
entropy

Article

Computation of Kullback–Leibler Divergence in
Bayesian Networks

Serafín Moral , Andrés Cano and Manuel Gómez-Olmedo *

����������
�������

Citation: Moral, S.; Cano, A.;

Gómez-Olmedo, M. Computation of

Kullback–Leibler Divergence in

Bayesian Networks. Entropy 2021, 23,

1122. https://doi.org/10.3390/

e23091122

Academic Editor: Raúl Alcaraz

Received: 29 July 2021

Accepted: 25 August 2021

Published: 28 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Computer Science and Artificial Intelligent Department, University of Granada, 18071 Granada, Spain;
smc@decsai.ugr.es (S.M.); acu@decsai.ugr.es (A.C.)
* Correspondence: mgomez@decsai.ugr.es

Abstract: Kullback–Leibler divergence KL(p, q) is the standard measure of error when we have a
true probability distribution p which is approximate with probability distribution q. Its efficient
computation is essential in many tasks, as in approximate computation or as a measure of error
when learning a probability. In high dimensional probabilities, as the ones associated with Bayesian
networks, a direct computation can be unfeasible. This paper considers the case of efficiently
computing the Kullback–Leibler divergence of two probability distributions, each one of them
coming from a different Bayesian network, which might have different structures. The paper is based
on an auxiliary deletion algorithm to compute the necessary marginal distributions, but using a cache
of operations with potentials in order to reuse past computations whenever they are necessary. The
algorithms are tested with Bayesian networks from the bnlearn repository. Computer code in Python
is provided taking as basis pgmpy, a library for working with probabilistic graphical models.

Keywords: probabilistic graphical models; learning algorithms; Kullback–Leibler divergence

1. Introduction

When experimentally testing Bayesian network learning algorithms, in most of the
cases, the performance is evaluated looking at structural differences between the graphs of
the original Bayesian network and the learned one [1], as in the case of using the structural
Hamming distance. This measure is used in recent contributions as [2–4]. A study and
comparison of the different metrics used to measure the structural differences between two
Bayesian networks can be found in [1].

However, in most cases the aim of learning a Bayesian network is to estimate a joint
probability for the variables in the problem. In that situation the error of a learning proce-
dure should be computed by measuring the difference between the probability associated
with the learned network and the original joint probability distribution. Therefore, it can be
useful to estimate a network that is less dense than the original one, but in which parame-
ters can have a more accurate estimation. This is the case of the Naive Bayes classifier, which
obtains very good results in classification problems, despite the fact that the structure is
not the correct one. So, in this situation, structural graphical differences are not a good
measure of performance.

The basic measure to determine the divergence between an estimated distribution
and a true one is the so-called Kullback–Leibler divergence [5]. Some papers use this way
of asserting the quality of a learning procedure as in [6–8]. A direct computation of the
divergence is unfeasible if the number of variables is high. However, some basic decompo-
sition properties [9] (Theorem 8.5) can be applied to reduce the cost of computation of the
divergence. This is the basis of the procedure implemented in the Elvira system [10] which
is the one used in [6]. Methods in [7,8] are also based on the same basic decomposition.
Kullback–Leibler divergence is not only meaningful for measuring divergence between a
learned network and a true one, but also for other tasks, as for example the approximation
of a Bayesian network by a simpler one [11–13] by removing some of the existing links.

Entropy 2021, 23, 1122. https://doi.org/10.3390/e23091122 https://www.mdpi.com/journal/entropy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad de Granada

https://core.ac.uk/display/479173764?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-5555-0857
https://orcid.org/0000-0001-7650-1221
https://orcid.org/0000-0002-3817-8723
https://doi.org/10.3390/e23091122
https://doi.org/10.3390/e23091122
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23091122
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23091122?type=check_update&version=2

Entropy 2021, 23, 1122 2 of 13

The aim of this work is to improve existing methods for computing Kullback–Leibler
divergence in Bayesian networks and to provide a basic algorithm for this task using
Python and integrated into the pgmpy [14] environment. The algorithm implemented in the
Elvira system [10] is based on carrying out a number of propagation computations in the
original true network. The hypothesis underlying our approach is that there are a lot of
computations that are repeated in these propagation algorithms, so what it is done is to
determine which are the operations with potentials that are repeated and then storing the
results in a cache of operations in order to allow reuse them. The experimental work will
show that this is an effective method to improve the efficiency of algorithms, especially in
large networks.

The paper is organized as follows: Section 2 is devoted to set the basic framework and
to present fundamental results for the Kullback–Leibler divergence computation; Section 3
describes the method implemented in the Elvira system for computing Kullback–Leibler
divergence; Section 4 is devoted to describing our proposal based on the cache of operations
with potentials; Section 5 contains the experimental setting and the obtained results; finally
the conclusions are shown in Section 6.

2. Kullback–Leibler Divergence

Let N be a Bayesian network defined on a set of variables X = {X1 . . . Xn}. The family
of a variable Xi in X is termed f (Xi) = {Xi} ∪ pa(Xi), where pa(Xi) is the set of parents of
Xi in the directed acyclic graph (DAG) defined by N. F = { f (X1) . . . f (Xn)} denotes the
complete set of families, one for each one of the variables. Sometimes simplified notations
for families and parent sets will be used: fi (for f (Xi)) and pai (for pa(Xi)), respectively.
As a running example, assume a network with three variables, X1, X2, X3 and the following
structure: X1 → X2 → X3 (see right part of Figure 1). Then the set of families for this
network is given by { f1, f2, f3}, where f1 = {X1}, f2 = {X2, X1}, f3 = {X3, X2}.

NA

fA(X1) = {X1}
fA(X2) = {X1, X2}
fA(X3) = {X1, X3}

X1

X2 X3

NB

fB(X1) = {X1}
fB(X2) = {X1, X2}
fB(X3) = {X2, X3}

X1

X2 X3

Figure 1. Bayesian networks to compare.

A configuration or assignment of values to a set of variables X, {X1 = x1 . . . Xn = xn},
can be abbreviated with (x1 . . . xn) and is denoted as x. If the set of possible values for
each variable in the previous example is {0, 1}, then a configuration can be x = (0, 0, 1),
representing the assignment {X1 = 0, X2 = 0, X3 = 1}.

A partial configuration involving a subset of variables Y ⊆ X is denoted as y. If the
set of variables is fi or pai, then the partial configuration will be denoted by x fi

or xpai ,
respectively. In our example, if f2 = {X2, X1} an example of partial configuration about
these variables will be x f2 = (0, 0).

The set of configurations for variables Y is denoted by ΩY. If x is an assignment and
Y ⊆ X, then the configuration y obtained by deleting the values of the variables in X \ Y is
denoted by x↓Y. If x f2 = (0, 0) is a partial configuration about variables {X2, X1} and we

consider Y = {X2}, then x↓Yf2
is the configuration obtained by removing the value of X1,

i.e., (0).
If w and z are configurations for W ⊆ X and Z ⊆ X respectively, and W ∩ Z = ∅,

then (w, z) is a configuration for W ∪ Z, and will be called the composition of w and z.
For example, if w is the configuration (0) about variable X1 and y is the configuration

Entropy 2021, 23, 1122 3 of 13

(0, 1) defined on X2, X3, then its composition will be the configuration (0, 0, 1) for variables
{X1, X2, X3}.

The conditional probability distribution for Xi given its parents will be denoted as
φi which is a potential defined on the set of variables f (Xi). In general, a potential φ for
variables Y ⊆ X is a mapping defined on ΩY into the set of real numbers: φ : ΩY → R.
The set of variables of potential φ will be denoted as v(φ). If Φ is a set of potentials, v(Φ)
will denote

⋃
φ∈Φ v(φ).

In our example, there are three potentials and Φ = {φ1(X1), φ2(X2, X1), φ3(X3, X2)}
(that is, a probability distribution about X1, and two conditional probability distributions:
one for X2 given X1 and the other for X3 given X2, respectively).

There are three basic operations that can be performed on potentials:

• Multiplication. If φ, φ′ are potentials, then their multiplication is the potential φ · φ′,
with set of variables v(φ · φ′) = v(φ)∪ v(φ′) and obtained by pointwise multiplication:

φ · φ′(y) = φ(y↓v(φ)) · φ′(y↓v(φ′)).
In our example, the combination of φ2 and φ3 will be the potential φ2 · φ3 defined on
{X1, X2, X3} and given by φ2 · φ3(x1, x2, x3) = φ2(x2, x1) · φ3(x3, x2).

• Marginalization. If φ is a potential defined for variables Y and Z ⊆ Y, then the
marginalization of φ on Z is denoted by φ↓Z and it is obtained by summing in the
variables in Y \ Z:

φ↓Z(z) = ∑
y↓Z=z

φ(y).

When Z is equal to Y minus a variable W, then φ↓Z will be called the result of removing
W in φ and also denoted as φ−W . In the example, a marginalization of φ3 is obtained
by removing X3 producing φ−X3

3 defined on X2 and given by φ−X3
3 (x2) = φ3(0, x2) +

φ3(1, x2). If φ3(x3, x2) represents the conditional probability of X3 = x3 given X2 = x2,
then it can be obtained that φ−X3

3 (x2) is always equal to 1 (∀x2 ∈ v(φ3)).
• Selection. If φ is a potential defined for variables Y and z is a configuration for variables

Z, then the selection of φ for this configuration z is the potential φZ=z defined on
variables W = Y \ Z and given by

φZ=z(w) = φ(w, z↓Y).

In this expression (w, z↓Y) is the composition of configurations w and z↓Y which is a
configuration for variables v(φ). Going back to the example, assume that we want
to perform the selection of φ3 to configuration z = (0, 1) for variables {X1, X2}, then
φ3Z=z will be a potential defined for variables {X2, X3} \ {X1, X2} = {X3} given by
φ3Z=z(x3) = φ3(x3, 1), as we are reducing φ3(X3, X2) to a configuration z in which
X2 = 1.

The family of all the conditional distributions is denoted as Φ = {φ1, . . . , φn}. It is
well known that given N the joint probability distribution of the variables in N, p, is a
potential that decomposes as the product of the potentials included in Φ:

p = ∏
φi∈Φ

φi (1)

Considering the example, Φ = {φ1, φ2, φ3} and p = φ1 · φ2 · φ3. The marginal distri-
bution of p for a set of variables Y ⊆ X is equal to p↓Y. When Y contains only one variable
Xi, then to simplify the notation, p↓Y will be denoted as pi. Sometimes it will be needed to
make reference to the Bayesian network containing a potential or family. In these cases we
will use a superscript. For example, f A(Xi) and paA(Xi) refer to the family and parents set
of Xi in a Bayesian network NA respectively.

Entropy 2021, 23, 1122 4 of 13

The aim of this paper is to compute the Kullback–Leibler divergence (termed KL)
between the joint probability distributions, pA and pB, of two different Bayesian networks
NA and NB defined on the same set of variables X but possibly having different structures.
This divergence, denoted as KL(NA, NB) can be computed considering the probabilities
for each configuration x in both distributions as follows:

KL(NA, NB) = ∑
x

pA(x) log
(

pA(x)
pB(x)

)
(2)

However, the computation of the joint probability distribution may be unfeasible
for complex models as the number of configurations x is exponential in the number of
variables. If p, q are probability distributions on X then the expected log likelihood (LL) of q
with respect to p is:

LL(p, q) = ∑
x

p(x) log(q(x)),

then, from Equation (2) it is immediate that:

KL(NA, NB) = ∑
x

pA(x) log(pA(x))−∑
x

pA(x) log(pB(x)) =

LL(pA, pA)− LL(pA, pB) = LL(NA, NA)− LL(NA, NB)
(3)

The probability distribution pB can be decomposed as well as considered in Equation (1).
Therefore, the term LL(NA, NB) in Equation (3) can be obtained as follows considering the
families of variables in NB and their corresponding configurations, x↓ f B

i :

LL(NA, NB) = ∑
x

pA(x) log(pB(x)) = ∑
x

pA(x) log(∏
Xi∈X

φB
i (x
↓ f B

i)) =

∑
x

pA(x) ∑
Xi∈X

log(φB
i (x
↓ f B

i))
(4)

Interchanging additions and reorganizing the terms in Equation (4):

LL(NA, NB) = ∑
Xi∈X

∑
x

pA(x) log(φB
i (x
↓ f B

i)) =

∑
Xi∈X

∑
x f B

i

log(φB
i (x f B

i
))

 ∑
x↓ f B

i =x f B
i

pA(x)

 =

∑
Xi∈X

∑
x f B

i

log(φB
i (x f B

i
))(pA)↓ f B

i (x f B
i
)

(5)

Equation (5) implies a decomposition of the term LL(NA, NB) and, as a consequence
of KL(NA, NB) computation as well. Observe that φB

i (x f B
i
) is the value of the potential φB

i

for a configuration x f B
i

and can be obtained directly from the potential φB
i of the Bayesian

network NB. The main difficulty in Equation (5) consists of the computation of (pA)↓ f B
i (x f B

i
)

values, as it is necessary to compute the marginal probability distribution for variables in
f B
i , the family of Xi in Bayesian network NB, but using the joint probability distribution

pA associated with the Bayesian network NA.

Entropy 2021, 23, 1122 5 of 13

3. Computation with Propagation Algorithms

In this section we introduce the category of inference algorithms based on deletion
of variables and then we show how these algorithms can be applied to compute the
Kullback–Leibler divergence using Equation (5).

3.1. Variable Elimination Algorithms

To compute (pA)↓ f B
i we consider ΦA the set of potentials associated to network NA:

the multiplication of all the potentials in ΦA is equal to pA. Deletion algorithms [15,16],
can be applied to ΦA to determine the required marginalizations. The basic step of these
algorithms is the deletion of a variable from a set ΦA:

• Variable Deletion. If Φ is a set of potentials, the deletion of Xi consists of the follow-
ing operations:

– Compute Φi = {φ : Xi ∈ v(φ)}, i.e., the set of potentials containing variable Xi.

– Compute φ−i =
(

∏φ∈Φi
φ
)−Xi

, i.e., combine all the potentials in Φi and remove
variable Xi by marginalization.

– Update Φ← (Φ \Φi) ∪ {φ−i}, i.e., remove from Φ the potentials containing Xi

and add the new potential φ−i which does not contain Xi.

The main property of the deletion step is the following: starting with ∏φ∈Φ φ = q,
then after the deletion of Xi from Φ, ∏φ∈Φ φ = q−Xi . It is easy to see that the deletion of a
variable Xi can be computed just operating with the elements of Φ defined on Xi.

If Φ is the initial set of potentials of a network N, then p = ∏φ∈Φ φ. In order to
compute the marginalization of p on a set of variables Y ⊆ X, the deletion procedure
should be repeated for each variable Xi in X \ Y. If the marginal probability distribution
for variable Xk is to be calculated, any variable in X different from Xk should be deleted.
The order of variable deletion is not meaningful for the final result, but the efficiency may
depend on it.

When there are observed variables, Z = z, then a previous step of selection should
be carried out: any potential φ ∈ Φ is transformed into φZ=z. This step will be called
evidence restriction. After it q, the product of the potentials in Φ is defined for variables
in Y = X \ Z and its value is q(y) = p(y, z), i.e., the joint probability of obtaining this
value and the observations. If a deletion of variables in W is carried out, then the product
of the potentials in Φ is the potential defined for variables Y = (X \ Z) \W, and satisfies
q(y) = p↓Y∪Z(y, z).

When we have observations and we want to compute the marginal on a variable Xi, it
is well known that not all the initial potentials in Φ are relevant. A previous pruning step
can be done using the Bayes-ball algorithm [17] in order to remove the irrelevant potentials
from Φ before restricting to the observations and carrying out the deletion of variables.

3.2. Computation of Kullback–Leibler Divergence Using Deletion Algorithms

Our first alternative to compute LL(NA, NB) is based on using a simple deletion
algorithm to compute the values (pA)↓ f B

i (x f B
i
) in Equation (5). The basic steps are:

• Given a specific variable Xi, we have that f B
i = {Xi} ∪ paB

i . Then for each possible
configuration xpaB

i
of the parent variables, we include the observation paB

i = xpaB
i

and we apply a selection operation to the list of potentials associated with Bayesian
network NA by means of evidence restriction. We also apply a pruning of irrelevant
variables using the Bayes-ball algorithm.

• Then all the variables are deleted except the target variable Xi. The potentials in Φ

will be all defined for variable Xi and their product will be a potential q defined for
variable Xi such that q(xi) = (pA)↓ f B

i (xi, xpaB
i
).

• The deletion algorithm is repeated for each variable Xi and each configuration of the
parent variables xpaB

i
in Bayesian network NB. So, the number of executions of the

Entropy 2021, 23, 1122 6 of 13

propagation algorithm in Bayesian network NA is equal to ∑n
i=1 ∏Xj∈paB(Xi)

nj, where
nj is the number of possible values of Xj. This is immediate taking into account that
∏Xj∈paB(Xi)

nj is the number of possible configurations xpaB(Xi)
of variables in paB(Xi).

Though this method can take advantage of propagation algorithms to compute
marginals in a Bayesian network, and it avoids a brute force computation associated
with the use of Equation (2), it is quite time consuming when the structure of the involved
Bayesian network is complex.

Algorithm 1 details the basic steps of the initial proposal for computing the Kullback–
Leibler divergence. This algorithm is the one used in [8,10]. Observe that this algorithm
computes LL(NA, NB). It allows the computation of the KL divergence by using Equation (3).

Algorithm 1 Computation of LL using an evidence propagation algorithm

1: function LL(NA, NB)
2: sum← 0.0 . sets initial value to sum
3: for each Xi in NB do
4: for each xpaB

i
do . configuration of Xi parents

5: Let Φ′ the set of relevant potentials from Φ . Applying Bayes-ball
6: Restrict the potentials in Φ′ to evidence paB

i = xpaB
i

7: Delete in Φ′ all the variables in v(Φ) \ {Xi}
8: Let q the product of all the potential in Φ′

9: for each xi in ΩXi do
10: sum← sum + q(xi) log(φB

i (xi, xpaB
i
))

11: end for
12: end for
13: end for
14: return sum
15: end function

As an example, let us suppose we wish to compute the KL divergence between two
Bayesian networks NA and NB defined on X = {X1, X2, X3} (see Figure 1). Let us assume
NA is the reference model. The families of variables in both models are presented in
Figure 1. We have to compute LL(NA, NA) and LL(NA, NB). To compute LL(NA, NB)
Algorithm 1 is applied. Initially, Φ = {φA

1 , φA
2 , φA

3 } where φA
i is defined for variables

f A(Xi). The algorithm works as follows:

• The parent set for X1 is empty. The set of relevant potentials in network NA to
compute the marginal for X1 is given by Φ′ = {φA

1 }, which is the desired marginal q.
• The parents set for X2 in NB is {X1}. So, for each value X1 = x1 we have to

introduce this evidence in network NA and compute the marginal on X2. The set
relevant potentials is Φ′ = {φA

1 , φA
2 }. These potentials are reduced by selection on

configuration X1 = x1. If we call φ4, φ5 the results of reducing φA
1 , φA

2 , respectively,
then φ4 is a potential defined for the empty set of variables and determined by its value
φ4() for the empty configuration. φ5 is a potential defined for variable X2. The desired
marginal q is the multiplication of these potentials: q(x2) = φ4() · φ5(x2).

• The parents set for X3 in NB is {X2}. So, for each value X2 = x2 we have to introduce
this evidence in network NA and compute the marginal on X3. In this case, all the
potentials are relevant Φ′ = {φA

1 , φA
2 , φA

3 }. The first step introduces the evidence
X2 = x2 in all the potentials containing this variable. Only φA

2 contains X2; therefore
the selection φA

2 X2=x2
is a potential defined on variable X1 which we will denote as φ6.

So, after that Φ′ = {φA
1 , , φA

3 , φ6}. To compute the marginal on X3, we have to delete
variable X1. As all the potentials in Φ′ contains this variable they must be combined
for removing X1 afterwards, i.e., computing (φA

1 · φA
3 · φ6)

−X1 . After this operation,
this will be the only potential in Φ′ and it is the desired marginal q.

Entropy 2021, 23, 1122 7 of 13

4. Inference with Operations Cache

The approach proposed in this paper is based on the following fact: the computation
of KL divergence using Equations (3) and (5) requires us to obtain the following families of
marginal distributions:

• (pA)↓ f B
i , for each Xi in NB, for computing LL(NA, NB)

• (pA)↓ f A
i , for each Xi in NA, for obtaining LL(NA, NA)

We have designed a procedure to compute each one of the required marginals (pA)↓Y

for each Y ∈ { f A
i : Xi ∈ NA} ∪ { f B

i : Xi ∈ NB}. Marginals are computed by deleting the
variables not in Y. The procedure uses a cache of computations which can be reused in the
different marginalizations in order to avoid repeated computations.

We have implemented a general procedure to calculate the marginal for a family Y
of subsets Y of X in a Bayesian network N. In our case the family Y is (pA)↓Y for each
Y ∈ { f A

i : Xi ∈ NA} ∪ { f B
i : Xi ∈ NB} and the Bayesian network is NA. A previous step

consists of determining the relevant potentials for computing the marginal on a subset Y,
as not all the initial potentials are necessary. If Φ is the list of potentials, then a conditional
probability potential φi for variable Xi is relevant for Y when Xi is an ascendant for some
of the variables in Y. This is a consequence of known relevance properties in Bayesian
networks [17]. Let us call ΦY the family of relevant potentials for subset Y.

Our algorithm assumes that the subsets in Y are numbered from 1 to K: {Y1, . . . , YK}.
The algorithm first carries out the deletion algorithm symbolically, without actually doing
numerical computations, in order to determine which of them can be reused. A symbolic com-
bination of φ and φ′ consists of determining a potential φ · φ′ defined for variables v(φ) ∪ v(φ′)
but without computing its numerical values (only the scope of the resulting potential is actually
computed). This procedure is analogously done in the case of marginalization.

In fact, two repositories are employed: one for potentials (RΦ) and another for operations
(RO). The entry for each potential in RΦ contains a value acting as its identifier (id); the
potential itself; the identifier of the last operation for which this potential was required (this
is denoted as potential time). Initially, RΦ contains the potentials in Φ assigning time = 0 to
all of them. When a potential is no longer required, then it is removed from RΦ in order to
alleviate memory space requirements. The potentials representing the required marginals (the
results of the queries) are set with time = −1 in order to avoid their deletion.

The repository RO contains an entry for each operation (combination or marginaliza-
tion) with potentials performed during the running of the algorithm in order to compute
the required marginals. This allows that if an operation is needed in the future, its result
can be retrieved from RO preventing repeated computations. Initially RO will be empty.
At the end of the analysis, it will include the description of the elementary operations
carried out throughout the evaluation of all the queries. Two kinds of operations will be
stored in RO:

• combination of two potentials φ1 and φ2 producing a new one as result, φr.
• marginalization of a potential φ1, in order to sum-out a variable and obtaining φr

as result.

The operation description will be stored as registers (id, type, φ1, φ2, φr) with the
following information:

• A unique identifier for the operation (id; an integer).
• The type of operation (type): marginalization or combination.
• Identifiers of the potentials involved as operands and result (identifiers allow to

retrieve potentials from RΦ). If the operation is a marginalization, then φ2 will identify
the index of the variable to remove.

The computation of a marginal for a set Y will also require a deletion order of variables
in some cases. This order is always obtained with a fixed triangulation heuristic min−
weight [18]. However, the procedure described here does not depend on this heuristic and
any one of them could be used.

Entropy 2021, 23, 1122 8 of 13

Algorithm 2 depicts the basic structure of the procedure. The result is LR, an ordered
list of K potentials containing the required marginals for Y1, . . . , YK. The algorithm is
divided into two main parts.

In the first part (lines 2–26), the operations are planned (using symbolic propaga-
tion) and detecting repeated operations. It is assumed that there are two basic func-
tions SCOMBINE(φ1, φ2) and SMARGINALIZE(φ, i), representing the symbolic operations:
SCOMBINE(φ1, φ2) will create a new potential φr with v(φr) = v(φ1) ∪ v(φ2) and
SMARGINALIZE(φ, i) producing another potential φr with v(φr) = v(φ) \ {Xi}.

We will also consider that there are two conditional versions of these operations:
if the operation already exists, only the time is updated, and if it does not exist it is
symbolically carried out and added to the repository of operations. The conditional
combination will be CONDSCOMBINE(φ1, φ2, t) and the conditional marginalization will
be CONDSMARGINALIZE(φ, i) and are depicted in Algorithms 3 and 4, respectively. It is
assumed that both repositories are global variables for all the procedures. The potentials
representing the required marginals are never deleted. For that, a time equal to −1 is
assigned: if time = −1, then the potential should not be removed and then this time is
never updated. We will assume the function UPDATETIME(φ, t) which does nothing if the
time of φ is equal to −1, and updates the time of φ to t otherwise in repository RΦ.

Observe that the first part of Algorithm 2 (lines 2–26) just determines the necessary
operations for the deletion algorithm for for all the marginals, while the second part (lines
27–32) carries out the numerical computations in the order that was established in the first
part. After each operation, the potentials that are no longer necessary are removed from
RΦ and their memory is deallocated. We will assume a function DELETEIF(φ, t) doing this
(remove from RΦ if time of φ is equal to t).

As mentioned above, the analysis of the operation sequence will be carried out using
symbolic operations and taking into account the scopes of potentials but without numerical
computations. This allows an efficient analysis. The result of the analysis will be used as
an operation planning for the posterior numerical computation.

Assume the same example considered in previous sections for the networks in Figure 1.
The marginals to compute on NA (as reference model) will correspond to families
f A(X1) = {X1}, f A(X2) = {X1, X2}, f A(X3) = {X1, X3} and f B(X3) = {X2, X3} (observe
that f A(X1) = f B(X1), and f A(X2) = f B(X2)). Therefore, in this case
Y = {{X1}, {X1, X2}, {X1, X3}, {X2, X3}}.

Initially, the potentials repository RΦ contains the potentials of NA (a conditional
probability for each variable given its parents): φA

1 (X1), φA
2 (X2, X1), and φA

3 (X3, X1) with
time 0. We indicate the variables involved in each potential. The operations repository, RO,
will be empty. Table 1 contains the initial repositories. Notice that the superscript A has
been omitted in order to simplify the notation.

Table 1. Initial state for RΦ (left part) and RO (right part).

Rep. of Potentials (RΦ) Rep. of Operations (RO)

Potential Time Id Type Arg. 1 Arg. 2 Result

φ1(X1) 0
φ2(X1, X2) 0
φ3(X1, X3) 0

Entropy 2021, 23, 1122 9 of 13

Algorithm 2 Computation of marginals of p for subsets Y ∈ Y
1: function MARGINAL(N,Y)
2: t← 1
3: for each k = 1, . . . , K do
4: Let Y the subset Yk in Y
5: Let ΦY the family of potentials from Φ relevant to subset Y
6: for Xi ∈ v(ΦY) \ Y do . determine operations for the query
7: Let Φi = {φ ∈ ΦY : Xi ∈ v(φ)}
8: Assume Φi = {φ1, . . . , φL}
9: ψ = φ1

10: for l = 2, . . . , L do
11: ψ← CONDSCOMBINE(ψ, φl , t)
12: t← t + 1
13: end for
14: ψ← CONDSMARGINALIZE(ψ, i, t)
15: t← t + 1
16: ΦY ← (ΦY \Φi) ∪ {ψ}
17: end for
18: Assume ΦY = {φ1, . . . , φJ} . compute joint distribution
19: ψk ← φ1
20: for j = 2, . . . , J do
21: ψk ← CONDSCOMBINE(ψk, φj, t)
22: t← t + 1
23: end for
24: Append ψk to LR
25: Set time of ψk to −1
26: end for
27: T ← t− 1
28: for each t = 1, . . . , T do . start numerical computation using operations planning
29: Select register with time t from RO: (t, type, φ1, φ2, φr)
30: Compute numerical values of φr . Actual computation
31: DELETEIF(φ1, t), DELETEIF(φ2, t), DELETEIF(φr, t)
32: end for
33: return LR
34: end function

Algorithm 3 Conditional symbolic combination

1: function CONDSCOMBINE(φ1, φ2, t)
2: if register (id, comb, φ1, φ2, φr) is in RO then
3: UPDATETIME(φ1, t), UPDATETIME(φ2, t), UPDATETIME(φr, t)
4: else
5: φr = SCOMBINE(φ1, φ2)
6: Add register (id, comb, φ1, φ2, φr) to RO with id as identifier
7: UPDATETIME(φ1, t), UPDATETIME(φ2, t)
8: Add φr to Rφ with time = t
9: end if

10: return φr
11: end function

Entropy 2021, 23, 1122 10 of 13

Algorithm 4 Conditional symbolic marginalization

1: function CONDSMARGINALIZE(φ, i, t)
2: if register (id, marg, φ, i, φr) is in RO then
3: UPDATETIME(φ, t), UPDATETIME(φr, t)
4: else
5: φr = SMARGINALIZE(φ, i)
6: Add register (id, marg, φ, i, φr) to RO with id as identifier
7: UPDATETIME(φ, t)
8: Add φr to Rφ with t as time
9: end if

10: return φr
11: end function

The first marginal to compute is for Y = {X1}. In this case, the set of relevant
potentials is ΦY = {φ1} and there are not operations to carry out. Therefore the first
marginal is Ψ1 = φ1 which is appended to LR.

The second marginal to be computed is for Y = {X1, X2}. In this case, the relevant
potentials are ΦY = {φ1, φ2} and there are no variables to remove, but it is necessary to
carry out the symbolic combination of φ1 and φ2 in order to compute Ψ2 (lines 19–23 of
Algorithm 2). If we call φ4 the result, then the repositories after this operation will be as
shown in Table 2.

Table 2. Repositories after k = 2.

Rep. of Potentials (RΦ) Rep. of Operations (RO)

Potential Time Id Type Arg. 1 Arg. 2 Result

φ1(X1) −1 1 Comb φ1 φ2 φ4
φ2(X1, X2) 1
φ3(X1, X3) 0
φ4(X1, X2) −1

The third marginal to compute is for set Y = {X1, X3}. Now, the relevant potentials
are ΦY = {φ1, φ3}. The situation is analogous to the computation of the previous marginal,
with the difference that now the symbolic combination to carry out is φ1 · φ3. The repos-
itories status after k = 3 is shown in Table 3. We have that the third desired marginal is
ψ3 = φ5.

Table 3. Repositories after k = 3.

Rep. of Potentials (RΦ) Rep. of Operations (RO)

Potential Time Id Type Arg. 1 Arg. 2 Result

φ1(X1) −1 1 Comb φ1 φ2 φ4
φ2(X1, X2) 1 2 Comb φ1 φ3 φ5
φ3(X1, X3) 2
φ4(X1, X2) −1
φ5(X1, X3) −1

Finally, for k = 4 we have to compute the marginal for Y = {X2, X3}. The relevant
potentials are now ΦY = {φ1, φ2, φ3}. Variable X1 has to be deleted from this set of
potentials. As all the potentials contain this variable, as a first step it is necessary to
combine all of them, and afterwards to remove X1 by marginalizing on {X2, X3}. Assume
that the order of the symbolic operations is: first combine φ1 and φ2 and then its result is
combined with φ3; then this result is marginalized by removing X1. Then the repositories
after k = 4 are as presented in Table 4. The combination of φ1 and φ2 was previously
carried out for k = 2 and therefore its result can be retrieved without new computations.

Entropy 2021, 23, 1122 11 of 13

Table 4. Repositories after k = 4.

Rep. of Potentials (RΦ) Rep. of Operations (RO)

Potential Time Id Type Arg. 1 Arg. 2 Result

φ1(X1) −1 1 Comb φ1 φ2 φ4
φ2(X1, X2) 4 2 Comb φ1 φ3 φ5
φ3(X1, X3) 4 3 Comb φ1 φ3 φ5
φ4(X1, X2) −1 4 Comb φ4 φ3 φ6
φ5(X1, X3) −1 5 Marg φ6 1 φ7

φ6(X1, X2, X3) 5
φ7(X2, X3) −1

After that, the numerical part of operations in Table 4 are carried out in the same order
in which they are described in that table. In this process, after doing an operation with
an identifier (id) equal to t, the potentials with time equal to t are removed from the RΦ
table. For example, in this case, potentials φ2 and φ3 can be removed from RΦ after doing
operation with id = 4 and potential φ6 can be removed after operation with id = 5, leaving
only in RΦ the potentials containing the desired marginal potentials needed to compute
the KL divergence between both networks (potentials with time = −1).

5. Experiments

In order to compare the computation approaches presented in the paper the ex-
perimentation uses a set of Bayesian networks available in the bnlearn [19] repository
(https://www.bnlearn.com/bnrepository/, accessed on 24 August 2021). This library pro-
vides all the functions required for the process described below. Given a certain Bayesian
network as defined in the repository:

• A dataset is generated using the rbn function. As explained in the library docu-
mentation, this function simulates random samples from a Bayesian network, using
forward/backward sampling.

• The dataset is used for learning a Bayesian network. For this step, the tabu function
is employed using the default setting (a dataset as unique argument). It is one of
the structural learning methods available on bnlearn. Since the learned model could
have unoriented links, the cextend function is required, which results in a Bayesian
network consistent with the model passed as argument. Any other different learning
algorithm could have been used, since the goal is to have an alternative Bayesian
network that will be used later to calculate the Kullback–Leibler divergence with the
methods described in Algorithms 1 and 2.

For each network, the Kullback–Leibler divergence is computed with the procedures
presented using evidence propagation (see Algorithm 1) and using operations cache (de-
scribed in Algorithm 2). The main purpose of the experiment is to get an estimation of
the computation times required for both approaches. The obtained results are included in
Table 5. It contains the following information:

• Network name.
• Number of nodes.
• Number of arcs.
• Number of parameters required for quantifying the uncertainty of the network.
• time1: Runtime using the algorithm without cache (Algorithm 1).
• time2: Runtime using the algorithm with cache (Algorithm 2).
• ops: Number of elementary operations stored in the operations repository RO to

compute all the necessary distributions for the calculation using Algorithm 2.
• rep: Number of operations that are repeated and that, thanks to the use of RO and RΦ,

will be executed only once.
• del: Number of factors that were removed from the RΦ with the consequent release of

memory space for future calculations.

https://www.bnlearn.com/bnrepository/

Entropy 2021, 23, 1122 12 of 13

The experiments have been run in a desktop computer with an Intel(R) Xeon(R) Gold
6230 CPU working at 3.60 GHz (80 cores). It has 312 Gb of RAM memory. The operating
system is Linux Fedora Core 34.

Table 5. Runtimes for KL computation without cache (time1) and with cache (time2).

Network Nodes Arcs Parameters Time1 Time2 Ops Rep Del

cancer 5 4 18 0.0313 0.012 48 21 13
earthquake 5 4 10 0.0316 0.0091 31 15 5

survey 5 6 21 0.0504 0.0143 49 23 12
asia 8 8 18 0.0787 0.0173 62 28 13

sachs 11 17 178 0.3484 0.0409 81 30 25
child 20 25 230 0.8796 0.0726 142 58 56

insurance 27 52 984 16.9990 0.3788 631 313 223
water 32 66 10,083 – 8.6822 640 299 170

mildew 35 46 540,150 – 15.9393 1278 955 150
alarm 37 46 509 4.0949 0.3354 638 415 132
barley 48 84 114,005 – 205.6597 2273 1695 328

hailfinder 56 66 2656 362.5262 0.8498 1197 921 127
hepar2 70 123 1453 23.1047 1.4088 1864 1459 242

win95pts 76 112 2656 404.4568 1.0080 960 458 314

It is observed that the calculation with the second method always offers shorter
runtimes than the first one. The shortest runtimes are presented in the table with bold
style. It is noteworthy that the case of three networks in which the method based on the
use of evidence cannot be completed because the available memory capacity is exceeded:
water, mildew, and barley. Moreover, the computational overhead required to manage
operations and factor repositories is beneficial as it avoids the repetition of a significant
number of operations and enables unnecessary potentials to be released, especially in the
most complex networks.

6. Conclusions

Computing the KL divergence between the joint probabilities associated with two
Bayesian networks is an important task that is relevant for many problems, for example
assessing the accuracy of Bayesian network learning algorithms. However, in general, it
is not possible to find this function implemented in software packages for probabilistic
graphical models. In this paper, we provide an algorithm that uses local computation to
calculate the KL divergence between two Bayesian networks. The algorithm is based in a
procedure with two stages. The first one plans the operations determining the repeated
operations and the times in which potentials are no longer necessary, while the second
one carries out the numerical operations, taking care to reuse the results of repeated
operations instead of repeating them and deallocating the memory space associated with
useless potentials. Experiments show that this strategy saves time and space, especially in
complex networks.

The functions have been implemented in Python taking as basis pgmpy software
package and are available in the github repository: https://github.com/mgomez-olmedo/
KL-pgmpy, accessed on 24 August 2021. The README file of the project offers details
about the implementation and the methods available for reproducing the experiments.

In the future, we plan to further improve the efficiency of the algorithms. The main line
will be to invest more time in the planning stage looking for deletion orderings minimizing
the total number of operations or optimizing the order of combinations, when several
potentials have to be multiplied.

https://github.com/mgomez-olmedo/KL-pgmpy
https://github.com/mgomez-olmedo/KL-pgmpy

Entropy 2021, 23, 1122 13 of 13

Author Contributions: Conceptualization, S.M., A.C. and M.G.-O.; methodology, S.M., A.C. and
M.G.-O.; software, S.M., A.C. and M.G.-O.; validation, S.M., A.C. and M.G.-O.; formal analysis,
S.M., A.C. and M.G.-O.; investigation, S.M., A.C. and M.G.-O.; writing–original draft preparation,
S.M., A.C. and M.G.-O.; visualization, S.M., A.C. and M.G.-O.; supervision, S.M., A.C. and M.G.-O.;
funding acquisition, S.M., A.C. and M.G.-O. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was jointly supported by the Spanish Ministry of Education and Science
under project PID2019-106758GB-C31 and the European Regional Development Fund (FEDER).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We are very grateful to the anonymous reviewers for their valuable comments
and suggestions that have contributed to the improvement of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. de Jongh, M.; Druzdzel, M.J. A comparison of structural distance measures for causal Bayesian network models. In Recent

Advances in Intelligent Information Systems, Challenging Problems of Science, Computer Science Series; Springer: Basel, Switzerland,
2009; pp. 443–456.

2. Scutari, M.; Vitolo, C.; Tucker, A. Learning Bayesian networks from big data with greedy search: Computational complexity and
efficient implementation. Stat. Comput. 2019, 29, 1095–1108. [CrossRef]

3. Talvitie, T.; Eggeling, R.; Koivisto, M. Learning Bayesian networks with local structure, mixed variables, and exact algorithms.
Int. J. Approx. Reason. 2019, 115, 69–95. [CrossRef]

4. Natori, K.; Uto, M.; Ueno, M. Consistent learning Bayesian networks with thousands of variables. In Advanced Methodologies for
Bayesian Networks; PMLR; 2017; pp. 57–68. Available online: https://proceedings.mlr.press/v73/natori17a (accessed on 29 July
2021).

5. Kullback, S. Information Theory and Statistics; Dover Publication: Mineola, NY, USA, 1968.
6. de Campos, L.M. A scoring function for learning Bayesian networks based on mutual information and conditional independence

tests. J. Mach. Learn. Res. 2006, 7, 2149–2187.
7. Liu, H.; Zhou, S.; Lam, W.; Guan, J. A new hybrid method for learning Bayesian networks: Separation and reunion. Knowl.-Based

Syst. 2017, 121, 185–197. [CrossRef]
8. Cano, A.; Gómez-Olmedo, M.; Moral, S. Learning Sets of Bayesian Networks. In Proceedings of the International Conference

on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Lisbon, Portugal, 15–19 June 2020;
Springer: Berlin/Heidelberg, Germany, 2020; pp. 151–164.

9. Koller, D.; Friedman, N. Probabilistic Graphical Models: Principles and Techniques; MIT Press: Cambridge, MA, USA, 2009.
10. Elvira Consortium. Elvira: An Environment for Probabilistic Graphical Models. In Proceedings of the 1st European Workshop

on Probabilistic Graphical Models, Cuenca, Spain, 6–8 November 2002; pp. 222–230.
11. Kjærulff, U. Approximation of Bayesian Networks through Edge Removals; Technical Report IR-93-2007; Department of Mathematics

and Computer Science, Aalborg University: Aalborg, Denmark, 1993.
12. Choi, A.; Chan, H.; Darwiche, A. On Bayesian Network Approximation by Edge Deletion. arXiv 2012, arXiv:1207.1370.
13. Kjærulff, U. Reduction of computational complexity in Bayesian networks through removal of weak dependences. In Uncertainty

Proceedings 1994; Elsevier: Amsterdam, The Netherlands, 1994; pp. 374–382.
14. Ankan, A.; Panda, A. pgmpy: Probabilistic graphical models using Python. In Proceedings of the 14th Python in Science

Conference (SCIPY 2015), Austin, TX, USA, 6–12 June 2015.
15. Shafer, G.R.; Shenoy, P.P. Probability propagation. Ann. Math. Artif. Intell. 1990, 2, 327–351. [CrossRef]
16. Dechter, R. Bucket elimination: A unifying framework for reasoning. Artif. Intell. 1999, 113, 41–85. [CrossRef]
17. Shachter, R. Bayes-Ball: The Rational Pasttime (for Determining Irrelevance and Requisite Information in Belief Networks and

Influence Diagrams). In Proceedings of the Fourteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-98),
Madison, WI, USA, 24–26 July 1998; Morgan Kaufmann Publishers: San Francisco, CA, USA, 1998; pp. 48–487.

18. Cano, A.; Moral, S. Heuristic algorithms for the triangulation of graphs. In Proceedings of the International Conference on
Information Processing and Management of Uncertainty in Knowledge-Based Systems, Paris, France, 4–8 July 1994; Springer:
Berlin/Heidelberg, Germany, 1994; pp. 98–107.

19. Scutari, M. Learning Bayesian networks with the bnlearn R package. J. Stat. Softw. 2010, 35, 1–22. [CrossRef]

http://doi.org/10.1007/s11222-019-09857-1
http://dx.doi.org/10.1016/j.ijar.2019.09.002
https://proceedings.mlr.press/v73/natori17a
http://dx.doi.org/10.1016/j.knosys.2017.01.029
http://dx.doi.org/10.1007/BF01531015
http://dx.doi.org/10.1016/S0004-3702(99)00059-4
http://dx.doi.org/10.18637/jss.v035.i03

	Introduction
	Kullback–Leibler Divergence
	Computation with Propagation Algorithms
	Variable Elimination Algorithms
	Computation of Kullback–Leibler Divergence Using Deletion Algorithms

	Inference with Operations Cache
	Experiments
	Conclusions
	References

