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Abstract— Arrays of circular loop antennas are commonly
employed at radio frequencies for communications and geo-
physical sensing, while also holding enormous potential in the
optical regime for applications such as solar energy harvesting.
Exact analytical expressions exist for predicting the mutual
coupling between a variety of antennas, including dipoles and
slots. However, due to the complexity of the integrals involved,
analytical expressions for evaluating the coupling between loop
antennas have not been previously available. This paper presents
straightforward analytical expressions for efficient calculation of
the coupling between two circular loops at arbitrary locations.
The theory is extended to the optical regime by taking into
account the dispersion and loss of the material comprising
the loop antenna. These analytical expressions provide insight
into the physics underlying the mutual coupling phenomenon.
Along with the approximate analytical expressions, a useful
pseudo-analytical representation is developed which is more
exact, especially in the near-field regime, and can be easily and
efficiently evaluated in MATLAB via numerical integration. It is
shown that full-wave simulations for a two-element array of
nanoloops can take up to six hours, while the corresponding
analytical and pseudo-analytical implementations derived here
take less than a minute.

Index Terms— Antenna theory, loop antennas, mutual cou-
pling, nanotechnology, submillimeter wave technology.

I. INTRODUCTION

C IRCULAR loops, along with dipoles and slots, are
among the most fundamental and rigorously studied

antenna geometries in the radio frequency (RF) regime. Loop
antennas are inexpensive and simple to construct, and have
found a wide range of practical applications including use
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as probes and radio receivers [1]. Coupling between loops
is of interest in areas such as mine communications [2] and
geological characterization [3]. In addition, coupling plays a
crucial role in the design of arrays of circular loops, such as the
highly directive Yagi–Uda antenna [4]. Due to advancements
in manufacturing and the emerging importance of wireless
communications, nanotechnology-enabled devices which oper-
ate in the terahertz, infrared, and optical regimes have received
considerable attention recently. In particular, nanoantennas are
extremely promising for a variety of applications including
biological sensing, optical communications, and solar energy
harvesting [5]. Most of the theoretical development work
on optical nanoantennas has its roots in RF and microwave
antennas [6], which have been studied extensively [7]. Popular
antenna designs in the nanoscale include the monopole [8],
dipole [9], and bow-tie [10]. Similar to the RF world, arrays of
nanoantennas (mostly dipoles) have been studied for their high
directivity and ability to steer light [11], [12]. Despite its fun-
damental importance in RF systems, the loop antenna has not
received as much attention in the optical regime. In fact, exact
analytical representations of the input impedance, radiation
resistance, and radiation efficiency of a nanoloop antenna were
not developed until 2013 [13]. While nanoloop arrays have
been considered for their potential use in solar cells [14], [15]
and as directive scatterers [16], a rigorous analysis of the
coupling between the elements of these arrays has yet to be
successfully carried out. A full-wave simulation is typically
employed when designing such structures, but this approach
requires a large amount of computational resources. An exact
analytical representation of the coupling phenomenon would
lead to a better understanding of the underlying physics and
allow for extremely efficient design iterations and parametric
studies.

Assuming the current distribution of a thin-wire PEC circu-
lar loop followed a Fourier cosine series enabled calculation
of the input impedance and resonance properties [17]–[19].
Moreover, by finding an analytical representation of the vector
potential integrals, exact near-zone and far-zone representa-
tions of the electric and magnetic field were derived [20], [21].
These equations can be applied to the nanoloops in the
optical regime by extending the formulation to include the
effects of dispersion and loss of the material comprising
the loop. Utilizing this approach, analytical expressions for the
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radiation properties of nanoloops were recently found in [22].
Through application of the induced electromotive force (EMF)
method [7], the mutual coupling between antenna elements
can be evaluated. This approach has been used to compute
the coupling between dipoles [23] and slots [24]. However,
due to the complexity of the integrals involved in computing
coupling between loop antennas [25], [26], no fully analytical
solution has previously been found for arbitrarily large loops.
Wait derived expressions for the mutual coupling between
electrically small loops located at the same height above a
homogeneous ground when the separation distance is small
by employing a quasi-static approximation [27]. The same
author later extended this formulation to compute an approx-
imate solution for two small loops separated by an arbitrary
distance on the surface of an inhomogeneous ground [28].
Integral equation-based solutions were reported for the cou-
pling between two identical coaxial loops [25] and an array
of coaxial loops with different radii [26]. This was further
extended to an array of loops of arbitrary radii, orientation, and
location [29]. Our contribution in this paper is the development
of exact analytical solutions for the mutual coupling between
PEC or dispersive and lossy loops of arbitrary radii and the
location which does not involve complex matrix inversions.
In this paper, efficient fully analytical expressions for the
mutual coupling between nanoloops are derived under the
assumption that the loops are relatively far apart. In addition,
an alternate and general pseudo-analytical formulation which
is more accurate for closely spaced loops will be developed by
utilizing the full near-zone electric fields in conjunction with
the analytical current distribution of [21]. This expression can
be calculated efficiently using a numerical integration routine.
Timing comparisons were performed on a Dual Intel Xeon
2.3 GHz Processor with 10 cores. A full-wave solver such as
the integral equation-based method implemented in FEKO [30]
utilizing all 10 cores can take up to six hours to simulate
while the two approaches derived in this paper take less than
a minute when implemented in MATLAB and utilizing only
a single core.

Section II presents a pseudo-analytical exact representation
of the mutual admittances for circular nanoloops when the
near-zone radiated fields are considered. Then, by employing
a series of far-zone approximations, useful fully analytical
expressions are developed. When the loops are in the stacked
configuration, it is shown that a particularly simple expression
can be derived for this important special case. Section III
compares these results with those from full-wave solvers and
experimental measurements and analyzes the regimes in which
the assumptions are valid.

II. THEORETICAL FORMULATION

Fig. 1 shows the geometry of a circular loop with wire
radius a and loop radius b, where the thin-wire approximation
(a2 �b2, a � λ) is assumed. Note that for non-PEC loops the
effective wavelength must be used in the thin-wire limit [32].
Under this assumption, the current is constant through the
wire cross section for both PEC and non-PEC cases. The
input impedance of the antenna can be derived by assuming
a Fourier series representation for the current on the loop

Fig. 1. Geometry of the circular loop with wire radius a and loop radius b
where a2 � b2. For computational purposes, a delta-function voltage source
with constant voltage V0 is placed at φ = 0.

when excited with a voltage source of magnitude V0 located
at φ = 0 [17]

I (φ) =
∞∑

m=−∞
Ime jmφ = V0

[ ∞∑

m=0

Y ′
m cos(mφ)

]
(1)

where the input admittance Y ′
m for each mode is given by

Y ′
0 = [ jπη0a0 + (b/a)Zs]−1

Y ′
m = [ jπη0(am/2) + (b/a)(Zs/2)]−1 (2)

and Zs is the characteristic impedance of the wire. Explicit
representations of the am coefficients can be found in [17].
The computational implementation of (2) requires the solution
of integrals involving Lommel-Weber and Bessel functions.
An extended discussion of efficient series representations of
these integrals is provided in [22]. For a PEC, the correspond-
ing characteristic impedance of the wire is Zs = 0. However,
when real materials are employed in the optical regime, this
characteristic impedance of the wire can be approximated
by [14]

Zs = γ

σ

J0(γ a)

J1(γ a)
(3)

where Jm is a Bessel function of the first kind of order m,
and the transverse propagation constant γ and conductivity
σ are functions of the refractive index of the material η. The
refractive index can be represented by a Drude model extended
to include critical points of the band transitions as Lorentzian
resonances [31], [32]. The modal coefficients for the current
can be computed explicitly by

Im = Y ′
m V0 = (

Z ′
m

)−1
V0. (4)

The geometry considered for computing the radiated fields
is shown in Fig. 2. The near-zone electric fields at the
point (r, θ, φ) can be determined based on the source
points (b, π

2 , φ′). The distance from a source point on the loop
to an arbitrary field point is given by

R′ =
√

R2 − 2b sin θ cos(φ − φ′)
R =

√
r2 + b2. (5)

The integrations involved in the vector potentials can be
evaluated analytically, as demonstrated in [20]. Using these
vector potentials, the electric field components at a point
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Fig. 2. Geometry of the thin circular loop antenna. The near-zone radiated
fields can be evaluated at the point (r, θ, φ).

(r, θ, φ) are given in (6), as shown at the bottom of this page,
where h(2)

m (k0 R) are spherical Hankel functions of the second
kind. By employing the appropriate asymptotic expansions, the
electric fields in the far-zone may be expressed in spherical
coordinates (θ, φ) as [20]

Er ≈ 0

Eθ ≈ −η0e− j k0r cot θ

2r

∞∑

m=1

m jm Im sin(mφ)Jm(kb sin θ)

Eφ ≈ −η0e− j k0r kb

2r

∞∑

m=0

jm Im cos(mφ)J ′
m(kb sin θ) (7)

where J ′
m is the derivative of the Bessel function of the first

kind with respect to the argument. In this paper, the induced
current on a passive loop due to radiation from an active loop
will be calculated under a variety of geometrical configurations
and approximations. First, the full near-zone fields of (6)
will be utilized to construct a pseudo-analytical representation
for the induced current when the two loops are at arbitrary
locations. Then, using a series of far-field approximations

Fig. 3. Geometry of the active loop i and passive loop j . Loop j is centered
at (x0, y0, z0). The loop represented by a dashed line is the projection of the
passive loop j onto the xy-plane. The vector (r̂, θ̂ , φ̂) points from the center
of loop i to a point on the circumference of loop j while (r̂0, θ̂0, φ̂0) points
from center to center.

and the far-zone fields of (7), it will be shown that an exact
analytical representation can be derived. Finally, an analytical
expression for the induced current for the special case of a
stacked loop configuration will be presented.

A. Pseudo-Analytical Representation of Induced Current

The geometry to be considered when computing the mutual
coupling is shown in Fig. 3. The unprimed coordinate system
(x, y, z) is defined with origin at the center of loop i while
the primed coordinate system (x ′, y ′, z′) is defined with origin
at the center of loop j . The dimensions for each individual
loop are indicated in Fig. 1, where for loop i the radius
of the wire and loop is ai and bi respectively. The vector
denoted by (r̂ , θ̂ , φ̂) is directed from the center of loop i to a
point on loop j while (r̂0, θ̂0, φ̂0) points from center to center.

Er (r, θ, φ) = η0k2
0b sin θ

4

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∞∑

m=1

m∑

n=1
m−n=2k
k=0,1,...

(
k2

0br sin θ

2

)m−1

sin (nφ)

[
(k0b)2C3

mn
h(2)

m+1(k0 R)

(k0 R)m+1 − C4
mn

h(2)
m (k0 R)

(k0 R)m

]
⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Eθ (r, θ, φ) = η0k2
0b cos θ

4

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∞∑

m=1

m∑

n=1
m−n=2k
k=0,1,...

(
k2

0br sin θ

2

)m−1

sin(nφ)

[
C5

mn
h(2)

m (k0 R)

(k0 R)m
− C3

mn
h(2)

m−1(k0 R)

(k0 R)m−1

]
⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Eφ(r, θ, φ) = η0k2
0b

4

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∞∑

m=1

m∑

n=0
m−n=2k
k=0,1,...

(
k2

0br sin θ

2

)m−1

cos(nφ)

[
C6

mn
h(2)

m (k0 R)

(k0 R)m
− C2

mn
h(2)

m−1(k0 R)

(k0 R)m−1

]
⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

C2
mn = In

m

[(m − n)/2]![(m + n)/2]! ; C3
mn = In

n

[(m − n)/2]![(m + n)/2]!
C4

mn = (m + 1)C3
mn; C5

mn = mC3
mn; C6

mn = nC3
mn (6)
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The vector defined by (ρ̂, π/2, φ̂) is directed from the center
of loop i to a point on loop j projected onto the xy-plane,
as depicted by the dashed lines in Fig. 3. Similarly, the vector
(ρ̂0, π/2, φ̂0) points from the center of loop i to the center
of the projected loop j . The induced EMF method can be
used to compute the induced current at the angle 
′ on the
passive loop with index j due to an active loop with index i ,
as represented by the following:

I j (

′) = Vij

⎡

⎣
∞∑

p=0

Y ′
p, j cos(p(
′ − φ′))

⎤

⎦ (8)

where Y ′
p, j is the pth modal admittance for loop j and, for

convenience, we have explicitly separated the term propor-
tional to the induced voltage Vij as

Vij ≡ b j

∫ 2π

0

�Ei · t̂dφ′. (9)

The tangential vector in the coordinate system of loop j is

t̂ = − sin φ′ x̂ + cos φ′ ŷ. (10)

Moreover, the dot products between the spherical coordinates
and the tangent vector are given by

r̂ · t̂ = 1

r
(−x sin φ′ + y cos φ′)

θ̂ · t̂ = z

rρ
(−x sin φ′ + y cos φ′)

φ̂ · t̂ = 1

ρ
(y sin φ′ + x cos φ′) (11)

where x = x0 + b j cos φ′, y = y0 + b j sin φ′,
r =

√
x2 + y2 + z2

0 and ρ = √
x2 + y2. A pseudo-analytical

representation for the induced current, which includes the
exact near-zone electric fields, may be obtained by combin-
ing (6) with (8)–(11). The resulting expression is given in (12),
as shown at the bottom of this page, where θ = cos−1 z0

r and
φ = tan−1 y

x and where it is noted that numerical integration

is required to evaluate the terms Fmnp(

′). The summation

over m and n in the integrand of this expression corresponds
to the induced voltage at the terminals of antenna j due to
radiation from antenna i . The modified notation Cmn,i is used
to refer to the Cmn coefficients for antenna i . In contrast, the
summation over p involves the modal admittances for antenna
j given by Y ′

p, j . The self-admittance of loop i is given by

Yii =
∞∑

p=0

Y ′
p,i . (13)

The mutual admittance Y j i can be found by applying a voltage
source Vi to loop i placed at 
 = 0 and shorting loop j

Y j i = I j (

′ = 0)

Vi
. (14)

Finally, for an array of N loops, the current at the input
terminals of loop j is given by

I j =
N∑

j=1

Y j i Vi . (15)

B. Analytical Representation of Induced Current
Using a numerical suite such as MATLAB, the modal

admittances of (2) can be easily determined. Then the induced
current can be computed by performing the numerical integra-
tion required to evaluate (12). However, one of the drawbacks
associated with this pseudo-analytical representation is that it
does not provide any physical insight into the behavior of the
problem. Furthermore, to compute the numerical integral accu-
rately a sophisticated routine such as global adaptive quadra-
ture is required [33]. Therefore, an analytical representation is
desired. When using the near-zone fields, the resulting integral
in (12) is extremely complex and an analytic representation
for the general form has not been found. Therefore, the far-
zone field expressions of (7) will be employed along with
a number of asymptotic approximations. It will be shown
that these assumptions hold remarkably well even when the
loops are relatively closely spaced. Substituting the far-zone

I j (

′) = η0k2

0bi b j

4

∞∑

p=0

Y ′
p, j

∞∑

m=1

m∑

n=1
m−n=2k

k=0,1,...

(
k2

0bi

2

)m−1

Fmnp(

′)

Fmnp(

′) =

∫ 2π

0
cos(p(
′ − φ′))(r sin θ)m−1

×
[

1

r
sin(θ) sin(nφ)(−x sin φ′ + y cos φ′)

(
k2

0b2
i C3

mn,i

h(2)
m+1(k0 R)

(k0 R)m+1 − C4
mn,i

h(2)
m (k0 R)

(k0 R)m

)

+ z

rρ
cos(θ) sin(nφ)(−x sin φ′ + y cos φ′)

(
C5

mn,i
h(2)

m (k0 R)

(k0 R)m
− C3

mn,i

h(2)
m−1(k0 R)

(k0 R)m−1

)

+ 1

ρ
cos(θ) cos(nφ)(y sin φ′ + x cos φ′)

(
C6

mn,i
h(2)

m (k0 R)

(k0 R)m
− C2

mn,i

h(2)
m−1(k0 R)

(k0 R)m−1

)]
dφ′ (12)
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representations for the electric fields into (8)–(11) leads to
an expression for the θ -component of the induced current,
which is given by the following:

Iθ, j (

′) = −η0z2

0b jρ0

2

∞∑

p=0

Y ′
p

∞∑

n=1

njn In,i Fnp(

′)

Fnp(

′) =

∫ 2π

0

e− j k0r

r2ρ2 sin(φ0 − φ′)

· sin(nφ)Jn

(
k0biρ

r

)
cos(p(
′ − φ′))dφ′. (16)

In (16), the two parameters r and ρ depend on the variable
of integration φ′. At this point in the analysis several assump-
tions will be made which reduce the complexity of the integral
in (16) such that it becomes tractable. If the two loops are
sufficiently far apart, the following far-zone approximations
hold:

ρ ≈

⎧
⎪⎨

⎪⎩

ρ0 for amplitude terms

ρ0

(
1 + b j

ρ0
cos(φ0 − φ′)

)
for phase terms

(17)

r ≈

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

r0 =
√

ρ2
0 + z2

0 for amplitude terms

√
ρ2

0 + z2
0

(
1 + b jρ0

r2
0

cos(φ0 − φ′)
)

for phase terms.

(18)

Another major complication with the integration of (16) lies
in the fact that φ depends on φ′. When the two loops are
not stacked or nearly on top of each other, the approximation
φ = φ0 can also be employed. The stacked loop case will
be discussed separately in the following section. Using these
approximations, the θ -component of the induced current can
be reduced to the form

Iθ, j (

′) = −η0b j z2

0

2ρ0r2
0

e− j k0r0

∞∑

p=0

Y ′
p, j

·
∞∑

n=1

njn In,i Jn

(
k0biρ0

r0

)
sin (nφ0)FSp(


′)

FSp(

′) =

∫ 2π

0
e
− j

k0b j ρ0
r0

cos(φ0−φ′)

· sin(φ0 − φ′) sin(p(
′ − φ′))dφ′. (19)

Now the integrand of FSp(

′)is explicitly in terms of φ′.

By representing the sine and cosine functions as complex

exponentials and using the Bessel generating function [34],
this integral can be evaluated analytically. The φ-component
of the induced current can be derived by using the same
approximations. The final expression for the total induced
current due to Eθ and Eφ is given by (20), as shown at the
bottom of this page.

It will be shown in Section III that the radial component
of the electric field has a surprisingly large contribution to
the induced current, even when the loop is relatively far
away. By employing a series of approximations in which we
assume that the passive loop is sufficiently far away from
the active loop, the contribution of the radial electric field
component can be evaluated analytically. To this end, the
following approximations were made:

R ≈ r ≈

⎧
⎪⎨

⎪⎩

r0 for amplitude terms

r0

(
1+ b jρ0

r2
0

cos(φ0 − φ′)
)

for phase terms

θ ≈ θ0

φ ≈ φ0 (21)

In addition, the large argument asymptotic limit of the
spherical Hankel function of the second kind is employed

lim
x→∞ h(2)

m (x) = jm+1 e− j x

x
. (22)

This approximation is valid when the loops are adequately
separated since the argument under consideration is k0 R,
which in the RF or optical regime would be extremely large.
The resulting expression for the radial contribution is given
by

Ir, j (

′) = η0bi b jρ

2
0

4r4
0

∞∑

p=0

Y ′
p, j

∞∑

m=1

m∑

n=1
m−n=2k
k=0,1,2...

sin(nφ0)

·
[

k0bi sin θ0

2

]m−1

jm+1e− j k0r0

·
[

jk0b2
i C3

mn,i

r0
− C4

mn,i

]
FC p(


′)

FCp(

′) =

∫ 2π

0
e
− j

k0b j ρ0
r0

cos(φ0−φ′)

· sin(φ0 − φ′) cos(p(
′ − φ′))dφ′. (23)

The integral FCp(

′) that appears in (23) is similar to

that given in (19) and its analytical solution can be found

I j (

′) = −η0π

r0
e− j k0r0

∞∑

p=0

Y ′
p, j (−1)p( j)p−1

∞∑

n=0

j n In,i

×
[

z2
0

ρ2
0 k0

np sin(nφ0)Jp

(
k0biρ0

r0

)
Jn

(
k0biρ0

r0

)
sin (p(
′ − φ0))

+ k0bi b j

(
j

b j

ρ0
Jp

(
k0biρ0

r0

)
− J ′

n

(
k0biρ0

r0

))
cos (nφ0)J ′

p

(
k0b jρ0

r0

)
cos (p(
′ − φ0))

]
(20)
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through analogous mathematical manipulations, as outlined in
Appendix A.

The final induced current due to the contribution of all
three spherical components is given in (24), as shown at the
bottom of this page, where we define Di = (k0biρ0/r0) and
D j = (k0b jρ0/r0). Moreover, for the special case when the
loops are coplanar, the expression reduces to (25), as shown
at the bottom of this page. Full details of the derivation
will be presented in Appendix A. While these expressions
appear daunting, the computation of the Bessel functions in a
numerical suite such as MATLAB is extremely efficient [35].
Note that this expression is a summation of sinusoids and
cosinusoids, similar to the decomposition originally assumed
in (1). Therefore, the resulting far-field can be computed using
the expressions in (7) and array factor theory [7]. In general,
for N loops with the i th loop located at (x0,i , y0,i , z0,i ),
the total electric field can be computed as (25)

E(θ, φ) =
N∑

i=1

Ei (θ, φ)e jk0[x0,i sin θ cos φ+y0,i sin θ sin φ+x0,i cos θ]

(26)

where Ei (θ, φ) is the radiated electric field from the i th loop
given explicitly in (7).

C. Analytical Representation of Induced Current
in Stacked Loop Case

Now consider the special case of multiple loops stacked on
top of each other, a popular configuration found in Yagi–Uda
arrays [11]. As shown in Fig. 4, the critical observation is
that the angle φ in unprimed coordinates is exactly the same
as the variable of integration φ′ in primed coordinates. In this
case only the Eφ component contributes since the dot products
θ̂ · t̂ and r̂ · t̂ are both equal to zero. After a series of

Fig. 4. Geometry of a passive loop j placed directly above the active loop i .

mathematical manipulations, it can be shown that the induced
current in this case can be expressed in a particularly simple
form

I j (

′) = −η0k0bi b jπ

2r
e− j k0r

·
⎡

⎣
∞∑

p=0

j p Ip,i J ′
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r

)
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′))
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′
0, j J ′

0

(
k0bib j

r

)⎤

⎦ (27)

where r = (r2
0 + b2

j )
1/2 which is independent of φ′ in

the stacked case. Details of this derivation are provided in
Appendix B.
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Fig. 5. Comparison between FEKO, pseudo-analytical expression with numerical integration performed in MATLAB, and the fully analytical expressions
evaluated in MATLAB with and without the radial contribution for two PEC loops (� = 12) separated at an angle (θ0, φ0) = (90°, 90°) and a distance of
(a) 14b, (b) 7b, and (c) 4b. The agreement between the analytical solution and the results produced by the other two methods is much better when including
the radial contribution, but the analytical expressions start to break down as the loops get closer to each other.

Fig. 6. Current distribution on an active PEC loop at the feed point. This
is equivalent to the input admittance when a feed voltage of V0 is assumed.
Peaks can be observed slightly above kb = 1 and kb = 2.

III. RESULTS

The validation of the analytical expressions derived in
the previous section will be carried out by considering the
coupling between two PEC loops with 
′ = 0 under a variety
of geometrical configurations. The loop (b1 = b2 = b) and
wire radii (a1 = a2 = a) will be chosen such that the thickness
measure [19] � = 2 ln (2πb/a) is equal to 12. The results
will be plotted in terms of kb = 2πb/λ, such that the resulting
curves universally apply to PEC loops of any radius b. To test
the validity of these expressions in the optical regime, gold
nanoloops with circumferences of 600 and 3000 nm will be
considered. The gold material is modeled according to [22].
It has been found from numerical experimentation that the
analytical expressions match FEKO well when r0 > 4b for the
PEC case. For gold, there is good agreement when r0 > 10b
for a 600 nm circumference nanoloop and when r0 > 7b
for a 3000 nm circumference nanoloop. When θ0 < 10°
the stacked loop approximation φ = φ′ holds fairly well;
otherwise, the more general approximation φ = φ0 should
be used. Note that these rules of thumb were derived over
the range kb ∈ [0.01, 2.5] for the 3000 nm circumference
gold loop and kb ∈ [0.01, 0.5] for the 600 nm circumference
gold loop. Above these frequencies the extinction coefficient

Fig. 7. Near-fields in the xy-plane for a PEC loop (� = 12, kb = 1)
where (a) shows Ex and (b) shows Ey . As can be seen, the radial component
in the φ0 = 0° direction Ex rapidly falls off with distance while the radial
component in the φ0 = 90° direction Ex falls off much more gradually.

of gold is greater than eight and the loops are extremely
lossy [22], resulting in very little coupling between elements.
For the PEC case, very good agreement was observed over the
range kb ∈ [0.01, 5.0], above which the thin-wire assumption
no longer holds.

The analytical expressions given in (24), (25), and (27) were
implemented in MATLAB and the comparisons were made
with the exact numerical integration of (12) and the full-wave
integral equation solver FEKO [27]. The tests were run on a
Dual Intel Xeon Processor with 10 cores. FEKO was run in
parallel mode utilizing all 10 cores, while the other simulation
methods used only a single core. Table I provides a summary
of the computational resources required for each method.
As can be seen, the full-wave simulation method took almost
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Fig. 8. Comparison between FEKO, pseudo-analytical expression with numerical integration performed in MATLAB, and the fully analytical expressions
evaluated in MATLAB for (a) (r0, θ0, φ0) = (14b, 30°, 20°), (b) (r0, θ0, φ0) = (7b, 90°, 0°), and (c) (r0, θ0, φ0) = (4b, 80°, 80°). There is extremely good
agreement between the different methods until r0 approaches 4b.

Fig. 9. Comparison between FEKO, pseudo-analytical expression with numerical integration performed in MATLAB, and the fully analytical expressions
evaluated in MATLAB for the stacked configuration with (a) r0 = 14b, (b) r0 = 7b, and (c) r0 = 4b. The magnitude of the first peak for the analytical
solution is not as accurate for r0 = 4b.

TABLE I

COMPARISON OF REQUIRED COMPUTATIONAL RESOURCES

six hours to complete. The pseudo-analytical method took 33 s,
and the fully analytical solution required 11 s. For the stacked
configuration, the simplified expression required only 0.1 s
to evaluate. There is also a savings in peak memory usage.
The full-wave solver requires 8.2 GB of memory. Running
MATLAB itself requires 1 GB of memory. In addition to this,
the numerical integration-based solution requires 14 MB while
the analytical solutions require 7 and 2 MB for the general and
stacked cases, respectively.

Fig. 5 shows a comparison between the induced current
as predicted by FEKO, the pseudo-analytical expression (16)
requiring numerical integration, and the analytical represen-
tation of (24) when the r -component of the radiated field is
neglected for three different loop separations and (θ0, φ0) =
(90°, 90°). As seen in these plots, there are peaks in the

induced current that occur slightly above kb = 1 and kb = 2.
This can be understood by considering the active current on
the loop, as presented in Fig. 6. As shown explicitly in (8),
there are two major contributions to the induced current. The
first is proportional to the induced voltage due to radiation
from the active loop. The second is the input admittance of
the passive loop, which is proportional to the current of a
loop driven by a voltage source. Strong peaks can be seen
in the active current of Fig. 6 slightly above kb = 1 and
kb = 2. The effect of the induced voltage is to modulate
the amplitude of those peaks. The induced voltage at kb = 1
increases as the interloop separation decreases from r0 = 14b
to r0 = 4b, which explains the relative levels of the maxima
seen in Fig. 5. As can be seen, the pseudo-analytical method
with numerical integration and the results from FEKO match
almost exactly, which is to be expected since the exact
expressions are employed and no far-field assumptions have
been made. However, the fully analytical expressions (without
considering the radial component) do not predict the existence
of the first peak. Interestingly, the first maximum is caused by
the radial component of the electric field, which gets larger as
the distance between the loops decreases.

Through numerical experimentation, it was observed that
the radial component has a significant contribution for
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Fig. 10. Comparison between FEKO, pseudo-analytical expression with
numerical integration performed in MATLAB, and the fully analytical expres-
sions evaluated in MATLAB for (a) gold nanoloop with circumference 600 nm
where (r0, θ0, φ0) = (7b, 90°, 90°) and (b) gold nanoloop with circumference
3000 nm where (r0, θ0, φ0) = (7b, 90°, 0°). For both cases the agreement
between all three methods is reasonably good.

(θ0, φ0) = (90°, 90°), but is not as significant for (θ0, φ0) =
(90°, 0°). This can be explained by examining the radial
component of the near-field of a single loop, as shown
in Fig. 7. The radial component rapidly falls off in the φ0 = 0°
direction, as shown in Fig. 7(a), but falls off much more
gradually in the φ0 = 90° direction, as shown in Fig. 7(b).
As indicated in Fig. 5, if the analytical expression including
the radial component (24) is used, the first peak can be
accurately predicted. However, the agreement starts to degrade
as the loop separation decreases. To further test the generality
of the analytical expressions, a series of comparisons for
various cases is presented in Fig. 8, while a comparison for
the special case of the stacked configuration given in (34)
is shown in Fig. 9. The pseudo-analytical expression agrees
very well with FEKO for all cases, while the fully analytical
representation starts to deviate a bit when the interloop spacing
is reduced to 4b.

Next the analytical expressions will be tested on a
gold nanoloop. For the PEC case, the maximum value of
kb = (2πb/λ) considered was 2.5 and universal curves for any
circumference and frequency were plotted. However, due to
dispersion the antenna parameters of a gold nanoloop depend
explicitly on both the loop circumference and frequency. For
a gold nanoloop of circumference 600 nm, a maximum kb

of 0.5 (250 THz) will be considered. Above this frequency,
the 600 nm loop has a radiation efficiency of less than
0.01% [22]. A larger gold nanoloop of circumference 3000 nm

Fig. 11. Mutual admittance versus interelement spacing for PEC loops
(� = 12) where (a) (θ0, φ0) = (90°, 0°) and (b) (θ0, φ0) = (0°, 0°) using
the numerical and fully analytical expressions.

with a maximum kb of 2.5 (250 THz) will also be con-
sidered. Fig. 10 shows good agreement between the three
methods considered for the case of (a) 600 nm nanoloops with
(r0, θ0, φ0) = (7b, 90°, 90°) and (b) 3000 nm nanoloops with
(r0, θ0, φ0) = (7b, 90°, 0°).

Now that the analytical results have been verified, a study
of the mutual admittance versus interelement spacing will be
performed using both the pseudo and fully analytical repre-
sentations for the induced current. The mutual conductance
G21 and susceptance B21 are shown in Fig. 11 (a) and (b),
respectively, as a function of interelement spacing for two
PEC loops where (θ0, φ0) = (90°, 0°) and (θ0, φ0) = (0°, 0°).
The purely analytical results agree very well with the
pseudo-analytical results when the interelement spacing d
exceeds about 0.5λ. Below this value, there is a slight dis-
crepancy in the susceptance for the stacked configuration.
Fig. 12 (a) and (b) show the mutual admittance versus interele-
ment spacing for (θ0, φ0) = (90°, 0°) and (θ0, φ0) = (0°, 0°),
this time for a gold nanoloop with a circumference of 600 nm.
Again, for both cases there is good agreement for d > 0.5λ
with discrepancies in the susceptance below this distance.
These discrepancies are likely due to near-field capacitive
coupling which is not included in the analytical model.

In order to validate these expressions further, two copper
loops designed to operate at 2 GHz and fed by coaxial cables
were constructed. As shown in Fig. 13, a network analyzer
was used to measure the S21 over a frequency range of
1.25–3 GHz as the interloop separation was varied. Two full-
wave FEKO models were created: one which includes the
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Fig. 12. Mutual admittance versus interelement spacing for gold nanoloops
with circumference 600 nm (� = 12) where (a) (θ0, φ0) = (90°, 0°) and
(b) (θ0, φ0) = (0°, 0°) using the numerical and fully analytical expressions.

Fig. 13. Photograph of experimental setup for S21 measurements.

coaxial cable used in the measurements and one with an ideal
voltage source. The analytical theory developed in this paper
applies for an ideal voltage source and does not include any
additional effects due to the presence of the coaxial cables.
A comparison between the measured results, the two full-
wave FEKO simulations, and the pseudo-analytical model
is shown in Fig. 14 for interloop separations of (a) 2b,
(b) 6b, and (c) 10b. As can be seen, there is excellent agree-
ment between the measured results and the full-wave results
with a coax cable. In addition, there is excellent agreement
between the full-wave and analytical results with a voltage
source.

A large number of useful parameters can be calculated
once the mutual admittance matrix is computed, including
directivity patterns, direction-of-arrival estimation competence

Fig. 14. Comparison of pseudo-analytical, full-wave (with and without
coax) and measured S21 for copper loops separated by a distance of (a) 4b,
(b) 8b and (c) 12b.

Fig. 15. Comparison of full-wave and analytical directivity versus kb for a
single loop and a Yagi–Uda array with a single reflector.

and the MIMO system capacity [36]. To showcase the practical
impact of these analytical expressions, the directivity of two
PEC loops with thickness factor � = 12 in a stacked
Yagi–Uda configuration will be considered. The passive
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element is placed at a distance 0.5λ at kb = 1 below the
active element and has a radius 1.1 times larger than that of the
active element. Fig. 15 shows a comparison of the full-wave
and analytical directivity versus kb for both the single loop
and the Yagi–Uda array. As can be seen, the results are nearly
identical. In addition, the full-wave simulation took 19 min to
run with the thin-wire method of moments formulation while
the analytical MATLAB code took only 89 s. Note that the
directivity reaches the superdirective limit (6 dBi for a two-
element array [37]) at a value of around kb = 1.37.

IV. CONCLUSION

This paper presented two efficient methods of computing
the mutual coupling between circular loop antennas: an exact
pseudo-analytical approach and an approximate fully analyt-
ical expression. The approaches are valid in the terahertz,
infrared, and optical regime when the effects of material
dispersion and loss are taken into consideration. The com-
mercial full-wave solver FEKO requires almost six hours
to simulate the case of two lossy gold nanoloops, while
the pseudo and fully analytical solutions as implemented in
MATLAB require only 33 and 11 s, respectively. For the
important special case of two loops in the stacked configu-
ration, an extremely simple and efficient analytical expression
was presented, which requires only 0.1 s to evaluate in
MATLAB. Using these expressions, studies of the mutual
admittance versus interelement spacing for any geometrical
configuration and nanoloop material can easily and rapidly be
performed. In addition, full mutual admittance matrices and
the resulting radiation properties for an array of loops can be
efficiently calculated. Mutual coupling is a crucial parameter
which must be considered in the design of communication
systems, MIMO and diversity systems, phased arrays, and
energy harvesting devices. Due to its fundamental theoretical
importance, its utility and ease of manufacture, the circular
loop is among the most popular antennas for implementation
in such systems. The pseudo-analytical (near-field) and fully
analytical (far-field) expressions derived in this paper reduce
the design cycle times of these systems from hours to seconds
and provide the engineer with more physical insight.

APPENDIX A
DERIVATION OF THE INDUCED CURRENT FOR

THE GENERAL CASE

The expression in (27) can be derived by first applying the
far-field approximations (x = x0, y = y0, z = z0, r = r0,
ρ = ρ0) to (11), which yields

r̂ · t̂ = ρ0

r0
sin (φ0 − φ′)

θ̂ · t̂ = z0

r0
sin (φ0 − φ′)

φ̂ · t̂ = 1

ρ0
(ρ0 cos(φ0 − φ′) + b j ). (A.1)

After applying the appropriate far-field approximations, the
θ -component of the induced current can be expressed in the

form

Iθ, j (

′) = −η0b j z2

0

2ρ0r2
0

e− j k0r0

∞∑

p=0

Y ′
p, j ·

∞∑

n=1

n(− j)n In,i

× Jn

(
k0biρ0

r0

)
sin(nφ0) ·

∫ 2π

0
e
− j

k0b j ρ0
r0

cos(φ0−φ′)

× sin(φ0 − φ′) cos(p(
′ − φ′))dφ′. (A.2)

The sine and cosine functions can be written as complex
exponentials such that the integrand in (A2) becomes

Iθ, j (

′) = −η0b j z2
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To solve the integral in (A3), it is convenient at this point to
employ the Bessel generating function [31]

e
x
2 (t− 1

t ) =
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= 0. (A.4)

Letting x = (k0b jρ0/r0) and t = − je j (φ0−φ′) the first term
in the integrand of (A3) can be represented as
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Substituting (A5) into (A3) and exploiting the fact that

∫ 2π
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(A.6)

results in the following analytical expression:
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Now by applying Euler’s identity along with

J−m(x) = (−1)m Jm(x) (A.8)

Jm−1(x) + Jm+1(x) = 2m

x
Jm(x) (A.9)

the expression in (A7) can be simplified to
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Similarly, the φ-component of the induced current is given by
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The preceding integral can be split into two separate integrals
and evaluated individually, where
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After applying (A5), Euler’s identity, (A6) and (A8), the
expression in (A12) reduces to
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Similarly, by using (A5) and (A6), the expression in (A13)
becomes
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Next, by using Euler’s identity in conjunction with (A8) and

Jm−1(x) − Jm+1(x) = 2J ′
m(x) (A.16)

the expression in (A15) can be reduced to
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Then, the expression for the φ-component of the induced
current can be determined by adding (A14) and (A17)
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Finally, the radial component of the near-zone electric field
given in (11) can be simplified using (25) and (26)

Er (r, θ, φ) = η0bi sin θ0
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· sin(nφ0) jm+1e− j k0r

[
j
k0b2

i

r0
C3

mn,i − C4
mn,i

]
.

(A.19)
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Next, we consider taking the dot product between r̂ and b j t̂
which yields

b j r̂ · t̂ = b jρ
2
0

r0
sin(φ0 − φ′). (A.20)

Hence, the r -component of the induced current may be repre-
sented as

Ir, j (

′) = η0bi b jρ

2
0

4r4
0

∞∑

m=1

m∑

n=1
m−n=2k

k=0,1,...

(
k0bi sin θ0

2

)m−1

sin(nφ0)

· jm+1e− j k0r0

[
jk0b2

i

r0
C3

mn,i − C4
mn,i

]

·
∞∑

p=0

Y ′
p, j

∫ 2π

0
e
− j

k0b j ρ0
r0

cos (φ0−φ′)

· sin (φ0 − φ′) cos (p(
′ − φ′))dφ′ (A.21)

where the integral is identical to that calculated for the Iθ, j

term in (A2). Following the same procedure, the r -component
of the induced current can be simplified to

Ir, j (

′)

= πη0biρ0

2r3
0 k0

e− j k0r0

∞∑

m=1

m∑

n=1
m−n=2k
k=0,1,...

(
k0bi sin θ0

2

)m−1

× sin(nφ0) · jm+1

[
jk0b2

i

r0
C3

mn,i − C4
mn,i

]

·
∞∑

p=0

Y ′
p, j p(−1)p j p−1 sin(p(
′ − φ0))Jp

(
k0b jρ0

r0

)
.

(A.22)

The total induced current is the sum of (A10), (A18),
and (A22).

APPENDIX B
DERIVATION OF THE INDUCED CURRENT FOR

THE STACKED LOOP CASE

For the stacked loop case, ρ0 = 0, ρ = b j , r0 = z0, and
r = (b2

j + z2
0)

1/2. Since θ̂ · t̂ and r̂ · t̂ are both zero, and

φ̂ · b j t̂ = b j , only the φ-component of the induced current is
nonzero

Iφ, j (

′) = −η0k0bi b j

2r
e− j k0r

∞∑

n=0

j n In,i J ′
n

(
k0bi b j

r

)

·
∞∑

p=0

Y ′
p, j

∫ 2π

0
cos (nφ′) cos (p(
′ − φ′))dφ′

(B.1)

where sin θ = b j
r has been applied. This expression can be

rewritten using Euler’s identity

Iφ, j (

′)

= −η0k0bi b j

8r
e− j k0r

∞∑

n=0

j n In,i J ′
n

(
k0bi b j

r

)
·

∞∑

p=0

Y ′
p, j

×
[

e j p
′
∫ 2π

0
e j (n−p)φ′

dφ′

+ e− j p
′
∫ 2π

0
e j (n+p)φ′

dφ′ + e j p
′

×
∫ 2π

0
e− j (n+p)φ′

dφ′

+ e− j p
′
∫ 2π

0
e− j (n−p)φ′

dφ′
]

. (B.2)

Using (A6), (B2) has nonzero terms only when n = p =
0, 1, 2 . . . or n = −p = 0. Employing the Bessel generating
function results in the analytical expression (27), reproduced
here for convenience

Iφ, j (

′) = −πη0k0bi b j

2r
e− j k0r

·
⎡

⎣
∞∑

p=0

j p Ip,i Yp, j J ′
p

(
k0bi b j

r

)
cos(p
′)

+ I0,i Y0, j J ′
0

(
k0bib j

r

) ⎤

⎦ . (B.3)
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