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Understanding how diet and gut microbiota interact in the context of human health is a key
question in personalized nutrition. Genome-scale metabolic networks and constraint-based
modeling approaches are promising to systematically address this complex problem. How-
ever, when applied to nutritional questions, a major issue in existing reconstructions is the
limited information about compounds in the diet that are metabolized by the gut microbiota.
Here, we present AGREDA, an extended reconstruction of diet metabolism in the human gut
microbiota. AGREDA adds the degradation pathways of 209 compounds present in the
human diet, mainly phenolic compounds, a family of metabolites highly relevant for human
health and nutrition. We show that AGREDA outperforms existing reconstructions in pre-
dicting diet-specific output metabolites from the gut microbiota. Using 16S rRNA gene
sequencing data of faecal samples from Spanish children representing different clinical
conditions, we illustrate the potential of AGREDA to establish relevant metabolic interactions
between diet and gut microbiota.
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ARTICLE

nderstanding how diet and gut microbiota interact in the

context of human health is a key question in personalized

nutrition!. Compounds derived from the diet affect the
abundance of different species present in the gut microbiome,
which, on the other hand, release key metabolites and signals
that regulate host health. The relevance of this interaction is
supported by an increasing body of literature showing that the
beneficial effect of dietary interventions in different clinical
conditions is associated with specific signatures of the gut
microbiota! 3.

Given the complex molecular events implied in this question,
the development of computational models, driven by meta-omics
data, constitutes a major task in systems biology*”. In particular,
the integration and analysis of genome-scale metabolic models of
different bacterial species that are present in the human gut
microbiota have received much attention®. Thanks to the tre-
mendous effort in the last years to generate high-quality com-
putational platforms for metabolic reconstruction’~10, extensive
microbial community models of the human gut microbiome are
now available. In particular, AGORA constituted the first large
effort in the literature, involving 818 species present in the human
gut microbiotall.

These network-based community models, which integrate the
metabolic capabilities of different bacterial species in the gut
microbiome, can be analyzed via constraint-based modeling
(CBM)!2-14, This approach is promising in personalized nutri-
tion and could help in elucidating how different microbial species
in the human gut exploit and transform nutrients derived from
the diet and in systematically designing effective dietary strategies
when the gut microbiome is dysregulated. For example, AGORA
has been already applied to predict dietary supplements for
Crohn’s disease!>. Using a similar approach, we predicted the
effect of solid diet on the gut microbiota metabolism of infants!®.
Despite these early attempts, genome-scale metabolic models of
the gut microbiota are still in their infancy and further develop-
ments are required to make them into a practical tool in perso-
nalized nutrition.

A major issue of current metabolic reconstruction platforms is
the limited information about metabolic pathways of dietary
compounds that are transformed by the gut microbiota. AGORA
only includes 99 out of 650 dietary compounds included in i-Diet,
a commercial software for personalized nutrition (http://www.i-
diet.es). A similar result was found for CarveMe8, a more recent
metabolic reconstruction platform, which involves 92 dietary
compounds from i-Diet in the 5587 bacterial metabolic models
reported. In addition, universal metabolic databases, such as the
Model SEED7, on which reconstruction platforms rely for gap
filling, are incomplete and include metabolic capabilities of spe-
cies that are not present in the human gut. Overall, these lim-
itations restrict the scope of CBM approaches to predict the
interaction between diet and gut microbiota.

In this article, using a combination of bioinformatic tools,
metabolic databases, and literature, we extend AGORA and
substantially improve the coverage of gut microbial metabolism
of dietary compounds. Particularly, we include degradation
pathways of 209 dietary compounds (not present in AGORA),
from which 179 are phenolic compounds, a family of metabolites
highly relevant for human health and nutrition that are mainly
transformed by the gut microbiota!”>18. Our reconstruction,
called AGREDA (AGORA-based REconstruction for Diet Ana-
lysis), is thus more amenable to analyze the role of the human gut
microbiota in diet metabolism.

To illustrate our contribution, we first show that AGREDA
provides a more complete connection than AGORA to the
nutritional composition of 20 typical recipes of the Mediterra-
nean diet. In addition, using 16S rRNA gene sequencing data, we

apply AGREDA to predict output microbial metabolites from
in vitro fermentation of lentils with feces of Spanish children
representing different conditions: normal weight, obesity, allergy
to cow’s milk, and celiac disease. We provide experimental vali-
dation and compare AGREDA with AGORA using both targeted
and untargeted metabolomic strategies. Finally, for the same
children, we assess the metabolic interaction between the 20
recipes mentioned above and the gut microbiota, finding a sub-
stantially higher number of significant associations in AGREDA
than in AGORA. In conclusion, AGREDA addresses the neces-
sary intersection between human nutrition, metagenomics, and
computational modeling to advance towards personalized
nutrition.

Results

We present a new metabolic reconstruction of the human gut
microbiota that is focused on covering significant gaps in the
degradation pathways of dietary compounds into terminal
downstream metabolites. Our reconstruction follows a mixed-
bag community model'® (see “Methods” section), where reac-
tions from different organisms are merged into a single com-
partment. This strategy reduces the size of reconstruction and
computation time and has been proved accurate and effective for
analyzing the metabolic capabilities of the gut microbiota as a
whole20:21, which is the aim of our study, focused on predicting
output metabolites from the gut microbiota in different condi-
tions. However, we store for each reaction its taxonomic
assignment (Fig. 1), which allows us to model the interaction
between different species and integrate meta-omics data (see
“Methods” section).

We started from AGORA!!, which includes 818 reconstruc-
tions of bacterial species present in the human gut microbiota.
Following the mixed-bag network strategy (see “Methods” sec-
tion), we removed the boundaries between the different species
and deleted duplicated reactions, obtaining 2473 metabolites and
5312 different reactions, together with their taxonomic assign-
ments. Henceforth, this summarized network is referred to
as AGORA.

We then built a universal metabolic network based on the
Model SEED? database and manually curated literature knowl-
edge. Through their Enzyme Commission (EC) numbers (if
available), reactions were annotated to species present in AGORA
using different bioinformatics tools and metabolic databases
(Fig. 1 and “Methods” section). This universal network was
consistently integrated with the reactions and metabolites
from AGORA.

Next, we applied a gap-filling algorithm to include in our
reconstruction the maximum number of dietary compounds and
their degradation pathways. This step was based on FastCor-
eWeighted, included in the COBRA Toolbox?>23 (see “Methods”
section). All the reactions extracted from the universal database to
fill existing gaps included taxonomic assignment to species in
AGORA, which provides support for the predicted pathways.

Finally, a single-species analysis was applied to the resulting
metabolic model in order to identify blocked reactions and dis-
card pathways requiring transport reactions with limited evidence
in public databases (see “Methods” section). We also conducted
similar quality checks to those originally performed with
AGORA: aerobic and anaerobic growth in different growth
media, as well as carbon source uptakes and fermentation product
secretions for different species (Supplementary Fig. 1). Our final
reconstruction is called AGREDA (Supplementary Data 1).

AGREDA adds to AGORA 809 reactions and 320 metabolites,
from which 209 are input dietary compounds from i-Diet not
included in AGORA. We improve the coverage of a wide number
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Fig. 1 Summary of the reconstruction pipeline. First, AGORA reconstructions' (black) are merged into a single compartment. Duplicated reactions were
deleted but the taxonomic assignment was kept. For example, the same reaction r4 in taxon 1 (T1) and taxon 3 (T3) in AGORA, ra; and ras, were converted
to only one reaction in AGREDA and its associated Boolean rule, T;|T5, which we term Taxonomy-Reaction (TR) rule. Next, the Model SEED? reactions
(green) are annotated to AGORA species through EC number information (see “Methods"” section). Then, metabolites provided by i-Diet and manually
curated literature knowledge are integrated with AGORA and the Model SEED (maroon). Finally, gap-filling techniques and single-species analysis, based

on the Cobra Toolbox?2:23, are applied to derive AGREDA.

of metabolic subsystems (Supplementary Table 1), particularly
those involved in different families of phenolic compounds (see
below). Other relevant metabolic tasks of the gut microbiota were
also extended, including the biosynthesis of carotenoids, such as
beta-carotene, the precursor of vitamin A24, amino acid meta-
bolism, particularly the secretion of citrulline?®, alternative
pathways for the biosynthesis of GABAZ6, and caffeine
metabolism?’7, among others.

All the reactions in AGREDA have taxonomic annotation to
species present in AGORA. Full details can be found in Supple-
mentary Data 2. Figure 2a shows the number of reactions and
metabolites related to each species grouped by the respective
phyla. It can be observed that all phyla contain a higher number
of metabolites in AGREDA than in AGORA. Specifically, each
phylum in AGREDA contains on average 210 reactions and 120
metabolites more than in AGORA. As a result, the metabolic
differences among species are captured substantially better in
AGREDA than in AGORA, according to the average metabolic
distance across species calculated with the Jaccard’s distance (0.58
vs 0.48, respectively, Supplementary Fig. 2).

An important set of metabolites included in AGREDA is that
of phenolic compounds. These compounds are widespread in the
vegetal kingdom, where they act as a defensive system against
external aggressions and have been pointed out to be responsible
for many of the health benefits of vegetable consumption.
AGREDA covers a very wide range of phenolic compounds, from
the simpler ones (benzoic and hydroxycinnamic acids) to the
more complex (proanthocyanidins), with all families represented
(Fig. 2b). Overall, AGREDA added degradation pathways for 179
phenolic compounds present in the diet, significantly improving
the coverage of AGORA, which only contained 15 phenolic
compounds.

The daily intake of phenolic compounds is high in comparison
to that of most micronutrients, since they are especially abundant
in highly consumed food items such as tea or coffee (specially rich
in cinnamic acids and flavan-3-ols) and fruits, vegetables, and
legumes (wide range of different flavonoids)?8. In the case of
Spanish children, our group has estimated an average intake of

phenolic compounds of 2079 mg/day?®. However, the phenolic
compounds are barely absorbed in the small intestine and reach
the gut microbiota where they are metabolized by organisms
belonging to different phyla, usually into smaller molecules that
are more easily absorbed in the large intestine30. Therefore, the
benefits of most phenolic compounds are actually exerted by
their output metabolites, hence the importance of being able to
define their microbial metabolization®!. Figure 2c shows the
degradation capabilities of different phyla for three families
of phenolic compounds: flavanones, benzoic acids, and
hydroxycinnamic acids.

In addition to phenolic compounds, we improved the coverage
of other relevant families of metabolites present in the diet,
ranging from carbohydrates, carotenoids, fats, minerals, phytos-
terols, vitamins, and xanthines (Fig. 2d). Overall, AGREDA
included 30 dietary compounds from these families that are not
present in AGORA.

In order to assess the improvement that AGREDA represents
over AGORA for the purpose of assessing the effects of the dif-
ferent diets on the gut microbiota metabolism, we selected 20
representative recipes and employed i-Diet to calculate the
nutrients present in each of them (Supplementary Data 3). As
shown in Fig. 3a, only approximately half of the nutrients of each
recipe that are captured by AGREDA are also present in AGORA.
In addition, the heatmaps in Fig. 3b represent the dissimilarity
(Jaccard’s distance) among the sets of nutrients present in each
recipe captured by AGORA and AGREDA, respectively. We
observe that AGREDA performs better at capturing the differ-
ences between recipes, according to their input nutritional com-
position. A similar result was obtained when comparing
AGREDA with CarveMe (Supplementary Fig. 3). We can,
therefore, conclude that AGREDA provides us with a more
comprehensive tool to assess the effect of the gut microbiota on
diet metabolism.

Prediction of output metabolites from in vitro fermentation of
lentils with children’s feces. A commercial Spanish recipe of
boiled lentils was fermented in vitro with fecal inocula from
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Fig. 2 Main features of AGREDA. a Boxplots depict for each phylum the number of metabolites and reactions of its associated strains in AGORA (red) and
AGREDA (blue). Bottom and top of the boxes denote the first and third quartiles, respectively, and whiskers represent the values within 1.5 interquartile
range above and below the box. Center line represents the median value. The number of strains per phylum is shown in brackets. Blocked reactions and
metabolites were excluded from metabolic models derived from AGORA and AGREDA,; b Distribution of the 179 phenolic compounds added by AGREDA
separated in 19 families. ¢ Degradation capabilities for three families of phenolic compounds present in AGREDA. The total number of strains in each
phylum is reported in brackets; d Other families of compounds in the diet included in AGREDA and AGORA.

children belonging to four different clinical conditions, i.e., nor-
mal weight, obesity, allergy to cow’s milk, and celiac disease.
Seven inocula were prepared with the fecal samples from lean,
obese, and celiac children, while six were prepared with those
from children allergic to cow’s milk, for a total of 27 fermenta-
tions. The taxonomic composition of the microbiota present in
the different fermentations was measured via 16S rRNA gene
sequencing (see “Methods” section).

In order to assess the role of the gut microbiota as a whole
during the fermentation of lentils for each of the different
conditions detailed above, we contextualized the reference
AGREDA and AGORA models with the nutritional information
of the lentils recipe from i-Diet and the taxonomic composition of
the fecal inocula (see “Methods” section, Supplementary Data 3),
obtaining 27 context-specific AGORA and 27 context-specific

AGREDA models. For each context-specific metabolic model,
using flux variability analysis (FVA)32, we determined the
potential list of output microbial metabolites (by-products) that
can be derived from the fermentation of lentils. On average, for
each sample, AGREDA predicted 98 output metabolites that were
not captured by AGORA.

Then we compared the predictive potential of the respective
context-specific AGORA and AGREDA models in identifying the
presence or absence of ten output microbial phenolic compounds
derived from the fermentation of lentils (Fig. 4). For validation
purposes, we used targeted metabolomics analysis in three
inocula per clinical condition, for a total of 12 samples
(see “Methods” section for details, Supplementary Data 3). Thus,
we compared AGORA and AGREDA predictions in 120 cases
(12 samples x 10 compounds; Fig. 4a).
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Fig. 3 Nutritional composition of 20 representative recipes of the Mediterranean diet in AGREDA and AGORA. a The number of input dietary nutrients

that AGORA (red) and AGREDA (blue) capture for different recipes (R1, R2, ...,

R20). Note that all the metabolites present in AGORA are also included in

AGREDA. b Differences between the nutritional content of the recipes captured by AGORA and AGREDA, respectively. The Jaccard's distance between the

compositions of the recipes is represented.

As summarized in Fig. 4b, we found that AGREDA correctly
identifies a large fraction of positive cases, and thus the
sensitivity of the AGREDA context-specific models is remark-
ably higher than that of the AGORA context-specific models:
0.728 vs 0.223, respectively. Despite the fact that the specificity
of AGREDA is lower than that of AGORA (0.765 vs 0.941,
respectively), AGREDA globally outperforms AGORA (accu-
racy: 0.733 vs 0.325, respectively). This difference between
AGREDA and AGORA is highly significant (Fisher test p value:
1.55x 1074 vs 0.1892, respectively). We repeated the same
analysis for CarveMe; however, it was not able to predict most
of the output metabolites and the results are poorer than those
of AGORA (Supplementary Fig. 4).

We provided a more general experimental validation to the
results derived from AGREDA by means of an untargeted
metabolomics analysis in 24 out of the 27 fermentations
considered above (see “Methods” section). In particular, we
focused on output microbial metabolites with a different
predicted outcome (presence/absence) between AGREDA and
AGORA in at least one of the samples analyzed. This subset

comprised 135 output metabolites; however, we discarded those
not identified in any of the 24 samples analyzed, possibly due to
the lack of sensitivity of the metabolomic approach adopted.
Thus, we reduced the analysis to 105 output metabolites, among
which 19 took part both in AGREDA and AGORA and 86 were
only predicted by AGREDA.

The binary outcome obtained from metabolomic data for these
105 metabolites in the 24 samples analyzed can be found in
Supplementary Data 3. In the case of 19 metabolites captured by
both AGREDA and AGORA, we found a statistically significant
association with metabolomic data in AGREDA but not in
AGORA (Fisher test p value: 1.876 x 1075 vs 0.1324, respectively;
Supplementary Table 2). On the other hand, in the case of 86
metabolites only predicted by AGREDA, we obtained an even
higher statistical association (Fisher test p value: 7.205 x 107
Supplementary Table 3). We, therefore, conclude that the new
metabolites and pathways included in AGREDA significantly
improve our predictive capacity of gut microbiota metabolism as
a whole and enable the detection of output metabolites not
considered in AGORA.
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positives, FN false negatives.

In silico prediction of metabolic interaction between diet and
children’s microbiota. We conducted a similar in silico analysis
as the one presented above for the 20 recipes considered in Fig. 3.
In this case, 16S rRNA gene sequencing data were obtained from
fecal samples from the same children incubated with minimal
growth medium (see “Methods” section). Input dietary com-
pounds were fixed for each recipe and consisted of their asso-
ciated nutrients in i-Diet, mucins, and compounds in the minimal
medium (Supplementary Data 3).

Overall, we derived 27 context-specific AGREDA models for 21
different conditions, namely, 20 recipes and the minimal
medium, which makes a total of 567 context-specific metabolic
models. The same analysis was also accomplished with AGORA.
As done in the lentils study discussed above, using FVA, we
determined the potential list of output microbial metabolites that
can be obtained from each of the different scenarios considered
(Supplementary Data 3).

Based on the results of FVA, we analyzed the relevance of
different recipes and clinical conditions in the production of
output microbial metabolites. To that end, we built a logistic
regression model for each output metabolite using each recipe
and clinical condition as independent (explanatory) variables (see
“Methods” section). We identified in AGREDA 151 output
metabolites whose potential production is significantly affected by
different recipes or clinical conditions (adj. p value < 0.05), among
which 49 metabolites depend on the clinical conditions, 87

metabolites depend on diet (recipes), and 15 metabolites depend
on both factors. The rest of the output microbial metabolites did
not show any significant pattern for clinical conditions and diet.

Figure 5 shows heatmaps of predicted production of three
different output metabolites across different recipes and clinical
conditions. Figure 5a illustrates one of the cases where only diet
affects the outcome, namely, only 2 recipes lead to the production
of 4-methoxyphenylacetic acid. Similarly, Fig. 5b represents the
situation where only the clinical conditions affect the outcome,
particularly the production of sesamolin is only possible in the
lean and celiac children considered in our analysis. Finally, both
diet and clinical conditions are relevant in Fig. 5c, where
pyrogallol can be produced with most recipes in lean and celiac
children, while children who are obese or allergic to cow’s milk
require a more specific diet.

The same analysis was done in AGORA, finding that clinical
conditions or diet are implied in the production of 43 output
metabolites, a considerably lower number of significant associa-
tions than in AGREDA. In particular, we identified in AGORA 36
output metabolites affected by clinical conditions, 6 by diet, and 1
by both factors. The rest of the output metabolites did not show a
significant pattern for clinical conditions and diet. In conclusion,
AGREDA presents a larger subset of output microbial metabolites
whose production is dependent on diet and/or children’s gut
microbiota, which shows that AGREDA captures context-specific
metabolic pathways not present in AGORA.
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Fig. 5 AGREDA-predicted production of three output microbial metabolites across different recipes and clinical conditions. Each entry in the heatmap
represents the proportion of samples of a particular clinical condition where a 4-methoxyphenylacetic acid, b sesamolin, and ¢ pyrogallol are produced.
Seven samples were used for celiac, lean, and obese children, while 6 samples were used for children allergic to cow’s milk. The analysis was done for 20
different recipes (R1, R2, ..., R20) and the minimal growth medium (denoted REF).

Discussion

CBM constitutes a promising approach to investigate the inter-
action of diet and gut microbiota, as well as their impact on host
health. In the past years, the number of high-quality genome-
scale metabolic reconstructions of species present in the human
gut has significantly increased, aiming to conduct a more com-
prehensive analysis of the gut microbiota metabolism. However,
they need further developments to become a practical tool in the
area of personalized nutrition, since a large variety of key nutri-
ents present in the diet are not considered in these reconstruc-
tions. This limitation could substantially impair our study of the
interplay between diet and gut microbiota metabolism.

In this article, we directly address this relevant issue and extend
AGORA!!L, one of the largest repositories of metabolic recon-
structions of species present in the human gut microbiome. In
particular, we integrate AGORA with 209 dietary compounds
included in i-Diet, a commercial nutritional software designed to
elaborate optimal diets, collectively involving 809 new reactions
and 320 new metabolites. Our reconstruction, termed AGREDA,
was built through an exhaustive literature analysis and gap-filling
algorithms using Model SEED” as universal database. For this
task, we used different bioinformatic tools to integrate Model
SEED and AGORA and avoided the use of reactions with limited
evidence in the human gut microbiota. As a result, our proposed
reactions in AGREDA include taxonomic annotation to species
present in AGORA, which facilitates the analysis of their activity
with 16S rRNA gene sequencing data.

In addition, our reconstruction pipeline included a single-
species analysis in order to identify blocked reactions and discard
pathways requiring transport reactions with limited evidence in
public databases. With this step, AGREDA could be used to
construct compartmentalized network community models.
However, for the predictive analysis presented in the “Results”

section, aimed at identifying output metabolites produced by the
entire gut microbiota in different conditions, we decided to follow
a mixed-bag strategy. This was done to reduce the size of the
community model and therefore the computation time of our
simulations. Given our positive results, in line with other works in
the literature, this simplification does not seem to affect much our
predictions. In fact, we reproduced the case study of lentil fer-
mentation using a compartmentalized network community
model and found very similar results (Supplementary Tables 4
and 5) but at a substantially higher computational expense than
that of the mixed-bag network community model (120 vs 5 min,
respectively). This shows that the AGREDA mixed-bag approach
is effective and accurate in predicting the global metabolic cap-
abilities of the human gut microbiota.

With the inclusion of the degradation pathways of 179 phe-
nolic compounds, AGREDA constitutes the largest effort in the
literature to compile the metabolism of these compounds by the
human gut microbiome. Despite our advance, there is substantial
room for improvement, since AGREDA currently only includes
97 out of 372 metabolites detailed in Phenol-Explorer33, the first
comprehensive database of polyphenol contents in foods. Many
of them are not annotated in universal metabolic databases, such
as KEGG343> or Model SEED, requiring new strategies to address
this issue. In this direction, enzyme promiscuity methods con-
stitute a promising approach to further complete degradation
pathways of phenolic compounds.

Importantly, AGREDA provides a more comprehensive inte-
gration between diet and gut microbiota metabolism than
AGORA, as shown in Fig. 3 for 20 different representative recipes,
where a significantly higher coverage of their nutrient composition
was obtained. This advance logically allows us to carry out a more
complete analysis of output metabolites from the gut microbiota.
This was illustrated in the case study of lentils, where AGREDA
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showed higher accuracy than AGORA in predicting output
microbial metabolites in different samples analyzed, according to
both targeted and untargeted metabolomics data.

In addition, we applied AGREDA to assess metabolic differ-
ences in the way the gut microbiome of Spanish children degrades
input dietary compounds from 20 different recipes. Despite the
limited number of samples and recipes considered in our analysis,
AGREDA identified a remarkably higher number of significant
associations between diet, gut microbiota, and output microbial
metabolites than AGORA. This emphasizes that AGREDA pro-
vides a more complete definition of diet-specific metabolic
pathways present in the gut microbiota.

For these reasons, AGREDA opens new avenues to investigate
the interaction between diet and gut microbiota with views to
developing personalized nutrition programs. Output microbial
metabolites derived from diet may not only reach the blood
stream and affect host homeostasis but could also have an impact
on the structure of the gut microbial community. In combination
with the nutritional software that can design and propose diets
based on their nutrient content, AGREDA can contribute to
personalized nutrition by defining the optimal nutrients for
modulating the metabolic output of an individual-specific gut
microbiota toward healthier states. The regulation through diet of
key output microbial metabolites in different clinical conditions is
an essential part of personalized medicine and AGREDA con-
stitutes a relevant step forward in this direction.

Methods

Universal biochemical reaction database. We start from AGORA 1.03!1, which
comprises manually curated metabolic models of 818 species of the human gut
microbiome. In order to reduce the computation cost, we modeled the overall
microbial community as a mixed-bag network strategy, where reactions from
different organisms are merged into a single compartment. Different works have
shown this approach to be useful to get insights from microbial community
models*® and, particularly for the assessment of interactions between the bacteria
and the environment!®. A mixed-bag network strategy is suitable for the work
presented here, which aims at identifying the output metabolites that will be
potentially synthetized by a given set of bacterial species present in a specific
nutritional environment. A detailed example illustrating the mixed-bag network
community model can be found in Supplementary Note 1.

Briefly, the following steps were performed for the creation of the microbial
community model from AGORA. First, we modeled the interactions between the
bacterial species present in AGORA by forcing the different metabolic networks to
share the extracellular metabolites. As a consequence, scenarios where two species
compete for a given nutrient or one species consumes a metabolite secreted by
another species can be considered. Second, we removed the compartments and
boundaries between the different species and deleted duplicated reactions (two
different species could have the same reaction). Nevertheless, all the reactions
include their corresponding taxonomic assignation, namely, for each reaction, the
bacterial species that can carry it out are annotated. Altogether, we obtained a
metabolic model including 2473 metabolites and 5312 reactions that explains the
overall metabolic capacity of the microbial community. Note here that, due to the
inclusion of the species interactions in the first step and of the taxonomic
assignations of the reactions in the second one, the information of the interactions
at the species level is not lost.

In order to extend the metabolism of dietary compounds by the gut microbiota,
we integrated the information provided by AGORA with the Model SEED
database’, as well as with other metabolic databases and literature knowledge of gut
microbiota metabolism, as we detail below.

We first downloaded Model SEED from the online portal (https://modelseed.
org/), which involves 20,133 metabolites and 34,655 reactions. To minimize the
inclusion of reactions from species not active in the human gut microbiota, we
decided to annotate the EC numbers present in the Model SEED with the species
present in AGORA. Note here that Model SEED does not incorporate Gene-
Protein-Reaction rules, as available in AGORA; instead, it presents a broad
functional annotation of reactions through EC numbers. Therefore, the integration
of Model SEED with AGORA can be done through the taxonomic annotation of its
EC numbers. We describe below the different strategies followed to carry out this
task with existing genomic annotation tools and relevant metabolic databases.

Genome FASTA files from different species in AGORA were downloaded from
GenBank®’ and Ensembl3® through the NCBI taxonomy identifier and species
name, respectively. These genomes were annotated using the myRAST software
from the RAST Server3, which outputs their protein-encoding genes and (if
available) associated EC numbers. This information was incorporated into the

reactions present in Model SEED. In addition, from the KEGG database3435, we
downloaded the list of EC numbers for 500 species present in AGORA. With this
information, we could further annotate reactions in Model SEED without
taxonomic information.

We also performed a manual annotation of reactions and EC numbers present
in Model SEED. We found that several reactions that did not contain any EC
number information in Model SEED were annotated in public databases, such as
KEGG or MetaCyc*. Based on them, we extracted more reactions with enzymatic
information and used again the myRAST software for taxonomic annotation. For
the remaining EC numbers without taxonomic information, we manually looked
for additional information in the KEGG, BRENDA%!, and UniprotKB*2 databases.
After this process, we obtained a list of 3577 different EC numbers and 14,021
reactions in Model SEED that are related to at least one of the species in AGORA.

We noticed that some metabolites in Model SEED were involved in reactions
under different names. Using both manual curation and chemoinformatic tools, we
identified and deleted metabolites and reactions that were duplicated. In particular,
we first extracted the InChl identifier for the metabolites in Model SEED (13,028
out of 20,133 metabolites), based on PubChem*3, the Human Metabolome
Database*4, KEGG, and the RetroRules database?>. We then conducted a similarity
analysis with the RDKit package®® and the Morgan (circular) fingerprint with
radius 2%7. Fingerprints with similarity 1 were obtained and manually checked. We
removed 703 repeated metabolites and 1054 reactions from Model SEED.

In order to integrate AGORA and Model SEED, we performed an automatic
search of the compound names in both sources and identified duplicated
metabolites and reactions. Model SEED added to AGORA 17,820 metabolites and
32,409 reactions, including 12,459 reactions with taxonomic assignment.

In addition, we manually identified the list of metabolites from i-Diet present in
Model SEED and found 221 that were not present in AGORA. We created an
exchange reaction for each of these compounds and included them in our
metabolic database. We also added 221 reactions and 19 metabolites from the
existing literature on metabolism of phenolic compounds in the gut microbiota,
including their taxonomic annotation (Supplementary Data 2). After this final step,
our universal biochemical reaction database reached 20,376 metabolites and 38,048
reactions. Note here that 20,023 and 13,478 of these reactions do not have
taxonomic and functional assignment, respectively.

Gap-filling strategy. The universal biochemical reaction database described in the
previous subsection was used to extend AGORA and connect input dietary com-
pounds to output microbial metabolites or intermediate metabolites for biomass
production. To that end, we used the implementation of FastCoreWeighted
available in the COBRA Toolbox?223. This reconstruction algorithm requires the
definition of a subset of reactions that must take part in the resulting network,
termed core, and efficiently identifies the necessary reactions from a universal
database to make the core functional. In addition, it allows us to penalize differ-
ently the inclusion of reactions from our universal database. Here we set a weight
equal to 0 for reactions in the core, 0.1 for reactions with taxonomic assignment to
species in AGORA, 50 for reactions without taxonomic assignment but with
functional annotation (at least one EC number available), 100 for reactions without
taxonomic and functional annotation, and 1000 for reactions manually assigned to
plant metabolism. The logic of these weights is to penalize reactions for which there
is no taxonomic or functional evidence in the species reported in AGORA, i.e., gap
filling is preferably done through reactions annotated to species found in AGORA
and therefore in the human gut.

As we found dependencies between different nutrients from i-Diet, namely,
some of them are interconnected as inputs and outputs, we ran FastCoreWeighted
sequentially, updating the core at each iteration. In the first iteration (Iteration 1),
the core included the reactions from literature and AGORA. Note here that the
different biomass reactions available in AGORA were included as part of the core
in order to guarantee biomass production in the resulting model. In the second
iteration, the core comprised the resulting network from Iteration 1 and the input
exchange associated with the first nutrient from i-Diet. In the third iteration, the
core comprised the resulting network from Iteration 1 and the input exchange
associated with the second nutrient from i-Diet. This process was repeated for the
221 nutrients from i-Diet. Reactions obtained at each iteration were included in the
final model.

Note here that, in order to include each input exchange reaction as part of the
core in the different iterations, we split reversible reactions in our universal
database into two irreversible steps. In addition, when we added the input
exchanges of nutrients from i-Diet as part of the core in the different iterations, we
penalized the inclusion of their associated output exchanges to avoid artifacts in the
resulting network (weight of 1e5). The same approach was employed for the output
exchanges of i-Diet metabolites.

We integrated the reactions selected in the different iterations of the gap-filling
process, obtaining an active network made of 2920 metabolites and 6277 reactions.
At this stage, we still had 51 reactions without taxonomic assignment to species in
AGORA. To avoid the inclusion of metabolic pathways with low evidence in the
human gut microbiota, we deleted this subset of reactions and ran fastFVA%S,
obtaining a metabolic model involving 2742 metabolites and 6122 reactions. As a
result, all the reactions extracted from the universal database to fill the gaps in the
degradation of input dietary compounds included taxonomic assignment to species
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in AGORA, which provides a higher reliability to the outcome of the process. Note
here that, for the transport reactions associated with i-Diet compounds, we
assumed their presence in those species that encoded their degradation reactions
and gave them the corresponding taxonomic annotation. An illustration of the gap-
filling algorithm can be found in Supplementary Note 1.

We then checked mass and stoichiometry balance of reactions in AGREDA
with the function checkBalance from the COBRA Toolbox?223. Inconsistent
reactions were manually corrected using available metabolic databases, such as
KEGG or MetaCyc?, or deleted in the case the level of accuracy or annotation in
Model SEED was insufficient. Reversibility of reactions was defined according to
the information provided in AGORA, Model SEED, and other metabolic databases.
After corrections and removals, we extracted a metabolic model with 2720
metabolites and 6088 reactions.

Note here that each reaction in the derived metabolic model includes its
associated Taxonomy-Reaction (TR) rules, which defines the OR Boolean rule with
the species supporting this reaction, in analogy with Gene-Protein-Reaction rules
typically used in the field of CBM. TR rules permit a straightforward
contextualization of the overall model with data of species abundance as well as
conducting single-species analysis. A more detailed description of TR rules can be
found in Supplementary Note 1.

Single-species analysis. After the gap-filling process, due to the mixed-bag net-
work strategy adopted, we may have pathways requiring transport reactions that
are not defined in our metabolic model, which may lead to incorrect predictions.
To overcome this issue, we conducted single-species analysis and identified for
each organism metabolites involving exclusively consumption or production
reactions (dead-end metabolites). The flux through this subset of metabolites is
therefore blocked in their corresponding species. We identified 289 metabolites
presenting this problem in at least 1 of the 818 species. Then we searched these
metabolites in the Human Metabolome Database and included an exchange
reaction in the following cases: (1) they were identified in both feces and biofluids
in the entry “Biospecimen Locations”; (2) they were identified in feces in the entry
“Biospecimen Locations” and located in the extracellular compartment in the entry
“Cellular Locations.” This criterion was satisfied for 37 metabolites, and therefore
an exchange reaction was included in our model for each of them (Supplementary
Data 3).

After including these exchange reactions, we ran fastFVA*® for each species
separately and deleted blocked reactions. Once TR rules were updated, we obtained
a metabolic model, called AGREDA, that involves 2602 metabolites and 5944
reactions. AGREDA can degrade and produce 209 and 147 (out of 221) dietary
compounds from i-Diet, respectively. Full details can be found in Supplementary
Data 2.

Building context-specific AGREDA and AGORA models. From the list of
metabolites and reactions involved in AGREDA, we derived the resulting stoi-
chiometric matrix, S, and forced the mass balance equation:

S-v=0 1)

where the v vector stores reaction fluxes.
Equation (2) represents lower and upper bounds (Ib and ub, respectively) for
reaction fluxes:

Ib<v<ub 2)

Reaction fluxes are limited by irreversibility constraints, growth medium
conditions (diet), and species abundances (16S rRNA gene sequencing data). Lower
bounds for irreversible fluxes were made equal to zero. In addition, uptake fluxes of
compounds that are not present in the diet were fixed to zero. Finally, reactions
whose annotated species are not present in the sample considered were blocked,
i.e., both lower and upper bounds were set to zero. For this last step, we made use
of the TR rules introduced in the previous subsection.

In the analysis reported in the “Results” section, for each sample, we assessed
which output metabolites can be potentially produced from input nutrients
available in the different recipes. For this study, which is essentially structural, we
fixed a sufficiently large bound M (M = 1000) for the uptake fluxes of active
nutrients in the different recipes.

AGREDA included a different biomass reaction for each species, which was
directly extracted from AGORA. We checked that biomass production was possible
for all species in AGREDA in different reported growth media. We could
potentially apply to AGREDA different approaches in the literature, ranging from
multi-objective approaches to models where all species grow at the same rate®.
However, in our structural analysis, we did not force any constraint related with
producing a minimum of biomass for each species in the sample. Our qualitative
study is not affected by the inclusion of these constraints.

Once each context-specific model was defined, based on diet and species
abundance, we applied FVA32. As a result, we obtained blocked reactions (their
minimum and maximum fluxes are equal to zero) and potentially active reactions
(their minimum or/and maximum fluxes are different from zero). As we
particularly focus on output exchange reactions, we developed our own
implementation of FVA in the MATLAB environment using IBM ILOG CPLEX as
the optimization engine. This analysis was done for all recipes and samples

considered in the “Results” section. The same methodology was applied
to AGORA.

Statistical analyses. In the “Results” section, we discussed the relevance of dif-
ferent recipes and clinical conditions in the production of output microbial
metabolites in the children considered. In particular, we built a logistic regression
model for each output microbial metabolite using recipes and clinical conditions as
(independent) explanatory variables. For each output metabolite, the binary
response is a vector of dimension 84 (4 clinical conditions and 21 growth medium
conditions), being 1 if the metabolite can be produced, 0 otherwise. In order to
avoid multicollinearity, we took as reference (intercept) lean children under
minimal growth medium conditions and kept the other 23 independent binary
variables (obese, celiac, and allergic to cow’s milk plus 20 recipes considered). For
multiple hypothesis correction, we integrated all the p values for different output
metabolites analyzed and applied the false discovery rate (FDR) approach. Note
here that output metabolites presenting no variation in the different cases were not
considered in this analysis.

In vitro gastrointestinal digestion and fecal fermentation of lentils. For the
in vitro digestion and fermentation, the following reagents were used: potassium
di-hydrogen phosphate, potassium chloride, magnesium chloride hexahydrate,
sodium chloride, calcium chloride dihydrate, sodium mono-hydrogen carbonate,
ammonium carbonate, and hydrochloric acid, all obtained from Sigma-Aldrich
(Germany). The enzymes—salivary alpha-amylase, porcine pepsin, and bile acids
(porcine bile extract)—were purchased from Sigma-Aldrich, and porcine pan-
creatin was from Alfa Aesar (United Kingdom). The fermentation reagents
(sodium di-hydrogen phosphate, sodium sulfide, tryptone, cysteine, and resazurin)
were obtained from Sigma-Aldrich (Germany).

The in vitro digestion method was carried out according to the protocol
described by Brodkorb and colleagues™’. Briefly, in the oral phase, 5 mL of salivary
solution with alpha-amylase (75 U/mL) and 25 pL of 0.3 M CaCl, were added to 5 g
of lentils and the mix was incubated at 37 °C for 2 min. Then 10 mL of gastric
solution with pepsin (2000 U/mL) and 5 uL of 0.3 M CaCl, were added and the pH
was lowered to 3.0 by adding 1 N HCI; the mix was then incubated at 37 °C for 2 h.
Finally, 20 mL of intestinal solution with pancreatin (100 U/mL), bile salts (10
mM), and 40 pL of 0.3 M CaCl, were added and the pH was raised to 7.0 with 1 N
NaOH, after which the mix was incubated at 37 °C for 2 h. The enzymatic reactions
were halted by immersing the tubes in iced water. The samples were then
centrifuged at 6800 x g for 10 min at 4 °C and the supernatants were separated
from the solid residue or pellet.

The in vitro fermentation was carried out according to the protocol described
by Pérez-Burillo et al.>!>2. Feces were collected from three children (9-11 years
old) from each of the groups studied: allergic to cow’s milk, celiac, obese (body
mass index (BMI) > 30) and lean (BMI < 25). Feces from children belonging to the
same group were pooled together to account for inter-individual variability.
Additionally, seven different inocula were prepared from the celiac-, lean-, and
obese-derived pools, respectively, and six different inocula from the allergic-derived
one, yielding therefore a total of 27 fermentation experiments. Right after
collection, feces were mixed with glycerol (50:50 w/v) and frozen at —80 °C. Briefly,
500 mg of digested wet-solid residue were placed in a screw-cap tube. In all, 10% of
the digestion supernatant was added to the solid residue in order to mimic the
fraction that is not readily absorbed after digestion. Then 7.5 mL of fermentation
medium (15 g/L of peptone, 0.312 mg/L of cysteine, and 0.312 mg/L of Na,S,
adjusted to pH 7.0) and 2 mL of inoculum (consisting of a solution of 32% feces in
phosphate buffer 100 mM, pH 7.0) were added, to reach a final volume of 10 mL +
digestion supernatant volume. Nitrogen was bubbled through the mix to produce
an anaerobic atmosphere and the mix was then incubated at 37 °C for 20 h under
oscillation. Immediately afterwards, the samples were immersed in ice, to stop
microbial activity, and centrifuged at 6800 x g for 10 min. The supernatant,
representing the soluble fraction potentially absorbed after fermentation, was
collected and stored at —80 °C.

DNA extraction and amplicon sequencing. Genomic DNA from the solid resi-
dues of the fermentation reactions was extracted using the MagNaPure LC JE379
platform (ROCHE) and the DNA Isolation Kit IIT (Bacteria, Fungi) Ref.
03264785001, following the manufacturer’s instructions, with a previous lysozyme
lysis. DNA was quality-checked by agarose gel electrophoresis (0.8% wt/vol agarose
in Tris-acetate-EDTA buffer) and quantified using the Qubit 3.0 Fluorometer
(Invitrogen) and the Qubit dsDNA HS Assay Kit.

In order to prepare amplicon libraries, DNA at 5 ng/uL in Tris 10 mM (pH 8.5)
was used for the Illumina protocol for the small subunit ribosomal RNA gene (16S
rRNA) Metagenomic Sequencing Library Preparation (Cod 15044223 Rev. A). PCR
primers targeting the V3-V4 hypervariable region of the 16S rRNA gene were
designed as described by Klindworth et al.>3 (Supplementary Table 6). These
primers contain adapter sequences added to the gene-specific sequences to make
them compatible with the Illumina Nextera XT Index Kit (FC-131-1096). After 16S
rRNA gene amplification and indexing, amplicons were multiplexed and sequenced
in an Illumina MiSeq sequencer according to the manufacturer’s instructions in a
2 %300 cycle paired-end run (MiSeq Reagent Kit v3MS-102-3001).
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Taxonomic assignment of 16S rRNA gene sequencing data. 16S rRNA gene raw
sequence reads were processed, trimmed, and clustered into amplicon sequence
variants (ASVs) using DADA2%%. Once we obtained the ASV table, we assigned
species-level taxonomic identifications to each ASV with DADA2, based on exact
matching (100% identity) between ASVs and the reference sequences in the Silva
database (version 132)%°.

In addition, for those ASV's that were identified with DADA2 at the genus level
but not at the species level, we applied the MegaBLAST module from BLAST®°.
Here we required at least 97% identity for the species-level assignment; however, as
MegaBLAST does not take into account the previously assigned genus level, we
only considered ASVs for which MegaBLAST and the DADA2 classifier method
assigned the same genus. Finally, ASVs with <0.01% of the total number of counts
were removed, and rarefaction was applied up to the smallest library size across
samples (52,923 counts) for further analysis.

Finally, we linked identified taxa to the species present in AGORA. Due to the
metabolic diversity between organisms within each genus, we only considered
ASVs that reached the species level. Given that the taxonomic assignment methods
typically provide information at the species level but not at the strain level,
identified taxa could be related to different strains present in AGORA. To
overcome this issue when contextualizing data in AGREDA, we considered
reactions common for all the strains within the species. We followed this strict
strategy to avoid including reactions with limited taxonomic evidence.

Identification and quantification of phenolic compounds. For individual phe-
nolic quantification, the following standards were used: phloroglucinol, phenol, 3-
(3-hydroxy-phenyl)propionate, 4-hydroxyphenylacetate, (3,4-dihydroxyphenyl)
acetate, dihydrocaffeic acid, cianidanol, myricetin, and quercetin (all purchased
from Sigma-Aldrich, Germany) and 5-(3/,4’-dihydroxyphenyl)-gamma-valer-
olactone (purchased from Toronto Research Chemicals, Canada). Diethyl ether for
extraction was purchased from Sigma-Aldrich (Germany).

Phenolic compounds were analyzed through ultraviolet ultra-high-performance
liquid chromatography (UHPLC) as described by Pérez-Burillo et al.>7, slightly
modified to adapt it to UHPLC. In brief, 1 mL of fermentation supernatant was
mixed with 1 mL of diethyl ether and kept in the dark at 4 °C for 24 h. The organic
phase was then collected and two more extractions with diethyl ether were
performed. These 3 mL of diethyl ether were dried in a rotary evaporator set at
30 °C, and the solid residue was resuspended in 1 mL of methanol:water (50:50 v/v)
mix. The mixture was then ready to be injected into the UHPLC system (Agilent
1290 Infinity II), which is equipped with a quaternary pump, an autosampler kept
at 5°C, and a diode array detector set at 255 nm. The column used was an
InfinityLab Poroshell 120 Sb-Aq 2.1 x 150 mm and 1.9 microns. The flow rate was
set at 0.250 mL/min for 46 min. Two mobile phases were used: milli-Q water with
0.1% of formic acid (A) and acetonitrile (B) with the following gradient: 0 to 28
min from 95 to 60% of A and from 5 to 40% of B; 28-36 min from 60 to 0% of A
and from 40 to 100% of B; 36-41 min from 0 to 95% of A and from 100 to 5% of B;
these last conditions were kept for 5 min. Identification and quantification were
carried out by comparing retention times obtained from pure standards (listed in
reagents section). A calibration curve for each of the compounds was performed in
the range of 0.1-25 p.p.m.

Untargeted metabolomics. The untargeted analysis of the metabolites produced
after in vitro fermentation of lentils was performed following the method of
Rocchetti et al.?8. Briefly, fermented extracts were filtered through nylon filters of
0.20 um before UPLC injection (2.5 uL). A quality-control sample was prepared by
mixing equal volumes from each fermented extract. The quality-control sample
was randomly injected during the sample analysis to monitor the system stability
and attenuate the analytical variation resulting from system instability.

A LC apparatus ACQUITY UPLC M-Class System (Waters Corp., Milford,
MA, USA) was coupled to a time of flight-mass spectrometer detector (SYNAP G2
from Waters). The mass spectrometer and UPLC system were controlled by the
MassLynx v4.1 software. The UPLC column was a fused-core Poroshell 120, SB-
C18 (3.0 x 100 mm, 2.7 um; Agilent Technologies, Palo Alto, CA, USA). The mass
spectrometer was operated in both negative and positive ion modes. A gradient
elution was programmed using as a mobile phase A acidified water (1% acetic acid)
and as mobile phase B acetonitrile. A linear gradient was applied as described in
Goémez-Caravaca et al.>%: 0 min, 5% B; 12.5 min, 20% B; 17.5 min, 60% B; 22 min,
5% B. The initial conditions were maintained for 5 min. The flow rate was set at 0.6
mL/min throughout the gradient. Separation was carried out at 25 °C. The mass
spectrometric (MS) analyses were carried out in full-scan mode (range m/z
50-1000) using an electrospray (electrospray ionization) interface and the
following conditions: drying gas flow, 9.0 L/min; nebulizer pressure, 35 psig; gas
drying temperature, 350 °C; capillary voltage, 3000 V; and fragmentor voltage, 80
V.2.5. All MS data were acquired using the LockSpray to ensure reproducibility and
mass accuracy. The molecular masses of the precursor ion and of product ions were
accurately determined with leucine enkephalin (m/z 556.2771) in negative and
leucine enkephalin (m/z 554.2615) in positive modes at the concentration of 1 ng/
pL at an infusion flow rate of 5 uL/min.

For data analysis, features were selected based on their coefficient of variation
with the quality-control sample (features with a coefficient of variation >30% were

eliminated). Raw data were processed using the MassLynx v4.1 software (Waters,
USA) according to the targeted “find-by-formula” algorithm. Accurate mass
information was used together with the spectral isotope pattern (isotopic spacing
and isotopic ratio) to achieve a higher confidence in metabolite identification. Data
from Human Metabolome Database and Phenol-Explorer 3.6 were used as
references for compound identification, adopting a 5 p.p.m. tolerance for mass
accuracy. Thus, identification was carried out according to Level 2 (i.e., putatively
annotated compounds) as set out by the COSMOS Metabolomics Standards
Initiative (http://cosmos-fp7.eu/msi). Potential metabolites that passed the mass
accuracy detection threshold, that had plausible chromatogram peak features, and
that showed significantly different trends from the control (fecal fermentation
without lentils) were considered as potential fermentation markers of the different
conditions.

Ethics statement. Informed consent was obtained from all participants in
accordance with the Declaration of Helsinki. This study was approved by the Ethics
Committee of the University of Granada (protocol code 1080/CEIH/2020,
approved 10/06/2020).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The 16S rRNA sequencing data were obtained within the STANCE4HEALTH research
project and are available at https://www.ebi.ac.uk/ena/browser/home under accession
code PRJEB40603. The metabolomics data are provided in Supplementary Data 3. The
rest of the data employed in this study can be obtained from the following databases: (i)
AGORA metabolic models: Virtual Metabolic Human (https://www.vmh.life/); (ii)
Universal metabolic databases: The Model SEED (https://modelseed.org/), Kyoto
Encyclopedia of Genes and Genomes (https://www.genome.jp/kegg/); (iii) Genome
FASTA files: GenBank (https://www.ncbi.nlm.nih.gov/genbank/), Ensembl (https://www.
ensembl.org/index.html); (iv) Taxonomic annotation of metabolic capabilities: MetaCyc
(https://metacyc.org/), Brenda (https://www.brenda-enzymes.org/), UniProt (https://
www.uniprot.org/); (v) Metabolites: PubChem (https://pubchem.ncbi.nlm.nih.gov/),
Human Metabolome DataBase (https://hmdb.ca/), RetroRules (https://retrorules.org/), i-
Diet (http://www.i-diet.es/), and Phenol-Explorer (http://phenol-explorer.eu/).

Code availability
The source code to generate AGREDA can be found in https:/github.com/tblasco/
AGREDA.
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