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Abstract Jensen–Shannon divergence is used to quantify the discrepancy between the
Hartree–Fock pair density and the product of its marginals for different N -electron systems,
enclosing neutral atoms (with nuclear charge Z = N ) and singly-charged ions (N = Z ± 1).
This divergence measure is applied to determine the interelectronic correlation in atomic
systems. A thorough study was carried out, by considering (i) both position and momentum
conjugated spaces, and (ii) systems with a nuclear charge as far as Z = 103. The correlation
among electrons was measured by comparing, for an arbitrary system, the double-variable
electron-pair density with the product of the respective one-particle densities. A detailed
analysis throughout the Periodic Table highlights the relevance not only of weightiness for
the systems considered, but also of their shell structure. Besides, comparative computations
between two-electron densities of different atomic systems (neutrals, cations, anions) quan-
tify their dissimilarities, patently governed by shell-filling patterns throughout the Periodic
Table.

1 Introduction

The two-electron density Γ (r1, r2) is the probability density of any two electrons that are
located at radii r1 and r2, respectively, and is a convenient starting point to study the spatial
interaction between two electrons in an explicit manner [1]. This density provides a quantum-
mechanical description of the distribution of electron pairs in the space and therefore rep-
resents a central tool, in quantum chemistry, to study chemical binding [2] or electronic
structure and correlation in molecular systems [3,4].

On the other hand, the exact interaction energy of a many-electron system is determined
by the electron pair density, but is not well-approximated in standard Kohn–Sham density
functional models [5,6]. Consequently, pair density functional theory is regarded as not only
an extension of the density functional theory but a reduced density matrix theory as well
[7,8]. The main feature of the pair density functional theory is that the pair density, as a basic
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variable, essentially contains more information on the electron-electron interaction than the
electron density [9,10].

The expectation value of an arbitrary two-particle operator can be obtained using only
the electron pair density. In addition to this merit, the pair density functional theory has
another, which is related to the expansion of the approximate functional. That is to say, in
the pair density functional theory, the only required selection is the approximate form of the
kinetic energy functional, because the exchange-correlation energy functional can rigorously
be expressed by means of the pair density [11]. As a recent example multiconfiguration pair
density functional theory has been developed, as a way to combine the advantages of both
wave function and density functional theories to provide a better treatment of strongly cor-
related systems, and its results have been compared to those of some Kohn–Sham density
functionals, including both traditional and modern functionals [12,13]. Additional applica-
tions have been performed recently with a diversity of molecular systems, on the basis of
their one- and two-electron RDMs (reduced density matrices), which comparison provides
measures of electron-correlation and entanglement among systems. These measures display
their sensitivity to the presence of electric fields [14].

Therefore, given the above, it would be logical to assume that two-electron densities for
atoms and molecules have been studied both intensively and extensively. However, this is not
the case. The effort invested in interpretative studies of electron pair densities has been small
as compared to that expended on such studies for one-electron densities. Indeed, there is a
large amount of information coded inside monoelectronic densities; however, these densities
do not give us any hint on how the position (or the momentum) of an electron conditions the
positions (or the momenta) of the others. Besides it is worthy to note that within the Waller–
Hartree theory, the two-electron density is related to the total X-ray scattering intensity which
is accessible by experimental measurements [15,16].

One of the main difficulties rests in the interpretation of the electron pair density. Visual
representation is a powerful analytical tool; however, being a function of 6 coordinates,
graphical representation of the pair density is not feasible and manipulations to the two-
electron density must be carried out to extract useful information. One such manipulation
gives place to the intracule and extracule densities and many relevant results have been
obtained in this framework [17–21]. It is important to note that these densities consider the
pairs of electrons as a whole thing. Other simplification consists in dealing with spherically
averaged electron pair densities. Consequently, as a result of this reduction in dimensionality,
some two-electron information is lost in the transformation.

The concepts of uncertainty, randomness, disorder and delocalization are basic ingredients
in the study, within an information-theoretic framework, of relevant structural properties for
many different probability distributions appearing as descriptors of several chemical and
physical systems and processes. The relevancy of these concepts has motivated new studies
that pursue quantification, giving rise to a variety of density functionals, such as Shannon
entropy [22], Fisher information [23], disequilibrium [24], complexity [25], and many others.
These information measures have been widely employed for describing the information
content and behavior in a great variety of fields [26,27] and, in particular, for the study of
many-electron systems [27–34]

Following the usual procedures carried out within information theory for quantifying
the uncertainty or disorder of individual distributions, some extensions have been made in
order to introduce the concepts of ‘distance’ and ‘divergence’ between two distributions, as
comparative measures of their dissimilarity.

Jensen–Shannon divergence (JSD) is a powerful divergence measure that represents the
difference between the Shannon entropy of the mean density and the mean value of the indi-
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vidual entropies [35–37]. Its non-negativity arises from the convex character of the Shan-
non entropy functional. This comparative measure has found deep applications in statistics
and many other fields, including entanglement characterization [38], analysis of symbolic
sequences or series, and in particular in the study of segmentation of DNA sequences [39].
JSD and some effective generalizations have been used for the study and comparison of
one-electron densities [40–44]. For the first time, to the best of our knowledge, this infor-
mation measure of dissimilarity is applied to the study of two-electron density functions.
Let us emphasize, however, recent applications of strongly related functionals (e.g. mutual
information, cumulative residual entropies, interaction information) for uncoupled and inter-
acting harmonic oscillators [45,46]. Additional applications include the cumulant part of
two-electron RDMs, for the detection of van der Waals interactions between specific parts
of molecular systems [47]. Other measures enclosing also the gradient of the density, as the
relative Fisher information, were considered for the study of specific one-particle quantum
systems (Morse potential, isotropic oscillator or hydrogen-like atoms) [48,49].

In this paper, small correlation effects in atoms are analyzed, on the basis of discrepancies
between the Hartree–Fock one- and two-electron densities. In doing so, comparative den-
sity functionals are employed as quantifiers of dissimilarity among the above densities. So
differences arising from the exchange term are emphasized, as the main cause of them. A
detailed analysis throughout the Periodic Table reveals the relevance not only of weightiness
for the systems considered, but also of their shell structure. Besides, comparative computa-
tions between two-electron densities of different atomic systems (neutrals, cations, anions)
quantify the important differences patently governed by shell-filling patterns throughout the
Periodic Table. Thereby, we use an information-theoretic functional that has shown its univer-
sality and versatility in other computations: the Jensen–Shannon divergence (JSD) [35–37].

The organization of the paper is the following: in the next section, two-particle densities
are defined and presented for atomic systems and also the entropic divergence measure (JSD)
we are going to use for comparing them. Numerical computations and results are presented
in Sect. 3. Finally, conclusions and open problems or future work are briefly described in the
last section.

2 Electron pair densities and related measures

In terms of the N -electron wave function Ψ , and its Fourier transform Φ, the two-electron
densities are defined as

Γ (r1, r2) =
∫

Ψ (x1, x2, . . . , xN )Ψ ∗(x1, x2, . . . , xN )dσ1dσ2dx3 . . . dxN (1)

in the position space, and

Π(p1,p2) =
∫

Φ(y1, y2, . . . , yN )Φ∗(y1, y2, . . . , yN )dσ1dσ2dy3 . . . dyN (2)

in the momentum space. The variables xi = riσi and yi = piσi are combined coordinates
which include the spin. It is well known that the physical meaning of these densities regards
the probability of finding an electron with a compatible state within the region r1dr1 if there
is another electron with allowed/compatible quantum numbers within the region r2dr2, and
similarly regarding the momentum regions p1dp1 and p2dp2. These densities are directly
related to the electron correlations, as the compatibility of an electron state is in organically
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determined by the compatibility of its state with those of the others. They naturally give us
quantifiers of correlation between electrons.

The two-electron densities are going to be calculated by the Hartree–Fock approach and
can be expressed as follows [50]:

Γ (r1, r2) = 1

N − 1
[Nρ(r1)ρ(r2) − Γx (r1, r2)] (3)

in the position space, and

Π(p1,p2) = 1

N − 1

[
Nγ (p1)γ (p2) − Πx (p1,p2)

]
(4)

in the momentum space, respectively. The functions ρ(ri) and γ (pi) are the one-electron den-
sities and Γx (r1, r2) and Πx (p1,p2) are the exchange densities in the position and momentum
space respectively. Let us remark that, using Hartree–Fock functions, we are studying the
Fermi correlation between same-spin electrons which arises from the antisymmetry of the
wave function. In this sense, the term electron correlation, mentioned before, alludes to the
statistical correlation. This point must be clarified in order to not lead to confusion if one
considers a correlated system as one beyond the Hartree–Fock approximation (the Löwdin
definition of correlation energy).

It should be noticed that the one-particle densities are marginal distributions of the two-
particle ones, because the former are obtained from the latter by integration, as ρ(r1) =∫

Γ (r1, r2)dr2 and γ (p1) = ∫
Π(p1,p2)dp2. Thus, the information content of the marginals

is not enough to determine the double-variable distribution they are coming from.
Different definitions of distance between two arbitrary distributions f (x) and g(x) appear,

where both are defined over the same domain. The interest in finding appropriate tools for
‘comparing’ two different systems or processes in terms of distribution functions is justified
by the strong connection between some of the above mentioned information measures and
many relevant physical and chemical properties of those systems. The term ‘distance’ should
be understood as a measure of how dissimilar the two functions are, not necessarily verifying
all mathematical properties required for a true distance, as the usual quadratic distance does.
However, all of them keep as main distance properties the non-negativity, the symmetry
(invariance under exchange of functions) and saturation (minimal zero value only for identical
distributions).

The relative entropy or Kullback–Leibler divergence (KL) [35] is one of the pioneering
global measures of the difference between two arbitrary uni- or multivariate probability
distributions. It expresses the amount of information supplied by the data for discriminating
among the distributions, being a ‘directed divergence’ and therefore not symmetric:

K L ( f, g) =
∫

f (x) ln
f (x)
g(x)

dx (5)

Its applications for different procedures in obtaining minimum cross entropy estimations
and the determination of atomic and molecular properties [29], among others, make it to
constitute an essential tool within the information theory. Won and You introduced, some-
what implicity, a closely related information measure between two or more distributions, the
Jensen–Shannon divergence (JSD) [51,52]:

J SD( f, g) = 1

2

[
K L

(
f,

f + g

2

)
+ K L

(
g,

f + g

2

)]
. (6)

Consequently, JSD represents the mean dissimilarity (understood in terms of the KL
measure) of each density respect to the mean one.
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This measure is strongly related to the Shannon entropy, which is defined for an arbitrary
uni- or multivariate probability distribution as S( f ) = − ∫

dx f (x) ln f (x). Shannon entropy
is well known to play a relevant role within an information-theoretic framework because it
constitutes a measure of spreading of the density over its domain [53]. Attending to the JSD
definition given above, the Jensen–Shannon divergence can be also expressed in terms of the
Shannon entropy as

J SD( f, g) = S

(
f + g

2

)
− 1

2
[S( f ) + S(g)] . (7)

The JSD is characterized for quantifying the “Shannon entropy excess” of a couple of
distributions with respect to the mixture of their respective entropies (mean density), defined
in Eq. (7) as a particular case of the so-called weighted generalized divergences [54] with
identical weights 1/2. Apart from preserving the global character of the Shannon entropy, the
JSD possesses the main properties required for a measure to be interpreted as an informational
distance. In particular, its non-negativity is a consequence of the convexity of the S( f )
functional. Other important advantages of this divergence are that: (i) does not require the
condition of absolute continuity for the probability distributions involved, (ii) weights of each
density can be different from 1/2 as appearing in Eq. (7), and (iii) can be generalized for
an arbitrary number of distributions. During the past years researchers have been interested
in work towards parametric generalizations of these classical measures of information. The
JSD also admits other kind of generalizations, as will be shown elsewhere.

In this work we intend to perform an exhaustive analysis of atomic systems using JSD,
on the basis of their two-electron densities, in the following two ways:

(i) Differences between the pair distribution Γ (r1, r2) and the product of marginals
ρ(r1)ρ(r2) reveal the existence of some interconnection between its variables and quan-
tify the effects from the exchange density on the systems under consideration. With JSD
those differences are obtained for atomic systems (neutrals and ions), in both conjugated
spaces (Sect. 3.1).

(ii) The ionization of a neutral system, by adding or removing an electron, modifies its
structural characteristics. This was studied by means of the JSD between the one-particle
distributions of the neutral and the ionized systems [55]. Here, a step further is taken,
dealing with divergences among electron-pair densities, also in position and momentum
spaces (Sect. 3.2).

3 Numerical results

Divergence measures allow us to quantify the differences between general systems, in par-
ticular by means of electron atomic densities. In this section we intend to employ Jensen–
Shannon divergence in order to analyse the particularities and characteristics of two-electron
and one-electron densities. The Near-Hartree–Fock wavefunctions of Koga et al [56,57] are
employed. Functions normalized to unity will be managed in what follows, for the sake of
their interpretation as probability distributions.

3.1 Interelectronic correlation analysis

We will compute the Jensen–Shannon divergence between two-electron density and the
product of one-electron densities, being one of the main reasons its property that its value is
zero when the systems compared have no correlation. Thus, the Jensen–Shannon divergence
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Fig. 1 Jensen–Shannon divergence in position space (JSDr ) between the electron pair density and the product
of monoelectronic densities, for neutral atoms with number of electrons N = 3−103. Labels are for systems
with closed shells (red), closed subshells (blue) or anomalous shell-filling (green). Atomic units (a.u.) are used

acts as a measure of the disparity between two- and one-electron densities. These comparisons
will be carried out on double variable distributions in both position (Γ (r1, r2) and ρ(r1)ρ(r2)

respectively) and momentum (Π(p1,p2) and γ (p1)γ (p2) respectively) spaces. Let us remark

that in this case, the last term in the JSD (see Eq. (7)) can be expressed as −
[
S(Γ )

2 + S (ρ)
]

in

position space, and similarly for the momentum space. The systems under study are neutral
atoms with a number of electrons N ≤ 103 (nuclear charge Z = N ), and singly-charged
ions (Z = N ± 1) with N ≤ 54.

Firstly, we computed the Jensen–Shannon divergence between the electron pair density and
the product of the corresponding monoelectronic densities for neutral systems N = 2−103
in position space. The obtained results are shown in Fig. 1. It can be observed the decreasing
trend of JSD when the nuclear charge of the system increases, which indicates that the
correlation decreases as the number of electrons increases. This was an expected result, as
the number of electrons is known to determine how strong or weak is the relevance of the
correlation between the mentioned electrons. Thus, in the case that we have information
about the position of an electron within a group of three, this knowledge becomes much
more relevant than if we have a group of thirty electrons, when the information about just
one does not tell us much more about the other twenty nine.

Notwithstanding, some additional patterns are noticeable, most certainly related to the
shell filling structure. This fact was emphasized in a previous work [58] for systems within
the shorter range N ≤ 36, on the basis of the mutual information as quantified by the K L
divergence among distributions, as here done by means of JSD up to N = 103. The trend
is monotonous, without many exceptions for a long period, however some discontinuities
appear when changing from a period to another indicating a transition to a new electronic
shell. Each segment can be assigned to a particular shell, in the fashion the figure shows.
Besides, some less relevant extrema appear, all of them related to anomalous shell filling
systems. Some specific systems have been labelled, as follows:

– Closed shells: N = 10, 18, 36, 54, 86. Thus noble gases appear as minima systematically.
The same was observed in the K L divergence for systems up to N ≤ 36 [58].
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– (i) Anomalous shell-filling: minima N = 42, 46 (outer d-subshell), with valence subshell
half-filled and filled, respectively. (ii) The same applies to N = 24, 29: in spite of not
being extrema, the curve displays a ‘change of slope’ at those points, to be contrasted later
with momentum space. (iii) Minor extrema appear for heavy systems, within a region of
anomalies.

– Closed subshells: minima N = 48, 80 with filled d-subshell.

The Jensen–Shannon divergence between electron pair density and the product of mono-
electronic densities in momentum space hardly provides additional information. The conclu-
sions we arrive are similar than before, in fact, the curves in both spaces almost overlap each
other, as it can be seen by comparing Fig. 2 (momentum space) with the previous one (note
the identical scales of both figures). Thus the electron pair densities in momentum space are
providing roughly the same information as the position ones.

Nevertheless, additional remarks are in order. Comparing curves in position and momen-
tum space, it is observed that (i) the aforementioned ‘changes of slope’ at N = 24, 29 in
position space are displayed as maxima in momentum space; (ii) previous minimum N = 42
translates now to N = 43, also with outer d-subshell; (iii) instead of minimum N = 80 it is
now observed the maximum N = 78. No extrema appear in the heavy systems region.

Notice that just mentioned systems N = 24, 29, 42, 43, 46, 78 have a non-filled inner s-
subshell and an outermost d-subshell (the inner one is empty for the system N = 46, clearly
highlighted in both figures).

As observed in Ref. [58] for KL, most JSD values are higher in position than in momentum
space. The opposite applies for a few systems with anomalous shell-filling. Particularly
relevant are the cases N = 24, 29 with half-filled 4s inner orbital and outermost 3d subshell
(half-filled and completely filled, respectively). Their JSDp (Fig. 2) are greater than the
respective JSDr (Fig. 1) by 17% and 25%. Such amount belongs to the range 8−13% for
heavier systems with similar anomalies: N = 41, 42, 44, 45, 47 (subshells 5s4d), and N =
78, 79 (subshells 6s5d), all them with an inner half-filled s-orbital. It is concluded that, for
most systems, correlation effects are weaker in momentum space, the opposite being true
for the aforementioned anomalous systems, in a slight fashion with few exceptions. These
results support and extend the conclusions obtained in Ref. [58] for systems up to N = 36,
regarding the relative behaviors in position and momentum spaces.

The above discussion was focused on neutral atoms and their properties, but in what
follows we will consider also some of their corresponding ions. Let us now use the Jensen–
Shannon divergence, JSD, in order to quantify the differences between the electron distribu-
tions at the one- and two-electron levels, now for ionized systems. In doing so, Fig. 3 shows
the JSD between the monoelectronic and the electron pair density of different ions, calculated
in both conjugated spaces. First let us focus on Fig. 3a where singly-charged cations with
number of electrons N = 2−54 have been taken into account. The curves show us a decreas-
ing behaviour when N increases and, in this case, the momentum space roughly presents
smaller values of JSD. However, an interesting pattern appears in the figure: cations corre-
sponding to N = 10, 18, 23, 28, 36, 41, 46, 48, 54 have a minor difference, a lower value
of JSD, in both conjugated spaces with the only exception N = 48 (extremely light mini-
mum, only in position space). Among maxima (located at almost identical positions in both
spaces), let us emphasize the presence of N = 24, 29, 42. Regarding these two collections,
some comments are in order:

– As for neutral atoms, noble gases N = 10, 18, 36, 54 are displayed as lower peaks. On the
other hand, alkalines N = 3, 11, 19, 37 appear as maxima. Similarly occurs, in position
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Fig. 2 Jensen–Shannon divergence in momentum space (JSDp) between the electron pair density and the
product of monoelectronic densities, for neutral atoms with number of electrons N = 3−103. Labels are for
systems with closed shells (red) or anomalous shell-filling (green). Atomic units (a.u.) are used

space, with the closed-shell system N = 48 (minimum) and its neighbors N = 47, 49
(maxima).

– Pairs of extrema 23−24 and 28−29 (minimum–maximum) are due to the anomalous
shell filling of both maxima N = 24, 29, with the inner half-filled 4s subshell, and with
half-filled or filled (respectively) outermost 3d subshell.

– Similarly the pair of consecutive extrema 41 − 42 has inner half-filled 5s subshell, and
outermost subshell 4d , half-filled for the maximum N = 42.

– Particularly interesting is the strong minimum N = 46, as discussed for neutrals, with
empty 5s subshell and filled valence subshell (4d).

– A few of the above systems display a higher JSD in momentum than in position space:
N = 24, 29, 42, 47 (with inner half-filled s-orbital and outermost half-filled or com-
pletely filled d-orbital), as well as N = 25 (half-filled outermost d-orbital).

In Fig. 3b, where the anions have been considered, exactly the same pattern is observed,
but with a less elaborate structure, due to the fewer available systems as it was previously
mentioned. Some alkaline earths have been labelled, but let us emphasize the ‘absence from
the list’ of alkalines, which are displayed as maxima for cations. Position space JSD is
almost systematically greater than the momentum one. The only extremely light exceptions
are N = 41−42, with differences between spaces below 0.2%.

3.2 Atomic ionization

Applying divergence measures to the analysis of ions will allow us to find which electrons
have a higher impact on the whole density. In order to do that, we inspect the Jensen–Shannon
divergence between the pair densities of an ion (cation or anion) and its respective neutral,
in both position and momentum spaces. For completeness, similar results on the basis of
one-particle densities, previously obtained [55], are also displayed. This is shown in Figs. 4
and 5.

Next results are to be interpreted as measures of the ‘amount of change’ on the electron
cloud of a given system after its ionization takes place, either by ejecting or by capturing an
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(b)

(a)

Fig. 3 Jensen–Shannon divergence, in position and momentum spaces, between the electron pair density and
the product of one-particle densities, for a cations and b anions with number of electrons 3 ≤ N ≤ 55. Labels
are for systems with closed shells (red), closed subshells (blue) or anomalous shell-filling (green). Atomic
units (a.u.) are used

electron. Thus, if the initial neutral system has N electrons, the resulting ion will have N − 1
or N + 1 electrons, for the cation and the anion, respectively. This interpretation applies to
both conjugated spaces, as well as to one-particle and electron pair densities.

Figure 4 encloses curves of JSD between the electron distribution of a neutral system and
that of its singly-charged cation, denoted in position and momentum spaces as JSDr (N ,C) in
Fig. 4a, and JSDp(N ,C) in Fig. 4b, respectively. A simple function of the atomic ionization
potential AIP needed for performing such process is also depicted. This function has been
considered in order to better compare all curves, which display a variety of local extrema,
most of them characterized accordingly with the shell-filling of neutrals and ions, as discussed
below.
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(b)

(a)

Fig. 4 Pair and one-electron Jensen–Shannon divergences between the neutral system with a number of
electrons 3 ≤ N ≤ 55 and its singly charged cation, and the inverse of square root of the atomic ionization
potential (AIP), in a position and b momentum spaces. Atomic units (a.u.) are used

Let us start with the location of maxima of JSD in position space, when comparing a
neutral of N electrons with the resulting cation of N − 1 electrons, namely JSDr (N ,C),
as displayed in Fig. 4a. In the two-particle case, higher peaks are found at neutrals
N = 3, 11, 19, 23, 27, 31, 37, 41, 44, 47, 49, 55. Within the range of N here considered,
it is worthy to remark:

– Alkalines N = 3, 11, 19, 37, 55 appear included, that is systems which outermost ‘s’
subshell becomes empty after ionization.

– The same applies to the anomalous N = 47 regarding its valence subshell 5s.
– For systems N = 31, 49 the lost subshell is 4p and 5p, respectively.
– Rest of peaks (N = 23, 27, 41, 44) correspond to ‘d’ valence subshells.
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– Comparing with the one-electron curve, almost identical structures are obtained regard-
ing their extrema and monotonic trends. The most prominent differential feature is the
systematic higher value of electron pair JSD as compared to the monoelectronic one.

The same analysis has been carried out in momentum space, and the results are displayed
in Fig. 4b. Conclusions are similar to those obtained from position-space divergences, and
the differences are emphasized below:

– Position-space peaks N = 3, 11, 19, 23, 37, 55 (enclosing all alkalines) remain in
momentum space for both one- and two-particle comparisons. On the other hand, N = 31
is lost also in both cases.

– N = 27, 45 are kept in the monoparticular case, while the slight shifts from maxima
located at (27, 44) to (28, 45) are observed for electron pair divergences.

– Maximum N = 49 disappears for momentum one-electron distributions, while N =
41, 47 for the two-electron ones. Notice that the half-filled 5s subshell of systems N = 41
and N = 47 becomes filled and empty, respectively, after ionization.

– On the other hand, the disappearance of N = 31, 49 from the set of maxima in going from
position to momentum space corresponds to systems which ‘p’ valence subshell becomes
empty. Instead, the divergence at the one-electron level displays maxima N = 8, 52,
characterized for getting a half-filled ‘p’ valence subshell after ionization.

– Concerning asymptotic trends, it is observed that the monoelectronic JSD remains within
a low interval for large N , while the electron pair divergence appreciably increases,
roughly from N = 25 on.

The differences between the JSD behaviors in position and momentum spaces arise from
the asymptotic behaviors of the involved densities. This fact has been shown in previous
studies on density functional analysis, particularly JSD among others [41]. In position space,
the atomic one- and two-electron densities have an exponential decreasing behavior, so that
the values of the involved integrals are mainly determined by the regions surrounding the
nuclei, those almost unaffected by ionization. However, the lowspeed regions are associated
with the outermost subshells, being consequently those mainly determining the JSD values.
The differences between the valence subshells of the neutral and ionized systems are more
clearly reflected in the pair distribution, as compared to the monoelectronic one.

Let us analyse the structure of the JSD in each period comparing their extremal values to
those of AI P . In Table 1, values of number of electrons N of the neutral system for which
the Jensen–Shannon divergence display local extrema (maximum) are given. In addition,
minimum values of the AI P are shown, which are associated to systems with a single electron
in the valence subshell, making consequently such a subshell to disappear after ionization,
and the resulting system to strongly differ from the initial one. This relevant difference is
usually revealed in terms of a high divergence and dissimilarity between the initial and the
final system. There exist a strong correlation also with the structure displayed by the atomic
ionization potential AI P in the NC ionization process in which an ‘s’ electron is removed,
as shown in the corresponding column of the table. However, as it can be observed the same
is not true when the removed electron is of ‘p’ or ‘d’ type.

It appears natural to wonder ourselves about all the above features when the initial neutral
system gets an additional electron, so becoming a singly-charged anion. The appropriate
calculations have been performed, and the results obtained are displayed in Fig. 5.

Conclusions for anions are much more limited, as compared to those obtained for cations.
The reason is the absence of numerous systems from the list of anions, not included in the
Ref. [56] considered for the present work. However, some interesting remarks are in order.
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Table 1 Number of electrons N at local extrema for the atomic ionization potential AIP of neutral atoms and
the Jensen–Shannon divergences in position (JSDr ) and momentum (JSDp) spaces, between the electron pair
densities of a neutral system with a number of electrons 3 ≤ N ≤ 54 and its singly charged anions (A) and
cations (C). Atomic units are used

Measure N −→ C A −→ N

AIP (s) 3,11,19,23,28,37,47,55

(p,d) 5,8,13,16,31,34,49

JSDr (s) 3,11,19,23,27,37,41,44,47,55 3,11,19,24,29,37,42,44,46

(p,d) 31,49

JSDp (s) 3,11,19,23,28,37,45,55 3,11,19,24,29,46

(p,d) 49 15,49,53

In position space, Fig. 5a, maxima for the divergence neutral-anion are roughly the same
as those of neutral-cation, for the one- and the two-electron distributions. In both cases, the
following patterns are displayed:

– Alkalines N = 3, 11, 19, 37 remain as maxima, also for anions. Let us remark that the
next alkaline (N = 55) is not included in the managed anion set.

– The anion obtained from neutral N = 31 does not give rise to a maximum, contrary to
the cation.

– Two sets of slight shifts are observed: (23, 27 and 41) to (24, 29 and 42), and (44 or 45,
and 47) to (44 and 46).

The only exception to the above common patterns is N = 49, shifted to N = 51 in the
monoelectronic case, and lost for electron pair densities.

In momentum space, Fig. 5b, (i) alkalines N = 3, 11, 19 are kept for anions, (ii) the one-
electron shifts of maxima (8,23,27 or 28,41,45,47,52) to (7, 24, 29, 42, 44, 46, 51) include
the two-electron ones, corresponding to N = 24, 29, 46, and (iii) in both cases, the new
maximum N = 15 appears, as well as N = 33 at the one-electron level, that is systems with
a half-filled ‘p’ valence subshell, as also N = 51 included in the above list of shifts.

Differences between the global behaviors of the one- and two-electron curves appear
justified in the same way as for neutral-cation transitions. That is, both densities decrease
exponentially far from the nucleus in position space, while the asymptotic fall of momentum
densities is much more slow.

4 Conclusions and future work

Jensen–Shannon divergence (JSD) has been employed as comparative functional for different
many-electron atoms on the basis of their respective one- and two-electron distributions,
enclosing neutral atoms (N = Z ) and singly-charged ions (N = Z ± 1). Particularly JSD
is applied to quantify the interelectronic correlation in atomic systems. A thorough study
was carried out, by considering (i) both position and momentum conjugated spaces, and (ii)
systems with a nuclear charge as far as Z = 103.

The correlation among electrons was measured by comparing, for an arbitrary system, the
double-variable electron pair density with the product of the respective one-particle densities.
As expected, the absence of correlation translates into the extreme allowed value JSD = 0,
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(a)

(b)

Fig. 5 Pair and one-electron Jensen–Shannon divergences between the neutral system with a number of
electrons 3 ≤ N ≤ 54 and its singly charged anion, in a position and b momentum spaces. Atomic units (a.u.)
are used

and any deviation from the above value is caused by the existence of correlation, more or
less strong, accordingly with the relevance of the aforementioned deviations.

The main conclusion is that the dependence on the number of electrons only governs
general trends of JSD, being insufficient as single variable to justify the structural patterns
shown by those curves. Interelectronic correlation roughly decreases as the number of elec-
trons increases, as revealed by the decreasing behavior of JSD in terms of N . However, there
appear a number of local extrema, whose location and strength are clearly determined by
shell-filling patterns. Specially relevant changes in JSD are observed just after adding an
electron to a closed-subshell system. All this is valid in position and momentum spaces.

The above comments on neutral atoms apply also for cations and anions, regarding struc-
tural patterns. Once again the interelectronic correlation, as measured by JSD, decreases
along a given period (i.e. as adding electrons) but notably increases in passing to a new
period.
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Apart from correlation, additional properties of atomic systems were analysed by means
of JSD. Such is the case of ionization as described by the ‘resemblance’ among neutrals and
their respective singly-charged ions, in terms of the corresponding electron pair densities.
While structural patterns are similar in position and momentum spaces, the same is not true
regarding monotonic behaviors. JSD in both spaces displays a decreasing trend for light
systems, that remains in the position case for the whole set of systems. However, it turns out
to an increasing one in momentum space for medium-heavy systems. So break of resemblance
after ionization appears greater in momentum space than in the position one, for both cations
and anions.

Future work is planned by considering other functionals. For instance, relative Fisher
information (containing also the gradient of the density) was exhaustively applied for the
analysis of specific one-particle quantum-mechanical systems (Morse potential and harmonic
oscillator [48], hydrogen-like atoms [49]). Additionally, numerous studies of atomic [59] and
molecular [60] systems were performed by means of the quantum similarity index on the
basis of their one-particle densities. On the other hand, a study of different divergences and
similarity measures, particularly Jensen–Shannon divergence, between the exchange density
and the product of the one particular densities could be interesting.
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