈ R+ and some parameter γ > 0. Then,

ρε → ρ, in C([0, T ],M(Rd)− narrow),

jε
∗
⇀ j, in L2

w(0, T ;M(Rd)d),

when ε → 0, for some probability measure ρ, some finite Radon measure j and some sub-
sequence of {ρε}ε>0 and {jε}ε>0 that we denote in the same way. In addition, (ρ, j, θ(t))
solves the following problem

∂tρ+∇ · j = 0, (t, x) ∈ [0, T )× R
d,

j −
θ(t)u∞(t)

θ∞(t)
ρ+ θ(t)(∇W ∗ ρ)ρ = ρ(φ ∗ j)− j(φ ∗ ρ), (t, x) ∈ (0, T )× R

d,

dθ(t)

dt
=

1

θ(t)
−

1

θ∞(t)
, t ∈ [0, T ],

ρ(t = 0) = ρ0, x ∈ R
d,

θ(0) = θ0,

in distributional sense, where θ∞(t) and u∞(t) are the background mean values of the in-
ternal variable and velocity, see (1.9) and (1.11).

Proof. Thanks to the a priori estimates in Corollary 4.2, we readily infer (3.25). Therefore,
we use the same arguments as in the proof of Theorem 3.1 in Section 3 to find a probability
measure ρ ∈ C([0, T ];M(Rd)− narrow) and a finite Radon measure j ∈ L2

w(0, T ;M(Rd)d)
so that we recover the convergence results in (3.26) and (3.27), namely,

ρε → ρ, in C([0, T ],M(Rd)− narrow),

jε
∗
⇀ j, in L2

w(0, T ;M(Rd)d).
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Now, we use the deviation estimate of suppθ fε around θ(t) in (4.1) and we reproduce similar
ideas as in the proofs of Lemmas 3.3 and 3.4 to find that, for every ε0 > 0

hε → θ(t)ρ, in C([ε0, T ],M(Rd)− narrow),

Sθε
∗
−⇀ θ(t)j, in L2

w(ε0, T ;M(Rd)d),

Aε
∗
−⇀

j

θ(t)
, in L2

w(ε0, T ;M(Rd)d),

Bε →
ρ

θ(t)
, in C([ε0, T ],M(Rd)− narrow),

ρε ⊗Aε
∗
−⇀

ρ⊗ j

θ(t)
, in L2

w(ε0, T ;M(R2d)),

ρε ⊗ ρε → ρ⊗ ρ, in C([0, T ],M(R2d)− narrow),

as ε→ 0. We emphasize that suppθ fε now concentrates asymptotically around θ(t), whence
the dependence of limits on θ(t) instead of θ∞(t). We are now ready to pass to the limit in
the hierarchy of equations (4.4). On the one hand, passing to the limit in the density and
velocity equation follows the same train of thoughts as in the strong relaxation regime in
Section 3 and yields the system of equations

∂tρ+∇ · j = 0, t ∈ [0, T ) × R
d,

j −
θ(t)u∞(t)

θ∞(t)
ρ+ θ(t)(∇W ∗ ρ)ρ = ρ(φ ∗ j)− j(φ ∗ ρ), t ∈ (0, T ) × R

d,

ρ(t = 0) = ρ0, x ∈ R
d.

Then, we focus on the limit of the internal variable equation in (4.4). In weak form it reads
∫ T

0

∫

Rd

∂tψ hε dx dt+

∫ T

0

∫

Rd

Sθε ∇ψ dx dt

=
1

ε

∫ T

0

∫

Rd

ψ(ζ ∗ ρε)Bε dx dt−
1

ε

∫ T

0

∫

Rd

ψ(ζ ∗Bε)ρε dx dt

+

∫ T

0

∫

Rd

ψBε dx dt−

∫ T

0

∫

Rd

ψ
ρε

θ∞(t)
dx dt,

for any ψ ∈ C1
c ((0, T )×R

d). The limit of the linear terms is clear. We show again that the
nonlinear term vanishes, as ε → 0, due to a similar argument supported by concentration
of the internal variable support. Specifically, set any ε0 > 0 so that suppψ ⊆ [ε0, T ] × R

d.
Then,

∣∣∣∣
1

ε

∫ T

0

∫

Rd

ψ(ζ ∗ ρε)Bε dx dt−
1

ε

∫ T

0

∫

Rd

ψ(ζ ∗Bε)ρε dx dt

∣∣∣∣

≤
1

ε
‖ψ‖Cc((0,T )×Rd)

∫ T

ε0

∫

R4d×R2
+

ζ(x− x∗)

∣∣∣∣
1

θ
−

1

θ∗

∣∣∣∣ fε(t, z)fε(t, z∗) dz dz∗ dt

≤
1

ε

‖ζ‖L∞‖ψ‖Cc((0,T )×Rd)

θ2m

∫ T

ε0

Dε
θ(t) dt ≤ C

‖ζ‖L∞‖ψ‖Cc((0,T )×Rd)

θ2m
Tεα−1,

for any ε ≤ ε
1/β
0 , where we have used the concentration estimate in Corollary 4.1. Since

α can be taken larger than 1, the right-hand side tends to 0, as ε → 0. Therefore, after
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passing to the limit, we obtain the weak equation
∫ T

0

∫

Rd

∂tψ(t, x)θ(t)ρ(t, dx) dt +

∫ T

0

∫

Rd

θ(t)j(t, dx) · ∇ψ(t, x) dt

=

∫ T

0

∫

Rd

ψ(t, x)

θ(t)
ρ(t, dx) dt−

∫ T

0

∫

Rd

ψ(t, x)

θ∞(t)
ρ(t, dx) dt,

for any ψ ∈ C1
c ((0, T ) × R

d), that is,

∂t(θ(t)ρ) +∇ · (θ(t)j) +

(
1

θ(t)
−

1

θ∞

)
ρ = 0.

Using the continuity equation ∂tρ+∇x · j = 0, such an equation amounts to

dθ(t)

dt
+

(
1

θ(t)
−

1

θ∞

)
= 0,

which is exactly the same as the relaxation ODE (4.10) for θ(t). �

4.5. Weakly singular influence functions. Again, we notice that the uniform bound of
the influence functions φ, ζ and the aggregation potential ∇W has strongly be used in some
parts of the preceding proofs. Hence, the hydrodynamic limit of the system (2.25), where
the influence functions φ and ζ are replaced by φε and ζε in (2.23), requires appropriate
modifications of the arguments in Theorem 4.1 leading to the following version.

Theorem 4.2. Let fε be a solution to the equation (2.25) subject to initial data f0ε with
parameters λ1 ∈ (0, 1), and λ2 > 0. Assume that the initial data verify (3.1), (ρ̄, ū, ē) veri-
fies (3.2) and the parameters fulfill the stronger compatibility condition (3.3). In addition,
assume the initial uniform confinement (4.2) and the initial asymptotic control (4.3), for
some value θ0 ∈ R+ and some parameter γ > 0. Then,

ρε → ρ, in C([0, T ],M(Rd)− narrow),

jε
∗
→ j, in L2

w(0, T ;M(Rd)d),

as ε → 0, for some probability measure ρ, some finite Radon measure j and some subse-
quence of {ρε}ε>0 and {jε}ε>0 that we denote in the same way. In addition, (ρ, j, θ(t))
solves the following problem

∂tρ+∇ · j = 0, (t, x) ∈ [0, T )× R
d,

j −
θ(t)u∞(t)

θ∞(t)
ρ+ θ(t)(∇W ∗ ρ)ρ = ρ(φ ∗ j)− j(φ ∗ ρ), (t, x) ∈ (0, T )× R

d,

dθ(t)

dt
=

1

θ(t)
−

1

θ∞(t)
, t ∈ [0, T ],

ρ(t = 0) = ρ0, x ∈ R
d,

θ(0) = θ0,

in distributional sense, for an appropriate meaning of the nonlinear term. Here, φ0 is the
singular influence function in (2.26) and, θ∞(t) and u∞(t) are the background mean value
of the internal variable and velocity, see (1.9) and (1.11).

Since the proof follows similar modifications like in Theorem 3.2 exploiting the initial
strong concentration assumption (3.32), we omit details here and just comment on the main
difficulties. On the one hand, note that the same arguments as in Subsection 3.5 guarantee
that the initial concentration assumption (3.32) in place of the weak compatibility condition
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(3.3) solves the main delicate points. Indeed, such a condition allows compensating extra
factors 1

ε coming from the singularity of the influence function φε, under the cost that a
stronger initial concentration of the internal variable support is assumed. On the other
hand, an analogous dissipation estimate like (3.22) holds so that the non-concentration
property (3.34) persists and it allows extending the result to the limiting regime λ1 = 1 like
in Subsection (3.5). Unfortunately, the uniform bound of ∇W in (1.14) has been applied in
an essential way in the proof if Lemma 4.2 in order to control (uniformly in ε) the growth
of spacial and velocity supports. Hence, the case of singularly scaled potentials Wε like
in (2.28) cannot be addressed with our method and would require a significantly different
approach and analysis than the present one.

5. Numerical simulations

In this section, we present the numerical simulations for the limiting macroscopic equa-
tions (1.10) and (1.13), both for strong and weak relaxation regimes. For computational
efficiency, we choose the 1-dimensional periodic spatial domain T. However, similar results
could be shown for compactly supported initial data in the free space R. Along this part
we shall use the following notation:

(1) (Lie group) We regard T as the quotient of the interval [0, 1] under identification
of the endpoints 0 and 1. It has a Lie group structure under the group operation

x+ y := [a+ b+ n],

for any equivalent classes x = [a], y = [b] ∈ T with a, b ∈ [0, 1], where n ∈ Z is the
only integer such that a− b+n ∈ (0, 1]. Hence, note that the identity element is [0]
and the inverse element of x is given by

−x := [1− a].

(2) (Geodesic distance) Given two equivalence classes x = [a], y = [b] ∈ T for some
numbers a, b ∈ [0, 1], we define the distance over T by

|x− y|T := |a− b+ n|,

where n ∈ Z is the only integer such that a− b+n ∈
(
−1

2 ,
1
2

]
. It is nothing than the

usual geodesic distance associated to the Lie group. From here on, we will denote
|x− y| := |x− y|T and |x| = |x− [0]|T for simplicity when there is no confusion.

(3) (Convolution) Given two periodic functions f, g : T −→ R, we define its convolu-
tion f ∗ g : T −→ R, as the usual Lie group convolution

(f ∗ g)(x) =

∫

T

f(x− y)g(y) dy =

∫ 1

0
f([a]− [b])g([b]) db, x = [a] ∈ T.

5.1. Strong relaxation regime. In this part, we present some numerical simulations of
the limiting macroscopic system (1.10) under the strong relaxation regime. In periodic
variables such a system is determined by the following coupled equations for (ρ, u):

∂tρ+∇ · (ρu) = 0, (t, x) ∈ R+ × T,

u− u∞(t) + θ∞(t)(∇W ∗ ρ) = φ ∗ (ρu)− (φ ∗ ρ)u. (t, x) ∈ R+ × T.
(5.15)

Here, the relaxation velocity u∞(t) ∈ R
d and the internal variable θ∞(t) ∈ R+ are

u∞(t) = θ∞(t)

∫

T

ρ̄(t, x)ū(t, x)

ē(t, x)
dx, θ∞(t) =

(∫

T

ρ̄(t, x)

ē(t, x)
dx

)−1

.
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These are determined instantaneously by the background fluid (ρ̄, ū, ē), which is governed
by the hydrodynamic equations:

∂tρ̄+∇ · (ρ̄ū) = 0,

∂t(ρ̄ū) +∇ · (ρ̄ū⊗ ū) =

∫

T

φ(x− x∗)

(
ū(t, x∗)

ē(t, x∗)
−
ū(t, x)

ē(t, x)

)
ρ̄(t, x)ρ̄(t, x∗) dx∗,

∂t(ρ̄ē) +∇ · (ρ̄ūē) =

∫

T

ζ(x− x∗)

(
1

ē(t, x)
−

1

ē(t, x∗)

)
ρ̄(t, x)ρ̄(t, x∗) dx∗.

(5.16)

We choose λ1 = λ2 = 1 so that the influence functions φ and ζ are given by

φ(x) = ζ(x) =
1

(1 + 3|x|2)
1

2

, x ∈ T.

Finally, we choose the aggregation potential W as

W (x) = η(|x|)

(
1

2
log(1 + |x|2)−

1

2
log

5

4

)
, x ∈ T,

where η = η(r) is a smooth bump function with η(r) = 1 for 0 ≤ r ≤ 1
6 and η(r) = 0

for r ≥ 1
3 . We note that the above W is a modification of the potential 1

2 log(1 + |x|2)
introduced in (2.27) with λ3 = 1, so that it is smoothly extended to the periodic domain.

• Initial data. We choose the initial data for the background fluid (ρ̄, ū, ē) as

(5.17) ρ̄0(x) ≡ 1, ū0(x) = 0.5 + sin(2πx), ē0(x) = 2 + cos(2πx), x ∈ T,

while the initial data for ρ is

(5.18) ρ0(x) =
1

Z
exp

(
−50 |x− [0.5]|2

)
, x ∈ T,

for some normalizing coefficient Z so that
∫
T
ρ0(x) dx = 1.

• Discussion of numerical methods. For the sake of completeness, we explain here
the numerical methods that we have used to solve numerically both the hydrodynamic
equations (5.16) and the limiting macroscopic system (5.15). Given spacial and temporal
grid sizes ∆x = 1

M and ∆t = T
N with M,N ∈ N, we discretize the spatial variable x ∈ T

by nodes x0, . . . , xM ∈ T with |xj+1 − xj| =
1
M , for j = 0, . . . ,M − 1, and the temporal

variable t ∈ [0, T ] by nodes t0, . . . , tN with tn := n∆t, for n = 0, . . . , N . For any function
w = w(t, x) for t ∈ [0, T ] and x ∈ T, we denote its numerical approximation by

wnj ≈ w(tn, xj).

Considering intermediate nodes, we can determine a staggered grid and we similarly denote

w
n+ 1

2

j ≈ w(tn+ 1

2

, xj), wn
j+ 1

2

≈ w(tn, xj+ 1

2

), w
n+ 1

2

j+ 1

2

≈ w(tn+ 1

2

, xj+ 1

2

).

⋄ On the one hand, the numerical solution (ρ̄n+1, ūn+1, ēn+1) of (5.16) is computed
from (ρ̄n, ūn, ēn) by using the central difference method on the staggered grid for non-
homogeneous balance law suggested by Nessyahu and Tadmor [58] (see also [53, Section 4]).
We briefly recall the scheme in the simpler case of a 1-dimensional scalar balance law

∂tw + ∂xf(w) = g(w).
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Assume that the numerical solution wn ≈ w(tn, ·) at the time step n is given. Then, the
(generalized) Nessyahu-Tadmor scheme computes the solution wn+1 ≈ w(tn+1, ·) at the next
time step on the staggered grid as

wn+1
j+ 1

2

=
1

2
(wnj + wnj+1) +

1

8
(wnj

′ −wnj+1
′) +

∆t

∆x

(
f

(
w
n+ 1

2

j

)
− f

(
w
n+ 1

2

j+1

))

+
∆t

2

(
g

(
w
n+ 1

2

j+1

)
+ g

(
w
n+ 1

2

j

))
,

where the predictor w
n+ 1

2

j is given by

w
n+ 1

2

j = wnj +
∆t

2

(
g(wnj )−

fnj
′

∆x

)
.

Here, wnj
′ and fnj

′ are first-order approximations of spatial derivative, computed as follows

wnj
′ := minmod(wnj+1 − wnj , w

n
j − wnj−1),

fnj
′ := minmod(f(wnj+1)− f(wnj ), f(w

n
j )− f(wnj−1)),

where minmod is the minmod function:

minmod(x, y) :=

{
sgn(x)min(|x|, |y|), if sgn(x) = sgn(y),

0, otherwise.

⋄ On the other hand, the solution (ρn+1, un+1) to (5.15) is computed from (ρn, un) as
follows. First, from known (ρn, un) we can compute ρn+1 by solving the initial value problem
associated with the continuity equation

(5.19)
∂tρ+∇ · (ρu) = 0, (t, x) ∈ R+ × T,
ρ(0, ·) = ρ0(x), x ∈ T,

driven by u = un and issued at ρn. To solve (5.19), we use the well-known fifth-order
weighted essentially non-oscillatory scheme (WENO5) [64] for discretizing the spatial vari-
able, and use the third-order total variation diminishing Runge-Kutta scheme (TVD-RK3)
[63] for the time integration. We refer to the recent survey paper [65] for further details.
Second, once ρn+1 is known, un+1 can be recovered from the linear implicit equation

(5.20) u− u∞(t) + θ∞(t)(∇W ∗ ρ) = φ ∗ (ρu)− (φ ∗ ρ)u,

for ρ = ρn+1 and u∞(tn+1). Specifically, we approximate the convolution on the left-hand
side and the integral on the right-hand side by using simple rectangle rule. Then, the
equation (5.20) for u is approximated as

un+1
i − u∞ +

M∑

j=1

∇W (xi − xj)ρ
n+1
j ∆x =

M∑

j=1

φ(xi − xj)(u
n+1
j − un+1

i )ρn+1
j ∆x,

or, in vector form,

(5.21) (IM −∆xΦn+1)un+1 = u∞(tn+1)1−∆xWρn+1.
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Here, ρn+1 = (ρn+1
1 , . . . , ρn+1

M )⊤, un+1 = (un+1
1 , . . . , un+1

M )⊤, 1 := (1, 1, . . . , 1)⊤ and the

(i, j)-component of the matrices Φn+1 ∈ R
M×M and W are defined as

Φn+1
ij := φ(xi − xj)ρ

n+1
j − δij

(
M∑

k=1

φ(xi − xk)ρ
n+1
k

)
,

Wij := ∇W (xi − xj).

Therefore, un+1 can be obtained by solving the linear algebraic system (5.21). We use the
MATLAB internal function.

To summarize, we compute the numerical solution through the following protocol: given
numerical solutions (ρn, un) and (ρ̄n, ūn, ēn) at time step n,

(1) Compute (ρ̄n+1, ūn+1, ēn+1) and u∞(tn+1) by solving (5.16) from (ρ̄n, ūn, ēn).
(2) Compute ρn+1 by solving (5.19) with u = un from ρn.
(3) Compute un+1 by solving (5.20) with ρ = ρn+1 and u∞(tn+1).

(a) Profile of the density ρ̄ of background fluid.
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(b) (ρ̄, ū, ē) at t = 20.
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(c) Dynamics of the fluctuation of ū and ē.

Figure 4. Dynamics of the background fluid.

• Numerical results. First, in Figure 4 we present the results for the background
fluid (ρ̄, ū, ē). On the one hand, Figure 4(A) shows the evolution of the profile of density
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ρ̄. Initially, the density has been set so that it is accumulated around x = 0.5. Since the
initial velocity ū0(x) = 0.5 + sin(2πx) is larger on [0, 0.5] than on [0.5, 1], that creates a
compression for density. In addition, note that the averaged velocity takes the value

∫

T

ρ̄(0, x)ū(0, x) dx =

∫ 1

0
(0.5 + sin(2πx)) dx = 0.5 > 0.

Hence, the density ρ̄ moves slowly toward the positive direction. In Figure 4(B), we present
the asymptotic profile of (ρ̄, ū, ē) at t = 20. Since the background fluid satisfies the hy-
drodynamic flocking equation, then the velocity ū and the internal variable ē are expected
to become homogeneous over the spatial domain, for large enough time, see [31]. Indeed,
Figure 4(B) shows exactly that the limit values of ū and ē are 0.5 and 2. Finally, Figure
4(C) presents the relaxations of fluctuations of ū and ē along time t. Fluctuation of ū and
ē are computed as the maximal oscillations of ū and ē over the spacial domain, i.e.,

sup
x,y∈T

|ū(t, x)− ū(t, y)|, sup
x,y∈T

|ē(t, x)− ē(t, y)|.

As expected, fluctuations of ū and ē converge to 0 and become negligible after t ≈ 15.
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(a) Dynamics of θ∞(t).
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θ∞(t) .

Figure 5. Dynamics of two main quantities θ∞(t) and u∞(t)
θ∞(t) .

Next, in Figure 5(A) and (B) we observe the evolution of the average values θ∞(t) and
u∞(t)
θ∞(t) for the internal variable and the velocity of the background fluid. They appear in

the right-hand side of (5.20) and play a crucial role in the cross-interaction between the
background fluid (ρ̄, ū, ē) and the limiting system (ρ, u). Surprisingly, although ū and ē

are not homogenized until t ≈ 15, (recall Figure 4(B),(C)), the quantities θ∞(t) and u∞(t)
θ∞(t)

saturate earlier around t ≈ 5. Moreover, the limit quantities are determined by the limit
values of ū and ē:

lim
t→∞

θ∞(t) = lim
t→∞

(∫

T

ρ̄(t, x)

ē(t, x)
dx

)−1

= 2,

lim
t→∞

u∞(t)

θ∞(t)
= lim

t→∞

∫

T

ρ̄(t, x)ū(t, x)

ē(t, x)
dx = 0.25.

In Figure 6 we present the results for the limiting system (ρ, u). On the one hand, Figure
6(A) and (B) shows the dynamics of (ρ, u) along time t. We observe that the density ρ
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(a) Profile of the density ρ.

(b) Profile of the velocity u.
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(c) (ρ, u) at t = 20.
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(d) (ρ, u) at t = 20 (magnified).

Figure 6. Profiles of ρ and u for strong relaxation regime.

starts to move toward the positive direction, as an effect of the background fluid. On the
other hand, Figure 6(C) shows the asymptotic profile of the density ρ and velocity u at time
t = 20. We observe that the density ρ concentrates, due to the effect of the aggregation
potential W . To quantify the degree of aggregation on the periodic domain, we introduce
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Figure 7. Dynamics of the order parameter in the strong relaxation regime.

so-called the order parameter R, defined as

R(t) :=

∣∣∣∣
∫

T

(cos 2πx, sin 2πx)ρ(t, x) dx

∣∣∣∣ .

Note that the range of R is [0, 1] and R = 1 when the density ρ is concentrated on a single
point. Therefore, the larger R, the more concentrated ρ is. We present the dynamics of
the order parameter in Figure 7. The simulation result implies that the order parameter
increases, which means that the density ρ aggregates asymptotically. Finally, in Figure
6(D), we magnify the same figure 6(C) around the point at which ρ concentrates. We
observe that the velocity u approximately takes the value 0.5 at that point, which is the
same value as the limit value of u∞.

5.2. Weak relaxation regime. In this part, we provide some numerical simulations of the
limiting macroscopic system (1.13) under the weak relaxation regime. In periodic variables,
such a system is determined by the following coupled equations for (ρ, u, θ(t))

∂tρ+∇ · (ρu) = 0, (t, x) ∈ R+ × T,

u−
θ(t)

θ∞(t)
u∞(t) + θ(t)(∇W ∗ ρ) = φ ∗ (ρu)− (φ ∗ ρ)u, (t, x) ∈ R+ × T,

(5.22)

where θ(t) is defined by the solution of the relaxation ODE:

θ̇(t) =
1

θ(t)
−

1

θ∞(t)
, t ∈ R+.

We recover the same initial data (ρ̄0, ū0, ē0) in (5.17) for the background fluid (5.16) and ρ0

in (5.18) for the limiting system (5.22) like in Subsection 5.1. In addition, we set the choice
θ(0) = 5 of initial internal variable. We skip the discussion about numerical methods, as
we use similar schemes. In addition, since the dynamics of the background fluid is identical
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to the previous strong relaxation regime, we only focus on the dynamics of (ρ, u) and we
compare the new results with the strong relaxation regime in the previous Subsection 5.1.

(a) Profile of the density ρ.

(b) Profile of the velocity u.
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Figure 8. Profiles of the density ρ and u for weak relaxation regime.

In Figure 8, we present the profiles of the solution (ρ, u) of (5.22). We observe that the
velocity u is much larger than in the strong relaxation regime, and this is due to the higher
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Figure 9. Dynamics of the order parameter in the weak relaxation regime.
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Figure 10. Dynamics of θ(t) and θ∞(t).

initial value of the internal variable θ(t). Indeed, in Figure 10 we compare the dynamics of
θ(t) and θ∞(t), and the result shows that the internal variable θ(t) is initially higher than
θ∞(t) (due to the choice θ(0) = 5), and it relaxes toward θ∞(t) for larger time. The fact
that higher internal variable θ(t) implies higher velocity u can also be expected from the
velocity equation (5.22)2. Namely, when the internal variable θ(t) is larger than θ∞(t), then
the forcing term in the left-hand side of the implicit equation (5.22)2 is also larger, which
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leads to a larger value of the solution u. Consequently, the dynamics of density ρ is also
faster than in the strong relaxation regime, as shown in Figure 8(A) and (B). Of course,
when θ(0) is smaller than θ∞(0), then the situation is reversed, and the dynamics becomes
slower than in the strong relaxation regime.

Moreover, we present the asymptotic profile of (ρ, u) at time t = 20 in Figure 8(C).
We point out that, after sufficiently large time, say t ≈ 20, the solution of (5.22) in the
weak relaxation regime has almost the same shape as the solution of (5.22) in the strong
relaxation regime (see Figure 6(C)), up to a position shift arising from the initial difference
of velocities. Therefore, we conclude that although the initial speed of the dynamics depends
upon the initial value of the internal variable, the solution under the weak relaxation regime
eventually converges to the solution of the strong relaxation regime. We also quantify
aggregation by providing the dynamics of the order parameter R in Figure 9. Compared
to Figure 7, we observe that the order parameter saturates faster than in the case of the
strong relaxation regime, which also supports the fact that the weak relaxation regime leads
to faster aggregation when the initial value θ(0) of the internal variable is higher than the
background value θ∞(0). Finally, in Figure 8(D) we present again the magnified Figure
8(C) and we find that the asymptotic value of u over the support of ρ is also near u∞ = 0.5.

Appendix A. An extension of Riesz representation theorem

In this appendix, we recall some notation and basic concepts that are used systematically
regarding Banach-valued Lp-type spaces and their dual representability. Specifically, we
shall first the usual Lebesgue–Bochner spaces Lp(0, T ;X) for any Banach space X and we
recall the corresponding representability of their topological dual spaces Lp(0, T ;X)∗. This
is an intriguing problem usually characterized by the Radon–Nikodym property (RNP) of
the topological dual X∗, that is known to fulfill if X is reflexive or X∗ is separable. For X∗

verifying the RNP, we recall the classical Riesz representation theorem, stating that

Lp(0, T ;X)∗ ≡ Lp
′

(0, T ;X∗).

Unfortunately, if X∗ fails RNP, the preceding representation is not valid. For those cases,
we shall recall the Diculeanu-Foias theorem stating that

Lp(0, T ;X)∗ ≡ Lp
′

w (0, T ;X
∗),

where Lp
′

w (0, T ;X) is the weak-* Bochner-Lebesgue spaces.

Definition A.1 (Lebesgue–Bochner spaces [23]). Consider a Banach space X. We define

Lp(0, T ;X) := {f : [0, T ] −→ X : f is measurable and ‖f‖X ∈ Lp(0, T )} ,

for any 1 ≤ p ≤ ∞. So defined, Lp(0, T ;X) becomes a Banach with norm

‖f‖Lp(0,T ;X) = ‖‖f‖X‖Lp(0,T ).

As usual, we shall identify functions that agree almost everywhere in [0, T ] by taking the
quotient by the relation

f ∼ g ⇐⇒ f(t) = g(t) for almost every t ∈ [0, T ].

See [23] for further insight about measurability and weak measurability (c.f., Pettis’
measurability theorem) of Banach-valued functions.
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Theorem A.1 (Riesz representation [6, 23]). Let X be a Banach space, consider any
exponent 1 ≤ p <∞ and define the mapping

Φp : Lp
′

(0, T ;X∗) −→ Lp(0, T ;X)∗,
f 7−→ Φp[f ],

〈Φp[f ], g〉 :=

∫

[0,T ]
〈f(t), g(t)〉 dt,

for any g ∈ Lp(0, T ;X). Then Φp is a linear isometry. In addition, Φp is surjective if, and
only if, X∗ verifies RNP with respect to Lebesgue measure in [0, T ].

The typical criteria to test RNP are due to Philips, Dunford and Pettis and we summarize
them in the following result, see [23, Corollary III.2.13 and Theorem III.3.1].

Proposition A.1. Let X be a Banach space:

(1) (Philips) If X is reflexive, then X has the RNP.
(2) (Dunford-Pettis) If X = Y ∗ is a separable dual, then X has the RNP.

In this paper, we are interested in applying the preceding duality result to several situa-
tions in order to endow the corresponding Lebesgue-Bochner space with a weak-* topology
so that weak-* compactness can be derived from the Alaouglu-Bourbaki theorem. We illus-
trate the two typical examples:

(1) If X = Lq(Rd) with 1 < q <∞, then reflexivity guarantees

Lp
′

(0, T ;Lq
′

(Rd)) ≡ Lp(0, T ;Lq(Rd))∗,

for any 1 ≤ p <∞.
(2) If X = C0(R

d), then X∗ = M(Rd). Of course, reflexivity is not true, so that the
first criterion by Philips fails. Also, the map x ∈ R

d 7−→ δx ∈ M(Rd) embeds
R
d into M(Rd) as an uncountable and discrete subset. Therefore, M(Rd) is not

separable neither, so that Dunford-Pettis criterion fails too. Indeed, M(Rd) fails
RNP because L1(Rd) is a subspace failing RNP, see [8, Example 2.1.2].

For those cases, representation is achieved in terms of weak-* Lebesgue-Bochner spaces.

Definition A.2 (w∗ Lebesgue–Boschner spaces [26, 41, 42, 59]). Consider a Banach space
X. We will define

Lpw(0, T ;X
∗) :=

{
f : [0, T ] −→ X∗ :

〈f, x〉 ∈ Lp(0, T ) for all x ∈ X,
and sup

‖x‖X≤1
‖ 〈f, x〉 ‖Lp(0,T ) <∞,

}

for any 1 ≤ p ≤ ∞. So defined, Lpw(0, T ;X∗) becomes a Banach space with norm

‖f‖Lp
w(0,T ;X∗) = sup

‖x‖X≤1
‖ 〈f, x〉 ‖Lp(0,T ).

Again, we identify it with its quotient by another (different) relation

f ≈ g ⇐⇒ 〈f(t), x〉 = 〈g(t), x〉 a.e. t ∈ [0, T ], for any x ∈ X.

Notice that for ≈, the negligible subset of [0, T ] depends on x ∈ X, as opposed to ∼ in
Definition A.1.

The most delicate point of Definition A.2 in contrast with Definition A.1, is that functions
f ∈ Lpw(0, T ;X∗) are not necessarily measurable, but only weak-* measurable. In particular,
∼ and ≈ do not agree. However, they do agree if X is separable. If indeed X∗ (thus X)
is separable, measurability and weak-* separability agree and Lp(0, T ;X∗) = Lpw(0, T ;X∗).
We end this section by recalling the Dinculeanu-Foias theorem, see [41], [42, p. 95 and 99]
and also [59, Theorem 10.1.16], [26, Theorems 12.2.11 and 12.9.2].
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Theorem A.2 (Dinculeanu-Foias). Let X be a Banach space, set any exponent 1 ≤ p <∞
and define the mapping

Φ̃p : Lp
′

w (0, T ;X∗) −→ Lp(0, T ;X)∗,

f 7−→ Φ̃p[f ],

〈
Φ̃p[f ], g

〉
=

∫

[0,T ]
〈f(t), g(t)〉 dt,

for any g ∈ Lp(0, T ;X). Then, Φ̃p is a surjective isometry.

In particular, we conclude that Lp(0, T ;C0(R
d))∗ ≡ Lp

′

w (0, T ;M(Rd)), for any 1 ≤ p <∞.
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