Strongly zero product determined Banach algebras ${ }^{\text {~ }}$

J. Alaminos, J. Extremera, M.L.C. Godoy, A.R. Villena*
Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain

A R T I C L E I N F O

Article history:

Received 5 July 2021
Accepted 2 September 2021
Available online 6 September 2021
Submitted by P. Semrl

MSC:

primary $47 \mathrm{H} 60,42 \mathrm{~A} 20$, 47L10

Keywords:

Zero product determined Banach algebra
Group algebra
Algebra of approximable operators

Abstract

C^{*}-algebras, group algebras, and the algebra $\mathcal{A}(X)$ of approximable operators on a Banach space X having the bounded approximation property are known to be zero product determined. In this paper we give a quantitative estimate of this property by showing that, for the Banach algebra A, there exists a constant α with the property that for every continuous bilinear functional $\varphi: A \times A \rightarrow \mathbb{C}$ there exists a continuous linear functional ξ on A such that

$$
\sup _{\|a\|=\|b\|=1}|\varphi(a, b)-\xi(a b)| \leq \alpha \sup _{\substack{\|a\|=\|b\|=1, a b=0}}|\varphi(a, b)|
$$

in each of the following cases: (i) A is a C^{*}-algebra, in which case $\alpha=8$; (ii) $A=L^{1}(G)$ for a locally compact group G, in which case $\alpha=60 \sqrt{27} \frac{1+\sin \frac{\pi}{10}}{1-2 \sin \frac{\pi}{10}}$; (iii) $A=\mathcal{A}(X)$ for a Banach space X having property (\mathbb{A}) (which is a rather strong approximation property for X), in which case $\alpha=$

[^0]
$60 \sqrt{27} \frac{1+\sin \frac{\pi}{10}}{1-2 \sin \frac{\pi}{10}} C^{2}$, where C is a constant associated with the property (\mathbb{A}) that we require for X.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let A be a Banach algebra. Then $\pi: A \times A \rightarrow A$ denotes the product map, we write A^{*} for the dual of A, and $\mathcal{B}^{2}(A, \mathbb{C})$ for the space of continuous bilinear functionals on A.

The Banach algebra A is said to be zero product determined if every $\varphi \in \mathcal{B}^{2}(A, \mathbb{C})$ with the property

$$
\begin{equation*}
a, b \in A, a b=0 \Rightarrow \varphi(a, b)=0 \tag{1}
\end{equation*}
$$

belongs to the space

$$
\mathcal{B}_{\pi}^{2}(A, \mathbb{C})=\left\{\xi \circ \pi: \xi \in A^{*}\right\} .
$$

This concept implicitly appeared in [1] as an additional outcome of the so-called property \mathbb{B} which was introduced in that paper, and was the basis of subsequent Jordan and Lie versions (see [2-4]). For a comprehensive survey of the theory of the zero product determined Banach algebras we refer the reader to [10]. The algebra A is said to have property \mathbb{B} if every $\varphi \in \mathcal{B}^{2}(A, \mathbb{C})$ satisfying (1) belongs to the closed subspace $\mathcal{B}_{b}^{2}(A, \mathbb{C})$ of $\mathcal{B}^{2}(A, \mathbb{C})$ defined by

$$
\mathcal{B}_{b}^{2}(A, \mathbb{C})=\left\{\psi \in \mathcal{B}^{2}(A, \mathbb{C}): \psi(a b, c)=\psi(a, b c) \forall a, b, c \in A\right\} .
$$

In [1] it was shown that this class of Banach algebras is wide enough to include a number of examples of interest: C^{*}-algebras, the group algebra $L^{1}(G)$ of any locally compact group G, and the algebra $\mathcal{A}(X)$ of approximable operators on any Banach space X.

Throughout, we confine ourselves to Banach algebras having a bounded left approximate identity. Then $\mathcal{B}_{\pi}^{2}(A, \mathbb{C})=\mathcal{B}_{b}^{2}(A, \mathbb{C})$ (Proposition 2.1), and hence A is a zero product determined Banach algebra if and only if A has property \mathbb{B}. For example, this applies to C^{*}-algebras, group algebras and the algebra $\mathcal{A}(X)$ on any Banach space X having the bounded approximation property, so that all of them are zero product determined Banach algebras.

For each $\varphi \in \mathcal{B}^{2}(A, \mathbb{C})$, the distance from φ to $\mathcal{B}_{\pi}^{2}(A, \mathbb{C})$ is

$$
\operatorname{dist}\left(\varphi, \mathcal{B}_{\pi}^{2}(A, \mathbb{C})\right)=\inf \left\{\|\varphi-\psi\|: \psi \in \mathcal{B}_{\pi}^{2}(A, \mathbb{C})\right\}
$$

which can be easily estimated through the constant

$$
|\varphi|_{b}=\sup \{|\varphi(a b, c)-\varphi(a, b c)|: a, b, c \in A,\|a\|=\|b\|=\|c\|=1\}
$$

(Proposition 2.1 below). Our purpose is to estimate $\operatorname{dist}\left(\varphi, \mathcal{B}_{\pi}^{2}(A, \mathbb{C})\right)$ through the constant

$$
|\varphi|_{z p}=\sup \{|\varphi(a, b)|: a, b \in A,\|a\|=\|b\|=1, a b=0\}
$$

Note that A is zero product determined precisely when

$$
\begin{equation*}
\varphi \in \mathcal{B}^{2}(A, \mathbb{C}),|\varphi|_{z p}=0 \Rightarrow \varphi \in \mathcal{B}_{\pi}^{2}(A, \mathbb{C}) \tag{2}
\end{equation*}
$$

We call the Banach algebra A strongly zero product determined if condition (2) is strengthened by requiring that there is a distance estimate

$$
\begin{equation*}
\operatorname{dist}\left(\varphi, \mathcal{B}_{\pi}^{2}(A, \mathbb{C})\right) \leq \alpha|\varphi|_{z p} \quad \forall \varphi \in \mathcal{B}^{2}(A, \mathbb{C}) \tag{3}
\end{equation*}
$$

for some constant α; in this case, the optimal constant α for which (3) holds will be denoted by α_{A}. The inequality $|\varphi|_{z p} \leq \operatorname{dist}\left(\varphi, \mathcal{B}_{\pi}^{2}(A, \mathbb{C})\right)$ is always true (Proposition 2.1 below). We also note that A has property \mathbb{B} exactly in the case when

$$
\varphi \in \mathcal{B}^{2}(A, \mathbb{C}),|\varphi|_{z p}=0 \Rightarrow|\varphi|_{b}=0
$$

and the algebra A is said to have the strong property \mathbb{B} if there is an estimate

$$
\begin{equation*}
|\varphi|_{b} \leq \beta|\varphi|_{z p} \quad \forall \varphi \in \mathcal{B}^{2}(A, \mathbb{C}) \tag{4}
\end{equation*}
$$

for some constant β; in this case, the optimal constant β for which (4) holds will be denoted by β_{A}. The inequality $|\varphi|_{z p} \leq M|\varphi|_{b}$ is always true for some constant M (Proposition 2.1 below). The spirit of this concept first appeared in [6], and was subsequently formulated in [14] and refined in [15]. This property has proven to be useful to study the hyperreflexivity of the spaces of continuous derivations and, more generally, continuous cocycles on A (see [7,8,13-15]).

From [5, Corollary 1.3], we obtain the following result.
Theorem 1.1. Let A be a C^{*}-algebra. Then A is strongly zero product determined, has the strong property \mathbb{B}, and $\alpha_{A}, \beta_{A} \leq 8$.

It is shown in [15] that each group algebra has the strong property \mathbb{B} and so (by Corollary 2.2 below) it is also strongly zero product determined. In Theorem 3.3 we prove that, for each group G,

$$
\alpha_{L^{1}(G)} \leq \beta_{L^{1}(G)} \leq 60 \sqrt{27} \frac{1+\sin \frac{\pi}{10}}{1-2 \sin \frac{\pi}{10}}
$$

This gives a sharper estimate for the constant of the strong property \mathbb{B} of $L^{1}(G)$ to the one given in [15, Theorem 3.4]. The estimates given in Theorems 1.1 and 3.3 can be used to sharp the upper bound given in [15, Theorem 4.4] for the hyperreflexivity constant of $\mathcal{Z}^{n}(A, X)$, the space of continuous n-cocycles from A into X, where A is a C^{*}-algebra or the group algebra of a group with an open subgroup of polynomial growth and X is a Banach A-bimodule for which the $n^{\text {th }}$ Hochschild cohomology group $\mathcal{H}^{n+1}(A, X)$ is a Banach space.

Finally, in Theorem 4.1 we prove that the algebra $\mathcal{A}(X)$ is strongly zero product determined for each Banach space X having property (\mathbb{A}) (which is a rather strong approximation property for the space X). Further, we will use this result to show that the space $\mathcal{Z}^{n}\left(\mathcal{A}(X), Y^{*}\right)$ is hyperreflexive for each Banach $\mathcal{A}(X)$-bimodule Y.

There is no reason for an arbitrary zero product Banach algebra to be strongly zero product determined. However, as yet, we do not know an example of a zero product determined Banach algebra which is not strongly zero product determined.

Throughout, our reference for Banach algebras, and particularly for group algebras, is the monograph [11].

2. Elementary estimates

In the following result we gather together some estimates that relate the seminorms $\operatorname{dist}\left(\cdot, \mathcal{B}_{\pi}^{2}(A, \mathbb{C})\right),|\cdot|_{b}$, and $|\cdot|_{z p}$ on $\mathcal{B}_{\pi}^{2}(A, \mathbb{C})$ to each other.

Proposition 2.1. Let A be a Banach algebra with a left approximate identity of bound M. Then $\mathcal{B}_{\pi}^{2}(A, \mathbb{C})=\mathcal{B}_{b}^{2}(A, \mathbb{C})$ and, for each $\varphi \in \mathcal{B}^{2}(A, \mathbb{C})$, the following properties hold:
(i) The distance dist $\left(\varphi, \mathcal{B}_{\pi}^{2}(A, \mathbb{C})\right)$ is attained;
(ii) $\frac{1}{2}|\varphi|_{b} \leq \operatorname{dist}\left(\varphi, \mathcal{B}_{\pi}^{2}(A, \mathbb{C})\right) \leq M|\varphi|_{b}$;
(iii) $|\varphi|_{z p} \leq \operatorname{dist}\left(\varphi, \mathcal{B}_{\pi}^{2}(A, \mathbb{C})\right)$.

Proof. Let $\left(e_{\lambda}\right)_{\lambda \in \Lambda}$ be a left approximate identity of bound M.
(i) Let $\left(\xi_{n}\right)$ be a sequence in A^{*} such that

$$
\operatorname{dist}\left(\varphi, \mathcal{B}_{\pi}^{2}(A, \mathbb{C})\right)=\lim _{n \rightarrow \infty}\left\|\varphi-\xi_{n} \circ \pi\right\|
$$

For each $n \in \mathbb{N}$ and $a \in A$, we have

$$
\left|\xi_{n}\left(e_{\lambda} a\right)\right|=\left|\left(\xi_{n} \circ \pi\right)\left(e_{\lambda}, a\right)\right| \leq M\left\|\xi_{n} \circ \pi\right\|\|a\| \quad \forall \lambda \in \Lambda
$$

and hence, taking limit in the above inequality and using that $\lim _{\lambda \in \Lambda} e_{\lambda} a=a$, we see that $\left|\xi_{n}(a)\right| \leq M\left\|\xi_{n} \circ \pi\right\|\|a\|$, which shows that $\left\|\xi_{n}\right\| \leq M\left\|\xi_{n} \circ \pi\right\|$. Further, since

$$
\left\|\xi_{n} \circ \pi\right\| \leq\left\|\varphi-\xi_{n} \circ \pi\right\|+\|\varphi\| \quad \forall n \in \mathbb{N}
$$

it follows that the sequence $\left(\left\|\xi_{n}\right\|\right)$ is bounded. By the Banach-Alaoglu theorem, the sequence $\left(\xi_{n}\right)$ has a weak*-accumulation point, say ξ, in A^{*}. Let $\left(\xi_{\nu}\right)_{\nu \in N}$ be a subnet of $\left(\xi_{n}\right)$ such that $\mathrm{w}^{*}-\lim _{\nu \in N} \xi_{\nu}=\xi$. The task is now to show that

$$
\|\varphi-\xi \circ \pi\|=\operatorname{dist}\left(\varphi, \mathcal{B}_{\pi}^{2}(A, \mathbb{C})\right)
$$

For each $a, b \in A$ with $\|a\|=\|b\|=1$, we have

$$
\left|\varphi(a, b)-\xi_{\nu}(a b)\right| \leq\left\|\varphi-\xi_{\nu} \circ \pi\right\| \quad \forall \nu \in N,
$$

and so, taking limits on both sides of the above inequality and using that

$$
\lim _{\nu \in N} \xi_{\nu}(a b)=\xi(a b)
$$

and that $\left(\left\|\varphi-\xi_{\nu} \circ \pi\right\|\right)_{\nu \in N}$ is a subnet of the convergent sequence $\left(\left\|\varphi-\xi_{n} \circ \pi\right\|\right)$, we obtain

$$
|\varphi(a, b)-\xi(a b)| \leq \operatorname{dist}\left(\varphi, \mathcal{B}_{\pi}^{2}(A, \mathbb{C})\right)
$$

This implies that $\|\varphi-\xi \circ \pi\| \leq \operatorname{dist}\left(\varphi, \mathcal{B}_{\pi}^{2}(A, \mathbb{C})\right)$, and the converse inequality dist $\left(\varphi, \mathcal{B}_{\pi}^{2}(A, \mathbb{C})\right) \leq\|\varphi-\xi \circ \pi\|$ trivially holds.
(ii) For each $\lambda \in \Lambda$ define $\xi_{\lambda} \in A^{*}$ by

$$
\xi_{\lambda}(a)=\varphi\left(e_{\lambda}, a\right) \quad \forall a \in A
$$

Then $\left\|\xi_{\lambda}\right\| \leq M\|\varphi\|$ for each $\lambda \in \Lambda$, so that $\left(\xi_{\lambda}\right)_{\lambda \in \Lambda}$ is a bounded net in A^{*} and hence the Banach-Alaoglu theorem shows that it has a weak*-accumulation point, say ξ, in A^{*}. Let $\left(\xi_{\nu}\right)_{\nu \in N}$ be a subnet of $\left(\xi_{\lambda}\right)_{\lambda \in \Lambda}$ such that $\mathrm{w}^{*}-\lim _{\nu \in N} \xi_{\nu}=\xi$. For each $a, b \in A$ with $\|a\|=\|b\|=1$, we have

$$
\left|\varphi\left(e_{\nu} a, b\right)-\varphi\left(e_{\nu}, a b\right)\right| \leq M|\varphi|_{b} \quad \forall \nu \in N
$$

and hence, taking limit and using that $\left(e_{\nu} a\right)_{\nu \in N}$ is a subnet of the convergent net $\left(e_{\lambda} a\right)_{\lambda \in \Lambda}$ and that $\lim _{\nu \in N} \varphi\left(e_{\lambda}, a b\right)=\xi(a b)$, we see that

$$
|\varphi(a, b)-\xi(a b)| \leq M|\varphi|_{b}
$$

This gives $\|\varphi-\xi \circ \pi\| \leq M|\varphi|_{b}$, whence

$$
\operatorname{dist}\left(\varphi, \mathcal{B}_{\pi}^{2}(A, \mathbb{C})\right) \leq M|\varphi|_{b}
$$

Set $\xi \in A^{*}$. For each $a, b, c \in A$ with $\|a\|=\|b\|=\|c\|=1$, we have

$$
\begin{aligned}
|\varphi(a b, c)-\varphi(a, b c)| & =|\varphi(a b, c)-(\xi \circ \pi)(a b, c)+(\xi \circ \pi)(a, b c)-\varphi(a, b c)| \\
& \leq|\varphi(a b, c)-(\xi \circ \pi)(a b, c)|+|(\xi \circ \pi)(a, b c)-\varphi(a, b c)| \\
& \leq\|\varphi-\xi \circ \pi\|\|a b\|\|c\|+\|\varphi-\xi \circ \pi\|\|a\|\|b c\| \\
& \leq 2\|\varphi-\xi \circ \pi\|
\end{aligned}
$$

and therefore $|\varphi|_{b} \leq 2\|\varphi-\xi \circ \pi\|$. Since this inequality holds for each $\xi \in A^{*}$, it follows that

$$
|\varphi|_{b} \leq 2 \operatorname{dist}\left(\varphi, \mathcal{B}_{\pi}^{2}(A, \mathbb{C})\right)
$$

(iii) Let $a, b \in A$ with $\|a\|=\|b\|=1$ and $a b=0$. For each $\xi \in A^{*}$, we see that

$$
|\varphi(a, b)|=|\varphi(a, b)-(\xi \circ \pi)(a, b)| \leq\|\varphi-\xi \circ \pi\|,
$$

and consequently $|\varphi|_{z p} \leq\|\varphi-\xi \circ \pi\|$. Since the above inequality holds for each $\xi \in A^{*}$, we conclude that

$$
|\varphi|_{z p} \leq \operatorname{dist}\left(\varphi, \mathcal{B}_{\pi}^{2}(A, \mathbb{C})\right)
$$

Finally, it is clear that $\mathcal{B}_{\pi}^{2}(A, \mathbb{C}) \subset \mathcal{B}_{b}^{2}(A, \mathbb{C})$. To prove the reverse inclusion take $\varphi \in \mathcal{B}_{b}^{2}(A, \mathbb{C})$. Then $|\varphi|_{b}=0$, hence (ii) shows that dist $\left(\varphi, \mathcal{B}_{\pi}^{2}(A, \mathbb{C})\right)=0$, and (i) gives $\psi \in \mathcal{B}_{\pi}^{2}(A, \mathbb{C})$ such that $\|\varphi-\psi\|=0$, which implies that $\varphi=\psi \in \mathcal{B}_{\pi}^{2}(A, \mathbb{C})$.

The following result is an immediate consequence of assertion (ii) in Proposition 2.1.
Corollary 2.2. Let A be a Banach algebra with a left approximate identity of bound M. Then A is a strongly zero product determined Banach algebra if and only if has the strong property \mathbb{B}, in which case

$$
\frac{1}{2} \beta_{A} \leq \alpha_{A} \leq M \beta_{A}
$$

Let X and Y be Banach spaces, and let $n \in \mathbb{N}$. We write $\mathcal{B}^{n}(X, Y)$ for the Banach space of all continuous n-linear maps from $X \times \cdots \stackrel{n}{\cdots} \times X$ to Y. As usual, we abbreviate $\mathcal{B}^{1}(X, Y)$ to $\mathcal{B}(X, Y), \mathcal{B}(X, X)$ to $\mathcal{B}(X)$, and $\mathcal{B}(X, \mathbb{C})$ to X^{*}. The identity operator on X is denoted by I_{X}. Further, we write $\langle\cdot, \cdot\rangle$ for the duality between X and X^{*}. For each subspace E of X, E^{\perp} denotes the annihilator of E in X^{*}.

For a Banach algebra A and a Banach space X, and for each $\varphi \in \mathcal{B}^{2}(A, X)$, we continue to use the notations

$$
\begin{gathered}
|\varphi|_{b}=\sup \{|\varphi(a b, c)-\varphi(a, b c)|: a, b, c \in A,\|a\|=\|b\|=\|c\|=1\}, \\
|\varphi|_{z p}=\sup \{|\varphi(a, b)|: a, b \in A,\|a\|=\|b\|=1, a b=0\}
\end{gathered}
$$

Proposition 2.3. Let A be a Banach algebra with a left approximate identity of bound M and having the strong property \mathbb{B}. Let X be a Banach space, and let $\varphi \in \mathcal{B}^{2}(A, X)$. Then the following properties hold:
(i) $|\varphi|_{b} \leq \beta_{A}|\varphi|_{z p}$;
(ii) If X is a dual Banach space, then there exists $\Phi \in \mathcal{B}(A, X)$ such that $\|\varphi-\Phi \circ \pi\| \leq$ $M \beta_{A}$.

Proof. (i) For each $\xi \in X^{*}$, we have

$$
|\xi \circ \varphi|_{b} \leq \beta_{A}|\xi \circ \varphi|_{z p}
$$

It follows from the Hahn-Banach theorem that

$$
\begin{aligned}
|\varphi|_{b} & =\sup \left\{|\xi \circ \varphi|_{b}: \xi \in X^{*},\|\xi\|=1\right\} \\
|\varphi|_{z p} & =\sup \left\{|\xi \circ \varphi|_{z p}: \xi \in X^{*},\|\xi\|=1\right\}
\end{aligned}
$$

In this way we obtain (i).
(ii) Suppose that X is the dual of a Banach space X_{*}. Let $\left(e_{\lambda}\right)_{\lambda \in \Lambda}$ be a left approximate identity for A of bound M, and define a net $\left(\Phi_{\lambda}\right)_{\lambda \in \Lambda}$ in $\mathcal{B}(A, X)$ by setting

$$
\Phi_{\lambda}(a)=\varphi\left(e_{\lambda}, a\right) \quad \forall a \in A, \forall \lambda \in \Lambda .
$$

Since each bounded subset of $\mathcal{B}(A, X)$ is relatively compact with respect to the weak* operator topology on $\mathcal{B}(A, X)$ and the net $\left(\Phi_{\lambda}\right)_{\lambda \in \Lambda}$ is bounded, it follows that there exist $\Phi \in \mathcal{B}(A, X)$ and a subnet $\left(\Phi_{\nu}\right)_{\nu \in N}$ of $\left(\Phi_{\lambda}\right)_{\lambda \in \Lambda}$ such that wo ${ }^{*}-\lim _{\nu \in N} \Phi_{\nu}=\Phi$. For each $a, b \in A$ with $\|a\|=\|b\|=1$, and $x_{*} \in X_{*}$ with $\left\|x_{*}\right\|=1$, we have

$$
\left|\left\langle x_{*}, \varphi\left(e_{\nu} a, b\right)\right\rangle-\left\langle x_{*}, \varphi\left(e_{\nu}, a b\right)\right\rangle\right| \leq\left\|\varphi\left(e_{\nu} a, b\right)-\varphi\left(e_{\nu}, a b\right)\right\| \leq M \beta_{A} \quad \forall \nu \in N
$$

and hence, taking limit and using that $\left(e_{\nu} a\right)_{\nu \in N}$ is a subnet of the net $\left(e_{\lambda} a\right)_{\lambda \in \Lambda}$ (which converges to a with respect to the norm topology) and that $\lim _{\nu \in N}\left\langle x_{*}, \varphi\left(e_{\nu}, a b\right)\right\rangle=$ $\left\langle x_{*}, \Phi(a b)\right\rangle$ (by definition of Φ), we see that

$$
\left|\left\langle x_{*}, \varphi(a, b)-\Phi(a b)\right\rangle\right|=M \beta_{A} .
$$

This gives $\|\varphi-\Phi \circ \pi\| \leq M \beta_{A}$.

3. Group algebras

In this section we prove that the group algebra $L^{1}(G)$ of each locally compact group G is a strongly zero product determined Banach algebra and we provide an estimate of the constants $\alpha_{L^{1}(G)}$ and $\beta_{L^{1}(G)}$. Our estimate of $\beta_{L^{1}(G)}$ improves the one given in [15].

For the basic properties of this important class of Banach algebras we refer the reader to [11, Section 3.3].

Throughout this section, \mathbb{T} denotes the circle group, and we consider the normalized Haar measure on \mathbb{T}. We write $A(\mathbb{T})$ and $A\left(\mathbb{T}^{2}\right)$ for the Fourier algebras of \mathbb{T} and \mathbb{T}^{2}, respectively. For each $f \in A(\mathbb{T}), F \in A\left(\mathbb{T}^{2}\right)$, and $j, k \in \mathbb{Z}$, we write $\widehat{f}(j)$ and $\widehat{F}(j, k)$ for the Fourier coefficients of f and F, respectively. Let $\mathbf{1}, \zeta \in A(\mathbb{T})$ denote the functions defined by

$$
\mathbf{1}(z)=1, \quad \zeta(z)=z \quad \forall z \in \mathbb{T}
$$

Let $\Delta: A\left(\mathbb{T}^{2}\right) \rightarrow A(\mathbb{T})$ be the bounded linear map defined by

$$
\Delta(F)(z)=F(z, z) \quad \forall z \in \mathbb{T}, \forall F \in A\left(\mathbb{T}^{2}\right)
$$

For $f, g \in A(\mathbb{T})$, let $f \otimes g: \mathbb{T}^{2} \rightarrow \mathbb{C}$ denote the function defined by

$$
(f \otimes g)(z, w)=f(z) g(w) \quad \forall z, w \in \mathbb{T}
$$

which is an element of $A\left(\mathbb{T}^{2}\right)$ with $\|f \otimes g\|=\|f\|\|g\|$.
Lemma 3.1. Let $\Phi: A\left(\mathbb{T}^{2}\right) \rightarrow \mathbb{C}$ be a continuous linear functional, and let the constant $\varepsilon \geq 0$ be such that

$$
f, g \in A(\mathbb{T}), f g=0 \Rightarrow|\Phi(f \otimes g)| \leq \varepsilon\|f\|\|g\|
$$

Then

$$
|\Phi(\zeta \otimes 1-\mathbf{1} \otimes \zeta)| \leq\left\|\left.\Phi\right|_{\text {ker } \Delta}\right\| 2 \sin \frac{\pi}{10}+60 \sqrt{27}\left(1+\sin \frac{\pi}{10}\right) \varepsilon
$$

Proof. Set

$$
\begin{aligned}
E & =\left\{e^{\theta i}:-\frac{1}{5} \pi \leq \theta \leq \frac{1}{5} \pi\right\} \\
W & =\left\{(z, w) \in \mathbb{T}^{2}: z w^{-1} \in E\right\}
\end{aligned}
$$

and let $F \in A\left(\mathbb{T}^{2}\right)$ be such that

$$
\begin{equation*}
F(z, w)=0 \quad \forall(z, w) \in W \tag{5}
\end{equation*}
$$

Our objective is to prove that

$$
\begin{equation*}
|\Phi(F)| \leq 30 \sqrt{27}\|F\| \varepsilon \tag{6}
\end{equation*}
$$

For this purpose, we take

$$
\begin{aligned}
a & =e^{\frac{1}{15} \pi i} \\
A & =\left\{e^{\theta i}: 0<\theta \leq \frac{1}{15} \pi\right\} \\
B & =\left\{e^{\theta i}: \frac{2}{15} \pi<\theta \leq \frac{29}{15} \pi\right\} \\
U & =\left\{e^{\theta i}:-\frac{1}{30} \pi<\theta<\frac{1}{30} \pi\right\},
\end{aligned}
$$

and we define functions $\omega, v \in A(\mathbb{T})$ by

$$
\omega=30 \chi_{A} * \chi_{U}, \quad v=30 \chi_{B} * \chi_{U}
$$

We note that

$$
\begin{aligned}
& \{z \in \mathbb{T}: \omega(z) \neq 0\}=A U=\left\{e^{\theta i}:-\frac{1}{30} \pi<\theta<\frac{1}{10} \pi\right\} \\
& \{z \in \mathbb{T}: v(z) \neq 0\}=B U=\left\{e^{\theta i}: \frac{1}{10} \pi<\theta<\frac{59}{30} \pi\right\}
\end{aligned}
$$

and, with $\|\cdot\|_{2}$ denoting the norm of $L^{2}(\mathbb{T})$,

$$
\begin{aligned}
& \|\omega\| \leq 30\left\|\chi_{A}\right\|_{2}\left\|\chi_{U}\right\|_{2}=30 \frac{1}{\sqrt{30}} \frac{1}{\sqrt{30}}=1 \\
& \|v\| \leq 30\left\|\chi_{B}\right\|_{2}\left\|\chi_{U}\right\|_{2}=30 \frac{\sqrt{27}}{\sqrt{30}} \frac{1}{\sqrt{30}}=\sqrt{27}
\end{aligned}
$$

Since

$$
\bigcup_{k=0}^{29} a^{k} A=\mathbb{T}, \quad \bigcup_{k=2}^{28} a^{k} A=B
$$

it follows that

$$
\sum_{k=0}^{29} \delta_{a^{k}} * \chi_{A}=\sum_{k=0}^{29} \chi_{a^{k} A}=1, \quad \sum_{k=2}^{28} \delta_{a^{k}} * \chi_{A}=\sum_{k=2}^{28} \chi_{a^{k} A}=\chi_{B}
$$

and thus, for each $j \in \mathbb{Z}$, we have

$$
\begin{align*}
& \sum_{k=j}^{j+29} \delta_{a^{k}} * \omega=30 \delta_{a^{j}} * \sum_{k=0}^{29} \delta_{a^{k}} * \chi_{A} * \chi_{U}=30 \delta_{a^{j}} * \mathbf{1} * \chi_{U}=\mathbf{1} \tag{7}\\
& \sum_{k=j+2}^{j+28} \delta_{a^{k}} * \omega=30 \delta_{a^{j}} * \sum_{k=2}^{28} \delta_{a^{k}} * \chi_{A} * \chi_{U}=30 \delta_{a^{j}} * \chi_{B} * \chi_{U}=\delta_{a^{j}} * v \tag{8}
\end{align*}
$$

If $j \in \mathbb{Z}, k \in\{j-1, j, j+1\}$, and $z, w \in \mathbb{T}$ are such that $\left(\delta_{a^{j}} * \omega\right)(z)\left(\delta_{a^{k}} * \omega\right)(w) \neq 0$, then

$$
z w^{-1} \in a^{j} A U\left(a^{k} A U\right)^{-1} \subset a^{j-k}\left\{e^{\theta i}:-\frac{2}{15} \pi<\theta<\frac{2}{15} \pi\right\} \subset E,
$$

whence $\left\{(z, w) \in \mathbb{T}^{2}:\left(\delta_{a^{j}} * \omega\right) \otimes\left(\delta_{a^{k}} * \omega\right)(z, w) \neq 0\right\} \subset W$ and (5) gives

$$
\begin{equation*}
F\left(\delta_{a^{j}} * \omega\right) \otimes\left(\delta_{a^{k}} * \omega\right)=0 \tag{9}
\end{equation*}
$$

Since $A U \cap B U=\varnothing$, it follows that $\omega v=0$, and therefore

$$
\begin{equation*}
\left(\delta_{a^{k}} * \omega\right)\left(\delta_{a^{k}} * v\right)=0 \quad \forall k \in \mathbb{Z} \tag{10}
\end{equation*}
$$

From (7), (8), and (9) we deduce that

$$
\begin{aligned}
F & =F \sum_{j=0}^{29} \sum_{k=j-1}^{j+28}\left(\delta_{a^{j}} * \omega\right) \otimes\left(\delta_{a^{k}} * \omega\right) \\
& =\sum_{j=0}^{29} \sum_{k=j-1}^{j+1} F\left(\delta_{a^{j}} * \omega\right) \otimes\left(\delta_{a^{k}} * \omega\right)+\sum_{j=0}^{29} \sum_{k=j+2}^{j+28} F\left(\delta_{a^{j}} * \omega\right) \otimes\left(\delta_{a^{k}} * \omega\right) \\
& =\sum_{j=0}^{29} \sum_{k=j+2}^{j+28} F\left(\delta_{a^{j}} * \omega\right) \otimes\left(\delta_{a^{k}} * \omega\right)=\sum_{j=0}^{29} F\left(\delta_{a^{j}} * \omega\right) \otimes\left(\delta_{a^{j}} * v\right) .
\end{aligned}
$$

As

$$
F=\sum_{j, k=-\infty}^{\infty} \widehat{F}(j, k) \zeta^{j} \otimes \zeta^{k}
$$

we have

$$
F=\sum_{j, k=-\infty}^{\infty} \sum_{l=0}^{29} \widehat{F}(j, k)\left(\zeta^{j}\left(\delta_{a^{l}} * \omega\right)\right) \otimes\left(\zeta^{k}\left(\delta_{a^{l}} * v\right)\right)
$$

so that

$$
\Phi(F)=\sum_{j, k=-\infty}^{\infty} \sum_{l=0}^{29} \widehat{F}(j, k) \Phi\left(\left(\zeta^{j}\left(\delta_{a^{l}} * \omega\right)\right) \otimes\left(\zeta^{k}\left(\delta_{a^{l}} * v\right)\right)\right)
$$

By (10), for each $j, k, l \in \mathbb{Z}$,

$$
\left(\zeta^{j}\left(\delta_{a^{l}} * \omega\right)\right)\left(\zeta^{k}\left(\delta_{a^{l}} * v\right)\right)=0
$$

and therefore

$$
\begin{aligned}
\left|\Phi\left(\left(\zeta^{j}\left(\delta_{a^{l}} * \omega\right)\right) \otimes\left(\zeta^{k}\left(\delta_{a^{l}} * v\right)\right)\right)\right| & \leq \varepsilon\left\|\zeta^{j}\left(\delta_{a^{l}} * \omega\right)\right\|\left\|\zeta^{k}\left(\delta_{a^{l}} * v\right)\right\| \\
& =\varepsilon\|\omega\|\|v\| \leq \sqrt{27} \varepsilon .
\end{aligned}
$$

We thus get

$$
\begin{aligned}
|\Phi(F)| & =\sum_{j, k=-\infty}^{\infty} \sum_{l=0}^{29}|\widehat{F}(j, k)|\left|\Phi\left(\left(\zeta^{j}\left(\delta_{a^{l}} * \omega\right)\right) \otimes\left(\zeta^{k}\left(\delta_{a^{l}} * v\right)\right)\right)\right| \\
& \leq \sum_{j, k=-\infty}^{\infty} \sum_{l=0}^{29}|\widehat{F}(j, k)| \sqrt{27} \varepsilon=30 \sqrt{27}\|F\| \varepsilon
\end{aligned}
$$

and (6) is proved.
Let $f \in A(\mathbb{T})$ be such that $f(z)=0$ for each $z \in E$, and define the function $F: \mathbb{T}^{2} \rightarrow$ \mathbb{C} by

$$
F(z, w)=f\left(z w^{-1}\right) w=\sum_{k=-\infty}^{\infty} \widehat{f}(k) z^{k} w^{-k+1} \quad \forall z, w \in \mathbb{T} .
$$

Then $F \in A\left(\mathbb{T}^{2}\right),\|F\|=\|f\|, \zeta \otimes \mathbf{1}-\mathbf{1} \otimes \zeta-F \in \operatorname{ker} \Delta$, and

$$
(\zeta \otimes \mathbf{1}-\mathbf{1} \otimes \zeta-F)(z, w)=(1-\widehat{f}(1)) z+(-1-\widehat{f}(0)) w-\sum_{k \neq 0,1} \widehat{f}(k) z^{k} w^{-k+1}
$$

which certainly implies that

$$
\|\zeta \otimes \mathbf{1}-\mathbf{1} \otimes \zeta-F\|=|1-\widehat{f}(1)|+|-1-\widehat{f}(0)|+\sum_{k \neq 0,1}|\widehat{f}(k)|=\|\zeta-\mathbf{1}-f\|
$$

According to (6), we have

$$
\begin{aligned}
|\Phi(\zeta \otimes \mathbf{1}-\mathbf{1} \otimes \zeta)| & \leq|\Phi(\zeta \otimes \mathbf{1}-\mathbf{1} \otimes \zeta-F)|+|\Phi(F)| \\
& \leq\left\|\left.\Phi\right|_{\operatorname{ker} \Delta}\right\|\|\zeta \otimes \mathbf{1}-\mathbf{1} \otimes \zeta-F\|+30 \sqrt{27}\|F\| \varepsilon \\
& =\left\|\left.\Phi\right|_{\text {ker } \Delta}\right\|\|\zeta-\mathbf{1}-f\|+30 \sqrt{27}\|f\| \varepsilon \\
& \leq\left\|\left.\Phi\right|_{\text {ker } \Delta}\right\|\|\zeta-\mathbf{1}-f\|+30 \sqrt{27}(\|\zeta-\mathbf{1}-f\|+2) \varepsilon
\end{aligned}
$$

(as $\|f\| \leq\|\zeta-\mathbf{1}-f\|+\|\zeta-\mathbf{1}\|$). Further, this inequality holds for each function from the set \mathcal{I} consisting of all functions $f \in A(\mathbb{T})$ such that $f(z)=0$ for each $z \in E$. Consequently,

$$
|\Phi(\zeta \otimes \mathbf{1}-\mathbf{1} \otimes \zeta)| \leq\left\|\left.\Phi\right|_{\operatorname{ker} \Delta}\right\| \operatorname{dist}(\zeta-\mathbf{1}, \mathcal{I})+30 \sqrt{27}(\operatorname{dist}(\zeta-\mathbf{1}, \mathcal{I})+2) \varepsilon
$$

On the other hand, it is shown at the beginning of the proof of [9, Corollary 3.3] that

$$
\operatorname{dist}(\zeta-\mathbf{1}, \mathcal{I}) \leq 2 \sin \frac{\pi}{10}
$$

and we thus get

$$
|\Phi(\zeta \otimes \mathbf{1}-\mathbf{1} \otimes \zeta)| \leq\left\|\left.\Phi\right|_{\operatorname{ker} \Delta}\right\| 2 \sin \frac{\pi}{10}+30 \sqrt{27}\left(2 \sin \frac{\pi}{10}+2\right) \varepsilon
$$

which completes the proof.

Lemma 3.2. Let $\Phi: A\left(\mathbb{T}^{2}\right) \rightarrow \mathbb{C}$ be a continuous linear functional, and let the constant $\varepsilon \geq 0$ be such that

$$
f, g \in A(\mathbb{T}), f g=0 \Rightarrow|\Phi(f \otimes g)| \leq \varepsilon\|f\|\|g\|
$$

Then

$$
|\Phi(F-\mathbf{1} \otimes \Delta F)| \leq 60 \sqrt{27} \frac{1+\sin \frac{\pi}{10}}{1-2 \sin \frac{\pi}{10}} \varepsilon\|F\|
$$

for each $F \in A\left(\mathbb{T}^{2}\right)$.
Proof. Fix $j, k \in \mathbb{Z}$. We claim that

$$
\begin{equation*}
\left|\Phi\left(\zeta^{j} \otimes \zeta^{k}-\mathbf{1} \otimes \zeta^{j+k}\right)\right| \leq\left\|\left.\Phi\right|_{\operatorname{ker} \Delta}\right\| 2 \sin \frac{\pi}{10}+60 \sqrt{27}\left(1+\sin \frac{\pi}{10}\right) \varepsilon \tag{11}
\end{equation*}
$$

Of course, we are reduced to proving (11) for $j \neq 0$. We define $d_{j}: A(\mathbb{T}) \rightarrow A(\mathbb{T})$, and $D_{j}, L_{k}: A\left(\mathbb{T}^{2}\right) \rightarrow A\left(\mathbb{T}^{2}\right)$ by

$$
d_{j} f(z)=f\left(z^{j}\right) \quad \forall f \in A(\mathbb{T}), \forall z \in \mathbb{T}
$$

and

$$
D_{j} F(z, w)=F\left(z^{j}, w^{j}\right), \quad L_{k} F(z, w)=F(z, w) w^{k} \quad \forall F \in A\left(\mathbb{T}^{2}\right), \forall z, w \in \mathbb{T}
$$

respectively. Further, we consider the continuous linear functional $\Phi \circ L_{k} \circ D_{j}$. If $f, g \in$ $A(\mathbb{T})$ are such that $f g=0$, then $\left(d_{j} f\right)\left(\zeta^{k} d_{j} g\right)=\zeta^{k} d_{j}(f g)=0$, and so, by hypothesis,

$$
\left|\Phi \circ L_{k} \circ D_{j}(f \otimes g)\right|=\left|\Phi\left(d_{j} f \otimes \zeta^{k} d_{j} g\right)\right| \leq \varepsilon\left\|d_{j} f\right\|\left\|\zeta^{k} d_{j} g\right\|=\varepsilon\|f\|\|g\| .
$$

By applying Lemma 3.1, we obtain

$$
\begin{aligned}
\left|\Phi\left(\zeta^{j} \otimes \zeta^{k}-\mathbf{1} \otimes \zeta^{j+k}\right)\right| & =\left|\Phi \circ L_{k} \circ D_{j}(\zeta \otimes \mathbf{1}-\mathbf{1} \otimes \zeta)\right| \\
& \leq \|\left.\Phi \circ L_{k} \circ D_{j}\right|_{\operatorname{ker} \Delta} \Delta \left\lvert\, 2 \sin \frac{\pi}{10}+60 \sqrt{27}\left(1+\sin \frac{\pi}{10}\right) \varepsilon\right.
\end{aligned}
$$

We check at once that $\left(L_{k} \circ D_{j}\right)(\operatorname{ker} \Delta) \subset \operatorname{ker} \Delta$, which gives

$$
\left\|\left.\Phi \circ L_{k} \circ D_{j}\right|_{\text {ker } \Delta}\right\| \leq\left\|\left.\Phi\right|_{\text {ker } \Delta}\right\|,
$$

and therefore (11) is proved.
Take $F \in A\left(\mathbb{T}^{2}\right)$. Then

$$
F=\sum_{j, k=-\infty}^{\infty} \widehat{F}(j, k) \zeta^{j} \otimes \zeta^{k}
$$

and

$$
\Delta F=\sum_{j, k=-\infty}^{\infty} \widehat{F}(j, k) \zeta^{j+k}
$$

Consequently,

$$
\Phi(F-\mathbf{1} \otimes \Delta F)=\sum_{j, k=-\infty}^{\infty} \widehat{F}(j, k) \Phi\left(\zeta^{j} \otimes \zeta^{k}-\mathbf{1} \otimes \zeta^{j+k}\right)
$$

and (11) gives

$$
\begin{align*}
|\Phi(F-\mathbf{1} \otimes \Delta F)| & \leq \sum_{j, k=-\infty}^{\infty}|\widehat{F}(j, k)|\left|\Phi\left(\zeta^{j} \otimes \zeta^{k}-\mathbf{1} \otimes \zeta^{j+k}\right)\right| \\
& \leq \sum_{j, k=-\infty}^{\infty}|\widehat{F}(j, k)|\left[\left\|\left.\Phi\right|_{\text {ker } \Delta}\right\| 2 \sin \frac{\pi}{10}+60 \sqrt{27}\left(1+\sin \frac{\pi}{10}\right) \varepsilon\right] \tag{12}\\
& =\|F\|\left[\left\|\left.\Phi\right|_{\text {ker } \Delta}\right\| 2 \sin \frac{\pi}{10}+60 \sqrt{27}\left(1+\sin \frac{\pi}{10}\right) \varepsilon\right]
\end{align*}
$$

In particular, for each $F \in \operatorname{ker} \Delta$, we have

$$
\|\Phi(F)\| \leq\|F\|\left[\left\|\left.\Phi\right|_{\operatorname{ker} \Delta}\right\| 2 \sin \frac{\pi}{10}+60 \sqrt{27}\left(1+\sin \frac{\pi}{10}\right) \varepsilon\right]
$$

Thus

$$
\left\|\left.\Phi\right|_{\text {ker } \Delta}\right\| \leq\left\|\left.\Phi\right|_{\text {ker } \Delta}\right\| 2 \sin \frac{\pi}{10}+60 \sqrt{27}\left(1+\sin \frac{\pi}{10}\right) \varepsilon
$$

so that

$$
\left\|\left.\Phi\right|_{\text {ker } \Delta}\right\| \leq 60 \sqrt{27} \frac{1+\sin \frac{\pi}{10}}{1-2 \sin \frac{\pi}{10}} \varepsilon
$$

Using this estimate in (12), we obtain

$$
\begin{aligned}
|\Phi(F-\mathbf{1} \otimes \Delta F)| & \leq\|F\|\left[60 \sqrt{27} \frac{1+\sin \frac{\pi}{10}}{1-2 \sin \frac{\pi}{10}} \varepsilon 2 \sin \frac{\pi}{10}+60 \sqrt{27}\left(1+\sin \frac{\pi}{10}\right) \varepsilon\right] \\
& =\|F\| 60 \sqrt{27} \frac{1+\sin \frac{\pi}{10}}{1-2 \sin \frac{\pi}{10}} \varepsilon
\end{aligned}
$$

for each $F \in A\left(\mathbb{T}^{2}\right)$, which completes the proof.
Theorem 3.3. Let G be a locally compact group. Then the Banach algebra $L^{1}(G)$ is strongly zero product determined and

$$
\alpha_{L^{1}(G)} \leq \beta_{L^{1}(G)} \leq 60 \sqrt{27} \frac{1+\sin \frac{\pi}{10}}{1-2 \sin \frac{\pi}{10}}
$$

Proof. On account of Corollary 2.2, it suffices to prove that $L^{1}(G)$ has the strong property \mathbb{B} with

$$
\begin{equation*}
\beta_{L^{1}(G)} \leq 60 \sqrt{27} \frac{1+\sin \frac{\pi}{10}}{1-2 \sin \frac{\pi}{10}} \tag{13}
\end{equation*}
$$

because $L^{1}(G)$ has an approximate identity of bound 1. For this purpose set $\varphi \in$ $\mathcal{B}^{2}\left(L^{1}(G), \mathbb{C}\right)$.

Let $t \in G$, and let δ_{t} be the point mass measure at t on G. We define a contractive homomorphism $T: A(\mathbb{T}) \rightarrow M(G)$ by

$$
T(u)=\sum_{k=-\infty}^{\infty} \widehat{u}(k) \delta_{t^{k}} \quad \forall u \in A(\mathbb{T})
$$

Take $f, h \in L^{1}(G)$ with $\|f\|=\|h\|=1$, and define a continuous linear functional $\Phi: A\left(\mathbb{T}^{2}\right) \rightarrow \mathbb{C}$ by

$$
\Phi(F)=\sum_{(j, k) \in \mathbb{Z}^{2}} \widehat{F}(j, k) \varphi\left(f * \delta_{t^{j}}, \delta_{t^{k}} * h\right) \quad \forall F \in A\left(\mathbb{T}^{2}\right) .
$$

Further, if $u, v \in A(\mathbb{T})$, then

$$
\Phi(u \otimes v)=\sum_{(j, k) \in \mathbb{Z}^{2}} \widehat{u}(j) \widehat{v}(k) \varphi\left(f * \delta_{t^{j}}, \delta_{t^{k}} * h\right)=\varphi(f * T(u), T(v) * h) ;
$$

in particular, if $u v=0$, then $(f * T(u)) *(T(v) * h)=f * T(u v) * h=0$, and so

$$
\begin{aligned}
|\Phi(u \otimes v)| & =|\varphi(f * T(u), T(v) * h)| \leq|\varphi|_{z p}\|f * T(u)\|\|T(v) * h\| \\
& \leq|\varphi|_{z p}\|u\|\|v\| .
\end{aligned}
$$

By applying Lemma 3.2 with $F=\zeta \otimes \mathbf{1}$, we see that

$$
\left|\varphi\left(f * \delta_{t}, h\right)-\varphi\left(f, \delta_{t} * h\right)\right|=|\Phi(\zeta \otimes \mathbf{1}-\mathbf{1} \otimes \zeta)| \leq 60 \sqrt{27} \frac{1+\sin \frac{\pi}{10}}{1-2 \sin \frac{\pi}{10}}|\varphi|_{z p}
$$

We now take $g \in L^{1}(G)$ with $\|g\|=1$. By multiplying the above inequality by $|g(t)|$, we arrive at

$$
\begin{equation*}
\left|\varphi\left(g(t) f * \delta_{t}, h\right)-\varphi\left(f, g(t) \delta_{t} * h\right)\right| \leq 60 \sqrt{27} \frac{1+\sin \frac{\pi}{10}}{1-2 \sin \frac{\pi}{10}}|\varphi|_{z p}|g(t)| \tag{14}
\end{equation*}
$$

Since the convolutions $f * g$ and $g * h$ can be expressed as

$$
\begin{aligned}
& f * g=\int_{G} g(t) f * \delta_{t} d t \\
& g * h=\int_{G} g(t) \delta_{t} * h d t
\end{aligned}
$$

where the expressions on the right-hand side are considered as Bochner integrals of $L^{1}(G)$-valued functions of t, it follows that

$$
\varphi(f * g, h)-\varphi(f, g * h)=\int_{G}\left[\varphi\left(g(t) f * \delta_{t}, h\right)-\varphi\left(f, g(t) \delta_{t} * h\right)\right] d t
$$

From (14) we now deduce that

$$
\begin{aligned}
|\varphi(f * g, h)-\varphi(f, g * h)| & \leq \int_{G}\left|\varphi\left(g(t) f * \delta_{t}, h\right)-\varphi\left(f, g(t) \delta_{t} * h\right)\right| d t \\
& \leq 60 \sqrt{27} \frac{1+\sin \frac{\pi}{10}}{1-2 \sin \frac{\pi}{10}}|\varphi|_{z p} \int_{G}|g(t)| d t \\
& =60 \sqrt{27} \frac{1+\sin \frac{\pi}{10}}{1-2 \sin \frac{\pi}{10}}|\varphi|_{z p}
\end{aligned}
$$

We thus get

$$
|\varphi|_{b} \leq 60 \sqrt{27} \frac{1+\sin \frac{\pi}{10}}{1-2 \sin \frac{\pi}{10}}|\varphi|_{z p}
$$

and (13) is proved.

4. Algebras of approximable operators

Let X be a Banach space. Then we write $\mathcal{F}(X)$ for the two-sided ideal of $\mathcal{B}(X)$ consisting of finite-rank operators, and $\mathcal{A}(X)$ for the closure of $\mathcal{F}(X)$ in $\mathcal{B}(X)$ with respect to the operator norm. For each $x \in X$ and $\phi \in X^{*}$, we define $x \otimes \phi \in \mathcal{F}(X)$ by $(x \otimes \phi)(y)=\langle y, \phi\rangle x$ for each $y \in X$. A finite, biorthogonal system for X is a set

$$
\left\{\left(x_{j}, \phi_{k}\right): j, k=1, \ldots, n\right\}
$$

with $x_{1}, \ldots, x_{n} \in X$ and $\phi_{1}, \ldots, \phi_{n} \in X^{*}$ such that

$$
\left\langle x_{j}, \phi_{k}\right\rangle=\delta_{j, k} \quad \forall j, k \in\{1, \ldots, n\}
$$

Each such system defines an algebra homomorphism

$$
\theta: \mathbb{M}_{n} \rightarrow \mathcal{F}(X), \quad\left(a_{j, k}\right) \mapsto \sum_{j, k=1}^{n} a_{j, k} x_{j} \otimes \phi_{k}
$$

where \mathbb{M}_{n} is the full matrix algebra of order n over \mathbb{C}. The identity matrix is denoted by I_{n}.

The Banach space X is said to have property (\mathbb{A}) if there is a directed set Λ such that, for each $\lambda \in \Lambda$, there exists a finite, biorthogonal system

$$
\left\{\left(x_{j}^{\lambda}, \phi_{k}^{\lambda}\right): j, k=1, \ldots, n_{\lambda}\right\}
$$

for X with corresponding algebra homomorphism $\theta_{\lambda}: \mathbb{M}_{n_{\lambda}} \rightarrow \mathcal{F}(X)$ such that:
(i) $\lim _{\lambda \in \Lambda} \theta_{\lambda}\left(I_{n_{\lambda}}\right)=I_{X}$ uniformly on the compact subsets of X;
(ii) $\lim _{\lambda \in \Lambda} \theta_{\lambda}\left(I_{n_{\lambda}}\right)^{*}=I_{X^{*}}$ uniformly on the compact subsets of X^{*};
(iii) for each index $\lambda \in \Lambda$, there is a finite subgroup G_{λ} of the group of all invertible $n_{\lambda} \times n_{\lambda}$ matrices over \mathbb{C} whose linear span is all of $\mathbb{M}_{n_{\lambda}}$, such that

$$
\begin{equation*}
\sup _{\lambda \in \Lambda} \sup _{t \in G_{\lambda}}\left\|\theta_{\lambda}(t)\right\|<\infty \tag{15}
\end{equation*}
$$

Property (\mathbb{A}) forces the Banach algebra $\mathcal{A}(X)$ to be amenable. For an exhaustive treatment of this topic (including a variety of interesting examples of spaces with prop$\operatorname{erty}(\mathbb{A}))$ we refer to $[12$, Section 3.3].

The notation of the above definition will be standard for the remainder of this section. Furthermore, our basic reference for this section is the monograph [12].

Theorem 4.1. Let X be a Banach space with property ($\mathbb{A})$. Then the Banach algebra $\mathcal{A}(X)$ is strongly zero product determined. Specifically, if C denotes the supremum in (15), then

$$
\frac{1}{2} \beta_{\mathcal{A}(X)} \leq \alpha_{\mathcal{A}(X)} \leq 60 \sqrt{27} \frac{1+\sin \frac{\pi}{10}}{1-2 \sin \frac{\pi}{10}} C^{2}
$$

Proof. For each $\lambda \in \Lambda$ we define $\Phi_{\lambda}: \ell^{1}\left(G_{\lambda}\right) \rightarrow \mathcal{F}(X)$ by

$$
\Phi_{\lambda}(f)=\sum_{t \in G_{\lambda}} f(t) \theta_{\lambda}(t) \quad \forall f \in \ell^{1}\left(G_{\lambda}\right)
$$

We claim that Φ_{λ} is an algebra homomorphism. It is clear the Φ_{λ} is a linear map and, for each $f, g \in \ell^{1}\left(G_{\lambda}\right)$, we have

$$
\begin{aligned}
\Phi_{\lambda}(f * g) & =\sum_{t \in G_{\lambda}}(f * g)(t) \theta_{\lambda}(t)=\sum_{t \in G_{\lambda}} \sum_{s \in G_{\lambda}} f(s) g\left(s^{-1} t\right) \theta_{\lambda}(t) \\
& =\theta_{\lambda}\left(\sum_{t \in G_{\lambda}} \sum_{s \in G_{\lambda}} f(s) g\left(s^{-1} t\right) t\right)=\theta_{\lambda}\left(\sum_{s \in G_{\lambda}} f(s) s \sum_{t \in G_{\lambda}} g\left(s^{-1} t\right) s^{-1} t\right) \\
& =\theta_{\lambda}\left(\sum_{s \in G_{\lambda}} f(s) s \sum_{r \in G_{\lambda}} g(r) r\right)=\theta_{\lambda}\left(\sum_{s \in G_{\lambda}} f(s) s\right) \theta_{\lambda}\left(\sum_{r \in G_{\lambda}} g(r) r\right) \\
& =\Phi_{\lambda}(f) \Phi_{\lambda}(g) .
\end{aligned}
$$

Of course, Φ_{λ} is continuous because $\ell^{1}\left(G_{\lambda}\right)$ is finite-dimensional, and, further, for each $f \in \ell^{1}\left(G_{\lambda}\right)$, we have

$$
\left\|\Phi_{\lambda}(f)\right\| \leq \sum_{t \in G_{\lambda}}|f(t)|\left\|\theta_{\lambda}(t)\right\| \leq \sum_{t \in G_{\lambda}}|f(t)| C=C\|f\|_{1}
$$

Hence $\left\|\Phi_{\lambda}\right\| \leq C$.
Let $\varphi \in \mathcal{B}^{2}(\mathcal{A}(X), \mathbb{C})$. Let us prove that

$$
\begin{equation*}
\left|\varphi\left(S \theta_{\lambda}(t), \theta_{\lambda}\left(t^{-1}\right) T\right)-\varphi\left(S \theta_{\lambda}\left(I_{n_{\lambda}}\right), \theta_{\lambda}\left(I_{n_{\lambda}}\right) T\right)\right| \leq \beta_{\ell^{1}\left(G_{\lambda}\right)} C^{2}\|S\|\|T\||\varphi|_{z p} \tag{16}
\end{equation*}
$$

for all $\lambda \in \Lambda, S, T \in \mathcal{A}(X)$, and $t \in G_{\lambda}$. For this purpose, take $\lambda \in \Lambda$ and $S, T \in \mathcal{A}(X)$, and define $\varphi_{\lambda}: \ell^{1}\left(G_{\lambda}\right) \times \ell^{1}\left(G_{\lambda}\right) \rightarrow \mathbb{C}$ by

$$
\varphi_{\lambda}(f, g)=\varphi\left(S \Phi_{\lambda}(f), \Phi_{\lambda}(g) T\right) \quad \forall f, g \in \ell^{1}\left(G_{\lambda}\right)
$$

Then φ_{λ} is continuous and, for each $f, g \in \ell^{1}\left(G_{\lambda}\right)$ such that $f * g=0$, we have $\left(S \Phi_{\lambda}(f)\right)\left(\Phi_{\lambda}(g) T\right)=S\left(\Phi_{\lambda}(f * g)\right) T=0$ and therefore

$$
\left|\varphi_{\lambda}(f, g)\right| \leq|\varphi|_{z p}\left\|S \Phi_{\lambda}(f)\right\|\left\|\Phi_{\lambda}(g) T\right\| \leq|\varphi|_{z p} C^{2}\|S\|\|T\|\|f\|_{1}\|g\|_{1}
$$

whence

$$
\left|\varphi_{\lambda}\right|_{z p} \leq C^{2}\|S\|\|T\||\varphi|_{z p}
$$

For each $t \in G_{\lambda}$, we have

$$
\begin{gathered}
\left|\varphi_{\lambda}\left(\delta_{t}, \delta_{t^{-1}}\right)-\varphi_{\lambda}\left(\delta_{I_{n_{\lambda}}}, \delta_{I_{n_{\lambda}}}\right)\right|=\left|\varphi_{\lambda}\left(\delta_{I_{n_{\lambda}}} * \delta_{t}, \delta_{t^{-1}}\right)-\varphi_{\lambda}\left(\delta_{I_{n_{\lambda}}}, \delta_{t} * \delta_{t^{-1}}\right)\right| \leq \\
\left|\varphi_{\lambda}\right|_{b} \leq \beta_{\ell^{1}\left(G_{\lambda}\right)}\left|\varphi_{\lambda}\right|_{z p} \leq \beta_{\ell^{1}\left(G_{\lambda}\right)} C^{2}\|S\|\|T\||\varphi|_{z p}
\end{gathered}
$$

which gives (16).
The projective tensor product $\mathcal{A}(X) \widehat{\otimes} \mathcal{A}(X)$ becomes a Banach $\mathcal{A}(X)$-bimodule for the products defined by

$$
R \cdot(S \otimes T)=(R S) \otimes T, \quad(S \otimes T) \cdot R=S \otimes(T R) \quad \forall R, S, T \in \mathcal{A}(X)
$$

We define a continuous linear functional $\widehat{\varphi} \in(\mathcal{A}(X) \widehat{\otimes} \mathcal{A}(X))^{*}$ through

$$
\langle S \otimes T, \widehat{\varphi}\rangle=\varphi(S, T) \quad \forall S, T \in \mathcal{A}(X)
$$

For each $\lambda \in \Lambda$, set $P_{\lambda}=\theta_{\lambda}\left(I_{n_{\lambda}}\right)$ and

$$
D_{\lambda}=\frac{1}{\left|G_{\lambda}\right|} \sum_{t \in G_{\lambda}} \theta_{\lambda}(t) \otimes \theta_{\lambda}\left(t^{-1}\right)
$$

Then $\left(P_{\lambda}\right)_{\lambda \in \Lambda}$ is a bounded approximate identity for $\mathcal{A}(X)$ and $\left(D_{\lambda}\right)_{\lambda \in \Lambda}$ is an approximate diagonal for $\mathcal{A}(X)$ (see [12, Theorem 3.3.9]), so that $\left(\left\|S \cdot D_{\lambda}-D_{\lambda} \cdot S\right\|\right)_{\lambda \in \Lambda} \rightarrow 0$ for each $S \in \mathcal{A}(X)$.

For each $\lambda \in \Lambda$ and $S, T \in \mathcal{A}(X)$, (16) shows that

$$
\begin{gathered}
\left|\left\langle S \cdot D_{\lambda} \cdot T, \widehat{\varphi}\right\rangle-\varphi\left(S P_{\lambda}, P_{\lambda} T\right)\right| \\
=\left|\frac{1}{\left|G_{\lambda}\right|} \sum_{t \in G_{\lambda}}\left[\varphi\left(S \theta_{\lambda}(t), \theta_{\lambda}\left(t^{-1}\right) T\right)-\varphi\left(S \theta_{\lambda}\left(I_{n_{\lambda}}\right), \theta_{\lambda}\left(I_{n_{\lambda}}\right) T\right)\right]\right| \\
\leq \beta_{\ell^{1}\left(G_{\lambda}\right)} C^{2}\|S\|\|T\||\varphi|_{z p}
\end{gathered}
$$

and Theorem 3.3 then gives

$$
\begin{equation*}
\left|\left\langle S \cdot D_{\lambda} \cdot T, \widehat{\varphi}\right\rangle-\varphi\left(S P_{\lambda}, P_{\lambda} T\right)\right| \leq 60 \sqrt{27} \frac{1+\sin \frac{\pi}{10}}{1-2 \sin \frac{\pi}{10}} C^{2}\|S\|\|T\||\varphi|_{z p} \tag{17}
\end{equation*}
$$

For each $\lambda \in \Lambda$, define $\xi_{\lambda} \in \mathcal{A}(X)^{*}$ by

$$
\left\langle T, \xi_{\lambda}\right\rangle=\left\langle D_{\lambda} \cdot T, \widehat{\varphi}\right\rangle \quad \forall T \in \mathcal{A}(X)
$$

Note that

$$
\left\|\xi_{\lambda}\right\| \leq\|\widehat{\varphi}\|\left\|D_{\lambda}\right\| \leq\|\varphi\| C^{2} \quad \forall \lambda \in \Lambda
$$

and therefore $\left(\xi_{\lambda}\right)_{\lambda \in \Lambda}$ is a bounded net in $\mathcal{A}(X)^{*}$. By the Banach-Alaoglu theorem the net $\left(\xi_{\lambda}\right)_{\lambda \in \Lambda}$ has a weak*-accumulation point, say ξ, in $\mathcal{A}(X)^{*}$. Take a subnet $\left(\xi_{\nu}\right)_{\nu \in N}$ of $\left(\xi_{\lambda}\right)_{\lambda \in \Lambda}$ such that $\mathrm{w}^{*}-\lim _{\nu \in N} \xi_{\nu}=\xi$. Take $S, T \in \mathcal{A}(X)$. For each $\nu \in N$, we have

$$
\begin{gathered}
\varphi\left(S P_{\nu}, P_{\nu} T\right)-\xi_{\lambda}(S T)= \\
\varphi\left(S P_{\nu}, P_{\nu} T\right)-\left\langle S \cdot D_{\nu} \cdot T, \widehat{\varphi}\right\rangle+\left\langle\left(S \cdot D_{\nu}-D_{\nu} \cdot S\right) \cdot T, \widehat{\varphi}\right\rangle
\end{gathered}
$$

so that (17) gives

$$
\begin{gathered}
\left|\varphi\left(S P_{\nu}, P_{\nu} T\right)-\left\langle S T, \xi_{\lambda}\right\rangle\right| \leq \\
60 \sqrt{27} \frac{1+\sin \frac{\pi}{10}}{1-2 \sin \frac{\pi}{10}} C^{2}\|S\|\|T\||\varphi|_{z p}+\|\varphi\|\left\|S \cdot D_{\nu}-D_{\nu} \cdot S\right\|\|T\|
\end{gathered}
$$

Taking limits on both sides of the above inequality, and using that $\left(S P_{\nu}\right)_{\nu \in N} \rightarrow S$, $\left(P_{\nu} T\right)_{\nu \in N} \rightarrow T$, and $\left(\left\|S \cdot D_{\nu}-D_{\nu} \cdot S\right\|\right)_{\nu \in N} \rightarrow 0$, we see that

$$
|\varphi(S, T)-\langle S T, \xi\rangle| \leq 60 \sqrt{27} \frac{1+\sin \frac{\pi}{10}}{1-2 \sin \frac{\pi}{10}} C^{2}\|S\|\|T\||\varphi|_{z p}
$$

We thus get

$$
\operatorname{dist}\left(\varphi, \mathcal{B}_{\pi}^{2}(\mathcal{A}(X), \mathbb{C})\right) \leq 60 \sqrt{27} \frac{1+\sin \frac{\pi}{10}}{1-2 \sin \frac{\pi}{10}} C^{2}|\varphi|_{z p}
$$

which proves the theorem.
The hyperreflexivity of the space $\mathcal{Z}^{n}(A, X)$ of continuous n-cocycles from A into X, where A is a C^{*}-algebra or a group algebra and X is a Banach A-bimodule has been already studied in [15, Theorem 4.4]. We conclude this section with a look at the hyperreflexivity of the space $\mathcal{Z}^{n}\left(\mathcal{A}(X), Y^{*}\right)$. For this purpose we introduce some terminology.

Let A be a Banach algebra, and let X be a Banach A-bimodule. Set

$$
L_{X}=\sup \{\|a \cdot x\|: x \in X, a \in A,\|x\|=\|a\|=1\}
$$

and

$$
R_{X}=\sup \{\|x \cdot a\|: x \in X, a \in A,\|x\|=\|a\|=1\}
$$

For each $n \in \mathbb{N}$, let $\delta^{n}: \mathcal{B}^{n}(A, X) \rightarrow \mathcal{B}^{n+1}(A, X)$ be the n-coboundary operator defined by

$$
\begin{aligned}
\left(\delta^{n} T\right)\left(a_{1}, \ldots, a_{n+1}\right)= & a_{1} \cdot T\left(a_{2}, \ldots, a_{n+1}\right) \\
& +\sum_{k=1}^{n}(-1)^{k} T\left(a_{1}, \ldots, a_{k} a_{k+1}, \ldots, a_{n+1}\right) \\
& +(-1)^{n+1} T\left(a_{1}, \ldots, a_{n}\right) \cdot a_{n+1}
\end{aligned}
$$

for all $T \in \mathcal{B}^{n}(A, X)$ and $a_{1}, \ldots, a_{n+1} \in A$. Further, $\delta^{0}: X \rightarrow \mathcal{B}(A, X)$ is defined by

$$
\left(\delta^{0} x\right)(a)=a \cdot x-x \cdot a \quad \forall x \in X, \forall a \in A
$$

The space of continuous n-cocycles, $\mathcal{Z}^{n}(A, X)$, is defined as ker δ^{n}. The space of continuous n-coboundaries, $\mathcal{N}^{n}(A, X)$, is the range of δ^{n-1}. Then $\mathcal{N}^{n}(A, X) \subset \mathcal{Z}^{n}(A, X)$, and
the quotient $\mathcal{H}^{n}(A, X)=\mathcal{Z}^{n}(A, X) / \mathcal{N}^{n}(A, X)$ is the $n^{\text {th }}$ Hochschild cohomology group. For each $T \in \mathcal{B}^{n}(A, X)$, the constant

$$
\begin{gathered}
\operatorname{dist}_{r}\left(T, \mathcal{Z}^{n}(A, X)\right):= \\
\sup _{\left\|a_{1}\right\|=\cdots=\left\|a_{n}\right\|=1} \inf \left\{\left\|T\left(a_{1}, \ldots, a_{n}\right)-S\left(a_{1}, \ldots, a_{n}\right)\right\|: S \in \mathcal{Z}^{n}(A, X)\right\}
\end{gathered}
$$

is intended to estimate the usual distance from T to $\mathcal{Z}^{n}(A, X)$, and, in accordance with $[14,15]$, the space $\mathcal{Z}^{n}(A, X)$ is called hyperreflexive if there exists a constant K such that

$$
\operatorname{dist}\left(T, \mathcal{Z}^{n}(A, X)\right) \leq K \operatorname{dist}_{r}\left(T, \mathcal{Z}^{n}(A, X)\right) \quad \forall T \in \mathcal{B}^{n}(A, X)
$$

The inequality $\operatorname{dist}_{r}\left(T, \mathcal{Z}^{n}(A, X)\right) \leq \operatorname{dist}\left(T, \mathcal{Z}^{n}(A, X)\right)$ is always true.
Proposition 4.2. Let A be a C-amenable Banach algebra, and let X be a Banach A bimodule. Then there exist projections $P, Q \in \mathcal{B}\left(X^{*}\right)$ onto $(X \cdot A)^{\perp}$ and $(A \cdot X)^{\perp}$, respectively, with $\|P\| \leq 1+R_{X} C,\|Q\| \leq 1+L_{X} C$, and such that

$$
\operatorname{dist}\left(T, \mathcal{Z}^{1}\left(A, X^{*}\right)\right) \leq C\left(R_{X}+L_{X}\|P\|+\|P\|\|Q\|\right)\left\|\delta^{1} T\right\|
$$

for all $T \in \mathcal{B}\left(A, X^{*}\right)$. In particular, if the module X is essential, then

$$
\operatorname{dist}\left(T, \mathcal{Z}^{1}\left(A, X^{*}\right)\right) \leq R_{X} C\left\|\delta^{1} T\right\|
$$

for all $T \in \mathcal{B}\left(A, X^{*}\right)$.
Proof. The Banach algebra A has a virtual diagonal D with $\|\mathrm{D}\| \leq C$. This is an element $\mathrm{D} \in(A \widehat{\otimes} A)^{* *}$ such that, for each $a \in A$, we have

$$
\begin{equation*}
a \cdot \mathrm{D}=\mathrm{D} \cdot a \quad \text { and } \quad a \cdot \widehat{\pi}^{* *}(\mathrm{D})=a \tag{18}
\end{equation*}
$$

Here, the Banach space $A \widehat{\otimes} A$ turns into a contractive Banach A-bimodule with respect to the operations defined through

$$
(a \otimes b) c=a \otimes b c, c(a \otimes b)=c a \otimes b \quad \forall a, b, c \in A
$$

and both $(A \widehat{\otimes} A)^{* *}$ and $A^{* *}$ are considered as dual A-bimodules in the usual way. The $\operatorname{map} \widehat{\pi}: A \widehat{\otimes} A \rightarrow A$ is the projective induced product map defined through

$$
\widehat{\pi}(a \otimes b)=a b \quad \forall a, b \in A .
$$

For each $\varphi \in \mathcal{B}^{2}(A, \mathbb{C})$ there exists a unique element $\widehat{\varphi} \in(A \widehat{\otimes} A)^{*}$ such that

$$
\widehat{\varphi}(a \otimes b)=\varphi(a, b) \quad \forall a, b \in A
$$

and we use the formal notation

$$
\int_{A \times A} \varphi(u, v) d \mathrm{D}(u, v):=\langle\widehat{\varphi}, \mathrm{D}\rangle
$$

Using this notation, the properties (18) can be written as

$$
\begin{equation*}
\int_{A \times A} \varphi(a u, v) d \mathrm{D}(u, v)=\int_{A \times A} \varphi(u, v a) d \mathrm{D}(u, v) \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{A \times A}\langle a u v, \xi\rangle d \mathrm{D}(u, v)=\langle a, \xi\rangle \tag{20}
\end{equation*}
$$

for all $\varphi \in \mathcal{B}^{2}(A, \mathbb{C}), a \in A$, and $\xi \in A^{*}$; further, it will be helpful noting that

$$
\begin{equation*}
\left|\int_{A \times A} \varphi(u, v) d \mathrm{D}(u, v)\right| \leq\|\mathrm{D}\|\|\widehat{\varphi}\| \leq C\|\varphi\| \tag{21}
\end{equation*}
$$

We proceed to define the projections P and Q. For this purpose we first define $P_{0}, Q_{0} \in$ $\mathcal{B}\left(X^{*}\right)$ by

$$
\begin{aligned}
& \left\langle x, P_{0} \xi\right\rangle=\int_{A \times A}\langle x \cdot(u v), \xi\rangle d \mathrm{D}(u, v) \\
& \left\langle x, Q_{0} \xi\right\rangle=\int_{A \times A}\langle(u v) \cdot x, \xi\rangle d \mathrm{D}(u, v)
\end{aligned}
$$

for all $x \in X$ and $\xi \in X^{*}$, and set

$$
P=I_{X^{*}}-P_{0}, \quad Q=I_{X^{*}}-Q_{0}
$$

From (21) we obtain $\left\|P_{0}\right\| \leq R_{X} C$ and $\left\|Q_{0}\right\| \leq L_{X} C$, so that $\|P\| \leq 1+R_{X} C$ and $\|Q\| \leq 1+L_{X} C$.

We claim that

$$
\begin{align*}
& a \cdot P_{0} \xi=P_{0}(a \cdot \xi)=a \cdot \xi \tag{22}\\
& P_{0} \xi \cdot a=P_{0}(\xi \cdot a) \tag{23}
\end{align*}
$$

for all $a \in A$ and $\xi \in X^{*}$. Indeed, for $a \in A, \xi \in X^{*}$, and each $x \in X$, (19) and (20) gives

$$
\begin{aligned}
\left\langle x, a \cdot P_{0} \xi\right\rangle & =\left\langle x \cdot a, P_{0} \xi\right\rangle=\int_{A \times A}\langle x \cdot(a u v), \xi\rangle d \mathrm{D}(u, v) \\
& =\langle x \cdot a, \xi\rangle=\langle x, a \cdot \xi\rangle \\
\left\langle x, P_{0}(a \cdot \xi)\right\rangle & =\int_{A \times A}\langle x \cdot(u v), a \cdot \xi\rangle d \mathrm{D}(u, v) \\
& =\int_{A \times A}\langle x \cdot(u v a), \xi\rangle d \mathrm{D}(u, v) \\
& =\int_{A \times A}\langle x \cdot(a u v), \xi\rangle d \mathrm{D}(u, v)=\langle x, a \cdot \xi\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
\left\langle x, P_{0} \xi \cdot a\right\rangle & =\left\langle a \cdot x, P_{0} \xi\right\rangle=\int_{A \times A}\langle(a \cdot x) \cdot(u v), \xi\rangle d \mathrm{D}(u, v) \\
& =\int_{A \times A}\langle x \cdot(u v), \xi \cdot a\rangle d \mathrm{D}(u, v)=\left\langle x, P_{0}(\xi \cdot a)\right\rangle,
\end{aligned}
$$

which proves (22) and (23). From (22) we deduce that

$$
\langle x \cdot a, P \xi\rangle=\left\langle x, a \cdot \xi-a \cdot P_{0} \xi\right\rangle=0,
$$

and so $P \xi \in(X \cdot A)^{\perp}$. Further, if $\xi \in(X \cdot A)^{\perp}$, then

$$
\left\langle x, P_{0} \xi\right\rangle=\int_{A \times A}\langle\underbrace{x \cdot(u v)}_{\in X \cdot A}, \xi\rangle d \mathrm{D}(u, v)=0
$$

and so $P \xi=\xi$. The operator P is a projection onto $(X \cdot A)^{\perp}$. From (22) we deduce immediately that

$$
\begin{equation*}
P\left(A \cdot X^{*}\right)=\{0\} . \tag{24}
\end{equation*}
$$

The operator Q can be handled in much the same way as P, and we obtain

$$
\begin{aligned}
& Q_{0} \xi \cdot a=Q_{0}(\xi \cdot a)=\xi \cdot a, \\
& a \cdot Q_{0} \xi=Q_{0}(a \cdot \xi)
\end{aligned}
$$

for all $a \in A$ and $\xi \in X^{*}$, the operator Q is a projection onto $(A \cdot X)^{\perp}$, and

$$
\begin{equation*}
Q\left(X^{*} \cdot A\right)=\{0\} \tag{25}
\end{equation*}
$$

Set $T \in \mathcal{B}\left(A, X^{*}\right)$, and define $\phi \in X^{*}$ by

$$
\langle x, \phi\rangle=\int_{A \times A}\langle x, u \cdot T(v)\rangle d \mathrm{D}(u, v) \quad \forall x \in X
$$

For each $x \in X$ and $a \in A$ we have

$$
\left\langle x, P_{0} T(a)\right\rangle=\int_{A \times A}\langle x \cdot(u v), T(a)\rangle d \mathrm{D}(u, v)=\int_{A \times A}\langle x,(u v) \cdot T(a)\rangle d \mathrm{D}(u, v)
$$

and

$$
\begin{aligned}
\left\langle x,\left(\delta^{0} \phi\right)(a)\right\rangle & =\langle x, a \cdot \phi-\phi \cdot a\rangle=\langle x \cdot a-a \cdot x, \phi\rangle \\
& =\int_{A \times A}\langle x \cdot a-a \cdot x, u \cdot T(v)\rangle d \mathrm{D}(u, v) \\
& =\int_{A \times A}\langle x,(a u) \cdot T(v)-u \cdot T(v) \cdot a\rangle d \mathrm{D}(u, v) \\
& =\int_{A \times A}\langle x, u \cdot T(v a)-u \cdot T(v) \cdot a\rangle d \mathrm{D}(u, v),
\end{aligned}
$$

so that

$$
\begin{aligned}
\left\langle x,\left(P_{0} T-\delta^{0} \phi\right)(a)\right\rangle & =\int_{A \times A}\left\langle x, u \cdot\left(\delta^{1} T\right)(v, a)\right\rangle d \mathrm{D}(u, v) \\
& =\int_{A \times A}\left\langle x \cdot u,\left(\delta^{1} T\right)(v, a)\right\rangle d \mathrm{D}(u, v)
\end{aligned}
$$

From the latter identity and (21) we conclude that

$$
\left|\left\langle x,\left(P_{0} T-\delta^{0} \phi\right)(a)\right\rangle\right| \leq C R_{X}\left\|\delta^{1} T\right\|\|a\|\|x\|,
$$

whence

$$
\begin{equation*}
\left\|P_{0} T-\delta^{0} \phi\right\| \leq C R_{X}\left\|\delta^{1} T\right\| \tag{26}
\end{equation*}
$$

Write $S=P T$. From (22) and (23) it follows that $\delta^{1} S(a, b)=P \delta^{1} T(a, b)$, and so

$$
\begin{equation*}
\left\|\delta^{1} S\right\| \leq\|P\|\left\|\delta^{1} T\right\| \tag{27}
\end{equation*}
$$

We now define $\psi \in X^{*}$ by

$$
\langle x, \psi\rangle=\int_{A \times A}\langle x, S(u) \cdot v\rangle d \mathrm{D}(u, v) \quad \forall x \in X
$$

For each $x \in X$ and $a \in A$ we have

$$
\left\langle x, Q_{0} S(a)\right\rangle=\int_{A \times A}\langle(u v) \cdot x, S(a)\rangle d \mathrm{D}(u, v)=\int_{A \times A}\langle x, S(a) \cdot(u v)\rangle d \mathrm{D}(u, v)
$$

and

$$
\begin{aligned}
\left\langle x,\left(\delta^{0} \psi\right)(a)\right\rangle & =\langle x, a \cdot \psi-\psi \cdot a\rangle=\langle x \cdot a-a \cdot x, \psi\rangle \\
& =\int_{A \times A}\langle x \cdot a-a \cdot x, S(u) \cdot v\rangle d \mathrm{D}(u, v) \\
& =\int_{A \times A}\langle x, a \cdot S(u) \cdot v-S(u) \cdot(v a)\rangle d \mathrm{D}(u, v) \\
& =\int_{A \times A}\langle x, a \cdot S(u) \cdot v-S(a u) \cdot v\rangle d \mathrm{D}(u, v),
\end{aligned}
$$

and hence

$$
\begin{aligned}
\left\langle x,\left(Q_{0} S+\delta^{0} \psi\right)(a)\right\rangle & =\int_{A \times A}\left\langle x,\left(\delta^{1} S\right)(a, u) \cdot v\right\rangle d \mathrm{D}(u, v) \\
& =\int_{A \times A}\left\langle v \cdot x,\left(\delta^{1} S\right)(a, u)\right\rangle d \mathrm{D}(u, v)
\end{aligned}
$$

From the latter identity and (21) we conclude that

$$
\left|\left\langle x,\left(Q_{0} S+\delta^{0} \psi\right)(a)\right\rangle\right| \leq C L_{X}\left\|\delta^{1} S\right\|\|a\|\|x\|
$$

Thus $\left\|Q_{0} S+\delta^{0} \psi\right\| \leq C L_{X}\left\|\delta^{1} S\right\|$ and (27) then gives

$$
\begin{equation*}
\left\|Q_{0} S+\delta^{0} \psi\right\| \leq C L_{X}\|P\|\left\|\delta^{1} T\right\| \tag{28}
\end{equation*}
$$

Our next goal is to estimate $\|Q P T\|$. For each $u, v, a \in A$, we have

$$
\delta^{1} T(a, u v)=a \cdot T(u v)-T(a u v)+T(a) \cdot(u v)
$$

(23) and (24) gives

$$
P\left(\delta^{1} T(a, u v)\right)=\underbrace{P(a \cdot T(u v))}_{=0}-P T(a u v)+P T(a) \cdot(u v)
$$

and finally (25) yields

$$
Q P\left(\delta^{1} T(a, u v)\right)=-Q P T(a u v)+\underbrace{Q(P T(a) \cdot(u v))}_{=0}=-Q P T(a u v) .
$$

We thus get

$$
\begin{aligned}
\langle x, Q P T(a)\rangle & =\int_{A \times A}\langle x, Q P T(a u v)\rangle d \mathrm{D}(u, v) \\
& =\int_{A \times A}\left\langle x,-Q P\left(\delta^{1} T\right)(a, u v)\right\rangle d \mathrm{D}(u, v)
\end{aligned}
$$

and (21) implies

$$
|\langle x, Q P T(a)\rangle| \leq C\left\|Q P\left(\delta^{1} T\right)\right\|\|x\|\|a\| \leq C\|Q\|\|P\|\left\|\delta^{1} T\right\|\|x\|\|a\|
$$

Hence

$$
\begin{equation*}
\|Q P T\| \leq C\|Q\|\|P\|\left\|\delta^{1} T\right\| \tag{29}
\end{equation*}
$$

Finally, since

$$
T-\delta^{0} \phi+\delta^{0} \psi=Q P T+\left(P_{0} T-\delta^{0} \phi\right)+\left(Q_{0} P T+\delta^{0} \psi\right)
$$

(26), (28), and (29) show that

$$
\begin{aligned}
\left\|T-\delta^{0} \phi+\delta^{0} \psi\right\| & \leq\left\|P_{0} T-\delta^{0} \phi\right\|+\left\|Q_{0} P T+\delta^{0} \psi\right\|+\|Q P T\| \\
& \leq C R_{X}\left\|\delta^{1} T\right\|+C L_{X}\|P\|\left\|\delta^{1} T\right\|+C\|Q\|\|P\|\left\|\delta^{1} T\right\|
\end{aligned}
$$

Since $-\delta^{0} \phi+\delta^{0} \psi \in \mathcal{Z}^{1}\left(A, X^{*}\right)$, it follows that

$$
\operatorname{dist}\left(T, \mathcal{Z}^{1}\left(A, X^{*}\right)\right) \leq C R_{X}\left\|\delta^{1} T\right\|+C L_{X}\|P\|\left\|\delta^{1} T\right\|+C\|Q\|\|P\|\left\|\delta^{1} T\right\|
$$

as required.

Corollary 4.3. Let A be a C-amenable Banach algebra, let X be a Banach A-bimodule, and let $n \in \mathbb{N}$. Then

$$
\operatorname{dist}\left(T, \mathcal{Z}^{n}\left(A, X^{*}\right)\right) \leq 2\left(n+L_{X}\right)\left(1+R_{X}\right) C^{3}\left\|\delta^{n} T\right\|
$$

for each $T \in \mathcal{B}^{n}\left(A, X^{*}\right)$.

Proof. Of course, we need only consider the case where A is a non-zero Banach algebra, which implies that $C \geq 1$.

Suppose that $n=1$, and $T \in \mathcal{B}\left(A, X^{*}\right)$. By Proposition 4.2,

$$
\begin{aligned}
\operatorname{dist}\left(T, \mathcal{Z}^{1}\left(A, X^{*}\right)\right) & \leq C\left(R_{X}+L_{X}\left(1+R_{X} C\right)+\left(1+L_{X} C\right)\left(1+R_{X} C\right)\right)\left\|\delta^{1} T\right\| \\
& \leq 2\left(1+L_{X}\right)\left(1+R_{X}\right) C^{3}\left\|\delta^{1} T\right\|,
\end{aligned}
$$

as $C \geq 1$.
The Banach space $\mathcal{B}^{n}\left(A, X^{*}\right)$ is a Banach A-bimodule with respect to the operations

$$
(a \cdot T)\left(a_{1}, \ldots, a_{n}\right)=a \cdot T\left(a_{1}, \ldots, a_{n}\right)
$$

and

$$
\begin{aligned}
(T \cdot a)\left(a_{1}, \ldots, a_{n}\right)= & T\left(a a_{1}, \ldots, a_{n}\right) \\
& +\sum_{k=1}^{n-1}(-1)^{k} T\left(a, a_{1}, \ldots, a_{k} a_{k+1}, \ldots, a_{n}\right) \\
& +(-1)^{n} T\left(a, a_{1}, \ldots, a_{n-1}\right) \cdot a_{n}
\end{aligned}
$$

for all $T \in \mathcal{B}^{n}\left(A, X^{*}\right)$, and $a, a_{1}, \ldots, a_{n} \in A$. Let

$$
\Delta^{1}: \mathcal{B}\left(A, \mathcal{B}^{n}\left(A, X^{*}\right)\right) \rightarrow \mathcal{B}^{2}\left(A, \mathcal{B}^{n}\left(A, X^{*}\right)\right)
$$

be the 1-coboundary operator. We also consider the maps

$$
\begin{aligned}
\tau_{1}^{n}: \mathcal{B}^{1+n}\left(A, X^{*}\right) & \rightarrow \mathcal{B}\left(A, \mathcal{B}^{n}\left(A, X^{*}\right)\right), \\
\tau_{2}^{n}: \mathcal{B}^{2+n}\left(A, X^{*}\right) & \rightarrow \mathcal{B}^{2}\left(A, \mathcal{B}^{n}\left(A, X^{*}\right)\right)
\end{aligned}
$$

defined by

$$
\begin{aligned}
\left(\tau_{1}^{n} T\right)(a)\left(a_{1}, \ldots, a_{n}\right) & =T\left(a, a_{1}, \ldots, a_{n}\right) \\
\left(\tau_{2}^{n} T\right)(a, b)\left(a_{1}, \ldots, a_{n}\right) & =T\left(a, b, a_{1}, \ldots, a_{n}\right)
\end{aligned}
$$

Then:

- τ_{1}^{n} and τ_{2}^{n} are isometric isomorphisms;
- $\Delta^{1} \circ \tau_{1}^{n}=\tau_{2}^{n} \circ \delta^{n+1}$;
- $\tau_{1}^{n} \mathcal{Z}^{n+1}\left(A, X^{*}\right)=\mathcal{Z}^{1}\left(A, \mathcal{B}^{n}\left(A, X^{*}\right)\right)$.

For each $T \in \mathcal{B}^{1+n}\left(A, X^{*}\right)$ we have

$$
\begin{align*}
\operatorname{dist}\left(T, \mathcal{Z}^{n+1}\left(A, X^{*}\right)\right) & =\operatorname{dist}\left(\tau_{1}^{n} T, \tau_{1}^{n} \mathcal{Z}^{n+1}\left(A, X^{*}\right)\right) \\
& =\operatorname{dist}\left(\tau_{1}^{n} T, \mathcal{Z}^{1}\left(A, \mathcal{B}^{n}\left(A, X^{*}\right)\right)\right) \tag{30}
\end{align*}
$$

Our next objective is to apply Proposition 4.2 to estimate the distance of the last term in (30). To this end, we realize that $\mathcal{B}^{n}\left(A, X^{*}\right)$ is a dual Banach A-bimodule by setting

$$
Y=\underbrace{A \widehat{\otimes} \cdots \widehat{\otimes} A}_{n \text {-times }} \widehat{\otimes} X
$$

Then:

- Y is a Banach A-bimodule with respect to the operations

$$
\left(a_{1} \otimes \cdots \otimes a_{n} \otimes x\right) \cdot a=a_{1} \otimes \cdots \otimes a_{n} \otimes(x \cdot a)
$$

and

$$
\begin{aligned}
& a \cdot\left(a_{1} \otimes \cdots \otimes a_{n} \otimes x\right)=\left(a a_{1}\right) \otimes \cdots \otimes a_{n} \otimes x \\
& \qquad+\sum_{k=1}^{n-1}(-1)^{k} a \otimes a_{1} \otimes \cdots \otimes\left(a_{k} a_{k+1}\right) \otimes \cdots \otimes a_{n} \otimes x \\
& \quad+(-1)^{n} a \otimes a_{1} \otimes \cdots \otimes a_{n-1} \otimes\left(a_{n} \cdot x\right)
\end{aligned}
$$

for all $a, a_{1}, \ldots, a_{n} \in A$, and $x \in X$;

- we have the estimates

$$
L_{Y} \leq n+L_{X}, \quad R_{Y} \leq R_{X}
$$

- the Banach A-bimodule $\mathcal{B}^{n}\left(A, X^{*}\right)$ is isometrically isomorphic to the Banach A bimodule Y^{*} through the duality

$$
\left\langle a_{1} \otimes \cdots \otimes a_{n} \otimes x, T\right\rangle=\left\langle x, T\left(a_{1}, \ldots, a_{n}\right)\right\rangle
$$

for all $T \in \mathcal{B}^{n}\left(A, X^{*}\right), a_{1}, \ldots, a_{n} \in A$, and $x \in X$.
Proposition 4.2 now leads to

$$
\begin{aligned}
\operatorname{dist}\left(\tau_{1}^{n} T, \mathcal{Z}^{1}\left(A, \mathcal{B}^{n}\left(A, X^{*}\right)\right)\right) & =\operatorname{dist}\left(\tau_{1}^{n} T, \mathcal{Z}^{1}\left(A, Y^{*}\right)\right) \\
& \leq 2\left(1+L_{Y}\right)\left(1+R_{Y}\right) C^{3}\left\|\Delta^{1} \tau_{1}^{n} T\right\| \\
& \leq 2\left(1+n+L_{X}\right)\left(1+R_{X}\right) C^{3}\left\|\Delta^{1} \tau_{1}^{n} T\right\| \\
& =2\left(1+n+L_{X}\right)\left(1+R_{X}\right) C^{3}\left\|\tau_{2}^{n} \delta^{n+1} T\right\| \\
& =2\left(1+n+L_{X}\right)\left(1+R_{X}\right) C^{3}\left\|\delta^{n+1} T\right\|
\end{aligned}
$$

Combining (30) with the inequality above, we obtain precisely the estimate of the corollary.

Theorem 4.4. Let X be a Banach space with property (\mathbb{A}), let Y be a Banach $\mathcal{A}(X)$ bimodule, and let $n \in \mathbb{N}$. Then the space $\mathcal{Z}^{n}\left(\mathcal{A}(X), Y^{*}\right)$ is hyperreflexive. Specifically, if C denotes the supremum in (15), then

$$
\begin{gathered}
\operatorname{dist}\left(T, \mathcal{Z}^{n}\left(\mathcal{A}(X), Y^{*}\right)\right) \leq \\
\left(n+L_{Y}\right)\left(1+R_{Y}\right) C^{6} 2^{n}\left(C^{2} \beta_{\mathcal{A}(X)}+(C+1)^{2}\right)^{n+1} \operatorname{dist}_{r}\left(T, \mathcal{Z}^{n}\left(\mathcal{A}(X), Y^{*}\right)\right)
\end{gathered}
$$

for each $T \in \mathcal{B}^{n}\left(\mathcal{A}(X), Y^{*}\right)$, where

$$
\beta_{\mathcal{A}(X)} \leq 120 \sqrt{27} \frac{1+\sin \frac{\pi}{10}}{1-2 \sin \frac{\pi}{10}} C^{2}
$$

Proof. From Theorem 4.1 we see that $\mathcal{A}(X)$ has the strong property \mathbb{B} and the estimate for $\beta_{\mathcal{A}(X)}$ holds.

The Banach algebra $\mathcal{A}(X)$ has an approximate identity of bound C. Further, for each $T \in \mathcal{F}(X)$ there exists $S \in \mathcal{F}(X)$ such that $S T=T S=T$, and [14, Proposition 5.4] then shows that $\mathcal{A}(X)$ has bounded local units.

By [12, Theorem 3.3.9], $\mathcal{A}(X)$ is C^{2}-amenable, and Corollary 4.3 now gives

$$
\operatorname{dist}\left(T, \mathcal{Z}^{n}\left(\mathcal{A}(X), Y^{*}\right)\right) \leq 2\left(n+L_{Y}\right)\left(1+R_{Y}\right) C^{6}\left\|\delta^{n} T\right\|
$$

for each $T \in \mathcal{B}^{n}\left(\mathcal{A}(X), Y^{*}\right)$. This estimate shows that the map

$$
\begin{aligned}
\mathcal{B}^{n}\left(\mathcal{A}(X), Y^{*}\right) / \mathcal{Z}^{n}\left(\mathcal{A}(X), Y^{*}\right) & \rightarrow \mathcal{N}^{n+1}\left(\mathcal{A}(X), Y^{*}\right) \\
T+\mathcal{Z}^{n}\left(\mathcal{A}(X), Y^{*}\right) & \mapsto \delta^{n} T
\end{aligned}
$$

is an isomorphism, hence $\mathcal{N}^{n+1}\left(\mathcal{A}(X), Y^{*}\right)$ is closed in $\mathcal{B}^{n+1}\left(\mathcal{A}(X), Y^{*}\right)$ and this implies that the $n^{\text {th }}$ Hochschild cohomology group $\mathcal{H}^{n+1}\left(\mathcal{A}(X), Y^{*}\right)$ is a Banach space. By applying [15, Theorem 4.3] we obtain the hyperreflexivity of the space $\mathcal{Z}^{n}\left(\mathcal{A}(X), Y^{*}\right)$ as well as the statement about the estimate of $\operatorname{dist}\left(T, \mathcal{Z}^{n}\left(\mathcal{A}(X), Y^{*}\right)\right)$.

Declaration of competing interest

There is no competing interest.

References

[1] J. Alaminos, M. Brešar, J. Extremera, A.R. Villena, Maps preserving zero products, Stud. Math. 193 (2009) 131-159.
[2] J. Alaminos, M. Brešar, J. Extremera, A.R. Villena, Zero Lie product determined Banach algebras, Stud. Math. 239 (2017) 189-199.
[3] J. Alaminos, M. Brešar, J. Extremera, A.R. Villena, Zero Lie product determined Banach algebras, II, J. Math. Anal. Appl. 474 (2) (2019) 1498-1511.
[4] J. Alaminos, M. Brešar, J. Extremera, A.R. Villena, Zero Jordan product determined Banach algebras, J. Aust. Math. Soc. (2020) 1-14, https://doi.org/10.1017/S1446788719000478.
[5] J. Alaminos, J. Extremera, M.L.C. Godoy, A.R. Villena, Hyperreflexivity of the space of module homomorphisms between non-commutative L^{p}-spaces, J. Math. Anal. Appl. 498 (2) (2021) 124964.
[6] J. Alaminos, J. Extremera, A.R. Villena, Approximately zero product preserving maps, Isr. J. Math. 178 (2010) 1-28.
[7] J. Alaminos, J. Extremera, A.R. Villena, Hyperreflexivity of the derivation space of some group algebras, Math. Z. 266 (2010) 571-582.
[8] J. Alaminos, J. Extremera, A.R. Villena, Hyperreflexivity of the derivation space of some group algebras, II, Bull. Lond. Math. Soc. 44 (2012) 323-335.
[9] G.R. Allan, T.J. Ransford, Power-dominated elements in a Banach algebra, Stud. Math. 94 (1) (1989) 63-79.
[10] M. Brešar, Zero Product Determined Algebras, Frontiers in Mathematics, Birkhäuser, Basel, 2021.
[11] H.G. Dales, Banach Algebras and Automatic Continuity, London Mathematical Society Monographs, New Series, vol. 24, Oxford Science Publications, the Clarendon Press, Oxford University Press, New York, 2000.
[12] V. Runde, Amenable Banach algebras. A Panorama, Springer Monographs in Mathematics, Springer-Verlag, New York, 2020.
[13] E. Samei, Reflexivity and hyperreflexivity of bounded n-cocycles from group algebras, Proc. Am. Math. Soc. 139 (2011) 163-176.
[14] E. Samei, J. Soltani Farsani, Hyperreflexivity of the bounded n-cocycle spaces of Banach algebras, Monatshefte Math. 175 (2014) 429-455.
[15] E. Samei, J. Soltani Farsani, Hyperreflexivity constants of the bounded n-cocycle spaces of group algebras and C^{*}-algebras, J. Aust. Math. Soc. 109 (2020) 112-130.

[^0]: th The authors were supported by MCIU/AEI/FEDER Grant PGC2018-093794-B-I00, Junta de Andalucía grant FQM-185. The first, second and fourth authors were supported by Proyectos $\mathrm{I}+\mathrm{D}+\mathrm{i}$ del programa operativo FEDER-Andalucía Grant A-FQM-484-UGR18. The third named author was also supported by MIU PhD scholarship Grant FPU18/00419. Funding for open access charge: Universidad de Granada / CBUA.

 * Corresponding author.

 E-mail addresses: alaminos@ugr.es (J. Alaminos), jlizana@ugr.es (J. Extremera), mgodoy@ugr.es (M.L.C. Godoy), avillena@ugr.es (A.R. Villena).

