
https://helda.helsinki.fi

Extending SOUP to ML Models in Certified Medical Systems

Stirbu, Vlad Alexandru

IEEE

2021

Stirbu , V A , Granlund , T , Helen , J S & Mikkonen , T 2021 , Extending SOUP to ML

Models in Certified Medical Systems . in 2021 IEEE/ACM 3rd International Workshop on

Software Engineering for Healthcare (SEH) SEH 2021 . IEEE , IEEE/ACM International

Workshop on Software Engineering for Healthcare , Madrid , Spain , 03/06/2021 . https://doi.org/10.1109/SEH52539.2021.00013

http://hdl.handle.net/10138/335256

https://doi.org/10.1109/SEH52539.2021.00013

unspecified

publishedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.

Extending SOUP to ML Models When Designing
Certified Medical Systems

Vlad Stirbu
CompliancePal

Tampere, Finland
vlad.stirbu@compliancepal.eu

Tuomas Granlund
Solita

Tampere, Finland
tuomas.granlund@solita.fi

Jere Helén
University of Helsinki

Helsinki, Finland
jere.helen@helsinki.fi

Tommi Mikkonen
University of Helsinki

Helsinki, Finland
tommi.mikkonen@helsinki.fi

Abstract—Software of Unknown Provenance, SOUP, refers to
a software component that is already developed and widely
available from a 3rd party, and that has not been developed, to
be integrated into a medical device. From regulatory perspective,
SOUP software requires special considerations, as the developers’
obligations related to design and implementation are not applied
to it. In this paper, we consider the implications of extending
the concept of SOUP to machine learning (ML) models. As the
contribution, we propose practical means to manage the added
complexity of 3rd party ML models in regulated development.

I. INTRODUCTION

Modern software intensive products are complex systems
that often incorporate software components developed by third
parties. Across the board, we can see that embedded systems
rely on open source operating systems, mobile applications
rely heavily on the operating systems and the middleware
developed by the device manufacturers, cloud applications
depend on the cloud infrastructure and services maintained
by the cloud provider, while web applications rely on the web
browsers and their APIs. Moving into the application stack,
there are countless open source libraries and frameworks that
are used to develop applications. The high level of software
reuse has enabled organizations to efficiently develop sophis-
ticated products at a fast pace. While differentiating features
are implemented internally, most of the other components of
a software product are developed by a third party.

Due to safety considerations, the medical industry has a
very conservative stance on how the software is developed and
used. Applications that incorporate artificial intelligence (AI)
and machine learning (ML) technologies are becoming popular
due to their ability to build complex prediction systems. The
abilities enabled by the ML models complicates further the
software development process. They bring additional risks
such as increased complexity, lack of transparency, danger of
inappropriate use, or weak governance that have to be handled
appropriately from a safety perspective.

In this paper we explore the implications of using ML mod-
els developed by third parties in software intensive medical
devices, from a regulatory perspective. First, we look at the
new challenges introduced by the ML technologies in medical
applications. Then, we propose practical means to manage
the added complexity of 3rd party ML models in regulated
development. Towards the end of the paper, we finally draw
some conclusions.

II. BACKGROUND

A. Medical regulatory framework

The regulations covering medical device software fall into
two broad categories: information handling and safety. The
regulations related to information handling are Health Insur-
ance Portability and Accountability Act (HIPAA) [1] in United
States and General Data Protection Regulation (GDPR) [2] in
the European Union. HIPAA is a medical sector regulation that
defines what constitutes protected health information, its use
and disclosure when several health providers are involved in
the care process. GDPR is a generic data privacy framework
that defines how personal information is collected and used.
To comply with HIPAA and GDPR regulatory frameworks, a
service provider that implements part of the functionality using
software must establish procedures for handling the relevant
information. These procedures typically get materialized into
technical requirements, which have to be implemented in
software, or standard operating procedures, which have to
be followed by the staff that interacts with the protected
information. The regulations extend to business associates that
process or handle protected information, which have to comply
themselves.

The safety of medical devices or services is regulated in
Unites States by the Food and Drug Administration (FDA) and
Medical Device Regulation (MDR) [3] in European Union.
International Organization for Standardization (ISO) and In-
ternational Electrotechnical Commission (IEC) have developed
international standards that contain guidance on the processes
and requirements that must be followed when developing
software so that relevant regulatory authorities accept medical
products in the respective markets.

For example, ISO 13485 [4] specifies the requirements
for a quality management system that allows an organization
to demonstrate its ability to provide medical devices and
related services that consistently meet customer and applicable
regulatory requirements. Further, ISO 14971 [5] specifies the
processes that a manufacturer must follow to identify the
hazards associated with medical devices, to estimate and
evaluate the associated risks, to control these risks, and to
monitor the effectiveness of these controls. Finally, the life
cycle requirements that must be followed by an organization
where software is embedded or is an integral part of the final

32

2021 IEEE/ACM 3rd International Workshop on Software Engineering for Healthcare (SEH)

978-1-6654-4458-3/20/$31.00 ©2021 IEEE
DOI 10.1109/SEH52539.2021.00013

20
21

 IE
EE

/A
C

M
 3

rd
 In

te
rn

at
io

na
l W

or
ks

ho
p

on
 S

of
tw

ar
e

En
gi

ne
er

in
g

fo
r H

ea
lth

ca
re

 (S
EH

) |
 9

78
-1

-6
65

4-
44

58
-3

/2
0/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

SE
H

52
53

9.
20

21
.0

00
13

Authorized licensed use limited to: Helsingin Yliopisto. Downloaded on October 13,2021 at 06:26:57 UTC from IEEE Xplore. Restrictions apply.

training
code

Buildlabeled
data

model Deploy

app
code

data engineers data scientists developers and ops

Fig. 1. Functional silos barriers when developing ML applications

medical device are defined in IEC 62304 [6]. The requirements
are envisioned as a set of processes, activities and tasks that
establish a common framework for medical device software
life cycle processes.

B. ML development lifecycle and challenges

Building on the success of continuous software development
approaches [7], [8], in particular DevOps [9], it has become
desirable to deploy machine learning (ML) components in real
time, too. To this end, MLOps refers advocating automation
and monitoring at all steps of ML system development and de-
ployment, including integration, testing, releasing, deployment
and infrastructure management.

To understand the challenges related to MLOps, let us first
explain the steps necessary to train and deploy ML modules
[10]. As the starting point, data must be available for training.
There are various somewhat established ways of dividing the
data to training, testing, and cross-validation sets. Then, an ML
model has to be selected, together with its hyperparameters.
Next, the model is trained with the training data. During the
training phase, the system is iteratively adjusted so that the
output has a good match with the “right answers” in the
training material. This trained model can also be validated
with different data. If this validation is successful – with any
criteria we decide to use – the model is ready for deployment,
similarly to any other component. Once deployed, ML related
features need monitoring, like any other feature. However,
monitoring in the context of ML must take into account
inherent ML related features, such as biases and drift that may
emerge over time. In addition, there are techniques that allow
improving the model on the fly, while it is being used. Hence,
the monitoring system must take these needs into account.

Based on the above, continuous deployment of ML features
is often a complex procedure that involves changes in the
following areas: the application code, the model used for
prediction, and the data used to develop the model. Often,
these areas are handled separately by software developers,
data scientists and data engineers that rely on different skill
sets and tool chains. For example, data engineers are focused
on making the data more accessible, data scientist perform
experiments for improving the data model, and the devel-
opers are worried about integrating the various technologies
and releasing them to production (Figure 1). The lack of
harmonized processes across these domains leads to delays
and frictions, such as models never reaching production or

Building

Evaluation and
Experimentation

Packaging

Testing

Deployment

Monitoring

training
data

candidate
model

selected
model

packaged
model

packaged
model

training
code

application
code

test
data

test
codemetrics

application
bundle

machine learning pipeline deployment pipeline

data scientists developers and ops

Fig. 2. CD4ML pipelines and artifacts

deployments that are difficult to update or debug. Due to this
variability, machine learning applications are more complex
than traditional applications. These characteristics makes them
harder to test, explain or improve.

C. General purpose MLOps pipelines

Continuous Delivery for Machine Learning (CD4ML) [11]
is an approach formalized by ThoughtWorks for automating
in an end-to-end fashion the lifecycle of machine learning
applications. In CD4ML a cross-functional team produces
machine learning applications based on code, data, and models
in small and safe increments that can be reproduced and
reliably released at any time, in short adaptation cycles. The
approach contains three distinct steps: identify and prepare
the data for training, experimenting with different models to
find the best performing candidate, and deploying and using
the selected model in production. This has been illustrated in
Figure 2.

The first step has the goal of making the data discover-
able and accessible. It consists in collecting relevant data
from different internal and external sources, transforming and
exposing it in a format that is used by the data scientists
to train the model. The data pipeline codifies the directed
acyclic graph that contains the sources, the destinations and
the transformations performed on the data. As the source data
used in this step can be very large, it is not practical to
check it in version control. Instead, metadata that conveys
the location, ranges and other parameters that determine that
shape of the data source used for training. Over time the data
can evolve over two axes: data schema or sampling frequency.
Storing the pipeline, the source data metadata and the code that
performs the transformations is an effective data provenance
mechanism.

The next step is to train model candidates based on the
data collected in the previous step. The input data is split
into training and validation data. The training data is used to
evaluate combinations of algorithms that produces a model.

33

Authorized licensed use limited to: Helsingin Yliopisto. Downloaded on October 13,2021 at 06:26:57 UTC from IEEE Xplore. Restrictions apply.

The model is evaluated against the validation set to assess
its quality. This process is codified as the machine learning
pipeline. During development the pipeline can change fre-
quently and it is difficult to reproduce the process outside
the local environment without the assistance of specialized
tools that provide git-like functionality that keeps track of data
and code used in experiments, allowing execution on other
environments. As most experiments do not yield good results,
it is critical to preserve all data, metadata, metrics and the code
that captures how the experiment was conducted. This record
supports the decision process for promoting a particular model
to production.

The last step is to deliver the model into the production
environment using a deployment pipeline. The process consists
in testing the model selected for production, packaging in
the format suitable for production, followed by deployment.
The deployment can follow one of the following patterns:
include in the application code as normal dependency, run it as
standalone service, or deploy at runtime as data. A special case
of deployment is online learning, where the models constantly
learn in production. Versioning the model as static artifact
won’t yield the same results as they are fed different data.
Once in production, continuous monitoring ensures that the
model behaves as expected, and anomalies are detected and
handled properly. The feedback loop allows the model to
be improved over time using observations from production
environment.

D. Risk management for ML applications

Algorithms are an essential ingredient of machine learn-
ing. The risks inherent to algorithm design propagate to
medical machine learning applications due to their increased
complexity, lack of transparency, inappropriate use, or weak
governance. According to Krishna et al. [12], algorithmic risk
can be split into three categories: input data, algorithm design
and output decisions. Flaws in input data such as biases in
the data used for training, the quality of the data can lead to
mismatches between the data used for training and the data
used during normal use. Output decisions flaws relate to incor-
rect interpretation or use of the output. Algorithm design flaws
can be expanded in human biases – cognitive biases of model
developers and users can lead to flawed output, technical flaws
– lack of technical rigour or conceptual soundness during
development, training, testing and validation, usage flaws –
incorrect implementation or integration in operations can led
to inappropriate decision-making, or security flaws – threat
actors can manipulate the inputs to produce deliberate flawed
outputs.

As new machine learning techniques are so opaque, it is
practically hard to understand how they operate. Industry
groups [13] and academia recognised the challenges associated
with machine learning trustworthiness. Their proposals to
improve trustworthiness include metrics like interpretability
- degree to which a human can understand the cause of
a decision [14], and explainability – the degree to which
a human understands the behaviour of a system [15], or

Fig. 3. SOUP related clauses in IEC 62304

frameworks that allow to explain machine learning models as
black [16], [17], or white boxes [18].

III. DISCUSSION

A. SOUP handling under IEC 62304

Medical device manufacturers are responsible for the safety
of their products, and the implementation of the appropriate
procedures that ensure the safety. Modern software intensive
devices and services incorporate often components developed
by third parties that have not followed the software develop-
ment lifecycle requirements described by IEC 62304. From a
regulatory perspective, the third party software is considered
software of unknown provenance (SOUP). To be able to use
the SOUP components, manufacturers need to plan the inte-
gration, testing (clause 5.1.5), and risk management activities
(clause 5.1.7), and specify the functional, performance and
hardware requirements (clauses 5.3.3 and 5.3.4). Further, they
need to continuously evaluate the anomalies published by the
maintainer to asses if they impact the product safety (clause
7.1.3), and perform risk management activities for the changes
caused by the SOUP components (clauses 7.4.1 and 7.4.2).
Finally, the manufacturer needs to maintain a registry with
SOUP components used in the product.

Although the ratio of SOUP specific clauses is small (see
Fig. 3), the resources that must be allocated by the manu-
facturer could be considerable. While the SOUP components
can speed the development considerably, they increase the
complexity of the overall software system and extend the
surface on which attack vectors could manifest. Understanding
the intended purpose for which the SOUP component was
developed and how well it matches the usage context within
the medical products is just a first step. Quite often, identi-
fying the safety risks and the controls that mitigate them is
complemented by other activities that asses the engineering
practices maturity used during development, identify threats

34

Authorized licensed use limited to: Helsingin Yliopisto. Downloaded on October 13,2021 at 06:26:57 UTC from IEEE Xplore. Restrictions apply.

in the area of cybersecurity, or legal restrictions due to the
SOUP component’s license.

B. Extending the SOUP to ML models

ML models can be integrated into a product using one of
the following approaches: (i) as a library dependency, (ii) as
a service, or (iii) as data loaded at runtime. Technically, all
these approaches qualify the third party developed ML model
as a SOUP component. The manufactures should include
the component into the software decomposition as an item,
and perform the appropriate software integration and risk
management activities specified in the plans. Furthermore,
the manufacturer must ensure that besides the packaged ML
model, the accompanying documentation provided by the
model developer includes the appropriate explanations and to
a level of detail that allows the effective mitigation of the
risks associated with ML applications described earlier. This
documentation should describe at least the input data, the algo-
rithm design and the output decisions. If available, a validation
data set should be used in integration tests to ensure that the
ML model is integrated correctly. Additionally, the third party
models should be evaluated from a cybersecurity perspective
to ensure that new threats are not silently introduced into the
medical system [19].

From a continuous software engineering perspective, med-
ical ML applications require a more complex machinery for
handling the software development lifecycle. If we look at
the CD4ML, we see that data used to develop the algorithms,
but also the ML experiments themselves have to be version
controlled, not only the code. These artifacts have not been so
far in the scope of the medical regulations. Conventions must
be established in order to facilitate effective handling and use
of the artifacts created at each step of the pipelines during
regulatory activities.

Finally, to add complexity to continuous delivery pipeline,
ML applications can introduce a need for additional functions
in operational use, such as monitoring the operations and
detecting possible bias that can emerge once the system
has been deployed. Obviously, such monitoring mechanisms,
together with the infrastructure used for reporting are subject
to regulatory actions. In addition, ensuring that monitoring is
compatible with the ML components that have been deployed
must be ensured. Validating this may require access to training
data sets as well as the models themselves.

IV. CONCLUSIONS

Large scale software reuse of third party components speeds
up the product development considerably. From a regula-
tory perspective, the SOUP components must be handled
according to special procedures to ensure that they do not
affect negatively the product’s safety. Machine learning models
enable complex predictions systems with benefits in medical
applications, but at the cost of increased complexity and added
specific risks. In this paper we advocate for extending the
regulatory SOUP procedures and activities to ML models.
Additionally, we propose practical guidelines for evaluating

the engineering practices used for developing the models, as
well as data that must be provided downstream, so that medical
manufacturers can integrate them and perform their safety
evaluation effectively.

Acknowledgments. The authors would like to thank Busi-
ness Finland and the members of AHMED (Agile and Holistic
MEdical software Development) consortium for their contri-
bution in preparing this paper.

REFERENCES

[1] Centers for Medicare & Medicaid Services, “The Health Insur-
ance Portability and Accountability Act of 1996 (HIPAA),” 1996,
http://www.cms.hhs.gov/hipaa/.

[2] Official Journal of the European Union, “Regulation (EU) 2016/679 of
the European Parliament and of the Council of 27 April 2016 on the
protection of natural persons with regard to the processing of personal
data and on the free movement of such data, and repealing Directive
95/46/EC (General Data Protection Regulation),” 2017.

[3] ——, “Regulation (EU) 2017/745 of the European Parliament and
of the Council of 5 April 2017 on medical devices, amending Di-
rective 2001/83/EC, Regulation (EC) No 178/2002 and Regulation
(EC) No 1223/2009 and repealing Council Directives 90/385/EEC and
93/42/EEC,” 2017.

[4] International Standards Organisation, ISO-13485: Medical devices -
Quality management systems - Requirements for regulatory purposes,
2016.

[5] ——, ISO 14971: Medical devices - Application of risk management to
medical devices, 2007.

[6] International Electrotechnical Commission, IEC-62304: Medical device
software - Software life cycle processes, 2015.

[7] B. Fitzgerald and K.-J. Stol, “Continuous software engineering and
beyond: trends and challenges,” in Proceedings of the 1st International
Workshop on Rapid Continuous Software Engineering, 2014, pp. 1–9.

[8] ——, “Continuous software engineering: A roadmap and agenda,”
Journal of Systems and Software, vol. 123, pp. 176–189, 2017.

[9] L. E. Lwakatare, P. Kuvaja, and M. Oivo, “Dimensions of devops,”
in International conference on agile software development. Springer,
2015, pp. 212–217.

[10] T. Mikkonen, J. Nurminen, M. Raatikainen, I. Fronza, N. Mäkitalo, and
T. Männistö, “Is machine learning software just software: A maintain-
ability view,” in Software Quality Days. Springer, 2021.

[11] D. Sato, A. Wilder, and C. Windheuser, “Continuous delivery for ma-
chine learning,” Sept 2019, https://martinfowler.com/articles/cd4ml.html
accessed Dec 21, 2020.

[12] D. Krishna, N. Albison, and Y. Chu, Managing algorithmic risks —
Safeguarding the use of complex algorithms and machine learning.
Deloitte, 2017.

[13] European Commission, High-Level Expert Group on Artificial Intelli-
gence, “Ethics guidelines for trustworthy ai,” 2019.

[14] F. Doshi-Velez and B. Kim, “Towards a rigorous science of interpretable
machine learning,” 2017.

[15] U. Bhatt, A. Xiang, S. Sharma, A. Weller, A. Taly, Y. Jia, J. Ghosh,
R. Puri, J. M. F. Moura, and P. Eckersley, “Explainable machine
learning in deployment,” in Proceedings of the 2020 Conference on
Fairness, Accountability, and Transparency, ser. FAT* ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 648–657.
[Online]. Available: https://doi.org/10.1145/3351095.3375624

[16] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and
D. Pedreschi, “A survey of methods for explaining black box models,”
ACM Comput. Surv., vol. 51, no. 5, Aug. 2018. [Online]. Available:
https://doi.org/10.1145/3236009

[17] C. Molnar, Interpretable Machine Learning, 2019,
https://christophm.github.io/interpretable-ml-book/ accessed Dec
21, 2020.

[18] A. A. Freitas, “Comprehensible classification models: A position
paper,” SIGKDD Explor. Newsl., vol. 15, no. 1, p. 1–10, Mar. 2014.
[Online]. Available: https://doi.org/10.1145/2594473.2594475

[19] “Ai cybersecurity challenges.” [Online]. Avail-
able: https://www.enisa.europa.eu/publications/artificial-intelligence-
cybersecurity-challenges

35

Authorized licensed use limited to: Helsingin Yliopisto. Downloaded on October 13,2021 at 06:26:57 UTC from IEEE Xplore. Restrictions apply.

