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A B S T R A C T   

Nanoencapsulated phase change materials (nePCMs) are one of the technologies currently under research for 
energy storage purposes. These nePCMs are composed of a phase change core surrounded by a shell which 
confines the core material when this one is in liquid phase. One of the problems experimentally encountered 
when applying thermal cycles to the nePCMs is that their shell fails mechanically and the thermal stresses arising 
may be one of the causes of this failure. In order to evaluate the impact of the uncertainties of material and 
geometrical parameters available for nePCMs, the present work presents a probabilistic numerical tool, which 
combines Monte Carlo techniques and a finite element thermomechanical model with phase change, to study two 
key magnitudes of nePCMs for energy storage applications of tin and aluminium nePCMs: the maximum Ran
kine’s equivalent stress and the energy density capability. Then, both uncertainty and sensitivity analyses are 
performed to determine the physical parameters that have the most significant influence on the maximum 
Rankine’s stress, which are found to be the melting temperature and the thermal expansion of the core. Finally, 
both a deterministic and a probabilistic failure criterion are considered to analyse its influence on the number of 
predicted failures, specially when dispersion on tensile strength measurements exists as well. Only 1.87% of tin 
nePCMs are expected to fail mechanically while aluminium ones are not likely to resist.   

1. Introduction 

The world demand of energy is estimated to increase by 26% and 
CO2 associated emissions will continue rising by 10% by the year 2040 
with respect to those registered in 2017 (International Energy Agen, 
2019). In order to reduce the environmental problems, efforts are made 
by several scientific communities to foster the use of renewable energies, 
which exploit natural resources –unlimited on a human timescale– 
without generating polluting emissions. The present work focuses 
exclusively on solar energy and more precisely, on its application to 
concentrated solar plants (CSP), since solar energy is the renewable 
energy presenting the major potential for exploitation of energy (In
ternational Energy Agen, 2011). Nevertheless, one of the main cons of 
solar energy is its intermittence since energy production depends largely 
on weather/climate conditions. Consequently, owing to the high de
mand of energy in the electricity market, gaps between generation and 
supply of energy cannot be tolerated to guarantee the correct operation 
of the electrical grid. One of the characteristics that makes CSP stand out 
among other renewable energy technologies is the possibility of 

incorporating Thermal Energy Storage (TES) systems to mitigate the 
previously mentioned generation gaps. TES systems appear to be a field 
of research on its own nowadays for energetic transition towards 
renewable energies within the context of green policies (Gil et al., 2010; 
Xu et al., 2015; Akhmetov et al., 2016; Mondragón et al., 2017). 

The focus of the present work lays on one of the technologies under 
research for TES systems in concentrated solar plants: nanofluids (Choi 
and Eastman, 1995), which is the name received by the colloidal sus
pension of nanoparticles (less than 100 nm) in a base fluid to enhance its 
thermal properties. One of the advantages of these suspensions is that, 
due to the Brownian motion of the particles within the base fluid, 
nanofluids combine the good thermal properties of nanosolids with the 
transport properties of the fluid avoiding clogging or settling problems. 

The thermal energy storage capability of the nanofluids is a key 
parameter of their performance for TES purposes. Although the 
enhancement of sensible heat storage capability of commonly used 
nanoparticles (metal oxides or carbon structures) dispersed in ionic 
liquids still generates controversy (Riazi et al., 2016), it has been 
recently demonstrated the possible enhancement of thermal energy 
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storage of TES material with the addition of metallic nanoencapsulated 
Phase Change Materials (nePCMs) (Navarrete et al., 2017, 2019; Cin
garapu et al., 2013, 2015) due to the contribution of the latent heat. 
These nanoencapsulated particles are composed of a phase change core 
wrapped in a surrounding shell made of another material with a melting 
temperature higher than that of the core. The role of the shell is to 
confine the core material when melting occurs. One of the main features 
of metallic nePCMs for TES applications is that they contribute consid
erably to increase the overall energetic performance of the nanofluid 
thanks to the latent heat absorbed/released during the phase change of 
their core. Moreover, they can be self-encapsulated with an oxide shell 
formed by natural passivation during the sintering process that can 
interact with the base fluid increasing the sensible heat in ionic liquids. 
In this context, optimising the design of the nePCMs is of key importance 
given that they play a direct influence on the performance of the 
nanofluid. One of the main problems encountered when nePCMs un
dergo thermal cycles is that their shell may fail mechanically, as it has 
been reported in (Navarrete et al., (2017)). The thermal stresses arising 
in the shells of the nePCMs could be one of the reasons for this failure, as 
investigated in (Forner-Escrig et al., (2020)). 

Despite the fact that synthesis of nePCMs is performed experimen
tally with the valuable knowledge of the experimental community, the 
current work presents a numerical tool to analyse the behaviour of 
nePCMs from a quantitative perspective to get a better understanding of 
the physical phenomena involved in the failure of the nanoparticle 
shells. Furthermore, experimental measurements of the different mate
rial properties of a substance are not exempt from uncertainties, which 
are intrinsic to the nature of the measurement process. For this reason, it 
is important to numerically check the influence and consequences of 
these uncertainties on the measurements of the material properties by 
using a probabilistic technique that combines both Monte Carlo (MC) 
(Kroese et al., 2011) and Finite Element (FE) methods. In the same vein, 
considerable dispersion exists normally in the mean size of the syn
thesised nePCMs (Navarrete et al., 2017) and despite possessing a 
spherical morphology, they are not perfect spheres. Therefore, this lack 
of symmetry could have an impact on the mechanical failure of the shell 
of the nePCMs, which needs to be quantitatively assessed. Consequently, 
the study of all the aforementioned uncertainties on the nePCMs high
lights the need of considering probabilistic analyses to evaluate the 
performance of these nanoparticles for TES applications in a wide range 
of temperature such as cold TES, comfort applications or 
high-temperature thermal management systems. 

Some examples of probabilistic and numerical analyses are reported 
in the literature to analyse the failure of polymeric nanoparticle com
posites (Hamdia et al., 2017), and to optimise the nanoparticle wet 
milling process (Hou et al., 2007). However, neither their scope of 
analysis is the same as the one intended in the present work (nePCMs) 
nor the number of input parameters of their probabilistic analysis is 
large enough to analyse the influence of different physical parameters on 
their aim of study. Notice that the present work considers a set of 22 
physical parameters (18 material and 4 geometrical parameters) to ac
count for its influence on the failure of the nePCMs and, consequently, 
the analytical computation of the probability of failure may be complex. 
Then, the need for numerical methods arises. 

MC simulation is a class of algorithms that use statistical sampling 
techniques to obtain a probabilistic approximation to the solution of a 
model: the samples previously generated are the inputs of the model and 
its evaluations provide the probabilistic outputs or responses of the 
model (Aderibigbe, 2014). The evaluation of the model may be per
formed by using analytical solutions or numerical methods such as the 
FE (Pérez–Aparicio et al., 2012; Palma et al., 2013, 2018), finite dif
ference (Li and Rankin, 2010), finite volume (Bhoi and Sarkar, 2020), 
etc. 

On this ground, the aim of the current work is to study two key 
magnitudes of nePCMs for TES applications: the maximum equivalent 
stress and the energy density capability and, to achieve this goal, 

reliability, uncertainty and sensitivity analyses are developed. In 
particular, two different pairs of nePCM materials are considered: tin 
encapsulated in tin oxide and aluminium encapsulated in aluminium 
oxide (alumina). For this purpose, a probabilistic tool is obtained by 
combining both MC and FE methods. The former considers up to 22 
random variables and the input samples are generated by using the Latin 
Hypercube Sampling (LHS) technique (McKay et al., 1979), while the 
latter is a thermomechanical with phase-change FE code previously 
developed by the authors of the present work (Forner-Escrig et al., 
2020). From the uncertainty analysis, distributions of maximum Ran
kine’s equivalent stress –failure criterion for the shell– and of energy 
density are obtained. Furthermore, the sensitivity analysis permits to 
assess which of the 22 random variables exerts more influence on both 
the failure of the nePCM and on its energy density performance. With 
regard to the reliability analysis, both a deterministic and a probabilistic 
failure criterion are considered to verify its influence on the number of 
predicted failures when uncertainty in tensile strength exists. In 
conclusion, the results of these analyses may contribute to identify what 
are the physical parameters to be considered in advance to synthesise 
mechanically reliable nePCMs. 

2. Outline of the problem 

This section briefly reviews the model of the nePCM retained for the 
probabilistic analyses henceforth. 

2.1. Description of the nanoparticle 

The numerical model considers a single three-dimensional ellip
soidal nePCM, as that sketched in Fig. 1 a), where the geometry is 
defined by the three semi-axes a, b and c of the outer ellipsoid and the 
shell thickness eshell. Notice that an ellipsoidal geometry for nePCMs is 
assumed in the present work for two reasons: i) to consider the influence 
of the geometrical uncertainty in the probabilistic analyses and ii) given 
that real nePCMs are not perfectly spherical. Fig. 1 b) depicts the mesh of 
an ellipsoidal nePCM and its appearance is quasi-spherical since the 
dispersion around the nominal values of the semi-axes is only of 5% (see 
Section 3.1 and Table 1). 

Two different pairs of core@shell materials for nePCMs are consid
ered: Sn@SnO2 (tin encapsulated in tin oxide) and Al@Al2O3 
(aluminium encapsulated in alumina). Their material properties are 
obtained from (Perry et al., 2008; Handbook Volume 2: Pr, 1990; 
Cverna, 2002; Stankus and Khairulin, 2006; Assael et al., 2017) for Sn, 
from (Landolt-Börnstein, (1998); Gaillac and Coudert, (2019); Gaillac 
et al., (2016); United States National In, (2901); Nam et al., (2017)) for 
SnO2, from (Perry et al., (2008); andbook Volume 2: Pr, (1990); Cverna, 
(2002); The Engineering ToolBox., (2019)) for Al and from (Perry et al., 
(2008); Lynch, (1989); Shackelford et al., (2015); Accuratus Corpora
tion and “A, (2019)) for Al2O3 and all of them are reported in Table 1. 
The material properties listed in Table 1 are mass density ρ, specific heat 
capacity at constant pressure cp, thermal conductivity κ, Young’s 
modulus E, Poisson’s ratio ν, thermal expansion coefficient α, melting 
temperature Tm and latent heat L. Subscripts s and l denote solid and 
liquid state, respectively. For the geometry, an order of magnitude of the 
size of spherical Sn and Al nanoparticles may be obtained from (Nav
arrete et al., (2017)) and (Sarathi et al., 2007; Sahu and Hiremath, 2017; 
Navarrete et al., 2019), respectively. 

Concerning the boundary and initial conditions, the nePCM is me
chanically fixed at its centre and subjected to an initial temperature Ti. 
Then, an increasingly linear temperature is applied at the outer surface 
of the shell until a value of temperature T0 (higher than the melting 
temperature of the core material) is reached. Concretely, Ti = 323.15 
(K), T0 = 523.15 (K) for Sn@SnO2 and T0 = 973.15 (K) for Al@Al2O3 
nePCMs are considered. 
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2.2. Description of the finite element model 

The evaluation of the nanoparticle model is performed by a three- 
dimensional FE code developed by the authors. In particular, a ther
modynamically consistent FE formulation was developed in (For
ner-Escrig et al., (2020)) by considering thermomechanical coupling 
and three phase change approaches: enthalpy, heat source and heat 
capacity. This formulation was implemented in the research code FEAP 
(Taylor, 2013), which belongs to the University of California at Berkeley 
(USA). 

Numerically, the FE formulation is monolithic and eight-noded with 
four degrees of freedom (dof) per node: 

dof =
{

u, T
}

, (1)  

where the first term in brackets represents the three components of the 
displacement field u = {u, v,w} and the last term is the temperature. 
These dofs are discretised by using standard shape functions of 
Lagrangian type. For the sake of brevity, only the tangent matrix is re
ported in the present work: 
⎡

⎢
⎢
⎢
⎣

K
u u
ab + c3 M

u u
ab K

u T
ab

0 K
T T
ab

⎤

⎥
⎥
⎥
⎦

(2)  

where K and M denote stiffness and mass matrices, respectively. Sub
scripts a and b refer to discretisation nodes while superscripts denote the 
dofs. As observed, only a one-way coupling is considered with the term 
K

u T
ab , which is due to the thermomechanical volumetric expansion. 

With regard to the time integration scheme, the scalar coefficient c3 in 
(2) is associated to the Newmark− β algorithm. Finally, the enthalpy 
approach is used in the current work. 

3. Probabilisitic analysis 

The present work uses a probabilistic numerical tool that combines 
the thermomechanical FE method with the MC technique. As shown in 
Fig. 2, the working principle of this tool consists of:  

1. Identifying the random parameters and their distribution functions.  
2. Generating a random sample of size N.  
3. Performing N evaluations of the model through the FE code.  
4. Analyse the N outputs of the FE code: Uncertainty Analysis (UA), 

Sensitivity Analysis (SA), Probability of Failure (POF) and Energy 
Density (Ed) distribution. 

3.1. Distribution functions and sample generation 

Firstly, the j random variables ξj –commonly called parameters– of 
the model must be identified and quantified in accordance with exper
imental observations. In the present work, all the material and 
geometrical properties (j = 1, …, 22) of the nePCM are considered as 
random variables; their nominal values and standard deviation (uncer
tainty) of the random variables are shown in Table 1. 

Secondly, neither the distribution function of the measurements of 
these variables nor most of uncertainties in the measurement process are 
available in the literature. However, the experimental values of physical 
properties are normally obtained as the average of the different mea
surements and, therefore, according to the central limit theorem, these 
values can be assumed to be normally distributed even when the original 
samples themselves do not obey a normal distribution. 

Fig. 1. a) Sketch of a generic ellipsoidal nanoencapsulated phase change material with the three semi-axes a, b and c of the outer ellipsoid and the shell thickness 
eshell. b) Mesh of an ellipsoidal nanoencapsulated phase change material. 

Table 1 
Summary of material and geometrical properties of Sn@SnO2 and Al@Al2O3 

(core@shell) nanoencapsulated phase change materials (nePCMs). SRC is the 
abbreviation of standardised regression coefficients used in the sensitivity 
analysis and σ is the standard deviation for each of the properties with respect to 
their mean values.   

SRC Property Sn@SnO2 

nePCMs  
Al@Al2O3 

nePCMs  
Units σ(%)

Core Θ1  ρs  7280 2681 kg/m3  5 

Θ2  ρl  6800 2365 kg/m3  5 

Θ3  cp,s  230 959.11 J/(kg K) 5 
Θ4  cp,l  257 1085.95 J/(kg K) 5 
Θ5  κs  65 240 W/(m K) 5 
Θ6  κl  31 93 W/(m K) 5 
Θ7  E 43.3 70 GPa 5 
Θ8  ν 0.33 0.33 – 5 
Θ9  αs  2⋅10− 5  2.1⋅10− 5  1/K 5 

Θ10  Tm  498.65 933.15 K 5 
Θ11  L 60.627 395.60 kJ/kg 5 

Shell Θ12  ρ 7020 3970 kg/m3  5 

Θ13  cp  348.95 919.38 J/(kg K) 5 
Θ14  κ 40 10 W/(m K) 5 
Θ15  E 222.72 370 GPa 5 
Θ16  ν 0.284 0.24 – 5 
Θ17  α 4⋅10− 6  8.2⋅10− 6  1/K 5 

Θ18  Tm  1900 2273.15 K 5 
Geometry Θ19  a 40 40 nm 5 

Θ20  b 40 40 nm 5 
Θ21  c 40 40 nm 5 
Θ22  eshell  7 7 nm 5  
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According to the orders of magnitude of dispersion in measurements 
reported in (Perry et al., (2008)), a standard deviation σ of 5% around 
the nominal value (mean) of each material parameter is considered as a 
first and good estimation. With regard to geometrical parameters and in 
agreement with the experimental characterisations available in (Nav
arrete et al., 2017, 2019), the size of nePCMs is assumed to be 
log-normally distributed. In particular, the mean size and standard de
viation of the log-normal distribution for the generation of the nominal 
value of the outer ellipsoid size are 40 [nm] and 40% around the mean 
value, respectively. Since experimentally it is observed that nano
particles are not perfect spheres but quasi-spherical, an ellipsoidal ge
ometry is defined with a standard deviation of 5% around the previously 
generated log-normal values of the nanoparticle size. Notice that the 
shell thickness is uniform around the core of a single nePCM but its 
nominal value can vary for the different nePCMs within a 5% of un
certainty by following a normal distribution. 

Finally, the LHS technique (McKay et al., 1979) is used to generate 
the random samples. LHS is a statistical technique to generate random 
numbers which consists of dividing the cumulative density function of 
each random variable into N equal partitions and choosing a random 
data point in each partition of each random variable. Then, the samples 
of each random variable are combined in order to create the set of 
random input vectors of the model. This technique is used in the present 
work for two reasons: i) it reduces the computational time (Olsson et al., 
2003) with respect to the time required for standard random sampling, 
and ii) the random sample generated is more representative of the 
variability of the random variables than standard random generations. 

3.2. Uncertainty and sensitivity analyses 

Consider a generic model M represented by the mathematical 
expression: 

ϕi = M
(
ξj
)
, (3)  

where ϕi represents the i outputs and ξj the j inputs. 
On the one hand, the main goal of the UA is to determine the un

certainty in the model output when the uncertainties in the input are 
known. Concretely, UA allows to calculate the probability distribution of 
the output and their scalar parameters: mean and standard deviation. 

On the other hand, the objective of the SA is to determine the rela
tionship among the uncertainties in input and output variables, namely, 
SA permits to identify which input variables exert more influence on the 
response of the model. Although there are different techniques to 
develop a SA (Saltelli et al., 2008), multiple linear regression is adopted 
in the present work. According to (Montgomery and Runger, (2003); 

Palma et al., 2009), in multiple linear regression, each output ϕi may be 
approximated by: 

ϕi ≈ θ0 +
∑Nξ

j=1
θjξj + Ψ , (4)  

where Nξ represents the number of random variables (or inputs) of the 
model, θj are the regression coefficients that relate each input ξj with 
each output ϕi, θ0 is the intercept term of the linear regression and Ψ 
represents a random error term. 

Regression coefficients θ0 and θj are determined by least-square 
computation from (4) and, despite the fact that they provide informa
tion on the relationship between the inputs and outputs of the model, 
according to (Saltelli et al., (2008)), regression coefficients are not an 
appropriate sensitivity measure. Instead, another sensitivity measure 
known as Standardised Regression Coefficients (SRC) is preferred and 
they are defined as: 

Θj = θj
σξj

σϕi

, (5)  

where σξj and σϕi denote the standard deviations of input and output, 
respectively. SRC are recommended measures for SA since they account 
not only for raw regression coefficients but also for standard deviations 
of both inputs and outputs and then provide a normalised measure of the 
importance of the input parameters on the response of the model 
(Saltelli et al., 2008). Thus, SRC are the sensitivity measures considered 
through the present work. 

3.3. Probability of failure 

The POF, which is a statistical indicator of the frequency of occur
rence of a considered failure event, is mathematically defined as 
(Melchers and Beck, 2018): 

POF=P
[
G
(
ξj
)
≤ 0

]
=

∫

G(ξj)≤0

fξj (Ξ)dΞ, (6)  

where ξj, G(ξj) and fξj (Ξ) represent the vector of input random variables, 
a limit state function and the joint probability density function of the 
input random variables, respectively. Therefore, G(ξj) ≤ 0 refers to the 
region where the limit state violation occurs, i.e. the failure region. In 
general, equation (6) cannot be evaluated analytically, except for some 
special cases, but the POF can still be determined numerically. One of 
the existing techniques to compute this POF numerically is MC tech
niques and according to (Melchers and Beck, (2018)), for these 

Fig. 2. Flowchart of the probabilistic numerical tool.  
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techniques, the POF can be evaluated as: 

POF ​ ≈
n
[

G
(

Ξ̂j ≤ 0
)]

N
, (7)  

where n[G(Ξ̂j ≤ 0)] is the number of trials n for which the limit state 
function is not satisfied, i.e. G(Ξ̂j ≤ 0). In (7), Ξ̂j is used to represent a 
sample value of each random variable. 

As well known, the number of total trials N determines the desired 
accuracy of the POF, which may be measured by the Coefficient of 
Variation (CV) of the POF (Smarslok et al., 2010): 

CVPOF =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − POF
N⋅POF

√

. (8) 

Then, the larger N, the most accurate POF is but, in contrast, 
choosing large values of N increases considerably the computational cost 
and, therefore, an agreement between accuracy and computation time 
must be reached. The value of N used in the present work and the time 
needed to run these simulations is detailed in Section 4.1. 

4. Results 

This section summarises the results obtained from the probabilistic 
tool for both Sn@SnO2 and Al@Al2O3 nePCMs. 

4.1. Uncertainty analysis 

Two UA for two nePCMs –Sn@SnO2 and Al@Al2O3– are conducted 
in order to obtain two outputs of the model (3):  

i) The maximum Rankine’s equivalent stress σR distribution on the 
nePCM shell: ϕ1 = σR, see Fig. 3.  

ii) The energy density Ed of the nePCMs: ϕ2 = Ed, see Fig. 4. 

Notice that these outputs are selected among others since they are 
key magnitudes in the design and optimisation of nePCMs for TES 

applications. 
With regard to the equivalent stress distribution and in agreement 

with (Forner-Escrig et al., 2020), Rankine’s criterion is used to predict 
the mechanical failure of the nePCM, which usually occurs at the shell. 

Fig. 3 shows the histogram and the statistical scalar values (mean μ 
and standard deviation σ) after running the UA. As observed, these 
scalar values are μ = 407.25 [MPa], σ = 71.80 [MPa] for Sn@SnO2 and 
μ = 1836.80 [MPa], σ = 250.62 [MPa] for Al@Al2O3. Despite the fact 
that deterministic values do not exist in literature to validate these re
sults, their tendency appear to be logical since larger values of stress are 
more likely to occur in Al@Al2O3. Notice that the melting temperature 
of the Al core is considerably higher than that of Sn; consequently, larger 
thermal stresses are expected to arise in the Al@Al2O3 nePCMs to reach 
the liquid state of the core. 

In order to measure the accuracy of the predicted σR, a bilateral 
Confidence Interval (CI) around the mean μ is defined as: 

CI1− α = μ ± SE⋅tα,N− 1, (9)  

where α represents the risk –also called significance level– of the CI and 
tN− 1 is the Student’s t-distribution with N − 1 degrees of freedom. The 
Standard Error (SE) of μ is defined as: 

SE=
σ̅
̅̅̅
N

√ . (10) 

The CI for the equivalent stress at a significance level of α = 5% is 
{393.03, 421.47} [MPa] for Sn@SnO2 nePCMs and {1787.17, 1886.42} 
[MPa] for Al@Al2O3 nePCMs. 

Regarding energy density Ed, which is a relevant magnitude for en
ergy storage purposes, the metric used in the present work for its 
quantification is defined as: 

Ed = ρlL
Vcore

Vtotal
, (11)  

where Vcore and Vtotal denote the core and total volume of the nePCM, 
respectively. 

Fig. 4 represents the histogram and scalar values of Ed for Sn@SnO2 

Fig. 3. Histogram of Rankine’s equivalent stress for Sn@SnO2 nePCMs (left) and Al@Al2O3 nePCMs (right) with their respective mean value μ and standard de
viation σ. 
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and Al@Al2O3 nePCMs. From (9), the Ed for Sn@SnO2 nePCMs is found 
to lie in the confidence interval CI0.95 = {226.94, 234.56} [MJ/m3] with 
μ = 230.75 [MJ/m3], while for Al@Al2O3, CI0.95 = {518.43, 534.81} 
[MJ/m3] with μ = 526.62 [MJ/m3]. From these results, it can be 
concluded that the energetic performance of Al nePCMs is better than 
that of Sn ones. 

Two numerical verifications are performed: statistical and conver
gence tests. On the one hand, the Jarque-Bera test (Jarque and Bera, 
1987) is used to determine if the null hypothesis –a data sample comes 
from a normal distribution at a certain significance level– is accepted. 
The Jarque-Bera test is applied to both σR and Ed and it is found that both 
distributions and both pairs of core@shell materials are normally 

distributed at a significance level of 1%. Notice that the linearity 
assumption is not obvious since the present probabilistic analysis com
bines normal and log-normal distributions. 

On the other hand, the sample size N to guarantee a proper 
convergence of the MC is performed by a trial and error numerical test 
since obtaining a general analytic expression to pre-calculate N for 
convergence of MC simulations is difficult or even impossible for com
plex models. The numerical test consists of representing the average 
evolution of μ and σ versus the number of iterations, as observed in 
Fig. 5. From this figure, it can be concluded that the numerical simu
lation converges for N = 100 iterations and that is the value used 
through the present work. For this sample size, the computational time 

Fig. 4. Histogram of energy density for Sn@SnO2 nePCMs (left) and Al@Al2O3 nePCMs (right) with their respective mean value μ and standard deviation σ.  

Fig. 5. Convergence of Monte Carlo simulation.  
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is approximately 14 h for a PC with a processor Intel® Core™i7-950 and 
16 GB of RAM. 

4.2. Sensitivity analysis 

A multiple linear regression is performed to develop the SA in order 
to calculate the influence of the random variables ξj on the σR for both 
Sn@SnO2 and Al@Al2O3 nePCMs. This influence is shown in Fig. 6 by a 
bar diagram for the different absolute values of the SRC, see notation in 
Table 1. 

Firstly, the SRC values obtained for each nePCM are not the same 
given that the material properties are different. However, the same 
tendency may be observed in both of bar diagrams. 

Secondly, the most relevant random values appear to be Θ8, Θ9 and 
Θ10, which represent the Poisson’s ratio of the core, the thermal 
expansion coefficient of the core and its melting temperature, respec
tively. These results seem to be in good agreement with physical intui
tion: the latter plays a direct role in the maximum value of stress reached 
until the melting of the core, and the thermal expansion coefficient and 
the Poisson’s ratio are parameters that mechanically govern the volu
metric changes in nePCMs. 

Thirdly, the next set of parameters having more influence on the 

failure are the geometrical ones: Θ19, Θ20, Θ21 and Θ22. The three first 
parameters stand for the semi-axes of the ellipsoidal nePCM and the last 
one represents the shell thickness. The difference in values between 
Sn@SnO2 and Al@Al2O3 nePCMs for the SRC of the three semi-axes in 
Fig. 6 is not very significant and could be influenced by randomness in 
the generation of the random samples. 

Finally and since multiple linear regression is applied for this 
sensitivity analysis, the validity of the hypothesis of linearity must hold 
true for the results to be acceptable. In order to verify the validity of the 
SA, the coefficients of determination of the linear regression are R2

Sn =

0.93 and R2
Al = 0.92 for the Sn@SnO2 and Al@Al2O3, respectively. Ac

cording to (Pan et al., (2011); Saltelli et al., (2006)), as long as the co
efficient of determination verifies R2 ≥ 0.7, the linearity hypothesis is 
satisfied and thus, the present SA is valid as well. 

Notice that the random variables ξj exerting a major influence on Ed 
can be directly determined from its definition in Equation (11) without 
need of performing a SA. Therefore, the latent heat of the core, the mass 
density of the liquid core and the geometrical parameters are the vari
ables that have a more relevant impact on Ed. 

Fig. 6. Standardised Regression Coefficients (SRC) in absolute value for Sn@SnO2 (top) and Al@Al2O3 (bottom) nanoencapsulated phase change materials. Notation 
in Table 1. 
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4.3. Probability of failure of nePCMs 

In this section, the POF of Sn@SnO2 and Al@Al2O3 nePCMs is 
calculated by using both deterministic and probabilistic failure criteria:  

• The deterministic criterion consists of using a tensile strength σt 
value from literature and studying its position with respect to the σR 
distribution obtained from the probabilistic simulations.  

• The probabilistic criterion is grounded on the uncertainty in the 
measure of σt, resulting in a tensile strength distribution. According 
to (8), by considering a probabilistic criterion to compute the POF, 
the accuracy of the MC simulation is increased by a factor 

̅̅̅̅
N

√
–a 

factor of 10 in the present simulations. Notice that this motivates the 
need for considering a probabilistic failure criterion. 

Concerning Sn@SnO2 nePCMs, σt = 803 [MPa] is assumed for SnO2 
(Nam et al., 2017) for the deterministic case. According to (Nam et al., 
(2017)), the tensile strength of SnO2 may suffer from fluctuations due to 
its porosity, which is a hard to control parameter when synthesising 
nePCMs. Consequently, σt is assumed to be normally distributed with a 
20% of dispersion around σt = 803 [MPa] for the probabilistic criterion. 
This percentage of 20% is considered as a first approximation from the 
measurement dispersion existing in the characterisation of tensile 
strength of metals at the macroscale and by assuming that a considerable 
error may be induced by the different behaviour of this mechanical 
property between the macro and the nanoscale. 

Fig. 7 shows the σR distribution for both deterministic (top) and 
probabilistic (bottom) criteria. For the deterministic criterion, σR falls 
below the deterministic σt and, consequently, the POF of is 0%: any 
nePCM is expected to fail. 

On the contrary and for the probabilistic criterion, it can be observed 
that there is an overlap between the Gaussian curve of the σR distribu
tion and that of the probabilistic σt. This overlapping region represents 
the area in the graph where the nePCMs are likely to fail mechanically. 
In this case, the POF becomes 1.87% and this means that it is advisable 
to account for these type of criterion, especially when dispersion in 
tensile strength exists. 

It is important to highlight that the present results are in accordance 
with the experimental observations reported in (Navarrete et al., 
(2017)), given that only small samples of Sn@SnO2 nePCMs were 
verified to fail mechanically due to thermal stresses. 

With regard to Al@Al2O3 nePCMs, to the best of the author’s 
knowledge, experimental data on the mechanical failure of Al@Al2O3 
nePCMs is not available in the literature. In the present work, σt = 275.9 
[MPa] (Shackelford et al., 2015) with a Gaussian dispersion of 20% is 
considered, as in the previous case. 

Fig. 8 shows the distribution of the σR with the deterministic (top) 
and the probabilistic (bottom) failure criteria. For this material, the POF 
predicted for both deterministic and probabilistic criteria is 100% since 
the distribution of σR obtained is far above the tensile strength. 

In conclusion, despite the fact that Al@Al2O3 nePCMs possess larger 
energy density storage capabilities than Sn@SnO2 nePCMs, the first ones 
are likely to fail mechanically when they undergo heating cycles. 

5. Conclusions 

This article has presented a numerical tool, which combines Monte 
Carlo techniques and a thermomechanical finite element with phase 
change, in order to conduct probabilistic analyses –uncertainty, sensi
tivity and reliability– in nanoencapsulated phase change materials 
(nePCMs). In particular, experimental uncertainties are taken into ac
count to obtain the mechanical probability of failure and this mechan
ical failure is one of the problems experimentally encountered when the 
nePCMs undergo thermal processes. In addition, the sensitivity analysis 
has allowed to quantify the parameters that exert the most significant 

influence on the mechanical failure of nePCMs. Consequently, these 
relevant parameters should be closely controlled in the synthesis of 
nanoparticles. 

Specifically, the present work has considered 22 random parameters 
− 18 material properties and 4 geometrical parameters– and has studied 
the evolution of two variables – Rankine’s equivalent stress and energy 
density– for two nePCMs: Sn@SnO2 and Al@Al2O3. Firstly and from the 
sensitivity analysis, it has been concluded that the melting temperature, 
thermal expansion coefficient and Poisson’s ratio exert the more rele
vant influence on the mechanical failure of the nanoparticle shell. In 
turn, the most influential parameters on the energy density capability of 
nePCMs are the latent heat of the core, the mass density of the liquid 
core and the geometrical parameters of the nePCM. Secondly, it has been 
concluded that the probabilistic failure is 1.87% and 100% for Sn@SnO2 
and Al@Al2O3 nePCMs, respectively. The results of the former are 
verified to be in good agreement with experimental observations while, 
to the author’s knowledge, no data is available for the latter ones. 

To sum up, the numerical probabilistic tool allows to estimate the 
probability of failure of the nePCMs and to determine the parameters 

Fig. 7. Deterministic (top) and probabilistic (bottom) failure criteria compared 
against the maximum Rankine’s equivalent stress obtained from Monte Carlo 
simulation for Sn@SnO2 nanoencapsulated phase change materials. 
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having a bigger influence on the failure and energy storage of nePCMs 
for their use in TES systems. The scope of the present numerical tool can 
be expanded to predict the mechanical failure of any micro and nano
encapsulated PCMs made of different pairs of core@shell materials as 
long as their material properties and measurement dispersion are 
known. 

Finally, the present numerical probabilistic tool could be used to 
complement experimental research and to reduce the number of ex
periments to be conducted to optimise the selection of a pair of core and 
shell nePCMs by maximising the energy density and by minimising the 
probability of the failure of the shell. 
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2017. “New high-temperature heat transfer and thermal storage molten salt–based 
nanofluids: preparation, stabilization, and characterization. In: Minea, A.A. (Ed.), 
Advances In New Heat Transfer Fluids: from Numerical To Experimental Techniques, 
ch. 11. CRC Press, Boca Raton.  

Montgomery, D.C., Runger, G.C., 2003. Applied Statistics and Probability for Engineers, 
third ed. John Wiley & Sons, Inc., New York.  

Nam, K., Wolfenstine, J., Choi, H., Garcia-Mendez, R., Sakamoto, J., Choe, H., 2017. 
Study on the mechanical properties of porous tin oxide. Ceram. Int. 43, 
10913–10918. 
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