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Abstract: A binary diagnostic test is a medical test that is applied to an individual in order to
determine the presence or the absence of a certain disease and whose result can be positive or
negative. A positive result indicates the presence of the disease, and a negative result indicates
the absence. Positive and negative predictive values represent the accuracy of a binary diagnostic
test when it is applied to a cohort of individuals, and they are measures of the clinical accuracy of
the binary diagnostic test. In this manuscript, we study the comparison of the positive (negative)
predictive values of two binary diagnostic tests subject to a paired design through confidence intervals.
We have studied confidence intervals for the difference and for the ratio of the two positive (negative)
predictive values. Simulation experiments have been carried out to study the asymptotic behavior
of the confidence intervals, giving some general rules for application. We also study a method to
calculate the sample size to compare the parameters using confidence intervals. We have written a
program in R to solve the problems studied in this manuscript. The results have been applied to the
diagnosis of colorectal cancer.

Keywords: binary diagnostic test; confidence interval; positive predictive value; negative predictive
value; sample size

1. Introduction

A diagnostic test is medical test that is applied to an individual in order to determine
the presence of a certain disease. Binary diagnostic tests are a very common type of
diagnostic test in clinical practice. A binary diagnostic test (BDT) is a diagnostic test whose
possible result is positive or negative. A positive result indicates the presence of the disease,
and a negative result indicates the absence. Mammography for the diagnosis of breast
cancer is an example of BDT. Accuracy of a BDT is measured in terms of two fundamental
parameters: sensitivity and specificity. Sensitivity (Se) is the probability of the result of
the BDT being positive when the individual has the disease, and specificity (Sp) is the
probability of the result of the BDT being negative when the individual does not have
the disease. Therefore, Se and Sp are probabilities of getting the disease diagnosis right,
and they represent the intrinsic accuracy of the BDT, since these parameters depend on
the physical, chemical, or biological properties upon which the BDT is developed. Other
parameters that are used to assess and compare two BDTs are the positive and negative
predictive values. Positive predictive value (τ) is the probability of an individual having the
disease when the result of the BDT is positive, and the negative predictive value (υ) is the
probability of an individual not having the disease when the result of the BDT is negative.
Predictive values represent the accuracy of the diagnostic test when it is applied to a cohort
of individuals, and they are measures of the clinical accuracy of the BDT. Predictive values
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depend on Se, Sp, and on the disease prevalence (p), and are easily calculated applying
Bayes theorem, i.e.,

τ =
p× Se

p× Se + (1− p)× (1− Sp)
and υ =

(1− p)× Sp
p× (1− Se) + (1− p)× Sp

. (1)

The accuracy of a BDT is assessed in relation to a gold standard. A gold standard (GS)
is a medical test that determines without error whether or not an individual has the disease.
Biopsy for the diagnosis of breast cancer is an example of GS.

On the other hand, the comparison of parameters of two BDTs is an important topic
in the study of statistical methods for diagnosis in Medicine. The most frequent sample
design to compare the parameters of two BDTs is the paired design. The paired design
consists of applying the two BDTs and the GS to all individuals of a random sample sized n.
The comparison of the predictive values of two BDTs subject to a paired design has been the
subject of different studies. Bennett [1,2], Leisenring et al. [3], Wang et al. [4], Kosinski [5],
Tsou [6], and Takahashi and Yamamoto [7] have studied hypothesis tests to compare the
two positive predictive values and the negative predictive values independently. Roldán-
Nofuentes et al. [8] studied a global hypothesis test to simultaneously compare the positive
and negative predictive values of two BDTs. However, the comparison of predictive values
using confidence intervals has been little studied. If the hypothesis test is significant to an
α error, the confidence interval (CI) allows determining how much one predictive value
is greater than the other. Moskowitz and Pepe [9] have proposed a Wald-type CI for the
ratio of the two positive (negative) predictive values. A Wald-type CI for the difference of
the two positive (negative) predictive values is easily obtained by inverting the contrast
statistic of the hypothesis test studied by Wang et al. [4].

The objective of this manuscript is study CIs to compare the positive (negative)
predictive values of two BDTs subject to a paired design. For this, we have studied CIs
for the difference and for the ratio of the two positive (negative) predictive values. If a CI
for the difference (ratio) does not contain the zero (one) value, then we reject the equality
between the two positive (negative) predictive values, and we estimate how much bigger
one predictive value is than another one. The problem of calculating the sample size to
compare the two positive (negative) predictive values through a CI is also studied.

This manuscript is structured in the following way. In Section 2, the existing CIs are
presented and other new CIs are proposed, both for the ratio and for the difference between
the positive (negative) predictive values. In Section 3, simulation experiments are carried
out to study the coverage probabilities and the average lengths of the CIs. In Section 4, a
method to calculate the sample size to compare the parameters through CIs is proposed. In
Section 5, we present the program called “cicpvbdt”, which is a program written in R that
solves the problems studied in this manuscript. In Section 6, the results were applied to an
example on the diagnosis of colorectal cancer, and in Section 7, the results are discussed.

2. Confidence Intervals

Let us consider two BDTs that are assessed in relation to the same GS. Let Ti be the
variable that models the result of the ith BDT, with i = 1, 2. Ti = 0 indicates that the test
result is negative, and Ti = 1 indicates that the test result is positive. Let D be the random
variable that models the result of the GS, so that D = 1 when the individual is diseased
and D = 0 when the individual is non-diseased. Let Sei and Spi be the sensitivity and
specificity of the ith BDT. Table 1 shows the observed frequencies obtained subject to a
paired design. The frequencies sjk and rjk are the product of a multinomial distribution
whose probabilities are pjk = P(D = 1, T1 = j, T2 = k) and qjk = P(D = 0, T1 = j, T2 = k),
with j, k = 0, 1. Applying the conditional dependence model of Vacek [10], probabilities pjk
and qjk are written as

pjk = p
[
Sej

1(1− Se1)
1−jSek

2(1− Se2)
1−k + δjkε1

]
(2)
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and
qjk = q

[
Sp1−j

1 (1− Sp1)
jSp1−k

2 (1− Sp2)
k + δjkε0

]
, (3)

where δjk = 1 if j = k and δjk = −1 if j 6= k, with j, k = 0, 1, ε1 is the dependence
factor between the two BDTs when D = 1 and ε0 is the dependence factor between the
two BDTs when D = 0. It is verified that 0 ≤ ε1 ≤ Min{Se1(1− Se2), Se2(1− Se1)}
and 0 ≤ ε0 ≤ Min{Sp1(1− Sp2), Sp2(1− Sp1)}. If ε1 = ε0 = 0, then the two BDTs are
conditionally independent on the disease. This assumption is not realistic, so in practice,
it is verified that ε1 > 0 and/or ε0 > 0. Let π = (p11, p10, p01, p00, q11, q10, q01, q00)

T be the

vector of probabilities of the multinomial distribution, p =
1
∑

i,j=0
pij and q = 1− p =

1
∑

i,j=0
qij.

The maximum likelihood estimators of pjk and qjk are:

p̂jk =
sjk

n
and q̂jk =

rjk

n
.

Table 1. Observed frequencies subject to a paired design.

T1=1 T1=0
T2=1 T2=0 T2=1 T2=0 Total

Diseased (D = 1 ) s11 s10 s01 s00 s
Non-diseased (D = 0 ) r11 r10 r01 r00 r

Total s11 + r11 s10 + r10 s01 + r01 s00 + r00 n

From Equation (1), the sensitivity and specificity of each BDT are written, in terms of
the predictive values and of p, as

Sei =
τi(υi − q)

pYi
and Spi =

υi(τi − p)
qYi

(4)

where q = 1− p and Yi = τi + υi − 1. Then

0 ≤ ε1 ≤ Min
{

τ1(υ1 − q)
pY1

(
1− τ2(υ2 − q)

pY2

)
,

τ2(υ2 − q)
pY2

(
1− τ1(υ1 − q)

pY1

)}
(5)

and

0 ≤ ε0 ≤ Min
{

υ1(τ1 − p)
qY1

(
1− υ2(τ2 − p)

qY2

)
,

υ2(τ2 − p)
qY2

(
1− υ1(τ1 − p)

qY1

)}
. (6)

In terms of predictive values, Equations (2) and (3) are written as

pjk = p

[
τ

j
1(υ1 − q)j(τ1 + p)1−j(1− υ1)

1−j

pj p1−jY j
1Y1−j

1

×
τk

2 (υ2 − q)k(τ2 + p)1−k(1− υ2)
1−k

pk p1−kYk
2 Y1−k

1

+ δjkε1

]
(7)

and

qjk = q

[
(1− τ1)

j(υ1 − q)j(τ1 − p)1−jυ
1−j
1

qjq1−jY j
1Y1−j

1

×
(1− τ2)

k(υ2 − q)k(τ2 − p)1−kυ1−k
2

qkq1−kYk
2 Y1−k

2

+ δjkε0

]
. (8)

The estimator of sensitivities and specificities are

Ŝe1 =
s11 + s10

s
, Ŝe2 =

s11 + s01

s
, Ŝp1 =

r01 + r00

r
and Ŝp2 =

r10 + r00

r
, (9)
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and applying the delta method, the estimators of the variances-covariances of Ŝei and
Ŝpi are

V̂ar
(
Ŝei
)
=

Ŝei(1−Ŝei)
s , Var

(
Ŝpi
)
=

Ŝpi(1−Ŝpi)
r ,

Ĉov
(
Ŝe1, Ŝe2

)
= ε̂1

s and Ĉov
(
Ŝp1, Ŝp2

)
= ε̂0

r ,

where ε̂1 = np̂11
s − Ŝe1Ŝe2 = s11s00−s10s01

s2 and ε̂0 = nq̂00
r − Ŝp1Ŝp2 = r11r00−r10r01

r2 , and the
estimator of the disease prevalence is

p̂ =
s
n

. (10)

Let Qi = pSei + q(1− Spi) be the probability that the result of the ith BDT is positive
and let Qi = 1− Qi = p(1− Sei) + qSpi be the probability that the result is negative. Its
estimators are:

Q̂1 =
s10 + s11 + r10 + r11

n
and Q̂2 =

s01 + s11 + r01 + r11

n
,

and
Q̂1 =

s01 + s00 + r01 + r00

n
and Q̂2 =

s10 + s00 + r10 + r00

n
,

respectively. With respect to the predictive values, their estimators are:

τ̂1 =
s11 + s10

s11 + s10 + r11 + r10
, τ̂2 =

s11 + s01

s11 + s01 + r11 + r01
, υ̂1 =

r01 + r00

s01 + s00 + r01 + r00

and
υ̂2 =

r10 + r00

s10 + s00 + r10 + r00
.

Applying the delta method, the estimators of the variances–covariances of τ̂i and υ̂i
are [8]:

V̂ar(τ̂1) =
(s10+s11)(r10+r11)

(s10+s11+r10+r11)
3 , V̂ar(υ̂1) =

(s00+s01)(r00+r01)

(s00+s01+r00+r01)
3

V̂ar(τ̂2) =
(s01+s11)(r01+r11)

(s01+s11+r01+r11)
3 , V̂ar(υ̂2) =

(s00+s10)(r00+r10)

(s00+s10+r00+r10)
3 ,

Ĉov(τ̂1, τ̂2) =
s11r10r01+r11[s01(s10+s11)+s11(s11+s10+r11+r10+r01)]

(s01+s11+r01+r11)
2(s10+s11+r10+r11)

2

and

Ĉov(υ̂1, υ̂2) =
s10(s00 + s01)r00 + s00

[
r2

00 + r01r10 + r00(s00 + s01 + r10 + r01)
]

(s00 + s01 + r00 + r01)
2(s00 + s10 + r00 + r10)

2 .

When two parameters are compared in Statistics, the interest is to study the difference
or the ratio between them. Then, we compare the positive (negative) predictive values of
two BDTs through CIs for the difference, i.e., δτ = τ1 − τ2 and δυ = υ1 − υ2, and for the
ratio, i.e., ρτ = τ1/τ2 and ρυ = υ1/υ2.

2.1. CIs for the Difference

Three CIs for each difference δτ and δυ are studied: Wald CI, bias-corrected bootstrap
CI, and Monte Carlo Bayesian CI.

2.1.1. Wald CI

Wang et al. [4] have studied the comparison of the PVs of two BDTs through the
weighted least square method. The test statistics for H0 : τ1 = τ2 and H0 : υ1 = υ2 are

zτ =
δ̂τ√

V̂ar
(
δ̂τ

) and zυ =
δ̂υ√

V̂ar
(
δ̂υ

) ,
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respectively. Both test statistics follow a standard normal distribution where

V̂ar
(
δ̂τ

)
= V̂ar(τ̂1) + V̂ar(τ̂2)− 2Ĉov(τ̂1, τ̂2)

and
V̂ar

(
δ̂υ

)
= V̂ar(υ̂1) + V̂ar(υ̂2)− 2Ĉov(υ̂1, υ̂2)

are the estimators of the variances of δ̂τ and δ̂υ, respectively. Inverting the two test statistics,
the Wald CIs for δτ and for δυ are

δτ ∈ δ̂τ ± z1−α/2

√
V̂ar

(
δ̂τ

)
and δυ ∈ δ̂υ ± z1−α/2

√
V̂ar

(
δ̂υ

)
,

respectively, where z1−α/2 is the 100(1− α/2)th percentile of the standard normal distribution.

2.1.2. Bias-Corrected Bootstrap CI

The bias-corrected bootstrap CI is calculated from B random samples with replacement
generated from the sample of n individuals. In each of the B samples, we calculate τ̂1b, τ̂2b,
υ̂1b, υ̂2b, δ̂τb = τ̂1b− τ̂2b and δ̂υb = υ̂1b− υ̂2b, with b = 1, . . . , B. Then, the average differences

are calculated as δ̂τB = 1
B

B
∑

b=1
δ̂τb and δ̂υB = 1

B

B
∑

b=1
δ̂τb. Assuming that the bootstrap statistics

δ̂τB and δ̂υB can be transformed to a normal distribution, the bias-corrected bootstrap
CIs [11] are calculated in the following way. Let Aτ = #

(
δ̂τb < δ̂τ

)
be the number of

bootstrap estimators δ̂τb that are lower than the maximum likelihood estimator (MLE) δ̂τ ,
and let Aυ = #

(
δ̂υb < δ̂υ

)
be the number of bootstrap estimators δ̂υb that are lower than the

MLE δ̂υ. Let ẑτ = Φ−1(Aτ/B) and ẑυ = Φ−1(Aυ/B), where Φ−1(·) is the inverse function
of the standard normal cumulative distribution function. Let α1τ = Φ(2ẑτ − z1−α/2),
α2τ = Φ(2ẑτ + z1−α/2), α1υ = Φ(2ẑυ − z1−α/2), and α2υ = Φ(2ẑυ + z1−α/2); then, the
bias-corrected bootstrap CI for δτ is

δτ ∈
(

δ̂
(α1τ)
τB , δ̂

(α2τ)
τB

)
and the bias-corrected bootstrap CI for δυ is

δυ ∈
(

δ̂
(α1υ)
υB , δ̂

(α2υ)
υB

)
where δ̂

(γ)
τB is the γth quantile of the distribution of the B bootstrap estimations of δτ , and

δ̂
(γ)
υB is the γth quantile of the distribution of the B bootstrap estimations of δυ.

2.1.3. Monte Carlo Bayesian CI

The number of diseased individuals (s) is the product of a binomial distribution, i.e.,
s→ B(n, p) . Conditioning on D = 1, it is verified that

s11 + s10 → B(s, Se1) and s11 + s01 → B(s, Se2).

The number of non-diseased individuals (r) is the product of a binomial distribution,
i.e., r → B(n, q) . Conditioning on D = 0, it is verified that

r01 + r00 → B(r, Sp1) and r10 + r00 → B(r, Sp2).

On the other hand, the estimators Ŝei, Ŝpi, and p̂ (Equations (9) and (10)) are estimators
of binomial proportions. Therefore, for these estimators we propose conjugate beta prior
distributions, i.e.,

Ŝei → Beta
(
αSei , βSei

)
, Ŝpi → Beta

(
αSpi , βSpi

)
and p̂→ Beta

(
αp, βp

)
. (11)
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Let n = (s11, s10, s01, s, r11, r10, r01, n− s) be the vector of observed frequencies, with
s00 = s− s11 − s10 − s01, r = n− s, and r00 = n− s− r11 − r10 − r01. Then, the posteriori
distributions for the estimators of Sei, Spi, and p are:

Ŝe1 |n → Beta
(
s11 + s10 + αSe1 , s− s11 − s10 + βSe1

)
,

Ŝp1 |n → Beta
(
r01 + r00 + αSp1 , n− s− r01 − r00 + βSp1

)
,

Ŝe2 |n → Beta
(
s11 + s01 + αSe2 , s− s11 − s01 + βSe2

)
,

Ŝp2 |n → Beta
(
r10 + r00 + αSp2 , n− s− r10 − r00 + βSp2

)
,

p̂ |n → Beta
(
s + αp, n− s + βp

)
.

(12)

The posteriori distribution for the positive (negative) predictive value of each BDT,
and for δτ and δυ, can be approximated applying the Monte Carlo method. The Monte
Carlo method is a computational method that consists of generating M values from the
posteriori distributions (12). In the mth iteration, the values generated for Se(m)

j , Sp(m)
j , and

p(m) are plugged in the equations

τ
(m)
i =

p(m) × Se(m)
i

p(m) × Se(m)
i +

(
1− p(m)

)
×
(

1− Sp(m)
i

)
and

υ
(m)
i =

(
1− p(m)

)
× Sp(m)

i

p(m) ×
(

1− Se(m)
i

)
+
(
1− p(m)

)
× Sp(m)

i

,

with i = 1, 2, and then, δ
(m)
τ = τ

(m)
1 − τ

(m)
2 and δ

(m)
υ = υ

(m)
1 − υ

(m)
2 are calculated. As

estimators of δτ and δυ, we calculate the average of the M estimations of the differences,

i.e., δ̂τBay = 1
M

M
∑

m=1
δ
(m)
τ and δ̂υBay = 1

M

M
∑

m=1
δ
(m)
υ . Finally, based on the M values of δ

(m)
τ and

of δ
(m)
υ , we propose CIs based on quantiles. Therefore, the 100× (1− α)% CI for δτ is

δτ ∈
(

q(α/2)
τBay , q(1−α/2)

τBay

)
and the 100× (1− α)% CI for δυ is

δυ ∈
(

q(α/2)
υBay , q(1−α/2)

υBay

)
where q(γ)τBay

(
q(γ)υBay

)
is the γth quantile of the distribution of the M values δ

(m)
τ

(
δ
(m)
υ

)
.

2.2. CIs for the Ratio

Five CIs for each ratio ρτ = τ1/τ2 and ρυ = υ1/υ2 are studied: Wald CI, logarithmic
CI, Fieller CI, bias-corrected bootstrap CI, and Monte Carlo Bayesian CI.

2.2.1. Wald CI

Moskowitz and Pepe [9] have studied a Wald-type confidence interval for the ratio of
the two positive (negative) predictive values. The 100× (1− α)% Wald CI for δτ is

ρτ ∈ ρ̂τ ± z1−α/2

√
V̂ar(ρ̂τ)

and the 100× (1− α)% Wald CI for δυ is

ρυ ∈ ρ̂υ ± z1−α/2

√
V̂ar(ρ̂υ),
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where V̂ar(ρ̂τ) and V̂ar(ρ̂υ), obtained applying the delta method, are

V̂ar(ρ̂τ) =
τ̂2

2 V̂ar(τ̂1) + τ̂2
1 V̂ar(τ̂2)− 2τ̂1τ̂2Ĉov(τ̂1, τ̂2)

τ̂4
2

and

V̂ar(ρ̂υ) =
υ̂2

2V̂ar(υ̂1) + υ̂2
1V̂ar(υ̂2)− 2υ̂1υ̂2Ĉov(υ̂1, υ̂2)

υ̂4
2

.

These CIs are for ρτ = τ1/τ2 and ρυ = υ1/υ2. If we want to calculate the CI for
the ratio τ2/τ1 = 1/ρτ and for the ratio υ2/υ1 = 1/ρυ, then we have to divide the CI for
ρτ by ρ̂2

τ and the CI for ρυ by ρ̂2
υ. For example, if (Lτ , Uτ) is the Wald CI for τ1/τ2, then(

Lτ/ρ̂2
τ , Uτ/ρ̂2

τ

)
is the Wald CI for τ2/τ1.

2.2.2. Logarithmic CI

Assuming the asymptotic normality of the Napierian logarithm of ρ̂τ and of ρ̂υ, i.e.,
ln(ρ̂τ)→ N(ln(δτ), Var[ln(δτ)]) and ln(ρ̂υ)→ N(ln(δυ), Var[ln(δυ)]) when n is large, an
asymptotic CI for ln(ρτ) is

ln(ρ̂τ)± z1−α/2

√
V̂ar[ln(ρ̂τ)]

and an asymptotic CI for ln(ρυ) is

ln(ρ̂υ)± z1−α/2

√
V̂ar[ln(ρ̂υ)].

Taking exponential in each of the previous expressions, the logarithmic CI for δτ is

ρτ ∈ ρ̂τ × exp
{
±z1−α/2

√
V̂ar[ln(ρ̂τ)]

}
and the logarithmic CI for δυ is

ρυ ∈ ρ̂υ × exp
{
±z1−α/2

√
V̂ar[ln(ρ̂υ)]

}
,

where V̂ar[ln(ρ̂τ)] and V̂ar[ln(ρ̂υ)], obtained applying the delta method, are:

V̂ar[ln(ρ̂τ)] =
V̂ar[τ̂1]

τ̂2
1

+
V̂ar[τ̂2]

τ̂2
2
− 2Ĉov[τ̂1, τ̂2]

τ̂1τ̂2

and

V̂ar[ln(ρ̂υ)] =
V̂ar[υ̂1]

υ̂2
1

+
V̂ar[υ̂2]

υ̂2
2
− 2Ĉov[υ̂1, υ̂2]

υ̂1υ̂2
.

If we want to calculate the logarithmic CI for the ratio τ2/τ1, then the CI is obtained
by calculating the inverse of each boundary of CI for ρτ = τ1/τ2. In a similar way, the CI
for υ2/υ1 is calculated.

2.2.3. Fieller CI

The method of Fieller [12] is a classic method used to estimate the ratio of two

parameters. In order to apply this method, it is necessary to assume that
^
τ

T
→ N(τ, ∑τ)

and that
^
υ

T
→ N(υ, ∑υ) ; i.e., it is necessary to assume that the estimators of the positive
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(negative) predictive values are distributed according to a normal bivariate distribution,

and where
^
τ = (τ̂1, τ̂2),

^
υ = (υ̂1, υ̂2),

∑τ
=

(
Var(τ1) Cov(τ1, τ2)

Cov(τ1, τ2) Var(τ2)

)
=

(
στ11 στ12
στ21 στ22

)
and

∑υ
=

(
Var(υ1) Cov(υ1, υ2)

Cov(υ1, υ2) Var(υ2)

)
=

(
συ11 συ12
συ21 συ22

)
.

Applying the method of Fieller, it is verified that τ̂1 − ρτ τ̂2 → N
(
0, στ11 + ρ2

τστ22 − 2ρτστ12
)

and that υ̂1 − ρυυ̂2 → N
(
0, συ11 + ρ2

υσυ22 − 2ρυσυ12
)

when n is large. The Fieller CI for ρτ

is obtained by solving the inequality

(τ̂1 − ρτ τ̂2)
2

σ̂τ11 + ρ2
τ σ̂τ22 − 2ρτ σ̂τ12

< z2
1−α/2,

and the Fieller CI for ρυ is obtained by solving the inequality

(υ̂1 − ρυυ̂2)
2

σ̂υ11 + ρ2
υσ̂υ22 − 2ρυσ̂υ12

< z2
1−α/2.

Finally, the Fieller CI for ρτ is

ρτ ∈
β̂τ12 ±

√
β̂2

τ12 − β̂τ11 β̂τ22

β̂τ22

where β̂τij = τ̂iτ̂j − σ̂τijz2
1−α/2 with i, j = 1, 2 and verifying that β̂τ12 = β̂τ21. This CI is

valid when β̂2
τ12 > β̂τ11 β̂τ22 and β̂τ22 6= 0. Similarly, the Fieller CI for ρυ is

ρυ ∈
β̂υ12 ±

√
β̂2

υ12 − β̂υ11 β̂υ22

β̂υ22

where β̂υij = υ̂iυ̂j − σ̂υijz2
1−α/2 with i, j = 1, 2, and β̂υ12 = β̂υ21. This CI is valid when

β̂2
υ12 > β̂υ11 β̂υ22 and β̂υ22 6= 0. The Fieller CI for τ2/τ1 (υ2/υ1) is calculated by inverting

the limits of the CI for ρτ (ρυ).

2.2.4. Bias-Corrected Bootstrap CI

The bias-corrected bootstrap CI for ρτ (ρυ) is obtained in a similar way to that of δτ (δυ).
In each sample with a replacement obtained, we calculate τ̂1b, τ̂2b, υ̂1b, υ̂2b, ρ̂τb = τ̂1b/τ̂2b,
and ρ̂υb = υ̂1b/υ̂2b, with b = 1, . . . , B. Then, based on the B ratios, we estimate the

average ratios as ρ̂τB = 1
B

B
∑

b=1
ρ̂τb and ρ̂υB = 1

B

B
∑

b=1
ρ̂υb. Assuming that these statistics can

be transformed to a normal distribution, the bias-corrected bootstrap CI [11] for ρτ (ρυ) is
calculated in a similar way as the bias-corrected bootstrap CI for δτ (δυ), considering that
Aτ = #(ρ̂τb < ρ̂τ) and that Aυ = #(ρ̂υb < ρ̂υ). Finally, the bias-corrected bootstrap CI for
ρτ is

ρτ ∈
(

ρ̂
(α1)
τB , ρ̂

(α2)
τB

)
,

where ρ̂
(γ)
τB is the γth quantile of the distribution of the B bootstrap estimations of ρτ .

Similarly, the bias-corrected bootstrap CI for ρυ is

ρυ ∈
(

ρ̂
(α1)
υB , ρ̂

(α2)
υB

)
,
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where ρ̂
(γ)
υB is the γth quantile of the distribution of the B bootstrap estimations of ρυ. The

bias-corrected bootstrap CI for τ2/τ1 (υ2/υ1) is calculated by inverting the limits of the
bias-corrected bootstrap CI for ρτ (ρυ).

2.2.5. Monte Carlo Bayesian CI

The Monte Carlo Bayesian CI for ρτ (ρυ) is obtained in a similar way as the Monte
Carlo Bayesian CI for δτ (δυ). Considering the same distributions (10) and (11), in the mth
iteration, we calculate the ratios ρ

(m)
τ = τ

(m)
1 /τ

(m)
2 and ρ

(m)
υ = υ

(m)
1 /υ

(m)
2 . As estimators,

we calculate ρ̂τBay = 1
M

M
∑

m=1
ρ
(m)
τ and ρ̂υBay = 1

M

M
∑

m=1
ρ
(m)
υ . Finally, we calculate the CIs based

on quantiles, i.e.,

ρτ ∈
(

q(α/2)
τBay , q(1−α/2)

τBay

)
and ρυ ∈

(
q(α/2)

υBay , q(1−α/2)
υBay

)
where q(γ)τBay

(
q(γ)υBay

)
is the γth quantile of the distribution of the M values ρ

(m)
τ

(
ρ
(m)
υ

)
.

The Monte Carlo Bayesian CI for τ2/τ1 (υ2/υ1) is calculated by inverting the limits of the
Monte Carlo Bayesian CI for ρτ (ρυ).

3. Simulation Experiments

The CIs studied in Section 2 are approximate, and therefore, it is necessary to study
their asymptotic behaviors. For this, Monte Carlo simulation experiments have been
carried out to study the coverage probabilities and the average lengths of the CIs stud-
ied, considering a confidence level of 95%. These experiments have consisted of generating
N = 10,000 random samples with multinomial distribution sized n = {50, 100, 200, 500, 1000},
and whose probabilities have been calculated from Equations (7) and (8). The experiments
have been designed from the predictive values of both BDTs. As the value of disease
prevalence, we have taken p = {10%, 25%, 50%, 75%}, and as values of predictive values,
we have taken the values τi, υi = {0.70, 0.75, . . . , 0.90, 0.95}, which are realistic values in
clinical practice. Next, using these values, we have calculated the maximum values of
the dependence factors ε1 and ε0 (Equations (5) and (6)). As values of ε1 and ε0, we have
taken intermediate and high values, i.e., 50% of the maximum value of εi and 90% of the
maximum value of εi, respectively. Finally, we have calculated the probabilities of the
multinomial distributions using Equations (7) and (8). In each scenario, we have calculated
all the CIs for each of the N random samples.

For the bias-corrected bootstrap CIs, for each one of the N random samples, B = 2000 samples
with replacement have been generated, and from these B samples, the bias-corrected
bootstrap CIs have been calculated.

For the Monte Carlo Bayesian CI, we have considered a Beta(1, 1) distribution as
a priori distribution for the estimators of sensitivities, specificities and prevalence. The
Beta(1, 1) distribution is a non-informative distribution, which is flat for every possible
value of the sensitivities, specificities, and prevalence. Therefore, the impact of the Beta(1, 1)
distribution on the posteriori distributions is minimal. Moreover, for each one of the N
random samples, M = 10,000 random samples have been generated, and the Monte Carlo
Bayesian CIs have been calculated from them.

In each of the N samples generated, all the CIs have been calculated. Furthermore, it
has been checked whether each CI contains the value of the parameter (difference or ratio,
depending on the type of CI). The coverage probability has been calculated by dividing the
number of samples in which the CI contains the parameter by the total number of samples.
For each CI, its length (upper limit minus the lower limit) has also been calculated, and
finally, the average length of each CI has been calculated.
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3.1. CIs for the Differences and Ratios of Positive Predictive Values

Table 2 shows some of the results obtained for the three CIs for the difference δτ for
four different scenarios and for intermediate values of ε1 and ε0. When the sample size
is small (n = 50) or moderate (n = 100), the CIs for δτ have a coverage probability close
to 1. For the difference δτ , in very general terms, the Wald CI is the interval that has a
coverage probability with better fluctuations around 95%, especially when n is moderate
or large (n ≥ 200). The bias-corrected bootstrap CI has a very similar behavior to the Wald
CI, especially when the sample size is large. In general terms, the Monte Carlo Bayesian
CI has a coverage probability greater than that of the other two intervals, even when the
coverage probability of the other two intervals fluctuates around 95%.

Table 2. Asymptotic behaviors of the CIs for the difference of the two positive predictive values.

τ1 = 0.75 τ2 = 0.75 υ1 = 0.95 υ2 = 0.95 δτ = 0
ε1 = 0.124 ε0 = 0.010 p = 0.10

Wald BCB MCB

n CP AL CP AL CP AL

50 1 0.749 1 0.743 1 0.787
100 1 0.538 1 0.527 1 0.683
200 0.988 0.409 1 0.397 1 0.454
500 0.953 0.261 0.990 0.254 0.998 0.363

1000 0.944 0.185 0.957 0.186 0.993 0.259

τ1 = 0.90 τ2 = 0.85 υ1 = 0.95 υ2 = 0.90 δτ = 0.05
ε1 = 0.021 ε0 = 0.044 p = 0.50

Wald BCB MCB

n CP AL CP AL CP AL

50 0.982 0.251 1 0.242 0.999 0.326
100 0.951 0.174 0.966 0.182 0.993 0.223
200 0.954 0.122 0.952 0.126 0.991 0.156
500 0.941 0.077 0.933 0.077 0.981 0.099

1000 0.952 0.055 0.948 0.055 0.988 0.070

τ1 = 0.85 τ2 = 0.75 υ1 = 0.95 υ2 = 0.85 δτ = 0.10
ε1 = 0.037 ε0 = 0.024 p = 0.25

Wald BCB MCB

n CP AL CP AL CP AL

50 0.998 0.513 1 0.499 1 0.602
100 0.981 0.354 1 0.343 0.999 0.445
200 0.941 0.250 0.987 0.243 0.991 0.318
500 0.956 0.158 0.959 0.159 0.989 0.204

1000 0.953 0.112 0.954 0.113 0.989 0.145

CP: coverage probability. AL: average length. Wald: Wald CI. BCB: bias-corrected bootstrap CI. MCB: Monte
Carlo Bayesian CI.

Regarding the CIs for the ratio ρτ , Table 3 shows the results obtained for the same
scenarios as in Table 2. When the sample size is small (n = 50), the five CIs for ρτ have
a coverage probability close to 1. In general terms, there is not an important difference
between the coverage probabilities and the average lengths of the Wald, logarithm, and
Fieller CIs, especially when n ≥ 100. When the sample size is small, the logarithmic CI and
the Fieller CI have an average length slightly greater than the Wald CI. The bias-corrected
bootstrap CI has a very similar behavior to the Wald, logarithmic, and Fieller CIs, especially
when the sample size is large. In general terms, the Monte Carlo Bayesian CI has a coverage
probability greater than that of the other four intervals.
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Table 3. Asymptotic behaviors of the CIs for the ratio of the two positive predictive values.

τ1 = 0.75 τ2 = 0.75 υ1 = 0.95 υ2 = 0.95 ρτ = 1
ε1 = 0.124 ε0 = 0.010 p = 0.10

Wald Log Fieller BCB MCB

n CP AL CP AL CP AL CP AL CP AL

50 1 1.326 1 1.450 1 2.046 1 1.348 1 2.183
100 0.999 0.966 1 1.018 1 1.311 1 0.973 1 1.534
200 0.989 0.630 0.992 0.643 0.994 0.652 1 0.648 1 0.978
500 0.962 0.359 0.966 0.361 0.953 0.369 0.988 0.364 0.998 0.535

1000 0.956 0.250 0.952 0.251 0.944 0.253 0.956 0.256 0.993 0.363

τ1 = 0.90 τ2 = 0.85 υ1 = 0.95 υ2 = 0.90 ρτ = 1.06
ε1 = 0.021 ε0 = 0.044 p = 0.50

Wald Log Fieller BCB MCB

n CP AL CP AL CP AL CP AL CP AL

50 0.986 0.326 0.994 0.328 0.993 0.334 1 0.347 1 0.448
100 0.949 0.216 0.952 0.216 0.950 0.218 0.957 0.232 0.994 0.288
200 0.952 0.151 0.955 0.151 0.954 0.152 0.953 0.157 0.990 0.196
500 0.941 0.095 0.941 0.095 0.940 0.095 0.935 0.095 0.982 0.122

1000 0.950 0.067 0.951 0.067 0.949 0.067 0.946 0.067 0.987 0.086

τ1 = 0.85 τ2 = 0.75 υ1 = 0.95 υ2 = 0.85 ρτ = 1.13
ε1 = 0.037 ε0 = 0.024 p = 0.25

Wald Log Fieller BCB MCB

n CP AL CP AL CP AL CP AL CP AL

50 0.997 0.950 1 0.958 0.998 0.961 1 0.992 1 1.407
100 0.972 0.591 0.983 0.596 0.979 0.636 1 0.689 0.999 0.841
200 0.941 0.390 0.943 0.392 0.940 0.396 0.988 0.398 0.989 0.528
500 0.950 0.241 0.954 0.241 0.957 0.242 0.960 0.244 0.989 0.314

1000 0.951 0.169 0.953 0.170 0.950 0.171 0.953 0.171 0.988 0.218

CP: coverage probability. AL: average length. Wald: Wald CI. Log: logarithmic CI. Fieller: Fieller CI. BCB:
bias-corrected bootstrap CI. MCB: Monte Carlo Bayesian CI.

3.2. CIs for the Differences and Ratios of Negative Predictive Values

Table 4 shows the results for the three CIs for the difference δυ for the same scenarios
as in Tables 2 and 3. In general terms, when the sample size is small, the three CIs have a
coverage probability close to 1, although in some situations, the bias-corrected bootstrap
CI may have a coverage probability well below 95%. In general terms, the Monte Carlo
Bayesian CI has a coverage probability that almost always fluctuates above 95%. For
the difference δυ, the Wald CI is the interval that has a coverage probability with better
fluctuations around 95%, especially when the sample size is moderate or large.

Regarding the CIs for the ratio ρυ, Table 5 shows the results obtained for the same
scenarios as in Table 4. When the sample size is small (n = 50), the five CIs for ρτ fail
or have a coverage probability close to 1. In general terms, the conclusions for the bias-
corrected bootstrap CI and for the Monte Carlo Bayesian CI are very similar to those
obtained for the corresponding intervals for the difference δυ. With respect to the other
intervals, there is not an important difference between the coverage probabilities and the
average lengths of the Wald, logarithm, and Fieller CIs, especially when n ≥ 100. When the
sample size is small, the logarithmic CI and the Fieller CI have an average length slightly
greater than that of the Wald CI.
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Table 4. Asymptotic behaviors of the CIs for the difference of the two negative predictive values.

τ1 = 0.75 τ2 = 0.75 υ1 = 0.95 υ2 = 0.95 δυ = 0
ε1 = 0.124 ε0 = 0.010 p = 0.10

Wald BCB MCB

n CP AL CP AL CP AL

50 1 0.127 1 0.119 1 0.154
100 0.999 0.072 1 0.069 0.999 0.095
200 0.989 0.046 1 0.042 0.999 0.063
500 0.949 0.028 0.968 0.028 0.994 0.040

1000 0.946 0.020 0.943 0.020 0.993 0.028

τ1 = 0.90 τ2 = 0.85 υ1 = 0.95 υ2 = 0.90 δυ = 0.05
ε1 = 0.021 ε0 = 0.044 p = 0.50

Wald BCB MCB

n CP AL CP AL CP AL

50 0.999 0.264 1 0.276 1 0.344
100 0.966 0.169 0.952 0.170 0.995 0.222
200 0.950 0.115 0.932 0.119 0.989 0.147
500 0.949 0.073 0.948 0.073 0.983 0.090

1000 0.952 0.052 0.953 0.052 0.984 0.063

τ1 = 0.85 τ2 = 0.75 υ1 = 0.95 υ2 = 0.85 δυ = 0.10
ε1 = 0.037 ε0 = 0.024 p = 0.25

Wald BCB MCB

n CP AL CP AL CP AL

50 0.936 0.207 0.720 0.182 0.948 0.218
100 0.938 0.142 0.874 0.133 0.960 0.151
200 0.948 0.099 0.937 0.096 0.967 0.107
500 0.957 0.062 0.961 0.062 0.975 0.068

1000 0.946 0.044 0.947 0.044 0.964 0.048

CP: coverage probability. AL: average length. Wald: Wald CI. BCB: bias-corrected bootstrap CI. MCB: Monte
Carlo Bayesian CI.

Similar conclusions are obtained when ε1 and ε0 take high values. Therefore, the
dependency factors ε1 and ε0 do not have an important effect on the behavior of the CIs for
the difference (ratio) of the two negative predictive values.

As a conclusion, the following general rules of application can be given depending on
the sample size, since the sample size is the only parameter controlled by the researcher: (a)
apply the Wald CI for the difference of the positive (negative) predictive values whatever
the sample size; (b) apply the Wald CI for the ratio of the two positive (negative) predictive
values when the sample size is small, and apply the Wald CI, the logarithmic CI, the Fieller
CI, or the bias-corrected bootstrap CI when the sample size is moderate or high.

Once some general rules of application have been established, what is better: to use a
CI for the difference or a CI for the ratio? Simulation experiments have shown that the Wald
CIs for the difference and the Wald CIs for the ratio have a very similar coverage probability.
Furthermore, the Wald CI for the difference has a coverage probability very similar to that
of the Fieller CI when the sample size is large. The Wald CIs for the difference are obtained
by inverting the Wald test statistics of the tests H0 : τ1 − τ2 = 0 and H0 : υ1 − υ2 = 0,
and the Wald CIs for the ratio are obtained by inverting the Wald test statistics of the
tests H0 : τ1/τ2 = 1 and H0 : υ1/υ2 = 1. Wang et al. [4] have shown through simulation
experiments that the hypothesis tests H0 : τ1 − τ2 = 0 and H0 : υ1 − υ2 = 0 have better
asymptotic behavior than the tests H0 : τ1/τ2 = 1 and H0 : υ1/υ2 = 1. Furthermore,
Wang et al. recommend using the difference-based approach as it is more straightforward
and more understandable for researchers. Therefore, we recommend using a CI for the
difference instead of a CI for the ratio.
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Table 5. Asymptotic behaviors of the CIs for the ratio of the two negative predictive values.

τ1 = 0.75 τ2 = 0.75 υ1 = 0.95 υ2 = 0.95 ρυ = 1
ε1 = 0.124 ε0 = 0.010 p = 0.10

Wald Log Fieller BCB MCB

n CP AL CP AL CP AL CP AL CP AL

50 1 0.144 1 0.144 1 0.145 1 0.128 1.000 0.173
100 0.999 0.076 1 0.079 0.999 0.080 1 0.074 0.999 0.103
200 0.988 0.046 0.991 0.047 0.992 0.048 1 0.045 0.999 0.068
500 0.950 0.030 0.950 0.030 0.949 0.030 0.971 0.029 0.994 0.042

1000 0.948 0.021 0.947 0.021 0.946 0.021 0.946 0.021 0.993 0.030

τ1 = 0.90 τ2 = 0.85 υ1 = 0.95 υ2 = 0.90 ρυ = 1.06
ε1 = 0.021 ε0 = 0.044 p = 0.50

Wald Log Fieller BCB MCB

n CP AL CP AL CP AL CP AL CP AL

50 1 0.324 1 0.326 0.999 0.332 1 0.349 1 0.462
100 0.954 0.201 0.964 0.201 0.962 0.202 0.964 0.219 0.995 0.274
200 0.945 0.134 0.946 0.134 0.947 0.135 0.921 0.138 0.989 0.175
500 0.946 0.085 0.945 0.085 0.946 0.085 0.947 0.085 0.982 0.105

1000 0.954 0.060 0.952 0.060 0.952 0.060 0.950 0.060 0.983 0.074

τ1 = 0.85 τ2 = 0.75 υ1 = 0.95 υ2 = 0.85 ρυ = 1.12
ε1 = 0.037 ε0 = 0.024 p = 0.25

Wald Log Fieller BCB MCB

n CP AL CP AL CP AL CP AL CP AL

50 0.936 0.271 0.934 0.272 0.933 0.275 0.724 0.283 0.933 0.291
100 0.939 0.184 0.936 0.184 0.935 0.185 0.849 0.191 0.961 0.199
200 0.945 0.129 0.947 0.129 0.945 0.129 0.923 0.125 0.963 0.140
500 0.957 0.081 0.958 0.081 0.958 0.081 0.959 0.081 0.974 0.088

1000 0.949 0.057 0.950 0.057 0.950 0.057 0.948 0.057 0.964 0.062

CP: coverage probability. AL: average length. Wald: Wald CI. Log: logarithmic CI. Fieller: Fieller CI. BCB:
bias-corrected bootstrap CI. MCB: Monte Carlo Bayesian CI.

4. Sample Size

The calculation of the sample size to compare parameters has great interest in Statistics.
Next, we propose a procedure to determine the sample size necessary to estimate the
difference between the two positive (negative) predictive values with a precision φτ (φυ)
and a confidence 100(1− α)%. This procedure is based on the Wald CI for the difference
δτ (δυ), since in general terms, this CI is the interval with the best asymptotic behavior.
This procedure requires having a pilot sample (or another study) in order to estimate
the predictive values and their differences. If the pilot sample is not small and the Wald
CI for the difference δτ (δυ) contains the value 0, then the null hypothesis of equality of
the predictive values is not rejected, and it does not make sense to calculate the sample
size. However, if the sample is small, it may be necessary to calculate the sample size,
since the Wald CI will be very wide and may contain the value 0 even if the predictive
values are different. Let us considerer that τ1 ≥ τ2 (υ1 ≥ υ2) and therefore δτ ≥ 0 (δυ ≥ 0),
and let φτ and φυ be the precisions set by the researcher (φ must be a small value if the
researcher wants high precision). Based on the asymptotic normality of δ̂τ = τ̂1 − τ̂1 and of
δ̂υ = υ̂1 − υ̂2, it is verified that

δ̂τ ∈ δτ ± z1−α/2

√
Var

(
δ̂τ

)
and δ̂υ ∈ δυ ± z1−α/2

√
Var

(
δ̂υ

)
,

i.e., the probability of obtaining an estimator δ̂τ

(
δ̂υ

)
is in this interval with a probability

100(1− α)%.
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For positive predictive values, the method is as follows. Setting a precision φτ , the
sample size is calculated from the equation

φτ = z1−α/2

√
Var

(
δ̂τ

)
, (13)

where the variance is

Var
(
δ̂τ

)
=

pqQ2τ1τ1 + pqQ1τ2τ2 − 2
(

pq2τ1τ2ε0 + p2qτ1τ2ε1 + τ1τ2τ1τ2Q1Q2
)

npqQ1Q2
. (14)

The proof can be seen in the Appendix A. This variance depends on the positive
predictive values (τi), on the disease prevalence (p), on the probability of a positive result
of each test (Qi), on the dependency factors (εi), and on the sample size n. Substituting
in Equation (13) the parameters with their estimators and clearing n, the sample size to
estimate the difference δτ with precision φτ and a confidence 100(1− α)% is

nτ = n =
z2

1−α/2

φ2
τ
×

p̂q̂τ̂1τ̂1Q̂2 + p̂q̂τ̂2τ̂2Q̂1 − 2
(

p̂q̂2τ̂1τ̂2 ε̂0 + p̂2q̂τ̂1τ̂2 ε̂1 + τ̂1τ̂2τ̂1τ̂2Q̂1Q̂2
)

p̂q̂Q̂1Q̂2
. (15)

Once the equation for the sample size is obtained, the method to calculate the sample
size consists of the following steps:

(1) Take pilot samples sized n′τ , and from this sample, calculate τ̂i, υ̂i, ε̂i, p̂, Q̂i and the
Wald CI for the difference δτ . If the Wald CI has a precision φτ , then with the pilot
sample, the precision has been reached, and the process ends. In this situation, the
difference δτ has been estimated with a precision φτ to a confidence 100(1− α)%.
Otherwise, go to the next step.

(2) From the estimates obtained with the pilot sample, calculate the sample size nτ

applying Equation (15).
(3) Take the sample sized nτ (nτ − n′τ individuals are added to the initial pilot sample),

and from this sample, calculate all the estimators and the Wald CI for the difference
δτ . If the Wald CI has a precision φτ , then the process ends (the precision has been
reached with the new sample). If the Wald CI does not have the precision φτ , then
this sample is considered as a pilot sample and go to step 1.

This method to calculate the sample size n is an iterative method, which depends on
the initial pilot sample and therefore does not guarantee that the difference between the
positive predictive values will be estimated with the precision φτ .

Sample size to estimate the difference δυ is calculated in a similar way. In this case,

Var
(
δ̂υ

)
=

pqυ1υ1Q2 + pqυ2υ2Q1 − 2
(

pq2υ1υ2ε0 + p2qυ1υ2ε1 + υ1υ2υ1υ2Q1Q2
)

npqQ1Q2
(16)

and the sample size nυ to estimate the difference δυ with precision φυ and a confidence
100(1− α)% is

nυ =
z2

1−α/2

φ2
υ
×

p̂q̂υ̂1υ̂1Q̂2 + p̂q̂υ̂2υ̂2Q̂1 − 2
(

p̂q̂2υ̂1υ̂2 ε̂0 + p̂2q̂υ̂1υ̂2 ε̂1 + υ̂1υ̂2υ̂1υ̂2Q̂1Q̂2

)
p̂q̂Q̂1Q̂2

. (17)

If the researcher wants to estimate δτ with precision φτ and also wants to esti-
mate δυ with precision φυ, at the same level of confidence, then the final sample size
is n = Max(nτ , nυ). Using the largest sample size, can guarantee that the CI for the dif-
ference of the two positive predictive values and that the CI for the difference of the two
negative predictive values verify the set precision for each of them.

The method for calculating the sample size depends on the values of the estimators
obtained from the pilot sample. As the values of the estimators depend on each sample
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(and therefore vary from one sample to another), it is necessary to study how the values
of the estimators affect the calculation of the sample size. Therefore, we have carried out
simulation experiments to study the effect of the values of the estimators on the calculation
of the sample size. These simulation experiments consisted of the following steps:

(1) Calculate the sample size nτ (nυ), Equations (14) and (16), from the values of the pa-
rameters in the scenarios considered (Tables 2 and 4). Therefore, these equations have
been applied using the values of the parameters instead of the values of the estimators.

(2) Generate N = 10, 000 multinomial random samples sized nτ (nυ) and whose prob-
abilities have been calculated from Equations (7) and (8), using the parameters of
the scenarios considered, and as values εi, intermediate (50%) and high (90%) values
have been considered. From each one of the N random samples, all the estimators
(τ̂i, υ̂i, ε̂i, p̂ and Q̂i) have been calculated, and then, the sample size n′τ (n′υ) has been
calculated applying Equation (14) (Equation (16)).

(3) In each scenario considered, the average sample size and relative bias have been calculated.

Table 6 shows the results obtained for different precision values (2.5% and 5%, which
are values that can be considered as high precision values) and 1− α = 0.95. The relative
biases are very small, the equations of the sample sizes provide robust values, and therefore,
the pilot sample has little effect on the calculation of the sample sizes.

Table 6. Sample size for estimated the difference between the positive (negative) predictive values.

Positive Predictive Values

τ1 = 0.90 τ2 = 0.85 υ1 = 0.95 υ2 = 0.90
δτ = 0.05 ε1 = 0.021 ε0 = 0.044 p = 0.50

τ1 = 0.85 τ2 = 0.75 υ1 = 0.95 υ2 = 0.85
δτ = 0.10 ε1 = 0.037 ε0 = 0.024 p = 0.25

φτ = 0.025 φτ = 0.05 φτ = 0.025 φτ = 0.05

Sample size 1203 301 5048 1262
Average sample size 1204 302 5054 1267

Relative bias (%) 0.17 0.33 0.12 0.40

Negative predictive values

τ1 = 0.90 τ2 = 0.85 υ1 = 0.95 υ2 = 0.90
δυ = 0.05 ε1 = 0.021 ε0 = 0.044 p = 0.50

τ1 = 0.85 τ2 = 0.75 υ1 = 0.95 υ2 = 0.85
δυ = 0.10 ε1 = 0.037 ε0 = 0.024 p = 0.25

φυ = 0.025 φυ = 0.05 φυ = 0.025 φυ = 0.05

Sample size 1079 270 782 196
Average sample size 1080 272 783 198

Relative bias (%) 0.09 0.74 0.13 1.02

5. Program Cipvbdt

We have written a program in R [13] to solve the problems raised in this manuscript.
The program is called “cicpvbdt” (confidence intervals to compare the predictive values of
binary diagnostic tests), and it allows calculating all CIs and sample sizes. The program
runs with the command “cicpvbdt(s11, s10, s01, s00, r11, r10, r01, r00, δτ , δυ)”. By default, the
level of confidence is 95%. The program does not calculate the sample sizes when δτ = 0
and δυ = 0, and only calculates the sample sizes when δτ > 0 and/or δυ > 0. In this last
situation, the program checks if the set precision is reached. The program checks that all
values are valid (e.g., that there are no negative observed frequencies, etc.). The program
also checks that all the parameters and their variances–covariances can be estimated. For
the bias-corrected bootstrap CIs, 2000 samples with replacement are generated, and for the
Monte Carlo Bayesian CIs, 10,000 random samples are generated. The results obtained are
saved in a file called “results_cicpvbt.txt” in the folder from where the program is run. The
program is available as Supplemental Material of this manuscript.
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6. Example

The results obtained have been applied to a study on the diagnosis of colorectal cancer,
using two diagnostic tests: Fecal Immunochemical Testing (FIT) and Fecal Occult Blood
Testing (FOBT). The GS for the diagnosis of colorectal cancer is the biopsy. Table 7 shows
the observed frequencies when the two BDTs and the GS have been applied to a sample
of 168 adult men suspected of having colorectal cancer. Using the program “cicpvbdt”
with the command “cicpvbdt(68, 18, 1, 13, 4, 1, 2, 61, 0, 0)”; all the results shown in Table 7
are obtained.

Table 7. Observed frequencies and CIs.

Observed Frequencies

FIT: positive FIT: negative

Biopsy FOBT:
positive

FOBT:
negative

FOBT:
positive

FOBT:
negative Total

Cancer 68 18 1 13 100
Normal 4 1 2 61 68

Total 72 19 3 74 168

Results

Positive predictive value Negative predictive value

FIT 0.945± 0.024 0.818± 0.044

FOBT 0.920± 0.031 0.667± 0.049

p ε1 ε0 Q1 Q2

0.595 0.087 0.052 0.542 0.446

CIs for δτ = τ1 − τ2

Wald BCB MCB

(−0.016, 0.066) (−0.013, 0.073) (−0.045, 0.105)

CIs for ρτ = τ1/τ2

Wald Log Fieller BCB MCB

(0.981, 1.073) (0.982, 1.074) (0.983, 1.076) (0.985, 1.084) (0.952, 1.124)

CIs for δυ = υ1 − υ2

Wald BCB MCB

(0.081, 0.222) (0.089, 0.231) (0.049, 0.248)

CIs for ρυ = υ1/υ2

Wald Log Fieller BCB MCB

(1.101, 1.353) (1.108, 1.350) (1.112, 1.368) (1.121, 1.382) (1.069, 1.420)

Wald: Wald CI. Log: logarithmic CI. Fieller: Fieller CI. BCB: bias-corrected bootstrap CI. MCB: Monte Carlo
Bayesian CI.

The estimated positive predictive values of FIT and of FOBT are 94.5% and 92.0%,
and the estimated negative predictive values are 81.8% and 66.7%, respectively. Using
the recommendations given in Section 3, the 95% Wald CI for the difference between the
two positive predictive values contains the value zero, and therefore (with α = 5%), the
equality of the two positive predictive values is not rejected.

Regarding the negative predictive values, the 95% Wald CI does not contain the value
zero, and therefore, we reject the equality of both negative predictive values. Therefore,
negative predictive value of FIT is significantly greater than the negative predictive value
of FOBT. The negative predictive value of FIT is (with a confidence of 95%) a value between
8.1% and 22.2% greater than the negative predictive value of FOBT. The same conclusions
are obtained using the other CIs.
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To illustrate the method of calculating the sample size, we are going to suppose
that the clinician is interested in calculating the sample size necessary to estimate the
difference between the two negative predictive values with a precision φυ = 0.05 and
1 − α = 0.95. The 95% Wald CI for δυ = υ1 − υ2 is (0.081 , 0.222), and the precision
is 0.0705 (= (0.222− 0.081)/2). Since φυ = 0.05 < 0.0705, with the sample of 168 in-
dividuals, the precision has not been reached, and therefore, the sample size must be
calculated. Using the sample of 168 patients as a pilot sample and executing the command
“cicpvbdt(68, 18, 1, 13, 4, 1, 2, 61, 0, 0.05)”, it is obtained that nυ = 338. A sample of 338 pa-
tients is necessary to estimate the difference between the two negative predictive values
with a precision φυ = 0.05 and a confidence of 95%. To the sample of 168 patients, another
170 new patients must be added. The two BDTs and the biopsy should be applied to new
patients. Finally, it is necessary to recalculate the CIs with the sample of 338 patients and
check if the set precision is verified.

7. Discussion

Comparison of the predictive values of two medical tests is a topic of interest in
biostatistics. There are several articles that have studied hypothesis tests to solve these
problems; however, the comparison of predictive values through confidence intervals
has been little studied. In this manuscript, we have studied confidence intervals for the
difference and for the ratio of the positive (negative) predictive values of two diagnostic
tests under a paired design. We have carried out simulation experiments to study the
asymptotic behaviors of the CIs, and we have given general rules of application. These rules
are based on the sample size, since this is the only parameter that is set by the researcher,
and also on the practical interpretation of the CIs. As a general conclusion, we recommend
using the Wald interval for the difference of the two positive (negative) predictive values.

We have also proposed a method, based on the Wald CI for the difference, to calculate
the sample size to estimate the difference between the two positive (negative) predictive
values with a determined precision and confidence. This method starts from an initial pilot
sample, and then the sample size is calculated from the estimators obtained with the initial
sample. This method depends on the estimators of the pilot sample, so we have carried
out simulation experiments to study the effect of the pilot sample on the sample size. The
results obtained in these experiments have shown that the pilot sample does not have any
important effect on the calculation of the sample size, and that therefore, the method has
practical validity.
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Appendix A

Let π = (p11, p10, p01, p00, q11, q10, q01, q00)
T be the vector of probabilities of the multi-

nomial distribution; then, the variance–covariance matrix of
^
π is ∑ ^

π
=
{

diag(π)− ππT}/n.
In terms ofω, the predictive values are written as

τ1 =
p10 + p11

Q1
, τ2 =

p01 + p11

Q2
, υ1 =

q00 + q01

Q1
and υ2 =

q00 + q10

Q2
,

where

Q1 = P(T1 = 1) = p10 + p11 + q10 + q11 = pSe1 + q(1− Sp1),
Q1 = 1−Q1 = P(T1 = 0) = p00 + p01 + q00 + q01 = p(1− Se1) + qSp1,

Q2 = P(T2 = 1) = p01 + p11 + q01 + q11 = pSe2 + q(1− Sp2)

and
Q2 = 1−Q2 = P(T2 = 0) = p00 + p10 + q00 + q10 = p(1− Se2) + qSp2.

Let ω = (τ1, τ2, υ1, υ2)
T be the vector of predictive values; then, applying the delta

method, the matrix of the asymptotic variances–covariances of
^
ω is

∑ ^
ω

=

(
∂ω

∂π

)
∑ ^
π

(
∂ω

∂π

)T
.

Performing the algebraic operations, it is obtained that

Var(τ̂1) =
(p10+p11)(q10+q11)

nQ3
1

= τ1τ1
nQ1

,

Var(τ̂2) =
(p01+p11)(q01+q11)

nQ3
2

= τ2τ2
nQ2

,

Var(υ̂1) =
(q01+q00)(p01+p00)

nQ3
1

= υ1υ1
nQ1

,

Var(υ̂2) =
(q00+q10)(p00+p10)

nQ3
2

= υ2υ2
nQ2

,

Cov(τ̂1, τ̂2) =
pq2τ1τ2ε0+p2qτ1τ2ε1+τ1τ2τ1τ2Q1Q2

npqQ1Q2

and

Cov(υ̂1, υ̂2) =
pq2υ1υ2ε0 + p2qυ1υ2ε1 + υ1υ2υ1υ2Q1Q2

npqQ1Q2

where τi = 1− τi and υi = 1− υi, with i = 1, 2. The estimated variances–covariances are
obtained by substituting the parameters for their estimators. Equations (15) and (16) are
obtained by substituting in equations

Var
(
δ̂τ

)
= Var(τ̂1) + Var(τ̂2)− 2Cov(τ̂1, τ̂2)

and
Var

(
δ̂υ

)
= Var(υ̂1) + Var(υ̂2)− 2Cov(υ̂1, υ̂2)

the variances–covariances by their corresponding expressions obtained previously.
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