
MLOps Challenges in Multi-Organization Setup:
Experiences from Two Real-World Cases

Tuomas Granlund
Solita

Tampere, Finland
tuomas.granlund@solita.fi

Vlad Stirbu
CompliancePal

Tampere, Finland
vlad.stirbu@compliancepal.eu

Aleksi Kopponen
Ministry of Finance
Helsinki, Finland

aleksi.kopponen@vm.fi

Lalli Myllyaho and Tommi Mikkonen
University of Helsinki

Helsinki, Finland
{lalli.myllyaho, tommi.mikkonen}@helsinki.fi

Abstract—The emerging age of connected, digital world means
that there are tons of data, distributed to various organizations
and their databases. Since this data can be confidential in nature,
it cannot always be openly shared in seek of artificial intelligence
(AI) and machine learning (ML) solutions. Instead, we need
integration mechanisms, analogous to integration patterns in
information systems, to create multi-organization AI/ML systems.
In this paper, we present two real-world cases. First, we study
integration between two organizations in detail. Second, we
address scaling of AI/ML to multi-organization context. The
setup we assume is that of continuous deployment, often referred
to DevOps in software development. When also ML components
are deployed in a similar fashion, term MLOps is used. Towards
the end of the paper, we list the main observations and draw
some final conclusions. Finally, we propose some directions for
future work.

Index Terms—Artificial intelligence, AI, machine learning, ML,
multi-organisation, integration, information systems, software
engineering for AI/ML.

I. INTRODUCTION

The emerging age of connected, digital world means that
there are tons of data concerning just about every aspect of
life, economy, and industry one can imagine. Data regarding
transactions, transport, purchases, health, and human behavior
are recorded en masse for various purposes. This stored data
has various use cases, from analytical studies to predicting
how the next pandemic advances.

For precision of analysis and prediction, it is essential to
have access to all data, to ensure that the data is reliable, and
that the data can be processed according to the needs at hand.
However, for numerous reasons, this is not always the case.
Most governments have, by law, ensured that municipal and
citizen related information is only accessible to those officials
that truly need the data. Hence, while some data is treated
open – for instance, tax records are open to public in Finland
– it is not feasible to share everything. For instance, health
records are typically something that are kept private. However,
derivative data from health records can be made public, so
that predictions on sickness can be reliably made. In addition,

companies may view data as a part of their strategic advance,
and are not willing to share their data assets.

Understanding the implications of organizational boundaries
such as those described above have not been widely considered
in the context of artificial intelligence (AI) and machine
learning (ML). Rather, work has fostered in areas where
large datasets have emerged, and they have been available
for use inside one organization, like Google or Amazon for
instance. However, for cases such as AuroraAI, a Finnish
initiative to create well-being to citizens at personal level
via digital platforms [14], these boundaries are an enormous
obstacle for using ML techniques to their fullest potential.
Even in cases where the state would own all the data, different
organizations that host it may have their own privileges and
responsibilities. For cases that involve different legal entities –
say private companies for example – and their collaboration,
the boundaries can become even more apparent.

To improve, we need integration mechanisms for ML/AI,
analogous to integration patterns in information systems [11]
but applicable at the level of AI/ML features, to create multi-
organization AI/ML systems. Like with information systems,
there are several challenges that need to be tackled, including
integration interfaces, scaling, privacy, governance, and so on.

In this paper, we focus on integration and scaling of systems
that include ML components. The setup we assume is that
of continuous deployment [6], where new versions of the
system can be rapidly deployed – often referred to DevOps [3],
[5] in software development. When also ML components are
deployed in a similar fashion, term MLOps [2], [23] is used,
with Continuous Delivery for Machine Learning (CD4ML)
being a well-known practical incarnation [20].

The rest of this paper is structured as follows. In Section
2, we present the background of the paper, which mainly
consists of an overview of MLOps. Sections 3 and 4 form
the core of the paper by presenting two case studies. First,
in Section 3, we present integration challenges regarding ML
features. As a case study, we use Oravizio, a medical device
for orthopedists implemented as Software-as-a-Service that is



shared by two organizations. Then, in Section 4, we address
scaling of ML to multi-organization context. Here, we use
the AuroraAI initiative mentioned above as a case study. In
Section 5, we provide an brief discussion regarding our main
observations and propose some directions for future research.
Towards the end of the paper, in Section 6, we draw some
final conclusions.

II. BACKGROUND

Today, at the center of software development in many
organizations is a toolset that allows delivering as soon as new
features are available [7]. The goal of continuous deployment
is to enable continuous flow of value adding software artifacts
from the development to the actual production use with a
quality assurance. A related concept, the DevOps phenomenon
[5] – amalgamation of development operations – can be
described as a set of practices whose goal is to shorten
the commit feedback cycle without compromising quality
[3]. At the core of DevOps culture is collaboration between
the different actors, with no consideration for organizational
boundaries between the different actors delivering software or
running the pipeline [4].

In both continuous delivery and DevOps, a continuous
delivery pipeline is required to support the process, from
code to delivery, and, even after the deployment monitoring
the behavior of the system. It is important to notice that
the automated pipeline is not about software going into
production without any operator supervision, but rather the
pipeline provides a feedback loop to each of the stakeholders
from all stages of the delivery process. Moreover, as the
software progresses through the pipeline, different stages can
be triggered for example by operations and test teams by a
click of a button.

Following the success of DevOps, it has become desirable
to include machine learning (ML) components in systems that
are deployed in real time. MLOps – amalgamation of ML and
operations – refers to advocating automation and monitoring at
all steps of ML system development and deployment. As with
any piece of software, support is needed for system integration,
testing, releasing, deployment, monitoring and infrastructure
management.

To understand the challenges related to MLOps, let us first
explain the steps necessary to train and deploy ML modules
[16]. As the starting point, data must be available for training.
There are various somewhat established ways of dividing the
data to training, testing, and cross-validation sets. Next, an ML
model has to be selected, together with its hyperparameters.
The hyperparameters define various aspects of the model. For
example, in the case of neural networks, hyperparameters
define how many and what kind of layers a neural network
has and how many neurons there are in each layer. The next
step is training the model with the training data. During the
training phase, the system is adjusted in an iterative fashion, so
that the output has a good match with the “right answers” in
the training material. This trained model can also be validated
with different data. If this validation is successful – with any

criteria we decide to use – the model is ready for deployment,
similarly to any other component in a software systems.

In the case of MLOps, monitoring ML related features is
necessary, like any other feature. However, monitoring in the
context of ML must take into account inherent ML related
features, such as biases and drift that may emerge over time
[24]. In addition, there are techniques that allow improving
the model on the fly, while it is being used. Therefore, the
monitoring system must take these needs into account. To sum-
marize, continuous deployment of ML features is a complex
procedure that involves taking into account application code,
model used for prediction, and data used to develop the model.
Often, the model, which can be the core of the application, is
just a small part of the whole software system, so the interplay
between the model and the rest of the software and context is
essential [21]. In addition, adequate monitoring facilities are
needed to ensure that the operations are taking place correctly.

Perhaps the most well-known incarnation of MLOps is
Continuous Delivery for Machine Learning (CD4ML) [20],
an approach formalized by ThoughtWorks for automating
in an end-to-end fashion the lifecycle of machine learning
applications. In CD4ML a cross-functional team produces
machine learning applications based on code, data, and models
in small and safe increments that can be reproduced and
reliably released at any time, in short adaptation cycles. The
approach contains three distinct steps: identify and prepare
the data for training, experimenting with different models to
find the best performing candidate, and deploying and using
the selected model in production. The work is split to an ML
pipeline that works with the data, and to a deployment pipeline
that deploys the result to operations (Figure 1).

The above implies that there are three artifacts, in addition to
those that are required by DevOps, that need version control in
MLOps: (i) different data sets used for training model and their
versioning; (ii) model and its versioning; and (iii) monitoring
the output of the model to detect bias and other problems.

In the following, we use these three steps and related
artifacts in two MLOps related organizational challenges.

III. THE INTEGRATION CHALLENGE – ORAVIZIO

Oravizio1 is a software product that provides data-driven
information about patient-level risks related to hip (total hip
arthroplasty, THA) and knee joint (total knee arthroplasty
TKA) replacement surgery. In its current form, Oravizio
provides three different dedicated prediction models:

• Risk of infection withing one year from surgery;
• Risk of revision within two years form surgery;
• Risk of death within two years from surgery.

With these models, Oravizio helps the collaboration and nego-
tiation between the surgeon and a patient, so that the decisions
that are taken are informed and that there is consent regarding
the operation.

At the core of these models is a large amount of patient
history data, collected over the years from the patients that

1https://oraviz.io/ accessed Jan 3, 2021.



Building

Evaluation and
Experimentation

Packaging

Testing

Deployment

Monitoring

training
data

candidate
model

selected
model

packaged
model

packaged
model

training
code

application
code

test
data

test
codemetrics

application
bundle

machine learning pipeline deployment pipeline

data scientists developers and ops

Fig. 1. CD4ML pipelines and artifacts.

have undergone surgery. As the number of cases is so large that
no surgeon can process it manually during the appointment,
this data has been used to create a risk calculation model
that predicts the outcome of the surgery. The risk calculation
algorithms combine manually submitted patient-specific data
with comprehensive patient history data.

Oravizio has been developed in co-operation between the
two actors, a hospital that is specialized in joint replacement
surgery, and Solita, a European software company headquar-
tered in Finland. The clinical partner hospital had accumulated
a large volume of data from surgeries for more than ten years,
and Oravizio was based on the vision that this data asset
might include factors that indicate risks for joint replacement
surgeries down to an individual patient’s level.

During the development of Oravizio, the data included over
30000 patient records. Originally, the data was not organized
well for post-processing. Various formats and computer sys-
tems were used, some of which had already been retired.
Hence, consolidation and pre-processing were considerable
tasks. The first task was to consolidate the relevant data into

a data lake. Second, the data needed to be pre-processed to
determine its quality and ensure its uniformity and future
utility. Both of these were considerable tasks.

Once data was uniform, several mathematical methods were
considered during the research. The aim was to create an
explanatory machine learning model for each risk to enable
validation and ensure regulatory compliance. Luckily, the
relations between the risk in joint replacement surgery and
selected explanatory values were mostly known from clinical
literature, so these needed no research in the process. Eventu-
ally, after estimating performance with with AUC values and
ROC-curves [12], XGBoost [19] was selected, and the final
model for the product was built accordingly. The model is
deterministic by nature. Therefore, it can be validated with
test data in a test environment without the need to do the
validation in the final production environment.

All development artifacts, including the scripts that were
used to create ML models, were stored in the version control
system (VCS), except for the ML model. The reason for this is
simple: ML development was done within a scientific research



Fig. 2. Organizational boundaries between clinical hospital and service
provider Solita, and the physical handover of the model between organizations.

project. Furthermore, the research project was performed on
the premises of the clinical partner hospital. As the use of
patient records is strictly regulated, the hospital’s computa-
tional environment is tightly restricted and isolated. Therefore,
the system was designed to be deployed in a production
environment with its ML model in a locked state, and the
model handover from data scientists to software developers
was done through a network drive.

Following the same separation of concerns – clinical model
building is done in the hospital’s computational environment,
and deployment and operations in Solita’s (Figure 2) – the
production use of Oravizio does not generate data that could
be used for re-training. Instead, the needed data is generated in
other clinical processes of the hospital. Due to the ML devel-
opment environment’s restrictive nature, frequent changes, or
re-trainings to the ML models were not anticipated. However,
later iterative re-training with 45000 patient records improved
models’ performance to a certain extent, showing the benefits
of model re-training.

Considering the above example to demonstrate the integra-
tion challenges of an ML pipeline, we next address data sets,
the model, and monitoring and related versioning.

A. Data sets

Working with data sets is the part of MLOps that is most
closely associated with ownership issues. Indeed, models can
originate from model libraries, and off-the-shelf systems exist
for different flavors of monitoring, but data is often unique
and cannot be transferred in the process. There are various
reasons for this. Firstly, data sets can be so large that they
cannot be easily located elsewhere. Secondly, even if it would
be technically possible, the owners of the data may want to
keep it to themselves. Finally, there can be other reasons, such
as regulatory issues, such as in healthcare, to keep the data
inside one organization.

Consequently, operations related to data seem to be the
most difficult to put into practice. In general, systems like
datalakes can be used to integrate data from various sources,
but if amounts of data are massive and, in addition, its owners
want to protect it, this option is feasible only inside one
organization.

In the case study, the situation is such that the service
provider does not generate new data, but only uses the model

and hence the data set that used for generating it. New
data results from treating patients only, which is under the
responsibility of the hospital, and not visible to the service
provider. There are some downsides to this, as the approach
restricts tracking down how successful the decisions were, if
no operation was performed. However, the decision simplifies
a lot how to manage and version data, as this is completely
controlled by the hospital.

B. Model

Based on the example, the model is a key artifact in any
MLOps system. In this particular case, the model is the divide
between hospital and service provider, who play very different
roles. In fact, the model is more or less the only thing that the
two organizations need to share.

Firstly, the model is created, and its quality assurance
activities are carried out on the hospital’s premises as a shared
activity between the two organizations. The mode of operation
for this is based on experiments where interesting properties
are identified in the dataset, which in general is often the
nature of data science projects early on [1]. The rhythm for
the operations is defined by these experiments. If desired, the
model can be re-created with more precision in given intervals
or by some other valid form of meaningful iteration. Each new
iteration cycle creates a new version of the model, and it may
or may not be handed over to the service provider.

Secondly, the service provider is responsible for the devel-
opment and the operations of the software that are necessary
to use the model as basis for collaboration between the doctors
and (potential) patients. The actual mode of operation is close
to DevOps and continuous software engineering practices,
but they have been adapted to fit regulatory requirements
[9]. Moreover, the developers’ mindset is software-focused,
meaning that this mode of operation seems natural to them.
In particular, they are satisfied with the given ML model, and
are not interested in modifying it.

Finally, it is important to notice that the model was selected
such that for a given input, it produces a deterministic output.
In essence, this makes the model a deterministic software
component for testing.

C. Monitoring

As organizations responsible for Oravizio have different
modes of operation, the design decisions aim at isolating them.
This isolation also has an effect on monitoring the output of
the model to detect bias and other problems.

The most obvious design decision to this end is the selection
of a model that produces deterministic results. Furthermore,
the model does not evolve over time, but it continues pro-
ducing the same results. Therefore, no drift in the results
can emerge over time. Similarly, there is no need to consider
retraining, except if the hospital has a new, improved data set
that they wish to use to train a new model. This, however,
is not detected by monitoring in this system, but requires a
human decision in this case.



Fig. 3. Multi-dimensional view to wellbeing, as adopted by AuroraAI [22].

Finally, the tool is meant to help the doctor and the patient
to discuss the risks related to a surgical operation, not to
decide whether or not to perform the operation. Instead, the
decision is always made by the humans, and the AI only has
a supporting role in the process. Hence, the responsibility is
carried by humans, not by the AI. Furthermore, in the unlikely
event of the system malfunctioning and providing answers that
clearly are infeasible, the doctor – an expert in such operations
– is able to notice them and fix the situation.

IV. THE SCALING CHALLENGE – AURORAAI

AuroraAI initiative [14] is a Finnish, government-initiated
program, with an objective to create the world’s best public
administration. Concrete means for this include linking public
sector organisations to the AuroraAI network, which enables
AI to facilitate their interaction with the services provided by
other sectors. By removing organizational silos that complicate
serving citizens in many ways, the AuroraAI network will help
determine which individuals or businesses are in need of a
particular service. This in turn will improve the match between
users and public services while tackling inefficiency and
resource waste. As the underlying framework of wellbeing,
AuroraAI uses a model proposed by Stiglitz et al. [22] as
the baseline. The model highlights the importance of going
beyond GDP or production and tackling the more difficult
task of measuring people’s well-being. Figure 3 addresses
the multidimensional definition of people’s well-being that is
based on initiatives around the world and academic research.

Achieving the above goal requires technical conditions
that enable information exchange and interoperability between
different services and platforms. Seamless interaction between
them will require, among other things, joint development of
interfaces and communication between the development teams.
Furthermore, as the goal is to rely on using AI as a part of the
process, this will also mean that data sets, ML models, and
monitoring – at least in the form of governance, if nothing
else – must be considered over organizational boundaries.

A. Data sets

There are several records that trace our behavior on one
form or another. To protect us from a society, where all
this data is available to single authority, this data is usually
partitioned to several officials, based on the information they
need. Hence, health records, tax information, societal data,
criminal records, and so on cannot be used as a single data set,
at least in Finland. Furthermore, adding data owned by private
companies, such as banks, form another layer of organizational
complexity in this context.

However, it is possible to combine this data as an individual.
For instance, the international non-profit MyData Global [17]
is working to support collaborations among entities with
interests in building a human-centric personal data ecosystem.
Supporting interoperability at technical, informational and
governance levels, such an ecosystem is aligned with the
AuroraAI vision, where it is the individuals who combine data,
not the society. The use of the digital twin paradigm [8] has
also been considered in this context [13], leading to citizen-
level use of datasets and recommendations.

Unfortunately, such an approach, relying on datasets owned
by multiple organizations, does not really provide a data set
that would be easily available for ML or even deeper analysis.
Firstly, MyData is not automatically shared but is something
that only the individuals can release in accordance to their
wishes. Secondly it is not obvious which data is true and
which false, as individuals themselves provide some data, and,
moreover, they can manipulate some data.

B. Model

In the integration challenge, the model was used as the
shared component between two organizations, so that one
organization trained it and released it to another without
exposing its data assets. Since models are easily interpreted
in ML and operations perspective, they are also something
that can be easily shared in AuroraAI. However, these models
are only partial, as they are built by different data owners,
not based on MyData that only the citizens can construct of
themselves.

Generalizing this approach implies that it would be possible
to build systems so that ML systems are combined, following
the pipes-and-filters architecture [15], with one ML system
taking as input the output of another. Unfortunately, as pointed
out in our recent study, this does not mean that the models
would be immediately composable as such – instead, it is
preferrable to train a one, single model based on a combined
data set than two models based on two different ones [18].

Furthermore, even if it would be technically feasible to
compose models, the models originating from different sources
might not be compatible. For instance, while it might be
meaningful from the state perspective to combine information
about a citizen’s wealth to health data, the models or com-
puting systems hosting them would not be able to do this,
as identity information is not included in them. Consequently,
such composition would only result in statistical correlation,
which might help but which might also be completely wrong,



depending on the actual data. Another option is to implement a
unique identity system, shared between the different informa-
tion systems, so that it is clear which citizen is being attributed.

For AuroraAI, this has meant that instead of aiming at
automata that can provide recommendations for everyone,
models are more targeted to individuals, who can use them to
determine facts about their well-being. Moreover, based on the
models and input from the user, recommendations are given
to propose actions to add the observed well-being. Obviously,
if an individual citizen chooses to share the results with
municipalities, chances are that the individual in question will
get a better, more targeted service proposals. However, sharing
the results is by no means enforced, meaning that the resulting
data set is heterogeneous from the society perspective.

C. Monitoring

As in AuroraAI, the citizens are to some extend responsible
to manage their own data, much of the monitoring options
should also be offered to them. However, in many of the
implementations, this is tricky because the systems have
been typically built from the viewpoint of the municipal-
ities. Monitoring mechanism regarding to data access, for
instance, escapes from an individual citizen, and, to gather
such information, the offices responsible for hosting the data
should be involved. Hence, there is a clear lack of governance
related functions in today’s systems. Furthermore, even if
such facilities would exist, they would most likely be system
specific, with little opportunities to gather unified data.

That said, individual offices often have such systems in
place locally, as this is governed by law. Hence, they can
monitor what takes place, and, at least to some extent, who ac-
cesses what. Opening such monitoring data to individuals with
respect to their own use would probably result in increasing
confidence in the use of private, personal data.

V. DISCUSSION

To begin with, using AI/ML in multi-organization context,
the usual integration problems emerge. APIs, data formats,
performance issues and so on are similar to any other infor-
mation system integration between two or more organizations.
In addition, contractual and responsibility issues need to be
agreed upon. To this end, using the ML model as a software
component as in Oravizio, created by one party and used by
another, is a way to embed ML into the realm of software
development. For the purposes of the application, minimizing
the integration challenge seems like a rational solution.

A new challenge in software engineering for ML is data
related operations. These operations are related to the above
to some extent, especially when data sets cannot be moved
across data boundaries, but multiple organizations need to
access the data. Moreover, data meshes and other forms
of integrating data in pieces can complicate designing the
more traditional parts of information systems, needed for
such integration. In addition, when considering AuroraAI, it
seems natural that different solutions might rely on different
versions of data sets, for several reasons. For instance, it is

possible that extensive data cleaning operations are needed
for some applications, meaning that executing such operations
frequently is impossible. Similarly, it might be so that the
data must be from the same temporal range, and otherwise the
operations make no sense. Similar complications are reflected
to training ML models based on such data sets, as well as to
monitoring how well the models work once they have been
deployed.

For operationalizing all the above in practice, the same
skill gap as for an MLOps within a single organization is
valid – indeed the same actions need to be taken. However,
this time they are more difficult to reconcile, because the
organizations may have different modes of operation and
different organization cultures, as demonstrated in the Oravizio
case. Moreover, restrictions, such as those related to privacy or
certification, may exist on either side of the boundary, which
adds an additional layer of complexity to the design.

In general, to successfully perform multi-organization
MLOps, we need patters of integration that help us in the
process. Inspiration for these can be found from system
integration [11] as well as legality patterns, proposed for
open source [10]. In fact, both solutions we have used in
the examples of the paper are analogous to patterns of [10]
– Oravizio uses the ML model as an Evaluator, and in
AuroraAI, User delegation helps to combine data that can
only be accessed by the user as a whole. The definition of
such patterns remains future work, with some ideas already
proposed in [18].

Finally, based on both case studies reported in this paper,
it seems that if there is the will, there often is a way
to create a working solution to circumvent organizational
problems. The patterns described above can form a blueprint
for operations, but in the end the organizations also need
true collaboration in the form of joint, and possibly merged,
organization-level operations (OrgOps), following the spirit
of DevOps but explicitly emphasizing the importance of the
culture of collaboration across organizations. For Oravizio,
the organizations work in close cooperation and have shared
interest in model development and maintenance in the Oravizio
service; for AuroraAI, the organizations are looking over the
organizational borderlines to identify best practices that could
be used in other contexts, and, furthermore, some of them
have executed joint initiatives for certain specific goals, such
as well-being at school at a certain region.

VI. CONCLUSIONS

There are numerous practical limitations that may prevent
running MLOps pipeline within a single organization. To
accommodate this situation, the MLOps pipeline needs to be
split into parts that are designed and run by the respective
organizations. Re-assembling the pipeline comes with the
same challenges as in any IT integration project, including
joint APIs, agreed data formats, and contractual obligations.
In addition, due to the key characteristics of ML, data sets,
ML models, and monitoring need special attention.



In this paper, we have presented two cases where ML is
used in a setup where several organizations are involved. The
highlighted challenges are related to integration and scaling,
with real-life cases showing how ML has been addressed. As
pointed out above, in both cases the teams have found practical
solutions, but they are applicable to these cases only.

As a more general solution, we propose using patterns that
help dealing with inter-organisation boundaries, as well as
propose using joint operational mode across the organizations
that are involved. However, to a large degree, this remains as a
piece of future work, despite the fact we have identified such
in the presented cases.

ACKNOWLEDGEMENT

The authors would like to thank Business Finland and the
members of AHMED (Agile and Holistic MEdical software
Development) & AIGA (AI Governance and Auditing) con-
sortiums for their contribution in preparing this paper.

REFERENCES

[1] Timo Aho, Outi Sievi-Korte, Terhi Kilamo, Sezin Yaman, and Tommi
Mikkonen. Demystifying data science projects: A look on the people and
process of data science today. In International Conference on Product-
Focused Software Process Improvement, pages 153–167. Springer, 2020.

[2] Sridhar Alla and Suman Kalyan Adari. What Is MLOps? In Beginning
MLOps with MLFlow, pages 79–124. Springer, 2020.

[3] Len Bass, Ingo Weber, and Liming Zhu. DevOps: A Software Architect’s
Perspective. Addison-Wesley Professional, 2015.

[4] Jennifer Davis and Ryn Daniels. Effective DevOps: building a culture
of collaboration, affinity, and tooling at scale. ”O’Reilly Media, Inc.”,
2016.

[5] P Debois. DevOps: A software revolution in the making. Cutter IT
Journal, 24(8), 2011.

[6] Brian Fitzgerald and Klaas-Jan Stol. Continuous software engineering
and beyond: trends and challenges. In Proceedings of the 1st Interna-
tional Workshop on Rapid Continuous Software Engineering, pages 1–9,
2014.

[7] Brian Fitzgerald and Klaas-Jan Stol. Continuous software engineering:
A roadmap and agenda. Journal of Systems and Software, 123:176–189,
2017.

[8] Edward Glaessgen and David Stargel. The digital twin paradigm for fu-
ture nasa and us air force vehicles. In 53rd AIAA/ASME/ASCE/AHS/ASC
structures, structural dynamics and materials conference 20th
AIAA/ASME/AHS adaptive structures conference 14th AIAA, page 1818,
2012.

[9] Tuomas Granlund, Vlad Stirbu, and Tommi Mikkonen. Towards
Regulatory-Compliant MLOps. Submitted to publication, 2021.

[10] Imed Hammouda, Tommi Mikkonen, Ville Oksanen, and Ari Jaaksi.
Open source legality patterns: architectural design decisions motivated
by legal concerns. In Proceedings of the 14th International Academic
MindTrek Conference: Envisioning Future Media Environments, pages
207–214, 2010.

[11] Gregor Hohpe and Bobby Woolf. Enterprise integration patterns:
Designing, building, and deploying messaging solutions. Addison-
Wesley Professional, 2004.

[12] Jin Huang and Charles X Ling. Using auc and accuracy in evaluat-
ing learning algorithms. IEEE Transactions on knowledge and Data
Engineering, 17(3):299–310, 2005.

[13] Aleksi Kopponen, Antti Hahto, Petri Kettunen, Tommi Mikkonen, Niko
Mäkitalo, Jarkko Nurmi, and Matti Rossi. Empowering citizens with
digital twins: A blueprint. IEEE Internet Computing, in print, 2021.

[14] Aleksi Kopponen, Niko Ruostetsaari, Tommi Mikkonen, and Niko
Mäkitalo. Towards participatory digital society using the digital twin
paradigm: citizen data model. In Proceedings of the 11th International
Conference on Digital Transformation of the Economy and Society:
Shaping the Future, 2019.

[15] Regine Meunier. The pipes and filters architecture. In Pattern languages
of program design, pages 427–440. 1995.

[16] Tommi Mikkonen, Jukka Nurminen, Mikko Raatikainen, Ilenia Fronza,
Niko Mäkitalo, and Tomi Männistö. Is machine learning software just
software: A maintainability view. In Software Quality Days. Springer,
2021.

[17] MyData Global, 2020. https://mydata.org/.
[18] Lalli Myllyaho, Tommi Mikkonen, Tomi Männistö, Jukka K. Nurminen,

and Mikko Raatikainen. On patterns of fault tolerance for machine
learning, 2021. Submitted to publication.

[19] XGBoost project. Xgboost extreme gradient boosting.
https://github.com/dmlc/xgboost accessed Dec 21, 2020.

[20] Danilo Sato, Arif Wilder, and Christoph Windheuser.
Continuous delivery for machine learning, Sept 2019.
https://martinfowler.com/articles/cd4ml.html accessed Dec 21, 2020.

[21] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd
Phillips, Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-
Francois Crespo, and Dan Dennison. Hidden technical debt in machine
learning systems. In Advances in neural information processing systems,
pages 2503–2511, 2015.

[22] Joseph E Stiglitz, Amartya Sen, Jean-Paul Fitoussi, et al. Report by the
commission on the measurement of economic performance and social
progress, 2009.

[23] Nisha Talagala. Why MLOps (and not just ML) is your business’ new
competitive frontier. Airtrends, 2018.

[24] Alexey Tsymbal. The problem of concept drift: definitions and related
work. Computer Science Department, Trinity College Dublin, 106(2):58,
2004.


