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Abstract
In this paper, we derive a variant of the classical Keller–
Segel model of chemotaxis incorporating a growth term
of logistic type for the cell population 𝑛(𝑡, 𝑥), say 𝜈𝑛(1 −

𝑛) with 𝜈 > 0, and a nonstandard chemical production–
degradation mechanism involving first- and second-
order derivatives of the logarithm of the cell density,
say 𝑓𝜆𝑎𝑏(𝑛, 𝑛𝑥, 𝑛𝑥𝑥) = 𝜆𝑛 + 𝑎

𝑛𝑥𝑥

𝑛
+ 𝑏

𝑛2
𝑥

𝑛2
with 𝜆, 𝑎, 𝑏 ∈

ℝ, via the (𝑛, 𝑆)-hydrodynamical system associated with
a modified Ginzburg–Landau equation governing the
evolution of the complex wavefunction 𝜓 =

√
𝑛 𝑒𝑖𝑆 . In

a chemotactic context, 𝑆(𝑡, 𝑥) will play the role of the
concentration of chemical substance. Then, after carry-
ing out a detailed analysis of the modulational stabil-
ity of uniform-in-space planewaves, dark soliton-shaped
traveling wave densities of the former system are con-
structed from solitary wave solutions of the latter.
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2 LÓPEZ

1 INTRODUCTION ANDMAIN RESULTS

1.1 Preliminaries

The complex Ginzburg–Landau equation, typically written as

𝑖𝜕𝑡𝜓 + 𝛼Δ𝑥𝜓 + 𝛽𝑛𝜓 = 𝑖𝜎𝜓 (1)

emerges as an extended version of the nonlinear Schrödinger equation with 𝛼, 𝛽 ∈ ℂ and 𝜎 ∈ ℝ,
where 𝑛(𝑡, 𝑥) = |𝜓(𝑡, 𝑥)|2 represents the probability density associated with the complex wave-
function 𝜓 ∶ [0, 𝑇] × ℝ𝑁 → ℂ. Indeed, if the parameters 𝛼, 𝛽 are assumed to be real numbers and
𝜎 = 0, then the well-known nonlinear (cubic) Schrödinger equation is recovered, either in the
focusing (𝛽 > 0) or defocusing (𝛽 < 0) form. As usual, 𝜕𝑡 denotes the first-order time-derivative
operator, Δ𝑥 stands for the Laplace operator with respect to the position variable 𝑥 ∈ ℝ𝑁 and
𝑖2 = −1. Equation (1) has proved useful to describe a number of dissipative processes in supercon-
ductivity, superfluidity, hydrodynamics, phase transitions, chemical turbulence, Bose–Einstein
condensation, pattern formation, and nonlinear oscillations, among other applications. More
specifically, it governs the amplitude near the onset of fluid-mechanical instabilities (see, for
instance, Refs. 1–3 and references therein).
The cubic nonlinearity present in Equation (1) sometimes appears augmented by additional

gradient terms leading to the following generalized Ginzburg–Landau equation:

𝑖𝜕𝑡𝜓 + 𝛼Δ𝑥𝜓 + 𝛽𝑛𝜓 =

(
𝑖𝜎 + 𝛾

|∇𝑥𝜓|2
𝑛

+ 𝛿𝑄[𝑛]

)
𝜓, (2)

where

𝑄[𝑛] = −
Δ𝑥

√
𝑛

2
√

𝑛
=

|∇𝑥𝑛|2
8𝑛2

−
Δ𝑥𝑛

4𝑛
(3)

denotes the quantum potential stemming from Bohmian mechanics. Equation (2) is commonly
referred to as the modified complex Ginzburg–Landau equation4–9 and has been revealed as a
powerful tool in the modeling of collective motion in a superfluid background when considering
vacuum dissipative effects, among other diffusive processes in nonequilibrium systems.10–12
In a recent work,13 the author showed the accurate connection between a nonlinear

Schrödinger–Doebner–Goldin equation14–16 with focusing cubic interaction, namely,

𝑖𝜕𝑡𝜓 +
1

2
Δ𝑥𝜓 + 𝜆𝑛𝜓 − 𝑖

𝜏

2
log

(
𝜓

𝜓

)
𝜓 =

(
𝑖

2

(
Δ𝑥𝑛

𝑛

)
− ∇𝑥 ⋅

(
𝐽

𝑛

)
−

|𝐽|2
2𝑛2

− 𝑄[𝑛]

)
𝜓, (4)

and the parabolic–parabolic Keller–Segel system of chemotaxis{
𝜕𝑡𝑛 = Δ𝑥𝑛 − ∇𝑥 ⋅ (𝑛∇𝑥𝑆)

𝜕𝑡𝑆 = Δ𝑥𝑆 + 𝜆𝑛 − 𝜏𝑆,
(5)



LÓPEZ 3

which describes the process through which a cell population moves in the direction of the con-
centration of some chemical agents released by themselves. In a biomechanical context, 𝑛 and 𝑆

represent the cell and chemical concentrations, respectively. The link between the Schrödinger
model (4) and the macroscopic system (5) was established through the hydrodynamic laws gov-
erning the time evolution of the modulus square (𝑛 = |𝜓|2) and the argument (𝑆 =

𝑖

2
log(𝜓∕𝜓))

of the wavefunction 𝜓. Here, we denoted 𝜓 the complex conjugate of 𝜓,

𝐽 = Im(𝜓∇𝑥𝜓) (6)

the quantum-mechanical electric current and Im(𝜙) the imaginary part of a complex function 𝜙.

1.2 Literature review, aims, and scope

What we aim to do in this piece of work is extending this relationship to a wider class of quantum-
mechanical equations which can give coverage to more sophisticated effects in the Keller–Segel
framework, such as logistic growth of the cell population17–24 (which may prevent the eventual
blow-up of solutions) and nonstandard chemical production–degradation mechanisms25 (which
may guarantee the existence of several types of traveling wave profiles). By exploiting this con-
nection, a family of sharp soliton-shaped traveling waves of a generalized Keller–Segel system

{
𝜕𝑡𝑛 = Δ𝑥𝑛 − ∇𝑥 ⋅ (𝑛∇𝑥𝑆) + 𝜈𝑛(1 − 𝑛)

𝜕𝑡𝑆 = Δ𝑥𝑆 + 𝜆𝑛 + 𝑎
Δ𝑥𝑛

𝑛
+ 𝑏

|∇𝑥𝑛|2
𝑛2

,
(7)

will be constructed (see Theorems 1 and 3) by means of a suitable gauge transformation of the
solutions to a diffusive correction of the modified complex Ginzburg–Landau equation (2).
A short review of traveling waves in Keller–Segel systems is given below. For the standard

Keller–Segel system with logistic growth term, namely,{
𝜕𝑡𝑛 = Δ𝑥𝑛 − ∇𝑥 ⋅ (𝑛∇𝑥𝑆) + 𝜈𝑛(1 − 𝑛)

𝜕𝑡𝑆 = Δ𝑥𝑆 + 𝜆𝑛 − 𝜏𝑆,
(8)

the existence of traveling waves in different scenarios has been widely dealt with in recent years
(see, for instance, Refs. 20, 26–28). More precisely, in27 the authors show the existence of travel-
ing waves for a range of constant sensibilities, as set out in Ref. 28 but for the parabolic–elliptic
counterpart. For its part, Refs. 20, 26, and 58 address the issue of the existence of a minimal wave
speed above which the system has a traveling wave solution. The same problem for the simpler
case 𝜈 = 0 was already analyzed in the seminal works.29,30 As a matter of fact, it is known31 that
no bounded traveling waves solving (5) do exist due to the presence of a diffusive term in the equa-
tion for 𝑆. On the contrary, when the chemotactic sensitivity is logarithmic and the consumption
mechanism is of the type 𝑓(𝑛, 𝑆) = −𝑛𝑆𝑚, that is,{

𝜕𝑡𝑛 = Δ𝑥𝑛 − ∇𝑥 ⋅ (𝑛∇𝑥 log(𝑆))

𝜕𝑡𝑆 = Δ𝑥𝑆 − 𝑛𝑆𝑚,
(9)
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as raised for the first time in Ref. 57 and more recently in the review paper,32 traveling waves of
pulse and front type are shown to exist. This study is extended in Ref. 33 to drift mechanisms char-
acterized by the presence of a kinetic term of the type 𝑛𝑆𝑚 in the equation for the cell density, too.
Another source of interesting travelingwave profiles is the nonlinearmodification of the diffusion
mechanism underlying the chemotactic process by an appropriate flux limiter, as, for instance, in
Refs. 34–39. In this situation, the cell density profiles are shown that they could develop discon-
tinuities provided that a logarithmic chemosensitivity is prescribed or if porous media flows are
considered. To the author’s knowledge, a comprehensive study of solitonic patterns for logistic
Keller–Segel type systems remains to be done. Our main goal in this regard consists in finding
tanh-fronts (or, in other words, dark solitons in a quantum-mechanical context as evidenced by
the modulational stability criterium stated in Theorem 2) associated with the evolution of the cell
density 𝑛, which will be shown to move with a velocity proportional to the square root of the
logistic parameter 𝜈, in accordance with the theoretical results proved in Refs. 20, 26. To this aim,
some log(𝑛)-gradients need to be incorporated to the production–degradation mechanisms of the
usual chemotaxis systems (compare systems (19) and (8)), giving rise to a new family of models of
Keller–Segel type which may deserve further exploration.
Our starting point is the following diffusive generalization of the modified complex Ginzburg–

Landau equation (2):

𝑖𝜕𝑡𝜓 + 𝛼Δ𝑥𝜓 + 𝛽𝑛𝜓 =

(
𝜎 + 𝛾

|∇𝑥𝜓|2
𝑛

+ 𝛿𝑄[𝑛] + 𝜅∇𝑥 ⋅

(
𝐽

𝑛

))
𝜓 ∶= 𝑀𝐶𝐺𝐿[𝜓], (10)

with 𝛼, 𝛽, 𝛾, 𝛿, 𝜎, 𝜅 ∈ ℂ. Notice that when themodulus-argument decomposition of thewavefunc-
tion

𝜓 =
√

𝑛 𝑒𝑖𝑆 (11)

is considered, the right-hand side of Equation (10) can be rewritten as

𝑀𝐶𝐺𝐿[𝜓] =

(
𝜎 + 𝐹𝜅,𝛾(𝑆) − 𝐹 𝛿

4
,
𝛿

8
−

𝛾

4

(log(𝑛))

)
𝜓, (12)

with

𝐹𝛼,𝛽(𝑢) = 𝛼Δ𝑥𝑢 + 𝛽|∇𝑥𝑢|2. (13)

Here, we used the fact that (see Ref. 40)

𝐽

𝑛
= Im

(
∇𝑥𝜓

𝜓

)
= Im

(
∇𝑥𝑛

2𝑛
+ 𝑖∇𝑥𝑆

)
= ∇𝑥𝑆. (14)

The two 𝐹𝛼,𝛽-contributions in (12) adopt the form of viscous Hamilton–Jacobi operators acting
on 𝑆 and log(𝑛), respectively. These fluxes are known to properly model the evolution of growing
interfaces, for instance, the growth of various types of aggregates, fronts or tumors, where the
Laplacian term describes relaxational diffusion while the gradient square term typically accounts
for lateral growth (see Refs. 41, 42).
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1.3 Results

In what follows, the main purpose is to establish how an adequate choice of the coefficients
involved in Equation (10)may induce extended chemotactic (Keller–Segel) dynamics with logistic
growth for the hydrodynamical magnitudes 𝑛 and 𝑆, as well as to construct exact solitary wave
solutions whose density evolves as a solitonic traveling wave. As a matter of fact, the generaliza-
tions of the standard Keller–Segel system recently derived in Ref. 25, which contain nonstandard
production–degradation chemotactic mechanisms having the general form

𝑓𝑎𝑏𝑐𝑑(𝑛, ∇𝑥𝑛, Δ𝑥𝑛, ∇𝑥𝑆) = 𝑎
Δ𝑥𝑛

𝑛
+ 𝑏

|∇𝑥𝑛|2
𝑛2

+ 𝑐|∇𝑥𝑆|2 + 𝑑
∇𝑥𝑛 ⋅ ∇𝑥𝑆

𝑛
, (15)

with 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ, are shown to fall in a natural way into the hydrodynamic evolution represented
by Equation (10).
In what follows, we focus on the one-dimensional case (𝑥 ∈ ℝ) for simplicity and use the sub-

scripts 𝑡 or 𝑥 to denote time or positional partial derivatives, respectively. Our main results are the
following.

Theorem 1. Let 𝜈 > 0, 𝜆 ∈ ℝ, and

𝜓(𝑡, 𝑥) =
√

𝑛(𝑡, 𝑥) e𝑖𝑆(𝑡,𝑥), 𝑡 > 0, 𝑥 ∈ ℝ, (16)

be a solution of the modified complex Ginzburg–Landau equation (10), with 𝑄[𝑛] and 𝐽 defined as
in (3) and (6), respectively. Then, for the following choice of the coefficients involved in Equation (10)

𝛼 = −𝛾 =
1

2
(1 − 𝑖), 𝛽 = 𝜆 +

𝜈

2
(1 + 𝑖), 𝜎 =

𝜈

2
(1 + 𝑖), 𝛿 ∈ ℝ, 𝜅 = −1, (17)

the macroscopic magnitudes 𝑛(𝑡, 𝑥) (i.e., the modulus square of the wavefunction 𝜓) and

𝑆̂(𝑡, 𝑥) = 𝑆(𝑡, 𝑥) +
1

2
log(𝑛(𝑡, 𝑥)) (18)

(a log-gauged argument of the wavefunction 𝜓) satisfy the following parabolic–parabolic hydrody-
namic system of Keller–Segel type:{

𝑛𝑡 = 𝑛𝑥𝑥 −
(
𝑛𝑆̂𝑥

)
𝑥

+ 𝜈𝑛(1 − 𝑛)

𝑆̂𝑡 = 𝑆̂𝑥𝑥 + 𝜆𝑛 +
𝛿

4

(
𝑛𝑥𝑥

𝑛

)
+
(

4−𝛿

8

)
𝑛2

𝑥

𝑛2
.

(19)

Theorem 2 (Criterium for modulational stability). Let 𝐴0 ∈ ℂ, 𝜀 > 0, and

𝜓𝜀(𝑡, 𝑥) = 𝐴0(1 + 𝜀𝐴(𝑡, 𝑥))e𝑖𝜆𝑡 (20)

be a family of 𝑜(𝜀)-solutions to the modified complex Ginzburg–Landau equation (10)–(17). Let also
assume that the perturbation 𝐴(𝑡, 𝑥) admits the Fourier decomposition

𝐴(𝑡, 𝑥) = 𝐴1 e𝑖(𝐾𝑥+Ω𝑡) + 𝐴2 e−𝑖(𝐾𝑥+Ω𝑡), (21)
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with amplitudes 𝐴1, 𝐴2 ∈ ℂ, wavenumber 𝐾 ∈ ℝ, and angular frequency Ω ∈ ℂ. Then, the follow-
ing dispersion relation is satisfied:

Ω2 − 𝑖(2𝐾2 + 𝜈)Ω − 𝐾2

((
1 +

𝛿

4

)
𝐾2 + 𝜈 − 𝜆

)
= 0. (22)

As consequence, a sufficient andnecessary condition for linear stability of the spatially uniformplane
waves 𝜓0 = 𝐴0 e𝑖𝜆𝑡 with respect to transversally modulated perturbations (20)–(21) is the following:

(4 + 𝛿)𝐾2 + 4(𝜈 − 𝜆) > 0. (23)

Theorem 3. Let 𝛿 = −
5

3
and 𝜆 = −

4𝜈

9
in (17). Then, the solitary wave

𝜓(𝑡, 𝑥) =
√

𝑛(𝜉) 𝑒
−𝑖

4𝜈

9
𝑡
, 𝜉 = 𝑥 − 𝑣𝑡, (24)

with

𝑛(𝜉) =
1

4

(
1 − tanh

(√
𝜈

12
𝜉

))2

(25)

is a solution to Equations (10)–(17) whose probability density 𝑛(𝜉) travels with velocity

𝑣 = 5

√
𝜈

12
. (26)

As consequence, the couple of functions consisting of (25) and

𝑆̂(𝑡, 𝑥) =
1

2
log(𝑛(𝜉)) −

4𝜈

9
𝑡 (27)

solves the Keller–Segel type system (19).

The rest of the paper is devoted to prove Theorem 1. It is structured as follows: In Section 2,
we develop the formal connection between Equation (10) and the parabolic–parabolic Keller–
Segel type model with logistic damping and chemical production–degradation mechanism ruled
by gradient terms stated in (19) (an exhaustive analysis of the way back and forth relating the
Schrödinger–Doebner–Goldin equation with its associated modulus-argument hydrodynamical
system was already made in Ref. 40 in full rigour; see also Ref. 13). Section 3 explores the stability
of uniform-in-space plane wave solutions to the modified complex Ginzburg–Landau equation
established in Section 2 under small modulations of the amplitude. Finally, Section 4 is devoted
to the construction of solitary wave profiles to Equations (10)–(17) whichwill provide tanh-shaped
traveling wave cell densities 𝑛(𝑡, 𝑥) at the Keller–Segel level (in a parameter regime contemplated
by themodulational stability criterium) as those given in (25), as well as chemical densities 𝑆̂(𝑡, 𝑥)

of log(𝑛)-type as those given in (27).
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2 DERIVATION OF THE LOGISTIC KELLER–SEGEL TYPE SYSTEM
(19)

Themain purpose of this section is to derive the logistic Keller–Segel type system (19) as the hydro-
dynamical model associated with a particular version of Equation (10). In what follows, we adopt
the notation

𝛼 = 𝛼𝑟 + 𝑖𝛼𝑖, 𝛽 = 𝛽𝑟 + 𝑖𝛽𝑖, 𝜎 = 𝜎𝑟 + 𝑖𝜎𝑖, 𝛾 = 𝛾𝑟 + 𝑖𝛾𝑖, 𝛿 = 𝛿𝑟 + 𝑖𝛿𝑖, 𝜅 = 𝜅𝑟 + 𝑖𝜅𝑖 (28)

for the complex coefficients involved in Equation (10). The modulus-argument decomposition of
the wavefunction given by (11) gives rise to the following expressions after simple calculus:

𝜓𝑡 =

(
𝑛𝑡

2
√

𝑛
+ 𝑖

√
𝑛 𝑆𝑡

)
𝑒𝑖𝑆, |𝜓𝑥|2 =

𝑛2
𝑥

4𝑛
+ 𝑛𝑆2

𝑥,

𝜓𝑥𝑥 =

(
𝑛𝑥𝑥

2
√

𝑛
−

𝑛2
𝑥

4𝑛3∕2
−
√

𝑛 𝑆2
𝑥 + 𝑖

(√
𝑛 𝑆𝑥𝑥 +

𝑛𝑥𝑆𝑥√
𝑛

))
𝑒𝑖𝑆. (29)

After inserting these formulas into Equation (10) and using (14) we find

𝑖𝑛𝑡 − 2𝑛𝑆𝑡 = 2(𝜅𝑟 + 𝑖𝜅𝑖)𝑛𝑆𝑥𝑥 + 2(𝛼𝑟 + 𝛾𝑟 + 𝑖(𝛼𝑖 + 𝛾𝑖))𝑛𝑆2
𝑥 + 2(𝛼𝑖 − 𝑖𝛼𝑟)(𝑛𝑆𝑥)𝑥

+ 2(𝜎𝑟 + 𝑖𝜎𝑖)𝑛(1 − 𝑛) − 2(𝛽𝑟 − 𝜎𝑟 + 𝑖(𝛽𝑖 − 𝜎𝑖))𝑛
2 −

(
𝛼𝑟 +

𝛿𝑟

2
+ 𝑖

(
𝛼𝑖 +

𝛿𝑖

2

))
𝑛𝑥𝑥

+
1

2

(
𝛼𝑟 + 𝛾𝑟 +

𝛿𝑟

2
+ 𝑖

(
𝛼𝑖 + 𝛾𝑖 +

𝛿𝑖

2

))
𝑛2

𝑥

𝑛
. (30)

Then, taking imaginary parts we obtain

𝑛𝑡 = −

(
𝛼𝑖 +

𝛿𝑖

2

)
𝑛𝑥𝑥 − 2𝛼𝑟(𝑛𝑆𝑥)𝑥 + 2𝜎𝑖𝑛(1 − 𝑛) + 2𝜅𝑖𝑛𝑆𝑥𝑥 + 2(𝛼𝑖 + 𝛾𝑖)𝑛𝑆2

𝑥 − 2(𝛽𝑖 − 𝜎𝑖)𝑛
2

+
1

2

(
𝛼𝑖 + 𝛾𝑖 +

𝛿𝑖

2

)
𝑛2

𝑥

𝑛
. (31)

After making the following choices

𝛼𝑟 =
1

2
𝛼𝑖 = −𝛾𝑖 = −

1

2
, 𝜅𝑖 = 𝛿𝑖 = 0, 𝜎𝑖 = 𝛽𝑖 =

𝜈

2
. (32)

Equation (31) becomes the Keller–Segel evolution equation for the cell concentration 𝑛(𝑡, 𝑥) in
the presence of a logistic source term, namely,

𝑛𝑡 =
1

2
𝑛𝑥𝑥 − (𝑛𝑆𝑥)𝑥 + 𝜈𝑛(1 − 𝑛) (33)
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for a given quantity 𝜈 > 0 which will eventually denote the logistic growth rate. Furthermore,
taking now real parts in Equation (30) we are led to

𝑆𝑡 =

(
1

2
− 𝜅𝑟

)
𝑆𝑥𝑥 +

𝑛𝑥𝑆𝑥

2𝑛
+ 𝛽𝑟𝑛 − 𝜎𝑟 −

(
𝛾𝑟 +

1

2

)
𝑆2

𝑥 +

(
𝛿𝑟 + 1

4

)
𝑛𝑥𝑥

𝑛
−

(
2𝛾𝑟 + 𝛿𝑟 + 1

8

)
𝑛2

𝑥

𝑛2
.

(34)
Equation (34) can be rewritten in a more recognizable way after performing the change of
unknown functions

𝑛̂ = 𝑛, 𝑆̂ = 𝑆 +
1

2
log(𝑛̂), (35)

and selecting

𝛾𝑟 = −
1

2
, 𝜎𝑟 =

𝜈

2
, 𝛽𝑟 = 𝜆 +

𝜈

2
, 𝜅𝑟 = −1, (36)

where 𝜆 ∈ ℝ stands for the rate of chemical production (𝜆 > 0) or consumption (𝜆 < 0). Indeed,
the transformations stated in (35) yield{

𝑛̂𝑡 = 𝑛̂𝑥𝑥 − (𝑛̂𝑆̂𝑥)𝑥 + 𝜈𝑛̂(1 − 𝑛̂)

𝑆̂𝑡 = 𝑆̂𝑥𝑥 + 𝜆𝑛̂ +
𝛿𝑟

4

(
𝑛̂𝑥𝑥

𝑛̂

)
+
(

4−𝛿𝑟

8

)
𝑛̂2

𝑥

𝑛̂2
,

(37)

which is just the system (19) stated in Theorem 1.
As in Ref. 25, we remark that the coefficients of the terms 𝑛̂𝑥𝑥

𝑛̂
and 𝑛̂2

𝑥

𝑛̂2
cannot vanish simulta-

neously, so that the chemical production/degradation mechanism that appears in the right-hand
side of the second equation in (19) is genuinely nonstandard. When 𝜆 = 𝜈 = 0, the system (19)
coincides with that derived in Ref. 25 fromDoebner–Goldin theory. According to the results there
stated, traveling wave solutions with the form

𝑛̂(𝑡, 𝑥) = 𝑛0 cosh (𝑘0(𝑥 − 𝑣𝑡))
2
, (38)

𝑆̂(𝑡, 𝑥) = 2 log(cosh(𝑘0(𝑥 − 𝑣𝑡))) +
𝑘2

0

2
(𝛿𝑟 + 4)𝑡 +

𝑣

2
⋅ 𝑥 (39)

can be found in this situation. Notice that the particular case 𝛿𝑟 = −4 corresponds to a logarithmic
modulation of the chemical diffusion according to the size of the cell population, namely, the sec-
ond equation in (19) becomes 𝑆̂𝑡 = (𝑆̂ − log(𝑛̂))𝑥𝑥 + 𝜆𝑛̂, resulting in the killing of the explicit time
dependence in (39). The two other distinguished cases are 𝛿𝑟 = 0 and 𝛿𝑟 = 4, which make one of
the density gradient terms in the right-hand side of the equation for 𝑆̂ vanish, thereby simplifying
as far as possible the chemotactic production/consumptionmechanism up to 𝑓(𝑛̂, 𝑛̂𝑥) = 𝜆𝑛̂ +

𝑛̂2
𝑥

2𝑛̂2

or 𝑓(𝑛̂, 𝑛̂𝑥𝑥) = 𝜆𝑛̂ +
𝑛̂𝑥𝑥

𝑛̂
.

In the next sections, we are concerned with the special case 𝜈 ≠ 0, which does correspond with
the presence of a logistic damping term in the equation for 𝑛̂ (cf. (19)). At variance with (38), we
will see how this term contributes to produce tanh-shaped solitary waves.
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3 MODULATIONAL STABILITY

We are now concerned with the linear stability analysis of plane wave solutions (see, for instance,
Refs. 43–49) to Equations (10)–(17), specifically those which are uniform in space and oscillatory
in time: 𝜓(𝑡, 𝑥) = 𝐴0 e−𝑖𝜔𝑡, where 𝐴0 ∈ ℂ is the (constant) wave amplitude and 𝜔 stands for the
angular frequency. These profiles are easily seen to solve ourmodified complexGinzburg–Landau
equation provided that the following amplitude and dispersion relations are fulfilled:

|𝐴0|2 = 1, 𝜔 + 𝜆 = 0. (40)

We then consider a family of perturbed waves as those given in (20), where the perturbations are
supposed to be sufficiently small (i.e., those terms of order 𝜀2 are assumed to be negligible). Before
inserting (20) into Equations (10)–(17), we collect some useful identities in the following result:

Lemma 1. Let 𝜓𝜀 be as in (20) and 𝑛𝜀 = |𝜓𝜀|2. Then, for any complex functions 𝐴, 𝐹, the following
relations hold true:

(i) 𝜀(1 + 𝜀𝐴)Re(
𝐹

1+𝜀𝐴
) = 𝜀Re(𝐹) + 𝑜(𝜀2).

(ii) 𝜀(1 + 𝜀𝐴)Im(
𝐹

1+𝜀𝐴
) = 𝜀Im(𝐹) + 𝑜(𝜀2).

(iii) (1 + 𝜀𝐴)|1 + 𝜀𝐴|2 = 1 + 𝜀(2𝐴 + 𝐴) + 𝑜(𝜀2).
(iv) 𝑄[𝑛𝜀](1 + 𝜀𝐴) = −

𝜀

2
Re(𝐴𝑥𝑥) + 𝑜(𝜀2).

(v) (𝑆𝜀)𝑥𝑥(1 + 𝜀𝐴) = 𝜀Im(𝐴𝑥𝑥) + 𝑜(𝜀2).

Proof. (i) follows easily from the fact that

Re

(
(1 + 𝜀𝐴)Re

(
𝐹

1 + 𝜀𝐴

))
= Re(𝐹) + Im(1 + 𝜀𝐴)Im

(
𝐹

1 + 𝜀𝐴

)

= Re(𝐹) + 𝜀Im(𝐴)Im

(
𝐹

1 + 𝜀𝐴

)
,

Im

(
(1 + 𝜀𝐴)Re

(
𝐹

1 + 𝜀𝐴

))
= Im(𝐹) − Re(1 + 𝜀𝐴)Im

(
𝐹

1 + 𝜀𝐴

)

= Im(𝐹) − (1 + 𝜀Re(𝐴))Im

(
𝐹

1 + 𝜀𝐴

)
, (41)

which yields

𝜀(1 + 𝜀𝐴)Re

(
𝐹

1 + 𝜀𝐴

)
= 𝜀Re(𝐹) + 𝑖𝜀Im

(
𝐹 −

𝐹

1 + 𝜀𝐴

)

+ 𝜀2Im

(
𝐹

1 + 𝜀𝐴

)
(Im(𝐴) − 𝑖Re(𝐴)) = 𝜀Re(𝐹) + 𝑜(𝜀2). (42)

(ii) is proved analogously.
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(iii) follows from a straightforward computation by just expanding

(1 + 𝜀𝐴)|1 + 𝜀𝐴|2 = (1 + 𝜀𝐴)2(1 + 𝜀𝐴). (43)

We now prove (iv). It is a simple matter to check that

𝑄[𝑛𝜀] =
(𝑛𝜀)

2
𝑥

8𝑛2
𝜀

−
(𝑛𝜀)𝑥𝑥

4𝑛𝜀
= 𝜀2

(
Re

(
𝐴𝑥(1 + 𝜀𝐴)

))2

2|1 + 𝜀𝐴|4 − 𝜀
Re

(
𝐴𝑥𝑥(1 + 𝜀𝐴) + 𝜀|𝐴𝑥|2)

2|1 + 𝜀𝐴|2
= −𝜀

Re
(

𝐴𝑥𝑥(1 + 𝜀𝐴)
)

2|1 + 𝜀𝐴|2 + 𝑜(𝜀2). (44)

Hence,

𝑄[𝑛𝜀](1 + 𝜀𝐴) = −
𝜀

2
(1 + 𝜀𝐴)Re

(
𝐴𝑥𝑥

1 + 𝜀𝐴

)
= −

𝜀

2
Re(𝐴𝑥𝑥) + 𝑜(𝜀2) (45)

by virtue of (i) with 𝐹 = 𝐴𝑥𝑥.
Finally, to prove (v) we first compute the perturbed current density

𝐽𝜀 = Im
(

𝜓𝜀(𝜓𝜀)𝑥

)
= Im

(
𝜀𝐴𝑥(1 + 𝜀𝐴)

)
, (46)

so that

(𝑆𝜀)𝑥 =
𝐽𝜀

𝑛𝜀
= 𝜀

Im
(

𝐴𝑥(1 + 𝜀𝐴)
)

|1 + 𝜀𝐴|2 . (47)

After differentiating the above expression we find

(𝑆𝜀)𝑥𝑥 = 𝜀
Im

(
𝐴𝑥𝑥(1 + 𝜀𝐴)

)
|1 + 𝜀𝐴|2 + 𝑜(𝜀2), (48)

which yields

(𝑆𝜀)𝑥𝑥(1 + 𝜀𝐴) = 𝜀(1 + 𝜀𝐴)Im

(
𝐴𝑥𝑥

1 + 𝜀𝐴

)
+ 𝑜(𝜀2) = 𝜀Im(𝐴𝑥𝑥) + 𝑜(𝜀2) (49)

again by virtue of (ii) with 𝐹 = 𝐴𝑥𝑥. This ends the proof. ■

We are now in a position to investigate the equation to be satisfied by the perturbation 𝐴(𝑡, 𝑥)

in order that (20) be a solution to Equations (10)–(17). Indeed, after substitution we find

𝑖𝐴𝑡 +
1

2
(1 − 𝑖)𝐴𝑥𝑥 + (𝜈(1 + 𝑖) − 2𝜔)Re(𝐴) +

𝛿𝑟

2
Re(𝐴𝑥𝑥) + Im(𝐴𝑥𝑥) = 0, (50)
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where we used the identities established in Lemma 1 as well as the dispersion relation for 𝜔

(cf. (40)). Separating the real and imaginary parts in Equation (50), we obtain

Im(𝐴𝑡) −

(
1 + 𝛿𝑟

2

)
Re(𝐴𝑥𝑥) −

3

2
Im(𝐴𝑥𝑥) + (2𝜔 − 𝜈)Re(𝐴) = 0 (51)

and

Re(𝐴𝑡) −
1

2
Re(𝐴𝑥𝑥) +

1

2
Im(𝐴𝑥𝑥) + 𝜈Re(𝐴) = 0, (52)

respectively. We now look for perturbation profiles with the form (21). On one hand, plugging (21)
into Equation (51) leads to

(𝑝 + 𝑞)𝐴1 + (𝑝 − 𝑞)𝐴2 = 0, (53)

with

𝑝 =

(
1 + 𝛿𝑟

2

)
𝐾2 + 2𝜔 − 𝜈, 𝑞 = Ω −

3𝑖

2
𝐾2. (54)

On the other hand, plugging (21) into Equation (52) yields

(𝑟 + 𝑖𝐾2)𝐴1 + 𝑟𝐴2 = 0, (55)

with

𝑟 =
𝐾2

2
+ 𝜈 + 𝑖

(
Ω −

𝐾2

2

)
. (56)

A necessary condition for the existence of nontrivial solutions to the linear system composed of
Equations (53) and (55) is

2𝑞𝑟 − 𝑖𝐾2(𝑝 − 𝑞) = 0, (57)

which becomes

Ω2 − 𝑙Ω − 𝑚 = 0 (58)

after some algebraic manipulations, where

𝑙 = 𝑖(2𝐾2 + 𝜈), 𝑚 = 𝐾2

((
1 +

𝛿𝑟

4

)
𝐾2 + 𝜈 + 𝜔

)
. (59)

The solutions to Equations (58)–(59) are given by

Ω± =
𝑖

2
(2𝐾2 + 𝜈) ±

1

2

√
𝛿𝑟𝐾4 + 4𝜔𝐾2 − 𝜈2. (60)
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The asymptotic behavior of the perturbation 𝐴(𝑡, 𝑥) is the same in both cases, as it is determined
by just the imaginary parts of Ω±. Indeed, substitution into (21) leads to

|𝐴(𝑡, 𝑥)| ≤ (|𝐴1| + |𝐴2|)𝑒−Im(Ω)𝑡. (61)

We close this section by showing the conditions under which Im(Ω) > 0, in which case the
perturbation vanishes for long times and stability undermodulation is guaranteed. First, for those
values of 𝐾 for which 𝛿𝑟𝐾

4 + 4𝜔𝐾2 − 𝜈2 > 0, it is immediately deduced that Im(Ω±) = 𝐾2 +
𝜈

2
>

0 and we are done with the stability property. Otherwise, we would find

Ω± =
𝑖

2

(
2𝐾2 + 𝜈 ±

√
𝜈2 − 𝛿𝑟𝐾4 − 4𝜔𝐾2

)
. (62)

As a consequence, a necessary and sufficient condition for modulational stability is given by the
following dispersion relation:

2𝐾2 + 𝜈 −
√

𝜈2 − 𝛿𝑟𝐾4 − 4𝜔𝐾2 > 0 ⟺ (4 + 𝛿𝑟)𝐾
2 + 4(𝜔 + 𝜈) > 0. (63)

Indeed, in this regime the nonlinearities present in Equations (10)–(17) do not reveal strong
enough to propitiate deviations from the spatially uniform plane wave. This closes the proof of
Theorem 2 and paves the way to the presence of dark solitonic structures in our model,43,50 to
which we devote the following sections.

4 SOLITARYWAVE SOLUTIONS OF EQUATIONS (10)–(17)

The purpose of this section is to construct solitary wave solutions to the one-dimensional modi-
fied complex Ginzburg–Landau equation (10) for the choice of coefficients stated in (17), which
gives rise to the hydrodynamic (Keller–Segel) system (19) via the following modulus-argument
decomposition of the wavefunction (cf. (35)):

𝜓 =
√

𝑛 e𝑖
(

𝑆+
1

2
log(𝑛)

)
. (64)

We are especially interested in showing the persistence of those soliton profiles peculiar to the
nonlinear Schrödinger equation, namely, probability densities of sech/tanh type. To this aim, we
consider the following ansatz profile:

𝜓(𝑡, 𝑥) = 𝐴(𝜉) e𝑖(𝑘𝑥−𝜔𝑡), 𝜉 = 𝑥 − 𝑣𝑡, (65)

which straightforwardly leads to the relations 𝑆𝑥𝑥 = 0 and 𝑄 = −
𝐴′′

2𝐴
. Here, we denoted ′ the

derivative with respect to the variable 𝜉 specific to the traveling wave. After inserting (65) into
Equations (10)–(17) and then separating the imaginary and real parts we obtain(

𝐴′′ +
(𝐴′)2

𝐴

)
+ 2(𝑣 − 𝑘)𝐴′ + 𝜈𝐴(1 − 𝐴2) = 0 (66)
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and (
1 + 𝛿𝑟

2

)
𝐴′′ +

(𝐴′)2

2𝐴
+ 𝑘𝐴′ +

(
𝜔 −

𝜈

2

)
𝐴 +

(
𝜆 +

𝜈

2

)
𝐴3 = 0, (67)

respectively. Equation (66) can be easily rewritten as

𝑛′′ + 2𝑢𝑛′ + 2𝜈𝑛(1 − 𝑛) = 0, (68)

where 𝑛 = 𝐴2 and

𝑢 = 𝑣 − 𝑘. (69)

Notice that (68) is exactly the equation satisfied by those traveling waves of the Fisher–
Kolmogorov–Petrovsky–Piscounov (FKPP) equation51,52

𝑛𝑡 =
1

2
𝑛𝑥𝑥 + 𝜈𝑛(1 − 𝑛) (70)

moving with velocity 𝑢. Furthermore, Equation (67) reads as follows in terms of 𝑛:(
1 + 𝛿𝑟

4

)
𝑛′′ −

𝛿𝑟(𝑛
′)2

8𝑛
+

𝑘𝑛′

2
+
(

𝜔 −
𝜈

2

)
𝑛 +

(
𝜆 +

𝜈

2

)
𝑛2 = 0. (71)

Thus, our goal will consist in finding soliton profiles which solve Equations (68) and (71) simul-
taneously, as well as the eventual relations among the parameters for this to happen.

4.1 Solving Equation (68)

Although a relevant family of explicit solutions to Equation (70) has been found elsewhere,53,54,56
here we adapt to our context the fundamental computational steps of the homogeneous balance
method (see, for instance, Ref. 55 and references therein) for the sake of self-consistency. Themain
idea consists of searching for solutions with the shape

𝑛(𝜉) = (𝑓(𝜙))′′ + 𝐴(𝑓(𝜙))′ + 𝐵 = 𝑓′′(𝜙)(𝜙′)2 + 𝑓′(𝜙)𝜙′′ + 𝐴𝑓′(𝜙)𝜙′ + 𝐵, (72)

where 𝜙 = 𝜙(𝜉) is a function to be properly determined later.

Lemma 2. Let 𝜈 > 0. Then, the function

𝑛(𝜉) =
1

4

(
1 − tanh

(√
𝜈

12
𝜉

))2

, (73)

with

𝜉 = 𝑥 − 5

√
𝜈

12
𝑡 (74)
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is a soliton-shaped traveling wave of the FKPP equation (68) which decreases from the equilibrium
point 𝑛 = 1 to the equilibrium point 𝑛 = 0.

Proof. It is a simple matter to check that

𝑛′ = 𝑓′′′(𝜙)(𝜙′)3 + 𝑓′′(𝜙)(3𝜙′𝜙′′ + 𝐴(𝜙′)2) + 𝑓′(𝜙)(𝜙′′′ + 𝐴𝜙′′),

𝑛′′ = 𝑓(𝑖𝑣)(𝜙)(𝜙′)4 + 𝑓′′′(𝜙)(6(𝜙′)2𝜙′′ + 𝐴(𝜙′)3)

+ 𝑓′′(𝜙)(3(𝜙′′)2 + 4𝜙′𝜙′′′ + 3𝐴𝜙′𝜙′′) + 𝑓′(𝜙)(𝜙(𝑖𝑣) + 𝐴𝜙′′′). (75)

As a consequence, after inserting the above expressions in Equation (68) and rearranging terms
we obtain

1

2
𝑓(𝑖𝑣)(𝜙)(𝜙′)4 + 𝑓′′′(𝜙)

(
𝑢(𝜙′)3 +

1

2
(6(𝜙′)2𝜙𝑥𝑥 + 𝐴(𝜙′)3)

)
+ 𝑓′′(𝜙)

(
𝑢(3𝜙′𝜙′′ + 𝐴(𝜙′)2) + 𝜈(1 − 2𝐵)(𝜙′)2

)
+

1

2
𝑓′′(𝜙)(4𝜙′𝜙′′′ + 3𝐴𝜙′𝜙′′ + 3(𝜙′′)2) + 𝑓′(𝜙)

(
𝑢(𝜙′′′ + 𝐴𝜙′′) +

1

2
(𝜙(𝑖𝑣) + 𝐴𝜙′′′) + 𝜈(1 − 2𝐵)(𝜙′′ + 𝐴𝜙′)

)
− 𝜈𝑓′′(𝜙)2(𝜙′)4 − 𝜈𝑓′(𝜙)2((𝜙′′)2 + 𝐴2(𝜙′)2 + 2𝐴𝜙′𝜙′′) − 2𝜈𝑓′(𝜙)𝑓′′(𝜙)(𝜙′)2(𝜙′′ + 𝐴𝜙′) + 𝜈𝐵(1 − 𝐵) = 0.

(76)

The strategy is then based on the cancelation of the highest power of 𝜙′, namely, (𝜙′)4, which
leads to the relation

1

2
𝑓(𝑖𝑣)(𝜙) − 𝜈𝑓′′(𝜙)2 = 0. (77)

It is straightforward to see that the function

𝑓(𝜙) = −
3

𝜈
log(𝜙) (78)

solves Equation (77). Now, taking into account that (78) gives rise to the relations

𝑓′(𝜙)2 =
3

𝜈
𝑓′′(𝜙), 𝑓′(𝜙)𝑓′′(𝜙) =

3

2𝜈
𝑓′′′(𝜙), (79)

Equation (76) becomes

𝑓′′′(𝜙)

(
𝑢 −

5𝐴

2

)
(𝜙′)3 + 𝑓′′(𝜙)

(
𝑢(3𝜙′𝜙′′ + 𝐴(𝜙′)2) + 𝜈(1 − 2𝐵)(𝜙′)2

)
+

1

2
𝑓′′(𝜙)(4𝜙′𝜙′′′ − 9𝐴𝜙′𝜙′′ + 3(𝜙′′)2 − 6𝐴2(𝜙′)2)

+ 𝑓′(𝜙)

(
𝑢(𝜙′′′ + 𝐴𝜙′′) +

1

2
(𝜙(𝑖𝑣) + 𝐴𝜙′′′) + 𝜈(1 − 2𝐵)(𝜙′′ + 𝐴𝜙′)

)
+ 𝜈𝐵(1 − 𝐵) = 0. (80)
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We finally consider the ansatz profile

𝜙(𝜉) = 1 + 𝑒𝜃𝜉, 𝜉 = 𝑥 − 𝑢𝑡, (81)

so that (72) reads

𝑛(𝜉) = −
3𝜃

𝜈

𝑒𝜃𝜉

(1 + 𝑒𝜃𝜉)2
(𝜃 + 𝐴(1 + 𝑒𝜃𝜉)) + 𝐵

= −
3𝜃

4𝜈

(
𝜃 sech

2
(

𝜃𝜉

2

)
+ 2𝐴 tanh

(
𝜃𝜉

2

))
+ 𝐵 −

3𝐴𝜃

2𝜈
. (82)

The relations among the different parameters involved in (82), namely, 𝐴, 𝐵, 𝜃, and 𝑢, are now
obtained by making the coefficients of the successive derivatives of 𝑓 in (80) vanish get

𝑓′′′ ∶

(
𝑢 −

5𝐴

2

)
(𝜙′)3 = 0, (83)

𝑓′′ ∶
3

2
(𝜙′′)2 + 2𝜙′𝜙′′′ + 3

(
𝑢 −

3𝐴

2

)
𝜙′𝜙′′ +

(
𝐴𝑢 + 𝜈(1 − 2𝐵) − 3𝐴2

)
(𝜙′)2 = 0, (84)

𝑓′ ∶
1

2
𝜙(𝑖𝑣) +

(
𝑢 +

𝐴

2

)
𝜙′′′ + (𝐴𝑢 + 𝜈(1 − 2𝐵))𝜙′′ − 𝜈(1 − 2𝐵)𝐴𝜙′ = 0, (85)

Independent term ∶ 𝐵 = 0 or 𝐵 = 1. (86)

When substituting (81) into Equations (84)–(85), we obtain

𝜃2 + 6𝐴𝜃 − 𝐴2 + 2𝜈(1 − 2𝐵) = 0, (87)

𝜃3 + 6𝐴𝜃2 + (5𝐴2 + 2𝜈(1 − 2𝐵))𝜃 + 2𝜈(1 − 2𝐵)𝐴 = 0. (88)

Now, combining the fact that

𝑢 =
5𝐴

2
(89)

(as sheds from (83)) with Equation (88) we get

3𝐴2𝜃 + 𝜈(1 − 2𝐵)𝐴 = 0, (90)
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hence

𝜃 = −
𝜈(1 − 2𝐵)

3𝐴
. (91)

We can then insert (91) into Equation (87) to deduce that𝐴2 = 𝜃2, which yields𝐴 = −𝜃 according
to Equation (88). Thus, solutions to Equation (68) can be constructed with the following form
(cf. (82)):

𝑛(𝜉) =
1

4

(
1 + tanh

(
𝜃𝜉

2

))2

+ 𝐵, (92)

where we used that

𝜃2 =
𝜈(1 − 2𝐵)

3
(93)

as follows from (91) and the fact that 𝐴 = −𝜃. Finally, for 𝜈 > 0 fixed, formula (93) imposes the
choice 𝐵 = 0. Also, 𝐴 must be chosen with the positive sign so as to have a positive velocity (cf.
(89)), namely,

𝐴 =

√
𝜈

3
= −𝜃. (94)

Consequently, (92) finally reads as stated in the lemma. ■

Remark 1. We call the reader’s attention to the fact that thewell-knownminimal velocity condition
for the existence of traveling waves 𝑛(𝑥 − 𝑐𝑡) to the FKPP equation 𝑛𝑡 = 𝑛𝑥𝑥 + 𝑛(1 − 𝑛), namely,
𝑐 ≥ 2, here reads 𝑢 ≥

√
2𝜈, which is fulfilled without any further restriction on 𝜈, as follows from

the expressions (89) and (94) yielding 𝑢 = 5
√

𝜈

12
.

4.2 Compatibility with Equation (71)

In this section, we face the problem of finding a suitable choice of the parameters involved in (92),
already shown to solve Equation (68), which makes it into a solution of Equation (71), too.

Lemma 3. The following are sufficient and necessary conditions for (73)–(74) to solve Equation
(71):

(i) 𝑘 = 0 in (65).
(ii) 𝛿 = −

5

3
in (10).

(iii) 𝜔 =
4𝜈

9
= −𝜆 in (65) and (10), respectively.
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Proof. From (73), we have

𝑛′(𝜉) =
𝜃

4

(
1 − tanh

2
(

𝜃𝜉

2

))(
1 + tanh

(
𝜃𝜉

2

))
,

𝑛′′(𝜉) =
𝜃2

8

(
1 − tanh

2
(

𝜃𝜉

2

))2

− 𝜃 tanh

(
𝜃𝜉

2

)
𝑛′(𝜉). (95)

The following explicit expressions are also of interest before substitution of (73)–(74) into Equation
(71):

𝑛(𝜉)2 =
1

16

(
tanh

4
(

𝜃𝜉

2

)
+ 4 tanh

3
(

𝜃𝜉

2

)
+ 6 tanh

2
(

𝜃𝜉

2

)
+ 4 tanh

(
𝜃𝜉

2

)
+ 1

)
,

𝑛(𝜉)3 =
1

64

(
tanh

6
(

𝜃𝜉

2

)
+ 6 tanh

5
(

𝜃𝜉

2

)
+ 15 tanh

4
(

𝜃𝜉

2

)
+ 20 tanh

3
(

𝜃𝜉

2

)

+ 15 tanh
2
(

𝜃𝜉

2

)
+ 6 tanh

(
𝜃𝜉

2

)
+ 1

)
,

𝑛′(𝜉)2 =
𝜃2

16

(
tanh

6
(

𝜃𝜉

2

)
+ 2 tanh

5
(

𝜃𝜉

2

)
− tanh

4
(

𝜃𝜉

2

)
− 4 tanh

3
(

𝜃𝜉

2

)

− tanh
2
(

𝜃𝜉

2

)
+ 2 tanh

(
𝜃𝜉

2

)
+ 1

)
,

𝑛(𝜉)𝑛′(𝜉) =
𝜃

16

(
− tanh

5
(

𝜃𝜉

2

)
− 3 tanh

4
(

𝜃𝜉

2

)
− 2 tanh

3
(

𝜃𝜉

2

)
+ 2 tanh

2
(

𝜃𝜉

2

)

+ tanh

(
𝜃𝜉

2

)
+ 3

)
,

𝑛(𝜉)𝑛′′(𝜉) =
𝜃2

32

(
3 tanh

6
(

𝜃𝜉

2

)
+ 8 tanh

5
(

𝜃𝜉

2

)
+ 3 tanh

4
(

𝜃𝜉

2

)
− 8 tanh

3
(

𝜃𝜉

2

)

− 7 tanh
2
(

𝜃𝜉

2

)
+ 1

)
. (96)

Inserting the above formulas into Equation (71) and equating powers of the same order in
tanh(

𝜃𝜉

2
), we arrive at the following relations after some direct but lengthy computations:

tanh
6
(

𝜃𝜉

2

)
∶ 3 + 2𝛿 +

6

𝜈

(
𝜆 +

𝜈

2

)
= 0, (97)

tanh
5
(

𝜃𝜉

2

)
∶ (4 + 3𝛿)𝜃 − 2𝑘 +

18

𝜈

(
𝜆 +

𝜈

2

)
𝜃 = 0, (98)

tanh
4
(

𝜃𝜉

2

)
∶ (3 + 4𝛿)𝜃2 − 12𝑘𝜃 + 8

(
𝜔 −

𝜈

2

)
+ 30

(
𝜆 +

𝜈

2

)
= 0, (99)
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tanh
3
(

𝜃𝜉

2

)
∶ −(2 + 𝛿)𝜃2 − 2𝑘𝜃 + 8

(
𝜔 −

𝜈

2

)
+ 10

(
𝜆 +

𝜈

2

)
= 0, (100)

tanh
2
(

𝜃𝜉

2

)
∶ −(7 + 6𝛿)𝜃2 + 8𝑘𝜃 + 48

(
𝜔 −

𝜈

2

)
+ 30

(
𝜆 +

𝜈

2

)
= 0, (101)

tanh

(
𝜃𝜉

2

)
∶ −2𝛿𝜃2 + 4𝑘𝜃 + 32

(
𝜔 −

𝜈

2

)
+ 12

(
𝜆 +

𝜈

2

)
= 0, (102)

tanh
0
(

𝜃𝜉

2

)
∶ 𝜃2 + 12𝑘𝜃 + 8

(
𝜔 −

𝜈

2

)
+ 2

(
𝜆 +

𝜈

2

)
= 0. (103)

When using in (98) the information provided by (97), the parameter 𝑘 can be identified in terms
of 𝜃 as

𝑘 = −

(
5 + 3𝛿

2

)
𝜃. (104)

Now, plugging (104) and (97) into (99), we obtain the following formula for 𝜔 after rearranging
terms and simplifying:

𝜔 =
𝜈(3 + 𝛿)

3
. (105)

At this stage, the conditions (100) and (101) become redundant. In the same way as before, plug-
ging now (104) and (97) into (102) we find that

𝛿 = −
5

3
, (106)

which makes (103) also redundant. As a consequence, it is easily deduced from (97) that

𝜆 = −
4𝜈

9
. (107)

Finally, the expressions for 𝑘 and 𝜔 (cf. (104) and (105)) can be restated as

𝑘 = 0, 𝜔 = −𝜆. (108)

■

Also, (69) alongwith (89) and (94) provide the allowed values for thewave velocity 𝑣 established
in (26). This concludes the proof of Theorem 3.

Remark 2. Notice that the values for 𝛿, 𝜆, and 𝜔 found in Lemma 3(ii) and (iii) do satisfy the
criterium of modulational stability established in Theorem 2.
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5 CONCLUDING REMARKS

In this paper, we have derived a parabolic–parabolic Keller–Segel type model with logistic source
and nonstandard chemical production–degradation mechanism, namely,{

𝑛𝑡 = 𝑛𝑥𝑥 − (𝑛𝑆𝑥)𝑥 + 𝜈𝑛(1 − 𝑛)

𝑆𝑡 = 𝑆𝑥𝑥 + 𝑓𝜆𝛿(𝑛, 𝑛𝑥, 𝑛𝑥𝑥),
(109)

where

𝑓𝜆𝛿(𝑛, 𝑛𝑥, 𝑛𝑥𝑥) = 𝜆𝑛 +
𝛿

4

(𝑛𝑥𝑥

𝑛

)
+

(
4 − 𝛿

8

)
𝑛2

𝑥

𝑛2
. (110)

Indeed it has been shown that, up to a gauge transformation of logarithmic type in 𝑆, the system
(109)–(110) coincides with the modulus-argument hydrodynamic system associated with a diffu-
sive version of the modified complex Ginzburg–Landau equation (Theorem 1). Then, a suitable
choice of the involved parameters satisfying the modulational stability criterium (Theorem 2),
namely, 𝛿 = −

5

3
and 𝜔 = −𝜆 =

4𝜈

9
, has led us to the eventual construction of a nonlocalized soli-

tary wave solution to this equation, whosemodulus square 𝑛 is an antikink-shaped traveling wave
solution of the first equation in (109):

𝑛(𝜉) =
1

4

(
1 − tanh

(√
𝜈

12
𝜉

))2

, 𝜉 = 𝑥 − 5

√
𝜈

12
𝑡 (111)

(see (25) in Theorem3), andwhose argument 𝑆, which plays the role of the chemical concentration
in the Keller–Segel context, goes as log(𝑛):

𝑆(𝑡, 𝑥) =
1

2
log(𝑛(𝜉)) −

4𝜈

9
𝑡 (112)

(see (27) in Theorem 3). In this situation, the chemical production–degradation function (110)
under the influence of (112) can be red as

𝑓(𝑛, 𝑆𝑥, 𝑆𝑥𝑥) = −
5

6
𝑆𝑥𝑥 +

7

6
𝑆2

𝑥 −
4𝜈

9
𝑛, (113)

which inserted into the second equation in (109) gives rise to

𝑆𝑡 =
1

6
𝑆𝑥𝑥 +

7

6
𝑆2

𝑥 −
4𝜈

9
𝑛. (114)

As a consequence, 𝜆 < 0 can be interpreted as the consumption rate of the chemical agent while
the production term is represented by a Hamilton–Jacobi type nonlinearity of order gradient
square, instead of the Malthusian growth characteristic of the standard Keller–Segel dynamics.
In a biomechanical setting, viscous Hamilton–Jacobi fluxes of the type 𝐹𝛼,𝛽(𝑢) = 𝛼𝑢𝑥𝑥 + 𝛽𝑢2

𝑥 are
known to model the evolution of growing interfaces, where the Laplacian term describes relax-
ational diffusion while the gradient square term typically accounts for lateral growth.



20 LÓPEZ

ACKNOWLEDGMENTS
The author is partially supported by MINECO-Feder (Spain), research grant number RTI2018-
098850-B-I00, as well as by Junta de Andalucía (Spain), Project PY18-RT-2422, and A-FQM-311-
UGR18.

REFERENCES
1. Aranson IS, Kramer L. The world of the complex Ginzburg-Landau equation. Rev Mod Phys. 2002;74:99-143.
2. Cross M, Hohenberg P. Pattern formation outside of equilibrium. Rev Mod Phys. 1993;65:851-1089.
3. van Harten A. On the validity of the Ginzburg-Landau equation. J Nonlinear Sci. 1991;1:397-422.
4. Hong W-P. Stable stationary solitons of the one-dimensional modified complex Ginzburg-Landau equation.

Z Naturforsch. 2007;62:368-372.
5. MohamadouA, Kenfack JA, Kofané TC. Pattern selection andmodulational instability in the one-dimensional

modified complex Ginzburg-Landau equation. Chaos Solitons Fractals. 2005;24:957-966.
6. Mohamadou A, Ndzana F, Kofané TC. Pulse solutions of the modified complex Ginzburg-Landau equation.

Phys Scr. 2006;73:596-600.
7. Yomba E, Kofané TC. On exact solutions of modified complex Ginzburg-Landau equation. Physica D.

1999;125:105-122.
8. Yomba E, Kofané TC. Exact solutions of the one-dimensional modified complex Ginzburg-Landau equation.

Chaos Solitons Fractals. 2003;15:187-199.
9. Yomba E, Kofané TC, Pelap FB. On exact solutions of the generalized modified Ginzburg-Landau equation

using Hirota S method. J Phys Soc Jpn. 1996;65:2337-2338.
10. Guerra P, Pusterla M. A nonlinear Schrödinger equation and its relativistic generalization from basic princi-

ples. Lett Nuovo Cimento. 1982;34:351-356.
11. Smolin L. Quantum fluctuations and inertia. Phys Lett A. 1986;8:408-412.
12. Vigier JP. Particular solutions of a non-linear Schrödinger equation carrying particle-like singularities repre-

sent possible models of De Broglie’s double solution theory. Phys Lett A. 1989;135:99-105.
13. López JL. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation.

Discrete Continuous Dyn Syst Ser A. 2021;41:2601-2617.
14. Doebner HD, Goldin G. On a general nonlinear Schrödinger equation admitting diffusion currents. Phys Lett

A. 1992;162:397-401.
15. Doebner HD, Goldin G. Properties of nonlinear Schrödinger equations associated with diffeomorphism group

representations. J Phys A Math Gen. 1994;7:1771-1780.
16. Doebner HD, Goldin G. Introducing nonlinear gauge transformations in a family of nonlinear Schrödinger

equations. Phys Rev A. 1996;54:3764-3771.
17. Chaplain MAJ, Tello JI. On the stability of homogeneous steady states of a chemotaxis system with logistic

growth term. Appl Math Lett. 2016;57:1-6.
18. Lankeit J. Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic

growth. J Differ Equ. 2015;258:1158-1191.
19. Osaki K, Tsujikawa T, Yagi A, Mimura M. Exponential attractor for a chemotaxis-growth system of equations.

Nonlinear Anal. 2002;51:119-144.
20. Salako RB, Shen W. Existence of traveling wave solutions of parabolic-parabolic chemotaxis systems. Nonlin-

ear Anal Real World Appl. 2018;42:93-119.
21. Tello JI, Winkler M. A chemotaxis system with logistic source. Commun. Partial Differ Equ. 2007;32:849-877.
22. Winkler M. Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic

source. Commun Partial Differ Equ. 2020;35:1516-1537.
23. Winkler M. Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with

strong logistic dampening. J Differ Equ. 2014;257:1056-1077.
24. Zhuang M, Wang W, Zheng S. Boundedness in a fully parabolic chemotaxis system with logistic-type source

and nonlinear production. Nonlinear Anal Real World Appl. 2019;47:473-483.
25. Alejo MA, López JL. Modeling chemotaxis with nonstandard production/degradation mechanisms from

Doebner-Goldin theory: existence of solitary waves. Physica D. 2021;426:132989.



LÓPEZ 21

26. Bramburger JJ. Exact minimum speed of traveling waves in a Keller-Segel model. Appl Math Lett.
2021;111:106594.

27. Li T, Park J. Traveling waves in a chemotaxis model with logistic growth. Discrete Continuous Dyn Syst Ser B.
2019;24:6465-6480.

28. Nadine G, Perthame B, Ryzhik L. Traveling waves for the Keller-Segel system with Fisher birth terms. Inter-
faces Free Bound. 2008;10:517-538.

29. Keller EF, Odell GM. Necessary and sufficient conditions for chemotactic bands.Math Biosci. 1975;27:309-317.
30. Keller EF, Segel LA. Model for chemotaxis. J Theor Biol. 1971;30:225-234.
31. Schwetlick H. Traveling waves for chemotaxis-systems. Proc Appl Math Mech. 2003;3:476-478.
32. Wang ZA. Mathematics of traveling waves in chemotaxis -review paper-. Discrete Continuous Dyn Syst Ser B.

2013;18:601-641.
33. Ai S, Wang ZA. Traveling bands for the Keller-Segel model with population growth. Math Biosci Eng.

2015;12:717-737.
34. Arias M, Campos J, Soler J. Cross-diffusion and traveling waves in porous-media flux-saturated Keller-Segel

models.Math Models Methods Appl Sci. 2018;28:2103-2129.
35. Bellomo N, Winkler M. A degenerate chemotaxis system with flux limitation: maximally extended solutions

and absence of gradient blow-up. Commun Partial Differ Equ. 2017;42:436-473.
36. Calvez V, Perthame B, Yasuda S. Traveling wave and aggregation in a flux-limited Keller-Segel model. Kinet

Relat Models. 2018;11:891-909.
37. Campos J, García C & Soler J. Kinks and solitons in linear and nonlinear-diffusion Keller-Segel type models

with logarithmic sensitivity. Submitted arXiv:2102.13480.
38. Chertock A, Kurganov A, Wang X, Wu Y. On a chemotaxis model with saturated chemotactic flux. Kinet Relat

Models. 2012;5:51-95.
39. PerthameP, VaucheletN,WangZ. The flux-limitedKeller-Segel system; properties and derivation fromkinetic

equations. Rev Mat Iberoamericana. 2020;36:357-386.
40. Guerrero P, López JL,Montejo-Gámez J, Nieto J.Wellposedness of a nonlinear, logarithmic Schrödinger equa-

tion of Doebner–Goldin type modeling quantum dissipation. J Nonlinear Sci. 2012;22:631-663.
41. Kardar M, Parisi G, Zhang YC. Dynamic scaling of growing interfaces. Phys Rev Lett. 1986;56:889-892.
42. Krug J, Spohn H. Universality classes for deterministic surface growth. Phys Rev A. 1988;38:4271-4283.
43. Bache M, Bang O, Królikowski W. Modulational instability and solitons in nonlocal media with competing

nonlinearities. Phys Rev A 2011;84:0538544.
44. Cole JT, Musslimani ZH. Spectral transverse instabilities and soliton dynamics in the higher-order multidi-

mensional nonlinear Schrödinger equation. Physica D. 2015;313:26-36.
45. Pelap FB, Kofané TC. Modulational instability in some physical systems. Phys Scr. 2001;64:410-412.
46. Parkes EJ. The modulation of weakly non-linear dispersive waves near the marginal state of instability. J Phys

A Math Gen. 1987;20:2025-2036.
47. Remoissenet M. Solitons and modulational instability. Ann Télécommun. 1996;51:297-303.
48. Williams F, Tsitoura F, Horikis TP, Kevrekidis PG. Solitary waves in the resonant nonlinear Schrödinger equa-

tion: stability and dynamical properties. Phys Lett A. 2020;384:126441.
49. Zakeri GA, Yomba E. Modulational instability regions for coupled Ginzburg-Landau equations with higher

order of nonlinearities. Phys Rev E. 2015;91:062904.
50. Fontanela F, Grolet A, Salles L, Chabchoub A, Hoffmann N. Dark solitons, modulation instability and

breathers in a chain of weakly non-linear oscillators with cyclic symmetry. J. Sound Vib. 2018;413:467-481.
51. Fisher RA. The wave of advantageous genes. Ann Eugen. 1936:37:355-369.
52. Kolmogorov A, Petrovsky I, PiscounovN. Study of a diffusion equation that is related to the growth of a quality

of matter and its application to a biological problem.Moscow Univ Math Bull. 1937;1:1-26.
53. Ablowitz MJ, Zepetella A. Explicit solutions of Fisher’s equation for a special wave speed. Bull Math Biol.

1979;41:835-840.
54. Yang Y, Kou W, Wang X, Chen X. Solitary wave solutions of FKPP equation using homogeneous balance

method (HB method). arXiv:2009.11378 [nlin.PS]
55. Zhou Y, Wang M, Miao T. The periodic wave solutions and solitary wave solutions for a class of nonlinear

partial differential equations. Phys Lett A. 2004;323:77-88.



22 LÓPEZ

56. Pikulin SV. Traveling-wave solutions of the Kolmogorov-Petrovskii-Piskunov equation. Comput Math Math
Phys. 2018;58:230-237.

57. Keller EF, Segel LA. Traveling bands of chemotactic bacteria: a theoretical analysis. J Theor Biol. 1971;30:235-
248.

58. SalakoRB, ShenW. Travelingwave solutions for fully parabolic Keller-Segel chemotaxis systemswith a logistic
source. Electron J Differ Equ. 2020;2020:1-18.

How to cite this article: López JL. On nonstandard chemotactic dynamics with logistic
growth induced by a modified complex Ginzburg–Landau equation. Stud Appl Math.
2021;1–22. https://doi.org/10.1111/sapm.12440

https://doi.org/10.1111/sapm.12440

	On nonstandard chemotactic dynamics with logistic growth induced by a modified complex Ginzburg-Landau equation
	Abstract
	1 | INTRODUCTION AND MAIN RESULTS
	1.1 | Preliminaries
	1.2 | Literature review, aims, and scope
	1.3 | Results

	2 | DERIVATION OF THE LOGISTIC KELLER-SEGEL TYPE SYSTEM (19)
	3 | MODULATIONAL STABILITY
	4 | SOLITARY WAVE SOLUTIONS OF EQUATIONS (10)-(17)
	4.1 | Solving Equation (68)
	4.2 | Compatibility with Equation (71)

	5 | CONCLUDING REMARKS
	ACKNOWLEDGMENTS
	REFERENCES


