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ABSTRACT
Background: Diet has a major influence on the human gut
microbiota, which has been linked to health and disease. However,
epidemiological studies on associations of a healthy diet with the
microbiota utilizing a whole-diet approach are still scant.
Objectives: To assess associations between healthy food choices and
human gut microbiota composition, and to determine the strength of
association with functional potential.
Methods: This population-based study sample consisted of 4930
participants (ages 25–74; 53% women) in the FINRISK 2002 study.
Intakes of recommended foods were assessed using a food propensity
questionnaire, and responses were transformed into healthy food
choices (HFC) scores. Microbial diversity (alpha diversity) and
compositional differences (beta diversity) and their associations
with the HFC score and its components were assessed using linear
regression. Multiple permutational multivariate ANOVAs were
run from whole-metagenome shallow shotgun–sequenced samples.
Associations between specific taxa and HFC were analyzed using
linear regression. Functional associations were derived from Kyoto
Encyclopedia of Genes and Genomes orthologies with linear
regression models.
Results: Both microbial alpha diversity (β/SD, 0.044; SE,
6.18 × 10−5; P = 2.21 × 10−3) and beta diversity (R2, 0.12;
P ≤ 1.00 × 10−3) were associated with the HFC score. For alpha
diversity, the strongest associations were observed for fiber-rich
breads, poultry, fruits, and low-fat cheeses (all positive). For
beta diversity, the most prominent associations were observed
for vegetables, followed by berries and fruits. Genera with fiber-
degrading and SCFA-producing capacities were positively associated
with the HFC score. The HFC score was associated positively with

functions such as SCFA metabolism and synthesis, and inversely
with functions such as fatty acid biosynthesis and the sulfur relay
system.
Conclusions: Our results from a large, population-based survey
confirm and extend findings of other, smaller-scale studies that plant-
and fiber-rich dietary choices are associated with a more diverse and
compositionally distinct microbiota, and with a greater potential to
produce SCFAs. Am J Clin Nutr 2021;114:605–616.
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Introduction
What we eat is among the most influential environmental

factors that determine long-term health (1, 2). Our everyday diet
can increase or decrease the risk of noncommunicable conditions,
such as cardiovascular diseases (3), metabolic syndrome (4), and
cancer (2). Diet is also among the most important environmental
factors that our microbial population in the gastrointestinal tract
is exposed to and modified by daily (5, 6).

Gastrointestinal diseases (7), obesity (8), cardiovascular dis-
eases (9), rheumatoid arthritis (10), and neurological disorders
(11) have all been associated with the gut microbiota. Many of
these disorders are also associated with diet. The gut microbiota
has various functions beneficial to health, including immune mat-
uration and homeostasis; vitamin biosynthesis; biotransformation
of xenobiotics to more bioavailable, potentially antioxidative
metabolites; and production of SCFAs (12, 13). SCFAs have been
studied extensively, since they have been shown to offer many
health benefits (14, 15).

Since different microbes have different optimal environments
for growing and surviving, dietary choices can have a large
influence on the composition and function of our gut microbiota.
It has been shown that high intake of fiber and substitution
of SFAs with PUFAs are protective factors (16–18). A diet
rich in these factors has been widely recommended by health
authorities (19–21). What remains to be determined is the role
of the gut microbiota in these findings. Promising results have
been observed for associations between the gut microbiota and
food items such as whole-grain products (22), berries (23), nuts
(24), and legumes (25). However, food items in the diet do not
exist in a vacuum. Components that constitute a diet can have
counteracting or synergistic effects with each other (26). Thus,
the final assessment should always be made based on information
that takes into account the entirety of the diet.

Research on microbiota-diet associations with a whole-diet
focus is scarce. Previous studies in this domain have mainly
focused on the Mediterranean diet (27) or various plant-
based diets (28–31) in small and selected study samples. A
larger study has assessed diet-microbiota associations in older,
community-dwelling men by comparing prudent and Western
diet patterns (32). No studies focusing on the whole diet with
large, population-based samples have been conducted to date.

In the current study, we examined the associations between the
gut microbiota and consumption of food items recommended to
be part of a healthy diet in a cross-sectional setting, in a large,
Finnish, population-based study sample. Our main objective
was to assess whether healthy food choices, indicated by a
summary score, are related to gut microbiota composition within
samples (alpha diversity) and between samples (beta diversity).
Furthermore, we assessed key bacterial taxa that have been
previously identified as SCFA producers and their associations
with healthy food choices. Finally, we performed a pathway
analysis through Kyoto Encyclopedia of Genes and Genomes
orthology (KO) groups to uncover the functional potential of the
microbiota and how it associates with healthy food choices.

Methods
We used the Strengthening the Reporting of Observational

Studies in Epidemiology Statement (STROBE) cross-sectional
reporting guidelines when writing this report (26).

Study population

The National FINRISK Study originated from the North-
Karelia project initiated in 1972 (33). It has been conducted by
the Finnish Institute for Health and Welfare every 5 years until
2012 to assess risk factors for noncommunicable diseases, health
behavior, and their changes in adult Finns.

The FINRISK 2002 cohort consists of 8738 individuals aged
25–74 years old who participated in the baseline examination.
The exclusion criteria for this study were use of systemic
antimicrobial medication within 4 months prior to the baseline
examination (n = 1193); pregnancy at the time of baseline
investigation (n = 47); incomplete records of nutritional,
sociodemographic, or lifestyle information (n = 1549); or no
available stool sample (n = 1019). The final study sample
consisted of 4930 individuals (Supplemental Figure 1).

FINRISK 2002 was approved by the Ethical Committee on
Epidemiology and Public Health of the Helsinki and Uusimaa
Hospital District (decision number 87/2001), and the participants
gave informed consent. The study was conducted according to the
World Medical Association’s Declaration of Helsinki on ethical
principles (34).

Covariates

FINRISK 2002 included a questionnaire and a health ex-
amination. Questions on sociodemographic and lifestyle factors
were answered prior to the clinical examination by filling
out a questionnaire enclosed with the invitation letter. These
questionnaires were brought to the health examination and
inspected by trained nurses.

Based on prior literature, we selected 5 covariates: age,
sex, BMI, smoking status, and usage of microbiota-altering
medications. Stages of covariate selection, from demographic
only to fuller models, have been listed in Supplemental Table
1. BMI was calculated as weight (kg) divided by height (m)
squared. Weight and height were measured at the clinic according
to standard international protocols with light clothing and without
shoes (35). The participants were divided into 2 groups by
smoking status: current smokers and nonsmokers who had not
smoked in the last 6 months. In addition to the excluded systemic
antimicrobial medicines, a variety of other drugs can potentially
affect the microbiota. To account for this, we created a dummy
variable where participants were divided into users and nonusers.
A listing of the drugs and the systemic antimicrobial medications
is presented in Supplemental Methods. Information on the
usage of these drugs was acquired from a register on prescribed
medicine purchases maintained by the Social Insurance Institu-
tion of Finland (36). A participant was flagged as a user if they had
a registered purchase within 3 months prior to the study. Over-
the-counter medicines are not included in the register and are
therefore missing from the data. The records were linked with
the study data using unique national personal identity numbers
given to each permanent resident in Finland.

Dietary information

Habitual diet was assessed using a food propensity question-
naire (FPQ) that contained 42 food items with 6 choices of
consumption frequency. The choices were interpreted with the
assumptions that a month consists of 30 days, a week consists of
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TABLE 1 Summary of dietary components, their food items, and score ranges

Components Score range1 Constituting food items

Breads 1–120 Rye and crisp bread2

Graham and multi-grain bread2

Vegetables 1.5–150 Fresh vegetables and root vegetables2

Cooked vegetables and legumes3

Vegetable dishes3

Fruits 0.5–60 Fruits2

Berries 0.5–45 Fresh and frozen berries3

Juices 0.5–45 Fruit and berry juices3

Fish 0.5–45 Fish, fish products, and fish dishes3

Poultry 0.5–45 Poultry, poultry products, and poultry dishes3

Low-fat cheeses 0.5–60 Low-fat cheeses2

Dressings and oils 0.5–45 Salad dressings and oils3

Nuts and seeds 1–90 Nuts3

Seeds3

Red and processed meat products 2–150 Meat dishes4

Sausages4

Cold cuts3

Charcuterie3

1Each component’s possible range is displayed as times per month.
2The scores for individual food items range from 0.5 to 60 points.
3The scores for individual food items range from 0.5 to 45 points.
4The scores for individual food items range from 0.5 to 30 points.

7 days, and a month consists of 4.3 weeks (30/7). Answers were
converted to times-per-month values as follows: an answer of 1
(less than once a month) was converted to 0.5 times per month; 2
(once or twice a month) to 1.5 times per month; 3 (once a week)
to 4.3 times per month; 4 (couple of times a week) to 8.6 times
per month (interpreted as twice a week); 5 (almost every day) to
21.5 times per month (interpreted as 5 times a week); and finally
6 (once a day or more often) to 30, 45, or 60 times per month
using the following principle. Food items that are rarely eaten
more than once a day, such as sausages, meat dishes, and so forth,
were given the value of 30 times per month. Food items that are
often eaten multiple times a day, such as fresh vegetables, breads,
and so forth, were given a value of 60 times per month. Food
items that fall in between these 2 groups were given 45 points.
The scoring of responses to consumption of red and processed
meat products was done in an inverse manner (i.e., a response
of “almost every day” would convert to 0.5, etc.) to account for
their less favorable role compared to the other components in the
score. Scoring for food items used in the final analyses is shown
in Table 1.

A healthy food choices (HFC) score was formed by choosing
and summing FPQ responses to food items that are recommended
in the Nordic Nutrition Recommendations dietary guidelines as
part of a healthy diet (19). Food items chosen to be components of
the score were fiber-rich breads; vegetables (including beans and
lentils); fruits; berries; fresh, nonsweetened berry and fruit juices;
fish; poultry; low-fat cheeses; salad dressings and oils; and nuts
and seeds. The HFC score effectively acts as an indicator for an
omnivorous Nordic diet rich in plants, fiber, and PUFAs.

Based on the consumption of the constituent components, the
HFC score ranges from 9–745, where a higher score represents a
greater number of healthy food choices per month. The score was
calculated by summing the transformed monthly consumption
scores for all chosen components. A summary of the HFC score’s
structure and a listing of each components’ respective constituent

food items are displayed in Table 1. Additionally, a combined
fiber sources score was created to combine all food components
that are sources of dietary fiber into 1 summary variable. This
score was a simple sum of the consumption frequencies of all
related food items: fiber-rich breads, vegetables, fruits, berries,
and fresh fruit and berry juices (these include products such as
berry nectars, fruit juices that include the pulp, etc.).

Stool samples

All participants were asked to donate a stool sample. Those
willing to do so were given instructions and equipment to
gather a stool sample at home, then send it overnight between
Monday and Thursday to the study personnel using prepaid postal
parcels under typical Finnish winter conditions. The samples
were collected into 50 ml Falcon tubes without a stabilizing
solution. Sample tubes were preidentified with the participants’
respective study IDs and frozen immediately upon reception. The
samples were stored unthawed at −20◦C until sequencing.

Metagenomic data were based on whole-genome, untargeted
shallow shotgun sequencing, analyzed at the University of Cali-
fornia, San Diego, California (37). The samples were normalized
to 5-ng inputs using an Echo 550 acoustic liquid handling robot
and were sequenced using Illumina Hi-Seq 4000 (Illumina Inc.,
San Diego, CA, USA) for paired-end 150-bp reads. The average
read count was approximately 900,000 reads per sample. A more
detailed description of protocols for DNA extraction and library
preparation has been reported elsewhere (38). Classification
and assigning of raw sequence data into microbial taxa were
performed using SHallow shOtGUN profiler (SHOGUN) v1.0.5
(Knights Lab, University of Minnesota, Minneapolis, MN, USA)
(39) against a database of complete archaeal, bacterial, and
viral genomes in NCBI Reference Sequence Database (NCBI
RefSeq) v82 [National Center for Biotechnology Information
(NCBI), U.S. National Library of Medicine, Bethesda, MD,
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USA; May 8, 2017]. The classified microbial data were used in
the compositional data form. Batch variables were not accounted
for in the analyses.

In per taxa analyses, the taxa were filtered down to a core
microbiota that included any genus with a minimum abundance
of 0.1% and a prevalence of at least 1% across all samples,
similar to the filtering thresholds used by Salosensaari et al.
(38). Bacterial species with the potential to produce SCFAs were
identified based on a review of the current literature (40–42).
Species that were classified and present in the samples were
selected for per-taxa analyses on the species level. These species
were Akkermansia muciniphila, Faecalibacterium prausnitzii,
and Roseburia intestinalis.

Statistical methods

Alpha diversity is a measure that quantifies intra-individual
diversity of the microbiota and acts as a rough indicator of the
overall species richness of a single individual. Beta diversity
quantifies inter-individual diversity and gives information on the
differences of microbiotas between individuals, thus acting as
a measure of composition. In this study, we quantified alpha
diversity using the Shannon index and beta diversity using Bray-
Curtis dissimilarity scores (43, 44). All analyses were adjusted
for age, sex, BMI, smoking, and use of potentially microbiota-
altering medication. Interaction effects of the HFC score with sex
and age were not statistically significant, and thus were excluded
from the final analyses.

We assessed the associations between alpha diversity and
diet using linear regression. Principal coordinate analysis (PCA),
permutational multivariate analysis of variance (PERMANOVA),
distance-based redundancy analysis (dbRDA) and analysis of
similarities (ANOSIM) were used to analyze beta diversity (45–
47). PCA, in conjunction with ANOSIM, was used to assess
clustering of samples; PERMANOVA was used to assess the
amount of variance each variable can explain in the distances
between the samples; and finally dbRDA was used to discover
the direction that each of those variables take for that variance.
A dbRDA is distinct from a PCA in that it is a constrained
ordination method that displays and explains variation in a set
of response variables that are constrained by a set of predictor
variables, effectively linking multivariate regression analysis and
PCA (46). The constrained variance in a dbRDA is the portion
of total variance in the set of response variables (the Bray-Curtis
distances of the samples in this case) that can be explained by the
provided set of predictor variables.

PERMANOVA, dbRDA, and ANOSIM were all run with
999 permutations. For per taxa analyses, an analysis tool called
MaAsLin (multivariate association with linear models) was used
(48). We used the tool to run a series of multivariate linear
regression models with adjustments made for covariates and
multiple comparisons. The relative abundances of the taxa were
arcsine square root–transformed prior to analysis. In the models,
the abundances were used as dependent variables and dietary
elements as independent variables. Each MaAsLin run produced
results for associations between all taxa and the chosen dietary
element. A pathway analysis was done by associating KO
groups with the HFC score in linear regression models. The
relative abundances of KO groups for each sample were gathered
from the strain-level outputs of SHOGUN. KO group data

were standardized with a log10 transformation prior to analysis,
and only statistically significant associations were selected and
visualized using FuncTree (Yamada Lab, Tokyo Institute of
Technology, Tokyo, Japan) (49). Separate plots were made for
estimates that had positive and negative associations.

Alpha diversity, beta diversity, and per taxa analyses were
all done for the HFC score as a whole, as well as for its
individual components. A pathway analysis was done only for
the HFC score. The estimates given by regression models for
alpha diversity and for the per taxa analyses were standardized per
1 SD. The level of statistical significance for all analyses except
the per taxa analyses was set at a 2-sided P value < 0.05. For
per taxa analyses, a Benjamini-Hochberg false discovery rate–
corrected Q-value < 0.05 was used for the P values obtained from
the linear models assessing the taxa-diet associations.

The primary outcome variables for this study were associations
of the HFC score with 1) the Shannon alpha diversity measure; 2)
Bray-Curtis dissimilarity scores; 3) specific taxa abundances; and
4) KO groups. Secondary outcome variables were associations
of the dietary components of the HFC score with the same listed
variables, excluding KO groups.

All statistical analyses were performed using R version 3.6.1
(R Core Team, Vienna, Austria) (50). The phyloseq, microbiome,
and vegan packages were central to the statistical analyses
(51–53).

Results

Descriptive statistics

Detailed characteristics for the study sample are displayed
in Table 2. The average age of the participants was 48 years,
with a slight overrepresentation of women (53%). The average
BMI of the participants was 26.9 kg/m2; 37.1% used potentially
microbiota-altering medication; and 23.7% were current smok-
ers. Women tended to have a higher HFC score compared to men
(217.8 ± 90.6/mo compared with 176.9 ± 80.4/mo, respectively).
Sex differences were especially notable for intakes of vegetables
(15.2/mo higher for women), fruits (10.1/mo higher for women),
red and processed meat products (8.6/mo higher for men), low-fat
cheeses (7.4/mo higher for women), and berries (3.9/mo higher
for women).

To check the representativeness of our population sample, we
compared the characteristics of those individuals who did not
donate a stool sample (n = 1019) to those included in this study
(n = 4930). The groups differed significantly in all compared
variables: age, sex, BMI, smoking, medication usage, and the
HFC score. The group that did not donate a sample was younger,
was comprised of more men, had slightly lower BMI on average,
was comprised of more smokers and fewer medication users, and
the individuals had a lower HFC score on average (Supplemental
Table 2).

Microbial diversity

The study sample had an average Shannon alpha diversity
measure of 3.44 and an SD of 0.41. The measure was statistically
significant in a multiple linear regression model with the
Shannon alpha diversity index as the dependent variable and
the HFC score as the independent variable. Baseline data
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TABLE 2 Descriptive characteristics of the study sample

Men
(n = 2311)

Women
(n = 2619)

All
(n = 4930)

Variable Mean ± SD Median (IQR) Mean ± SD Median (IQR) Mean ± SD Median (IQR)

Age, y 49 ± 12.8 — 47 ± 12.8 — 48 ± 12.8 —
BMI, kg/m2 27.3 ± 4.1 — 26.5 ± 5.0 — 26.9 ± 4.6 —
Medication users, n 680 (29.4%) — 1151 (43.9%) — 1831 (37.1%) —
Current smokers, n 659 (28.5%) — 510 (19.5%) — 1169 (23.7%) —
HFC score, 1/mo 219.2 ± 91.1 203.6 (116.9) 277.2 ± 105.6 266.3 (151.4) 250.0 ± 103.2 234.9 (144.1)
Breads, 1/mo 64.1 ± 29.6 64.3 (38.5) 65.5 ± 30.4 64.3 (38.5) 64.8 ± 30.0 64.3 (38.5)
Vegetables, 1/mo 33.3 ± 29.8 24.5 (36.7) 48.5 ± 35.2 38.7 (48.6) 41.4 ± 33.7 31.1 (50.1)
Fruits, 1/mo 20.2 ± 20.1 8.6 (17.2) 30.3 ± 23.0 21.5 (51.4) 25.6 ± 22.3 21.5 (51.4)
Berries, 1/mo 7.9 ± 11.0 4.3 (7.1) 11.8 ± 13.4 8.6 (20.0) 10.0 ± 12.5 4.3 (7.1)
Fruit and berry juices, 1/mo 15.7 ± 15.5 8.6 (20.0) 16.4 ± 15.8 8.6 (20.0) 16.1 ± 15.7 8.6 (20.0)
Fish, 1/mo 5.7 ± 5.6 4.3 (7.1) 5.5 ± 4.8 4.3 (7.1) 5.6 ± 5.2 4.3 (7.1)
Red and processed meat products, 1/mo 40.0 ± 23.3 35.9 (32.1) 31.4 ± 22.0 27.8 (28.6) 35.4 ± 23.0 32.1 (31.6)
Poultry, 1/mo 4.6 ± 4.5 4.3 (7.1) 5.4 ± 4.8 4.3 (7.1) 5.0 ± 4.7, 4.3 (7.1)
Low-fat cheeses, 1/mo 13.6 ± 19.2 4.3 (21.0) 21.0 ± 23.0 8.6 (20.0) 17.6 ± 21.6 8.6 (20.0)
Dressings and oils, 1/mo 6.6 ± 10.0 1.5 (8.1) 7.5 ± 10.8 1.5 (8.1) 7.1 ± 10.5 1.5 (8.1)
Nuts and seeds, 1/mo 2.4 ± 6.0 1.0 (0) 3.3 ± 7.7 1.0 (1.0) 2.8 ± 7.0 1.0 (1.0)

Medication users are individuals who used potentially microbiota-altering medication (listed in Supplemental Methods) within 3 months prior to the examination.
Current smokers are individuals who smoked within 6 months prior to the examination. Values are means ± 1 SD (excluding medication users and current smokers),
followed by the median, with the IQR in parenthesis for nutritional variables. Units for the dietary components are the respective consumption frequencies for each item
as times per month. The HFC score was calculated by first transforming original FPQ responses to times-per-month values and then summing these values for food
items that are regarded as being part of a healthy diet. The times-per-month values for red and processed meat products were inverted prior to adding them to the HFC
score, to account for their negative roles in the diet. Abbreviations: FPQ, food propensity questionnaire; HFC, healthy food choices.

on age, sex, BMI, smoking, and use of microbiota-altering
medications were used as covariates. Alpha diversity increased
approximately 0.044 points per 1 SD change in the HFC score
(P = 2.21 × 10−3; Figure 1; Table 3). Covariate effects per
1 SD (β/SD) for predicted alpha diversity were 0.054 (age;
P = 1.42 × 10−4), −0.039 (sex; coded as females = 0, males = 1;
P = 6.29 × 10−3), −0.082 (BMI; P = 7.60 × 10−9), −0.049
(smoking; P = 6.03 × 10−4), and −0.039 (medication use;
P = 5.71 × 10−3). For a more comprehensive listing of results,
along with CIs, see Supplemental Table 3.

The score for combined fiber sources had a positive association
with alpha diversity (β/SD, 0.049; P = 5.31 × 10−4). The
strongest positive associations between alpha diversity and HFC
score components were observed for fiber-rich breads, followed
by poultry, fruits, low-fat cheeses, and berries (Table 3). No
statistically significant negative associations were observed for
any score components.

Microbial composition

Beta diversity had statistically significant associations with
the HFC score (PERMANOVA R2 = 0.12; P ≤ 1.00 × 10−3;
Figure 1) when controlling for age, sex, BMI, smoking, and
medication use. Another analysis where all the components of
the HFC score were included together returned an R2 of 0.60
(P ≤ 1.00 × 10−3). HFC score components had the following
statistically significant associations with microbiota composition
in analyses where they were the sole dietary variable:
vegetables (R2 = 0.10; P ≤ 1.00 × 10−3), berries (R2 = 0.098;
P ≤ 1.00 × 10−3), fruits (R2 = 0.095; P ≤ 1.00 × 10−3), fiber-
rich breads (R2 = 0.083; P ≤ 1.00 × 10−3), dressings and oils
(R2 = 0.072; P ≤ 1.00 × 10−3), low-fat cheeses (R2 = 0.066;
P = 2.00 × 10−3), poultry (R2 = 0.062; P ≤ 1.00 × 10−3),
lower use of red and processed meat products (R2 = 0.0053;
P = 4.00 × 10−3), fresh fruit and berry juices (R2 = 0.036;

P = 2.30 × 10−2), and fish (R2 = 0.034; P = 2.80 × 10−2). Nuts
and seeds had no statistically significant associations. The score
for combined fiber sources had a slightly stronger association
(R2 = 0.12; P ≤ 1.00 × 10−3) with beta diversity than the HFC
score.

A dbRDA was performed to determine the directions of these
associations. The analysis included all individual components of
the HFC score that had a statistically significant association with
beta diversity, as well as all the previously mentioned covariates.
The result was significant (P ≤ 1.00 × 10−3), with 1.47% of
total variance explained (Supplemental Table 4). The first 2
axes accounted for 66% of the constrained variance and 0.92%
of the total variance. A biplot of the ordination on the first 2
axes is displayed in Figure 2. Qualitative interpretation of the
plot revealed that the vector directions on the second axis divide
the variables into 2 distinct groups. All components of the HFC
score, except for fresh, nonsweetened berry and fruit juices,
along with use of potentially microbiota-altering medication and
age, pointed downwards and were associated with the second axis
in an opposite manner to the components of BMI, male sex, and
smoking.

A PCA was performed using the Bray-Curtis dissimilar-
ity score. The first 2 principal coordinates are displayed in
Figure 3 with samples of the 2 extreme deciles of the HFC score.
No clear clustering of microbiotas that would be explained by
the HFC score was detectable by visual inspection of the plot.
However, a statistically significant ANOSIM test (R = 0.0288;
P ≤ 1.00 × 10−3) revealed that individuals in the 2 extreme
deciles of the HFC score harbored compositionally distinct
microbiotas.

Per taxa analysis

The stool samples contained a total of 5748 species in 2019
genera before filtering to the core microbiota. A visualization of
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Red meat products (low use)

Combined fiber sources score

FIGURE 1 Alpha and beta diversity results (n = 4930). The HFC score is a summary variable that consists of the summed monthly consumption frequencies
of the individual food components listed beneath it. Red and processed meat products have inverse grading compared to those of other components to account
for their negative impact on diet quality; thus, a higher score implies low use of such products. Combined fiber sources score is a summary variable that includes
only food components that are sources of dietary fiber. Alpha diversity (Shannon index; mean, 3.44; SD, 0.41) on the left was analyzed using linear regression
models and was standardized per SD. The shading of the boxes on the left correspond to the strength of the association. PERMANOVA results (R2) for beta
diversity (Bray-Curtis dissimilarity) are on the right. Both analyses were adjusted for age, sex, BMI, and use of potentially microbiota-altering medication
within 3 months prior to study. ∗Statistically significant results (P value < 0.05), with the P value labeled on the right. Abbreviations: HFC, healthy food
choices; PERMANOVA, permutational multivariate analysis of variance.

prevalences of the core microbiota at the genus level is shown
in Supplemental Figure 2. The core microbiota consisted of
bacteria, bacterial plasmids, archaea, and viruses in 91 genera,
of which 75 had at least 1 statistically significant association
with a dietary component or score. Of these, 41 genera
had statistically significant associations with the HFC score
(Figure 4; for a comprehensive view, see Supplemental Figure
3 and Supplemental Table 5).

The top 10 assigned taxa on the genus level that were associ-
ated with the HFC score were Eubacterium plasmids (β/SD, 0.15;

q = 4.37 × 10−23), Acetivibrio (β/SD, 0.097; q = 8.15 × 10−11),
Eubacterium (β/SD, 0.095; q = 2.43 × 10−10), Butyrivibrio
(β/SD, 0.085; q = 1.28 × 10−8), Johnsonella (β/SD, 0.082;
q = 4.65 × 10−8), Megamonas (β/SD, 0.075; q = 2.68 × 10−6),
Anaerostipes (β/SD, 0.074; q = 8.27 × 10−7), Collinsella
(β/SD, −0.071; q = 2.18 × 10−6), Enterococcus (β/SD,
0.065; q = 1.31 × 10−5), and Solobacterium (β/SD, 0.061;
q = 5.35 × 10−5). All components of the HFC score had
statistically significant independent associations with at least
1 core genus (Supplemental Table 5).

TABLE 3 Results of linear regression models predicting Shannon alpha diversity measure

Variable β/SD SE P value

HFC score 0.044 6.18 × 10−5 2.21 × 10−3

Combined fiber sources score 0.049 8.75 × 10−5 5.31 × 10−4

Fiber-rich breads 0.043 1.97 × 10−4 2.70 × 10−3

Poultry 0.036 1.26 × 10−3 1.28 × 10−2

Fruits 0.035 2.73 × 10−4 1.44 × 10−2

Low-fat cheeses 0.035 2.75 × 10−4 1.51 × 10−2

Berries 0.033 4.98 × 10−4 2.12 × 10−2

Vegetables 0.026 1.80 × 10−4 6.38 × 10−2

Fruit and berry juices 0.0025 3.72 × 10−4 8.59 × 10−1

Nuts and seeds 0.020 8.39 × 10−4 1.64 × 10−1

Fish 0.010 1.15 × 10−3 4.65 × 10−1

Red and processed meat products (low use) − 0.0051 1.50 × 10−4 7.21 × 10−1

Dressings and oils − 0.0062 5.57 × 10−4 6.66 × 10−1

Each row represents the results of one regression model, sorted by standardized effect strength with the HFC
score on the first row and combined fiber sources score on the second row. The scores’ individual components are
listed starting from row three. Covariates in each model include age, sex, BMI, smoking, and potentially
microbiota-altering medication. Interaction effects were nonsignificant and thus were omitted from the analyses.
Abbreviations: HFC, healthy food choices.
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FIGURE 2 Distance-based redundancy analysis results for the HFC score components, explaining the variance in beta diversity results (n = 4930). The
analysis explains variation in the distances between Bray-Curtis dissimilarity scores of the samples by constraining their ordination with a set of explanatory
variables (unlike in a principal coordinate analysis, where the ordination is unconstrained). Directions of the vectors display directions of associations for the
covariates and components of the HFC score with Bray-Curtis dissimilarity scores on the first 2 axes of the ordination. The lengths of the vectors correspond
to the strength of correlation. The further away an item is from the origin, the greater its contribution to variance. The closer 2 items are to each other, the more
similar their effect on variance. The amount of constrained variance (i.e., the percentage of variance explainable by the current set of explanatory variables)
explained by axes RDA1 and RDA2 is displayed in parenthesis on the respective axis next to the axis label. Abbreviations: HFC, healthy food choices; RDA,
redundancy analysis.

In a species-level analyses, all of the selected species (see
“Stool samples” above) had statistically significant associations
with the HFC score: Faecalibacterium prausnitzii (β/SD, 0.050;
q = 5.34 × 10−4), Akkermansia muciniphila (β/SD, 0.037;
q = 1.17 × 10−2), and Roseburia intestinalis (β/SD, 0.032;
q = 2.29 × 10−2).

Pathway analysis

The samples contained 5968 KO groups in total. Of these,
788 KO groups had a statistically significant association with
the HFC score. Positive associations were observed with 657 KO
groups and negative associations were observed with 131 groups
(Supplemental Table 6).

Most prominent positive associations were observed in
the functional category of genetic information processing, in
processes such as transcription, translation, protein folding,
sorting and degradation, and DNA replication and repair
(Figure 5). Enrichment of the SCFA metabolism was observed
as well. Statistically significant associations were observed for
KO groups involved in both butyrate and propionate metabolisms

(Supplemental Table 6). Other notable statistically significant
associations were observed with KO groups involved in the
biosynthesis of N-glycan and vitamins, such as pantothenate and
riboflavin, as well as adipocytokine signaling and bicarbonate
reclamation functions.

The most prominent negative associations were observed
in pathways for proteasomes, fatty acid biosynthesis, the
sulfur relay system, taurine, and the hypotaurine metabolism
(Figure 6). Various pathways involved in the metabolism of
vitamins, such as thiamine, folate, nicotinate, and nicotinamide,
were also observed to be negatively associated with the HFC
score. It is also noteworthy that there was an inverse association
with the KO group cluster of biological processes in infectious
diseases; upon closer inspection, this was due to the KO group for
the enzyme oligopeptidase B, specific to Escherichia coli (54).

Discussion
Our study used a whole-diet approach to assess associations

between the human gut microbiota and healthy food choices
in a large, population-based study. It offers new perspectives
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612 Koponen et al.

FIGURE 3 Principal coordinate analysis plot depicting the ordination of Bray-Curtis dissimilarity scores of the individuals in the first and last deciles
(n = 986) of the HFC score on the first 2 principal coordinates. The closer 2 points are, the more similar their microbiotas are. Abbreviations: HFC, healthy
food choices; PCo, principal coordinate analysis.

to findings of smaller studies, presents new insights into how
healthy food items are associated with composition of the
microbiota, and presents novel looks into the functional potential
of the microbiota.

The HFC summary score we used was a significant predictor
for the diversity and composition of the gut microbiota, although
the associations were fairly weak. Healthy food choices were
associated with a richer and compositionally distinct microbiota.

FIGURE 4 MaAsLin analysis results for the HFC score, combined fiber sources score, and their constituting elements, filtered by core genera and sorted
by effect size (n = 4930). Microbial abundances were arcsine square root–transformed, and the analyses were adjusted for age, sex, BMI, and use of potentially
microbiota-altering medication within 3 months prior to study. Each square represents the effect strength per SD (β/SD) of a linear regression model, run
between the respective dietary component or score and bacterial genus. Significance threshold was a false discovery rate–corrected Q-value < 0.05. A dark
gray square indicates a nonsignificant result. Abbreviations: HFC, healthy food choices; MaAsLin, multivariate association with linear models.
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Associations of healthy food with gut microbiota 613

FIGURE 5 Positive associations of functional pathways in the gut microbiota with the HFC score (n = 4930). The layers from darker to lighter are biological
categories (very dark gray), biological processes (dark gray), pathways (medium gray), and modules (light gray). Node size is determined by the average value
of all the estimates of statistically significant (P value < 0.05) KO groups assignable to that node. Estimates were calculated with linear regression models,
with each KO group being the dependent variable. The HFC score, along with age, sex, BMI, smoking, and use of potentially microbiota-altering medication
within 3 months prior to the study, were used as independent variables. For clarity, node labels for only the 3 highest layers were included. Displayed labels
were filtered to only include nodes which had a size greater than 150. Abbreviations: FoxO, Forkhead box protein class O; HFC, healthy food choices, KO,
Kyoto Encyclopedia of Genes and Genomes orthology; PI3K-Akt, Phosphoinositide 3-kinase - Protein kinase B signalling pathway.

Other comparable studies made in Western countries have found
similar but also divergent results. A recent study found that high
adherence to a healthy Mediterranean diet rich in plants was
associated with higher levels of fecal SCFAs and lower levels
of urinary trimethylamine N-oxide in 153 Italians (27). Similar
to our findings, that study did not observe any clear clustering
of the microbiotas based on diet, but instead discovered a
gradual shift in composition. However, no statistically significant
associations of alpha or beta diversity measures with diet
were detected. Conversely, another cross-sectional study of 101
Italian individuals comparing omnivores with individuals eating
a vegetarian or vegan diet found that vegetarians harbored
microbiotas that were richer in alpha diversity compared to
omnivores (31). Microbiota composition between the 3 groups
was similar, which was hypothesized to be due to similar
nutrient compositions of the diets. A third study, looking at diet-
microbiota associations by comparing a Western and a prudent
diet pattern in 517 elderly, community-dwelling men, found
no connection between alpha diversity and the diet, but did
note a significant association with beta diversity (32). As was
demonstrated in our study, the associations between diversity and
diet are very modest, and discrepancies in past results might be

due to small sample sizes and/or study samples that were not
representative of the whole population.

Our and others’ results indicate that dietary fiber is among the
most significant dietary influencers of the gut microbiota (55).
Associations have been observed with genera that include species
with fiber-degrading and/or SCFA-producing capabilities such
as Eubacterium, Butyrivibrio, Ruminococcus, Faecalibacterium,
and Roseburia (40–42, 56). Faecalibacterium was positively
associated with a prudent diet pattern in the aforementioned
study in elderly men, while Eubacterium and Ruminococcus were
associated with a Western diet pattern (32). It is important to
note, however, that this particular study was conducted in the
United States, while ours included European participants, thus
making direct comparisons more difficult due to geographical
differences in the microbial compositions of the communities
(57). Furthermore, the levels of most commonly known SCFA-
producing species, Faecalibacterium prausnitzii, Akkermansia
muciniphila, and Roseburia intestinalis, were all significantly
elevated in individuals with a higher HFC score in our study
(40–42). These associations were accompanied by enrichment
of enzymes involved in the SCFA metabolism, as well.
These findings indicate that healthy dietary choices are indeed
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2

1

FIGURE 6 Inverse associations of functional pathways in the gut microbiota with the HFC score (n = 4930). Abbreviations: HFC, healthy food choices.

associated with a human gut microbiota that possesses a greater
potential for SCFA synthesis. Species of the Eubacterium,
Ruminococcus, and Roseburia genera, along with levels of
SCFAs, have been previously identified to be more abundant
in individuals consuming a plant-based diet (58). The study
compared microbiota changes in a crossover setting in young
American volunteers who consumed a plant-based and an animal-
based diet ad libitum for 5 days each. Bacteroides, a bile-
tolerant genus associated with an increased colorectal cancer
risk (59), was conversely enriched in individuals consuming the
animal-based diet. Notably, in our study, Bacteroides had a
negative association with the summary score for combined fiber
sources, which nevertheless disappeared once we looked at
associations on the whole-diet level. The inverse association of
the combined fiber sources score with Bacteroides supports other,
similar findings between fiber intake and a reduced colorectal
cancer risk (60).

The associations between red and processed meat products
and the gut microbiome cannot be ignored either. The fact that
diminished use of red and processed meat products correlated
strongly in the same direction with other healthy components in
our dbRDA indicates that increased usage of red and processed
meat is associated with the microbiota composition in an opposite
manner to that of a healthy diet. This is not surprising given
that low levels of fiber and increased usage of red meat products
have been linked repeatedly with dysbiosis of the microbiota
and colorectal cancer (61). The HFC score is also associated
negatively with enzymes involved in the metabolism of taurine, a
major constituent of bile. This hints at diminished exposure to bile

acids of the gut microbiota in individuals who have a healthier
diet, which is possibly due to diminished use of red and processed
meat products. Secondary bile acids produced by the microbiota
are known contributors to the colorectal cancer risk (62). Notably,
in our study, enzymes for the amino acid metabolism and the
sulfur relay system were also negatively associated with the HFC
score.

A major strength of our study is the large number of
participants, constituting a large, population-based sample.
In addition, the participants in our study were carefully
phenotyped and apparently healthy. Another strength is the
use of whole metagenomic shallow sequencing, which offers
much more robust information taxonomically and functionally
when compared with 16S RNA amplicon sequencing (37).
However, the generalizability of our results is likely jeopardized
by geographical differences in gut microbiota composition. The
taxa-diet responses might be different in different sociocultural,
economical, ethnic, and environmental settings (57). Addi-
tionally, the statistically significant differences between those
who chose not to donate a stool sample and those included
in the study suggest that our participants represent the more
health-conscious part of the population, with healthier diets and
lifestyles than nonparticipants. We want to point out, however,
that our participation rate was high and any bias due to the healthy
participant effect is likely to be small. Nevertheless, there exists a
need to describe these links in different cohorts around the globe.
Also, physical activity and alcohol consumption both have been
noted to influence the gut microbiota, but were not taken into
account in this study (63, 64).
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Another limitation of our study, as in all studies with self-
reported data, is the accuracy of the FPQ responses. Furthermore,
the cross-sectional design of the study limits our ability to
move beyond inferring associations. Additionally, we used a
new diet score that does not encompass all the healthy diet
guidelines presented in the Nordic Nutrition Recommendations,
such as recommendations for salt intake (19). Medication data
was also limited to only prescription drugs. However, as has
been demonstrated, our results are in line with previous findings,
which indicate that the HFC score can effectively quantify dietary
habits. Furthermore, a simple healthy diet score representing a
similar diet was found to be protective from coronary artery
disease in genetically predisposed individuals in 3 prospective
cohorts involving 55,685 individuals (65).

Taxonomic classification using shallow-sequenced
metagenomes is a source of uncertainty. Correct classification
of the microbes relies on the accuracy of the used database,
which still gives varying results at the species level depending on
the database used. Also, while shallow shotgun sequencing
may be superior in capturing taxonomic diversity and
functional characteristics when compared to 16S RNA amplicon
sequencing, it is not as accurate as deep sequencing for capturing
genetic features, which is why interpretation of the functional
results should be done with some caution (66).

In conclusion, we determined that a recommended diet rich
in plants, fiber, and PUFAs is associated with a more diverse
and compositionally distinct individual microbiota in the gut. We
further determined multiple taxa of interest that have associations
with specific components of the diet. Especially noteworthy are
the positive associations of a healthy diet with fiber-degrading
and SCFA-producing species, which were accompanied by
enrichment of enzymes involved in the SCFA metabolism. Thus,
a healthy diet is associated with a greater potential for a SCFA-
producing gut environment. The results of our study support the
balanced plant-rich diet recommended by dieticians around the
world, and warrant further study into more detailed effects of the
diet on the human gut microbiota, especially on the species level,
and its synergy with health and disease.
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