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ABSTRACT
WebAssembly is a new technology that aims at portable compilation
target for various programming languages. The goal is to support
deployment on the web for client and server applications. While the
technology itself is independent from the browser, majority of the
implementations are browser-based, and hence the associated use
cases are limited. In this paper, we study the use of WebAssembly
outside the browser. In particular, we are interested in partitioning
WebAssembly applications into modules and linking them during
execution allowing reductions in memory consumption, binary size,
and compilation and startup time.
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1 INTRODUCTION
The demand for cross-device programming languages has been
constantly increasing. The era of mobile and pervasive computing
has been followed by the the era of ubiquitous computing, meaning
that more and more heterogeneous devices get integrated in our
surroundings, as envisioned in [20]. Furthermore, these devices as
well as facilities that support them online require very different
programming approaches [10, 18].
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During the years, various approaches have been taken for having
a common programming language and a runtime environment that
allows using the language in different contexts. The original write
once, run everywhere promise of Java [5] has recently been followed
by JavaScript [4] (ECMAScript [3]) and its numerous runtime envi-
ronments. Due to their popularity, these solutions have improved
the portability of code, allowing designs like Node.js1 that allow
using JavaScript outside the context of the Web [12]. However,
JavaScript was originally designed for web browser environments
to event-based programming, and thus some of its design decisions
are not well-suited for other environments [11].

A new platform independent format calledWebAssembly (Wasm)
has been recently introduced [6, 13]. It is a portable binary instruc-
tion format for stack-based virtual machines2 with key features that
enable running untrusted programs securely3 while still maintain-
ing fast execution4,5. Wasm already has broad support amongmajor
browsers (Firefox, Chrome, Safari, Edge). The format is designed
with network transfer in mind and is fit for streaming compilation
scenarios. Wasm is designed to be a compilation target, which can
support several languages: C, C++ and Rust can already be com-
piled to Wasm. In the last few years, running Wasm code outside
the browser has started to gain interest among researchers and de-
velopers [21]6,7, which was also manifested in [1]. On the surface,
Wasm is a perfect fit for a cross-platform applications – the virtual
machine required to run applications has a small footprint, and
their performance is near to native.

In this paper we study how Wasm modules can be dynamically
linked outside web browser’s context to createmodular applications.
With this capability, platform specific features could be isolated
into specific modules while generic functionality is implemented in
modules that would be shared across platforms. This decomposing
of monolithic applications into more modular ones allows faster
starting time, if applications can be loaded in pieces. The main ben-
efit of our approach is that it enables building modular and dynamic

1https://nodejs.org/ accessed Sept. 8, 2020.
2https://webassembly.org/docs/portability accessed Sept. 15, 2020
3https://webassembly.org/docs/security accessed Sept. 15, 2020
4https://github.com/wasm3/wasm3/blob/fcad718a29866e5b285a8db288c58f1a72a4616d

/docs/Performance.md accessed Sept. 15, 2020.
5https://medium.com/@torch2424/webassembly-is-fast-a-real-world-

benchmark-of-webassembly-vs-es6-d85a23f8e193 accessed Sept. 15, 2020.
6https://webassembly.org/docs/non-web accessed Sept. 15, 2020.
7https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-

interface accessed Sept. 15, 2020.
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applications that can be extended during execution. Moreover, as a
long-term vision, because the different platforms are running es-
sentially the same Wasm code, it would become possible to migrate
the applications between different computers, thus supporting the
liquid software paradigm [7, 19].

We identify execution time dynamic linking as a missing key
feature of Wasm. Without such facility, a problem of emerges that
applications need to be loaded in full before the first line can be run.
This results in delayed startup time and consequent downgraded
user experience. As a practical solution, we present a system for
loading and linking Wasm modules on the fly, which allows hiding
some of the loading times from the end user. Unlikemost work in the
Wasm context, we seek to to build applications outside web browser.
To this end, we demonstrate and evaluate the approach outside the
web browser environments, and describe how the applications can
be run in resource-constrained devices.

The rest of this paper is structured as follows. In Section 2, we
give background regarding Wasm and its requirements for execu-
tion time dynamic linking. Furthermore, we introduce our envi-
sioned system and motivate why the current related, browser-based
solutions cannot be leveraged outside the web browser. In Section 3,
we present our approach and describe its most important implemen-
tation details. In Section 4, we evaluate the solution. In Section 5, we
discuss about how well our solution fits to its purpose of running
modular Wasm applications outside web browsers. Moreover, we
mention the future work to be expected. Finally, in Section 6, we
summarize this paper.

2 MOTIVATION AND BACKGROUND
WebAssembly was initially designed to be compatible with the
Web [22]. Therefore, Wasm applications can call into and out of
the JavaScript context and access browser functionality through
the same Web APIs accessible from JavaScript. Hence it is possible
to use Wasm for increased performance [6] as well as for other,
more indirect needs, such as code protection via obfuscation [17].
When using Wasm inside the browser, there is a sophisticated, well-
defined API for accessing Wasm functions from JavaScript. At the
core of this API is the JavaScript objectWebAssembly, which can
be used to load and instantiate modules, to allocate memory, and
to handle error situations that may emerge when loading a new
module or when accessing its functions.

For web pages and browser applications, which have already
become overly complex as is [2], embedding Wasm to JavaScript is
an option that does not add much memory related or performance
constraints. However, for applications that run in devices with re-
stricted memory, such embedding uses too much memory. Despite
the increasing computing capacity of chips, it is still expected that
the future networks include memory and performance related chal-
lenges [15] as many devices have limited memory [14]. Moreover,
in the context of IoT systems, computers in general have diverging
performance capabilities, ranging from almost bare metal in sen-
sors to cloud systems where everything is virtualized, sometimes
in several layers [18].

In addition, rapid response times are essential for both user
experience and business reasons. In general, frequent users prefer
response times of less than a second for most tasks, and as response

time decreases, productivity increases [16]. In contrast, for instance
Amazon has found out that every 100ms increase in the page load
time would decrease sales by 1%, while for Google a 500ms increase
in delay of search results display time would reduce revenue by
20% [8].

2.1 WebAssembly and Dynamic Linking
Wasm programs are organized into modules, which are the unit of
deployment, loading, and compilation [6]. Each module can contain
definitions for types, functions, tables, memory areas, and global
variables. These definitions may be imported or exported. When
Wasm modules are instantiated, the host program must provide
all imports required by the module. Essentially, this means that
complete linking takes place as the host program instantiates all
the modules. This results in an application with size and startup
time similar to a monolithic, self-contained application. In many
scenarios, Wasm binaries need to be downloaded over a network
or compiled into native code on the target machine, which will
result in increased start-up time. For example, downloading a 16MB
application on a 1MB/s network connection will take roughly 16
seconds, which is a significant waiting time. However, Wasm also
offers facilities for establishing more advanced concepts, such as
streaming compilation and execution time dynamic linking that
can be used to parallelize and distribute the start-up process to
minimize the delay at start-up.

A Wasm module can import and export definitions from and
to the host environment. The definitions include functions, tables,
memory areas. Functions can be invoked to perform actions, and
function references can be stored in tables, thus emulating function
pointers. Function references in a table can be changed during
execution. They can have different signatures, which are validated
on each function call to ensure integrity. Depending on the needs,
function tables can bemodified or changed in size even from outside
of amodule instance.Wasmmemory is of linear layout, and it can be
shared between multiple module instances [9]. Similarly to tables,
the size of an allocated memory area size can be modified. Tables
and memory areas can be shared by multiple module instances,
and the host can provide definitions of its own as well as module
exports as imports to module instances.

To enable execution time dynamic linking, one must be able
to share a table through which function pointers can be shared
across multiple module instances. Similarly to sharing a table, a
memory is also a necessary part of a scheme which enables memory
access without any overhead. When two modules are linked, a
module instance requiring another module provides its memory
to the required module through an export. The same happens to
the module instance’s table. References to the required module’s
functions can then be stored into the table allowing them to be
called by any module’s instance having access to it.

2.2 Envisioned system
We envision a system, illustrated in Figure 1, which would allow
an initial base module instance to retrieve additional modules from
online repositories on-demand and dynamically link them during
execution. The base module instance could even use a standard
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interface to detect the characteristics provided by its environment,
and dynamically load functions to adapt to this environment.

Currently, Wasm outside of the browser does not offer any exe-
cution time dynamic linking capabilities 8. Therefore, all parts of
an application must be present to run it, which can introduce long
loading and startup times, directly related by the binary size of a
module.

To avoid this restriction, we propose a execution time dynamic
linking solution, where the execution of an application can start
even if all the modules are not present. This would result in faster
startup times, whereas additional features could be loaded on an on-
demand basis. In addition to faster startup time, the approach also
has benefits related to memory usage. As the monolithic application
would be split into separate modules, an application could only load
the necessary functionality at the time when it is needed saving
the memory. The memory could also be monitored and unused
module instances could be released whenever there is a need to
load additional functionality. This is particularly important for
embedded devices where resources are constrained.

3 DYNAMIC LINKING OUTSIDE THE
BROWSER

Following the previously described concepts, we decided to use exe-
cution time shared-everything linking approach depicted in Figure
2. The approach enables us to share functionality between module
instances by populating a global table of function references. The
table is accessible to any module instance that is linked in the exe-
cutable, and it allows cross-module instance function calls through
the references. The module instances also share a memory area,
which means that they can access each other’s allocated memory
directly.

Inspired by Linux, in our design, execution time dynamic linking
is handled with three functions, dlopen, dlsym, and dlerror. The
dlopen function is used to load a shared library, dlsym returns the
index where a symbol is placed in the table, and dlerror allows fetch-
ing error messages. In addition, the implementation defines three
global objects. INSTANCES stores a vector of all module instances.
LINKER is a manager for imports and exports of module instances
that must be available throughout the lifetime of a program as it
needs to be accessed by dlopen and dlsym functions at various points
of the program’s lifetime. The third object, DLERROR, stores the
information of an error buffer where error messages from dlopen
or dlsym are written. Both dlopen and dlsym, return zero values in
case of an error.

3.1 Implementation
The implementation consists of a host program, which uses the
Wasmtime9 runtime to run the Wasm binaries and interacts with
the runtime to provide dynamic linking capabilities. Wasmtime
provides a high-level API and useful features, such as utilities for
managing module instance imports and exports. For our use a key
structure is Store10, where all created instances and items, such as

8https://github.com/bytecodealliance/wasmtime/issues/1934
9https://github.com/bytecodealliance/wasmtime accessed Sept. 8, 2020.
10https://docs.rs/wasmtime/0.19.0/wasmtime/struct.Store.html accessed Sept. 8,

2020

functions, globals and tables, are attached. The items of Store are
freed only once there are no references to the store or to any of
its items. Another important structure is Linker11, a name-based
resolver where names are dynamically defined and later used to
instantiate a module. A method of a Linker used to instantiate a
module will automatically select the required imports, or, if this
cannot be completed, return an error.

As a part of the process of dynamically loading a module, the
details of the module’s memory and table size requirements must
be acquired. In our implementation we use Emscripten12, an open
source compiler toolchain for compiling C, C++, or other LLVM
based code to WebAssembly, to compile our modules [23]. The
rationale is simple – currently only Emscripten compiled modules
can produce dynamically linkable modules13,14. The generated
modules include a "dylink" section which contains the module’s
required memory size, memory alignment, table size, and table
alignment. Figure 1 shows the presence of the dylink section in a
shared module compiled with Emscripten.

The host program begins by creating new Store and Linker in-
stances. The Linker is then populated with references to the host
defined functions (dlopen, dlsym, and dlerror). The main module’s
Wasm binary, which is the starting point of an application, is then
loaded into memory and compiled into a module. The module’s
imports are inspected, and, if required, a table and memory is cre-
ated by the host, and references to them are stored into the Linker
instance. The Linker instance is then used to instantiate the module
automatically resolving required imports. After the module is fully
instantiated, its exports are stored to the Linker data structure under
a module’s name. Error handling is then initialized by creating a
buffer to store error messages with the alloc function. The position
and size of the buffer and a reference to the instance’s memory are
stored for later use. The Linker is also stored to a global variable
for later access. Finally, the main function calls the main instance’s
entry function, thus starting the execution.

3.1.1 dlopen. To load a module, the dlopen function is called. The
function accepts one parameter, the name of the desired library
to be opened. The function’s call sequence is depicted in Figure 3.
When called from an instance, the function retrieves memory from
a global instance of a linker and retrieves the name of the library
supplied as an argument to dlopen by accessing the memory. After
acquiring the name of the desired module, dlopen searches if an
instance already exists in the global instance vector defined in the
host. If an instance is found, the index of the instance in the vector
is returned as it is the identifier of an instance. If an instance was
not found, it is assumed that a file corresponding to that particular
Wasm module’s instance is placed in the location relative to the
executable. The file is searched for by concatenating the module’s
name with the Wasm file extension. If the file of a module is found,
the file is opened, read and compiled into a module, which then
has to be linked with the other module instances. Otherwise, the
linking process raises an error.

11https://docs.rs/wasmtime/0.19.0/wasmtime/struct.Linker.html accessed Sept. 8,
2020

12https://emscripten.org/
13https://github.com/emscripten-core/emscripten/issues/11954 accessed Sept. 8,

2020
14https://github.com/rust-lang/rust/issues/60231 accessed Sept. 8, 2020.
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Figure 1: Execution of a modular program where modules are loaded and linked during the execution.

Wasm module Wasm module

Global Memory

1. Allocate memory 3. Access data directly

2. Call another module's function
through the table

The blue boxes with dashed borders are allocated memory.
The numbers indicate the order of execution.

Global table

0xf

Figure 2: Memory and table usage in cross-module instance
call of shared-everything dynamic linking approach.

Listing 1: Disassembly of a module with the dylink section.
1 Custom s t a r t =0 x0000000a end=0 x00000016 ( s i z e =0 x0000000c ) " d y l i n k "
2 Type s t a r t =0 x00000018 end=0 x00000029 ( s i z e =0 x00000011 ) count : 4
3 Import s t a r t =0 x0000002c end=0 x000000b1 ( s i z e =0 x00000085 ) count : 7
4 Func t i on s t a r t =0 x000000b3 end=0 x000000b8 ( s i z e =0 x00000005 ) count : 4
5 Globa l s t a r t =0 x000000ba end=0 x000000c0 ( s i z e =0 x00000006 ) count : 1
6 Expor t s t a r t =0 x000000c2 end=0 x0000010 f ( s i z e =0 x0000004d ) count : 4
7 Code s t a r t =0 x00000112 end=0 x0000032 f ( s i z e =0 x0000021d ) count : 4

After compiling a module in dlopen, it is linked. To acquire the
required linking information from the dylink section, the module
binary is parsed. Then, a chunk of memory is allocated using the
alloc function by providing the required memory size from the
linking information. Similarly, the table is grown by using table
size from the linking information. After these steps are completed,
the module is instantiated. After the instantiation of a module,
any initialization steps required by the module are executed. The
instance is then pushed to the global vector of instances and the
numeric identifier is returned from dlopen, called a handle.

3.1.2 dlsym. Figure 4 illustrates the process of resolving a function
using dlsym. The method takes two parameters, a handle to an
instance of which symbol must be resolved and the name of a
symbol, which in our case is always a function’s name. Firstly, a
function name is retrieved by accessing the instance’s memory as
seen in the figure. Secondly, an instance is retrieved from the global
vector of instances using the handle supplied to dlsym which is
an index to the vector. The instance is accompanied by a map of
symbol names and their table indices. The map is accessed with
the symbol’s index. If a function is found, its index is returned as a
result of dlsym. Otherwise, the required function is retrieved from
the instance and added to the shared table by growing it by one unit
initialized to a reference to the function. The index of the function
reference is inserted into the map of that particular instance and
returned.

3.1.3 dlerror. The dlerror function is used to check if an error oc-
curred and to access error messages. The main function of the host
initializes a buffer for the error messages. Error handling informa-
tion structure (Figure 2) is stored by the host, and it contains the
error message buffer’s size, its location in memory, a flag indicating
if an error has occurred and a reference to thememory object shared
by the instances. When an error occurs in any of the three host
functions, write_error function is called to write a null terminated
error message to the error buffer and the error occurrence flag is set
to true in the data structure that the host stores. To access the error
message, the dlerror function is called. The function returns zero if
no error has occurred. Otherwise, the position of the error buffer is
returned from the structure and the occurrence flag is set to false.
The dlerror function is typically used to print an error message after
dlopen and dlsym calls return a zero value indicating the occurrence
of an error.

3.2 Example Application
To demonstrate the above features, we next present an example
application, a chatbot that can dynamically load modules reflecting
different personalities (Figure 5). The main module of the appli-
cation can run on its own as a standalone application. The main
module defines and exports shared library functions for others to
use. Other modules require the main module and are called side
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Host

module_identifier = 
memory.get_string(module_name_pointer)

module = from_binary(binary)

LINKER INS-
TANCES

Wasm
module

dlopen(name)

return length

get("env", "memory")
return memory

get("env", "table")
return table

get("env", "alloc")
return alloc

alt
[if instance is found]

return index+1

find(module_identifier)
return index

file = open("module_identifier.wasm")
binary = read(file)
info = check_dylink(binary)
table_base = table.grow(info.table_size)
memory_base = alloc(info.memory_size)

store("env", "__table_base", table_base)
return

store("env", "__memory_base", memory_base)
return

instantiate(module)
return instance

save_exports(module_identifier, instance)
return

push(instance)
return

length()
return length

instance.call("__post_instantiate")

Figure 3: Sequence diagram of a dlopen function call.

modules. The side module instances import various functions from
the main module instance, such as a memory allocation function.
Themain instance can load the personalities during execution. Once
a personality module is loaded, it can load more modules when
user wants to do different actions. The modules present various
image processing functions and procedures displaying ASCII art on
the screen. All modules linked together share the same resources.

Host LINKERWasm
Module

dlsym(handle, name)
get("env", "memory")

return memory

get("env", "table")

return table

INSTANCES

get(handle-1)

return (instance, map)

 index = map.get(function_name)

alt
[if index is found]

return index

function =
instance.get_func(function_name))

alt
[if function is not found]

return Trap

alt [if table.size() == 0]

table.grow(1, FuncRef(None))

table.grow(1, function)

return table.size() - 1

function_name =
memory.get(function_name_pointer)

Figure 4: Sequence diagram of a dlsym function call.

Therefore, they are able to pass complex and large data structures
between each other with ease and without copying them.

A sample execution of the application is presented in Figure 6.
This particular scenario explores the internals of Steve’s personality
module. In the diagram the user has already started the program
and selected to load Steve personality. The program waits for the
user’s input and receives a command to open a file. The image is
loaded into memory and new command is asked from the user. The
user then provides a known processing command. As a result, the
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Listing 2: Data structure representing error information.
s t ruc t E r r o r I n f o rma t i o n {

s i z e : u s i z e ,
p o s i t i o n : u s i z e ,
o c cu r r ed : bool ,
memory : Option <Memory> ,

}

Standalone module

Main module

libc

Side modules

Marvin

Steve Grayscale
Grayscale

Grayscale
Grayscale

Grayscale
Grayscale

LinksLinks

Figure 5: Relationships between the modules.

personality loads the module responsible for that specific process-
ing task using dlopen. The processing function of that module’s
instance is resolved with dlsym yielding a pointer to the function.
The function is then called with a pointer to the image data, which
applies the operation to the previously loaded image. After the side
module’s function has finished executing, the personality will ask
the user for input. The user can apply more operations on the same
image, but in this case he decides to save the image. The resulting
image is written to the destination file given by the user. The user
is then asked for an input and he decides to exit back to the main
instance.

A video about the example application is available at15. The
demonstrator on the video explains the core features of our imple-
mentation discussed above, demonstrating also how the dynamic
loading of the modules affects the memory consumption, and illus-
trates how a module is shared between multiple instances.

4 EVALUATION
To evaluate our execution time dynamic linking implementation,
we explore the following keymetrics: startup time, time of the entire
execution of a use case, memory overhead, and overhead caused
by the use of our implementation. We analyze the performance
by comparing two different application approaches for each of
the scenario. The approaches involve measuring the previously
described metrics of one monolithic application and a modular
application which loads needed functionality using our system.

Listing 3: Wasm compilation flags.
−Wl ,
−− import− t a b l e ,
−−no−entry ,
−−a l low −unde f ined

−s ALLOW_MEMORY_GROWTH=1
−s ERROR_ON_UNDEFINED_SYMBOLS=0

15https://youtu.be/gZj3M31ZfuI

return handle

Steve

save_file("edited.bmp", data)

data = fopen_and_read("file.bmp")

Operation
module

dlopen(<operation>)

dlsym(handle, "operation function")

return operation

operation(data)

return

Ask the user for input

User wants to open
"file.bmp" for processing

user wants to do
an <operation> on the

opened image

Ask the user for input

User wants to save
the image to "edited.bmp"

Ask the user for input

Ask the user for input

User wants to exit

Figure 6: Scenariowhere a personalitymodule is first loaded,
and then it loads an additional module dynamically.

All measurements have been done on 64 bit Ubuntu 18.04.5 LTS
with 16 GB RAM and an Intel i5-7200U@2.50GHz x 4 processor.
The modules for the measurements were compiled with Emscripten
2.0.0 using the flags in Listing 3. We have decided to omit opti-
mization flags to make the programs comparable. The time and
RAM measurements were done with the time command available
in Linux. We report the maximum resident set size as RAM in
all tables. The Wasm runtime used by the implementation for the
measurements is Wasmtime 0.19.0.

4.1 Startup Time
The first measurement studies the startup time of a monolithic and
modular applications. To assess the startup time of each application
we measured the time it takes for the application to start and im-
mediately exit the program without doing any work. Starting the
application includes numerous operations, such as reading the en-
tire file required to start the application, compiling it into a module,

https://youtu.be/gZj3M31ZfuI
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Table 1: Startup time measurements.

Approach Binary Size Startup Time RAM
Monolithic 15.2 MB 4.472s 321284 KB
Modular 28.6 KB 0.104s 9852 KB

and, finally, instantiating the module using the runtime’s embed-
ding API. In addition, we measure the RAM that the application
uses during the startup and the size of the binaries used for the
measurements. In this measurement the modular approach does
not load any additional modules, as it immediately exits once it has
loaded the main application module.

Table 1 summarizes the results of this measurement. Unsurpris-
ingly, there is a considerable difference in the size of the binaries. As
mentioned before, using our execution time dynamic linking imple-
mentation, an application can be split into separate parts. Therefore,
a file required to start a modular application can be significantly
smaller comparing it to a monolithic application. As a result, oper-
ations such as reading a file, compiling and instantiating a module
take significantly less time. As the startup time is directly related to
the binary size, this also improves a lot. Finally, the memory that is
needed to initialize the modularly loaded application is again only
a fraction of its monolithic counterpart.

4.2 Entire execution
Next, we measured the entire execution of a use case where the
application starts, executes a single function and then exits. The ap-
plication consists of thousands of independent functions, of which
only one is invoked by the use case.

For these measurements, we had a monolithic configuration and
three modular configurations: (1) load a single module and resolve
a single function (LS RS), (2) load all modules and resolve all of its
functions (LA RA), and (3) load all modules but resolve only single
function (LA RS). The monolithic configuration consists of a single
module that contains all the application logic. The configuration
loads the module and executes a task using only a fraction of the
application’s logic. The modular application consists of ten 1.5 MB
modules that contain the functions split evenly and an initial mod-
ule’s instance that loads and resolves the functionality of the other
modules depending on the used configuration. The first modular
configuration (LS RS) loads only the necessary module to do its job.
This configuration simulates a situation where a specific feature
is used immediately after the application is started. The other two
modular configurations (LA RA and LA RS) mimic the monolithic
approach by loading all the modules available. In addition, LA RA
configuration resolves all of the symbols from the loaded module
instances while LA RS resolves only the single required symbol.
These setups reveal how much overhead the linking system adds
to the entire execution compared to the monolithic application
approach.

Table 2 presents the total binary sizes of each configuration, the
time it took to execute the selected routine, and its memory usage.
An outlier in this experiment is LS RS, while other are roughly
the same in terms of all the measurement units. The binary size
reflects the sum of the sizes of all modules used by that particular
configuration. Modular configurations require more memory than

Table 2: Full execution time measurements.

Approach Total Binary Size Execution Time RAM
Monolithic 16.000 MB 4.50s 323692 KB

LS RS 2.439 MB 0.48s 47500 KB
LA RA 16.033 MB 4.86s 333140 KB
LA RS 16.030 MB 4.60s 333000 KB

the monolithic application, because different amounts of logic are
required for loading and resolving the symbols of the additional
modules.

4.3 System overhead
Loading modules and resolving their functions during execution
has an overhead compared to a monolithic application. To assess
the overhead imposed by the execution time dynamic linking imple-
mentation we measure the average time of different function calls.
We measure the time it takes to call a function of a linked module
and the time it takes to call the functions (dlopen and dlsym) our
implementation provides for Wasm module instances. Two differ-
ent techniques to call a function of a linked module are measured.
One is a direct call by using the import functionality provided by
Wasm, and the other is an indirect call through a Wasm table with
the use of dlsym.

For the overhead measurements we created modules each of
which contain a function that accepts an integer as an argument
and returns it immediately. Table 3 depicts the measurements con-
sisting of five functions that are called. The first function – dlopen –
in this particular setup, loads a module of 263 bytes size containing
the previously mentioned function. The second function – dlsym
– resolves the function from a module instance. The third func-
tion, specified in table as symbol, is resolved from another instance
with dlsym. The fourth function, specified in the table as import,
is imported from another instance. The fifth function, specified in
the table as function, is defined and called within the same module
instance and is used as a baseline for a function call. In the mea-
surement, the function under study is constantly called in a loop.
The execution time of the loop is divided by the number of calls
made to get the average time.

Unsurprisingly, as dlopen is clearly the most complex function
due to compilation and initialization steps, its execution is orders of
magnitude more expensive than the execution of others. In addition,
since dlsym has to manage data structures related to exports and
imports, its execution takes several microseconds. For others, the
execution time seems indifferent, although the overhead of calling
a function dynamically linked during execution is about 3 times of
that of a normal function call.

5 DISCUSSION
Wasm advocates platform independent compilation target that en-
ables creation of modular applications. Here, we use this modularity
to improve startup time, but similar mechanisms can be used to iso-
late platform and application specific features into separatemodules.
By dynamically loading only the required parts, it is possible to run
only the needed parts of complex applications under constrained
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Table 3: Function execution time measurements.

Call Average Time
dlopen 948.6400 `s
dlsym 34.2970 `s
symbol 0.0098 `s
import 0.0048 `s
function 0.0034 `s

devices. Furthermore, modules containing additional features can
be loaded on-demand basis.

5.1 Analysis of Results
Despite the current state of execution time dynamic linking in
Wasm, we were able to create a system allowing it outside of the
browser. We achieved this by using tooling that allows creation
of dynamically linkable modules for the browser’s environment
and by implementing the missing execution time dynamic linking
functionality for outside of the browser’s context.

Our performance measurements investigated the startup time,
memory consumption and binary sizes of different configurations.
The results clearly indicate that modular approach reduces the
startup time required to begin executing an application signifi-
cantly, by roughly 98%. Binary size of a starting application has also
decreased, as modularity allows one to only load the necessary parts
of an application, instead of a monolith containing functionality
that is yet to be used.

In addition to the startup time measurements, we investigated
how the execution time dynamic linking solution impact the over-
all execution of a certain routine. The main observation of this
particular test is that whenever loading a tenth of a module’s func-
tionality to execute a particular task, the execution time is reduced
by roughly 90%.

Our implementation introduces a slight overhead. We evalu-
ate the performance of functions provided by the implementation
which permit on-demand loading and linking. Moreover, we ex-
amine cross-module instance function calls (symbol, import). We
compare the results with the baseline function shown in the Table
3. The results reveal that the dlopen function takes the longest to
execute. This was expected, as the function needs to compile the
Wasm binary into a module to be used by the runtime. The dlsym
function is in general a lot faster compared with the dlopen function,
but it is not as fast as the cross-module instance function calls and
still introduces a slight overhead. Cross-module instance calls are
only slightly slower than direct function calls.

5.2 Limitations
An important part of this research was to identify the limitations
affecting our produced result. The limitations are divided into four
categories: runtime, compilers, Wasm and designed solution.

5.2.1 Runtime. Our work is largely affected by the underlying
Wasm runtime. Wasmtime – as well as other Wasm runtimes, too
– is progressing quickly. There is no doubt that eventually the
runtime capabilities will expand enabling improvement of parts of
our solution. As an example, Wasmtime is limited to a number of

platforms it can be run on but improvements are made constantly,
adding support for more instruction sets on different architectures.
As new platforms are supported by the runtime, our solution can
then also be ported to these platforms. It is also possible that some
parts of our solution could be integrated into the runtime instead
of being external features built on top of the runtime. Moreover,
the complete unloading is ultimately impossible at the current state
of the Wasmtime runtime that we are using. The runtime uses a
scheme where all objects are tied to a Store object and all objects
exist until the store or any objects it references are no longer used.
This poses a limitation to the dynamic linking scheme because the
Store object does not offer any method to remove a reference to a
specific instance.

5.2.2 Compilers. Compilers cannot currently generate dynami-
cally linkable modules for outside of the web context or support
for it is experimental16,17. Additionally, the streaming compilation
of Wasm modules appears to be a work in progress for the Wasm
runtime we have experimented with18. Elimination of these defi-
ciencies will take time and require work on the compiler tooling as
well as the runtime, but they are not unsolvable.

5.2.3 Wasm. While the current Wasm specification allows the cre-
ation of execution time dynamic linking, there is a proposal for
module linking called "Module Types"19 that can simplify and im-
prove the implementation even further. This proposal notes that
dynamic linking capabilities are currently dependent on the host
and there is no portable way to dynamically link modules. The
proposal suggests adding load-time dynamic linking to the Wasm
specification. While this would not implement execution time dy-
namic linking it could require runtimes to implement features that
execution time dynamic linking implementation could use, such as
freeing the memory of unused module instances.

5.2.4 Designed solution. Our design has a number of weakness
points that should be acknowledged and eliminated. To begin, our
prototype implementation provides no way of unloading a loaded
module’s instance. This is problematic, because no memory is re-
leased until the end of the program’s lifetime.

Another issue is the overhead of dlopen. In our implementation
the execution of the program halts until the loaded module is read
from disk, compiled and instantiated. This may take a considerable
amount of time, as also seen in Table 2. This could be alleviated
by using asynchronous retrieval and parallel compilation of the
module. Additionally, code analysis could be used to determine
when modules would be needed in advance so that little to no
overhead is experienced when dlopen is actually called. However,
this is a major research task in itself that falls beyond the scope of
this paper.

Currently, the module instances share a single memory space,
which means that they can access each other’s allocated memory

16https://github.com/emscripten-core/emscripten/issues/11954 accessed Sept. 24,
2020.

17https://github.com/WebAssembly/tool-conventions/blob/master/DynamicLinking.md
accessed Sept. 24, 2020.

18https://github.com/bytecodealliance/wasmtime/issues/1987 accessed Sept. 24,
2020.

19https://github.com/WebAssembly/module-linking/blob/master/proposals/module-
linking/Explainer.md accessed Sept. 24, 2020.
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directly. Because everything is shared there is no concept of private
data and it is not possible to hide sensitive data or functionality
from different instances, which can threat privacy and security [9].

5.3 Future Directions
Figure 1 depicts our envisioned system, where Wasm modules are
distributed to different platforms. The modular nature of Wasm
allows creation of small modules, from which developers can then
compose applications, similarly to the Node.js package ecosystem.
The research has so far focused on designing a mechanism for
dynamically loading modules on-the-need basis; ecosystem per-
spective as well as considerations regarding the standardization of
the module structure or features has so far been overlooked.

Next, we want to reduce the memory footprint by storing the
modules in multiple external repositories and implementing the
capability to manage them at execution time. This requirement is
also directly related with the action of module instance unloading.
Furthermore, we plan to study the ways the system can be opti-
mized. These include (1) loading modules before they are required
so that the overhead would be as minimal as possible, (2) detecting
and unloading unused instances so that resources of a system could
be managed, and (3) caching and sharing modules between multiple
applications. We also hope that streaming and parallel compilation
capabilities will be implemented and improved by the available
Wasm runtimes as our use case could greatly benefit from these
features.

6 CONCLUSIONS
In this paper, we have explored the use of WebAssembly for build-
ing cross platform modular applications outside the browser. We
believe that the combination of Wasm and execution time dynamic
linking can revolutionize the way we build cross platform software.
These applications could potentially run anywhere from browsers,
desktop computers and phones to embedded devices. The ability
to compose applications from modules allows the creation of an
ecosystem where components can be developed independently,
shared and combined to create various applications. A particular
key challenge we have tackled is the implementation of dynamic
linking in non-browser environment for Wasm. In the technical
sense, this solution can improve startup time of Wasm applica-
tions; on a broader scope, such an approach can foster a developer
ecosystem.

As a technical contribution, we presented a system that builds
upon the previously introduced Wasm concepts that are ultimately
inspired by the Linux dynamic linking approach. We provide func-
tionality to load Wasm modules of an application and link the
desired functionality during execution. We built a proof of concept
implementation of execution time dynamic linking for Wasm in
outside of the browser environments, which to our knowledge is
one of the first implementations. We performed measurements us-
ing the implementation and they show that it achieves expected
improvements for program footprint with low overhead on func-
tion calls. The work lays a foundation for future work to take full
advantage of modular Wasm applications that could adapt to their
environment through dynamic loading.
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