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Abstract: Puumala hantavirus (PUUV) causes a hemorrhagic fever with renal syndrome (HFRS), also
called nephropathia epidemica (NE), which is mainly endemic in Europe and Russia. The clinical
features include a low platelet count, altered coagulation, endothelial activation, and acute kidney
injury (AKI). Multiple connections between coagulation pathways and inflammatory mediators, as
well as complement and kallikrein-kinin systems, have been reported. The bleeding symptoms are
usually mild. PUUV-infected patients also have an increased risk for disseminated intravascular
coagulation (DIC) and thrombosis.
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1. Introduction

Hantaviruses can cause HFRS in Europe and Asia and hantavirus cardiopulmonary
syndrome (HCPS) in America [1,2]. PUUYV, carried by the bank vole (Myodes glareolus),
causes a mild form of HFRS mainly in Northern Europe and Russia [3]. Finland has the
highest globally documented incidence of a diagnosed hantavirus disease: in a population
of 5.5 million, 1000-3000 cases of HFRS occur annually [4]. Over 10,000 individuals are
diagnosed with HFRS every year in Europe [1]. PUUV infection, also called nephropathia
epidemica (NE), is typically associated with thrombocytopenia, increased capillary perme-
ability causing vascular leakage, and acute kidney injury (AKI). The reported case fatality
rates are up to 10% for Dobrava virus-caused HFRS and as high as 40% for HCPS [1,5]. The
mortality of NE is low and has been reported to vary from 0.1% in Finland to up to 0.4% in
Sweden [6,7].

Both hemorrhage and thrombosis have been associated with acute PUUV infection [8,9].
The disease pathogenesis is complex and not fully understood, but it is considered to be
immune-mediated, with increased levels of inflammatory mediators [4,10]. Along with thrombo-
cytopenia, the hematological abnormalities involve coagulation abnormalities and increased fibri-
nolysis and complement activation [11-15]. Hantaviruses infect and replicate in the
endothelial cells of human capillaries, which ultimately disrupts the balance of regulated hemosta-
sis [4,16-18]. Activated platelets and endothelial dysfunction are thus involved in the disease
pathogenesis [11,18-22].

In this review, we summarize the current knowledge about the alterations in the
coagulation and complement systems that are associated with thrombocytopenia and
clinical disease during acute PUUV infection.
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2. Puumala Hantavirus Infection
2.1. Clinical Features of the Disease

The clinical HFRS disease varies from a subclinical to severe outcome. Usually, the
incubation period of NE is 2—-6 weeks [1]. The clinical course can be divided into febrile,
hypotensive, oliguric, polyuric, and convalescent phases, although all phases may not be
clinically evident [5,6]. The initial symptoms of the disease include an abrupt high fever and
headache, followed by gastrointestinal symptoms, nausea, vomiting, abdominal pain, and
backache [1,2]. AKI is one of the hallmarks in NE [6,23]. Ocular and central nervous system
symptoms are common in the early phase of the infection [24,25]. Complete recovery
after NE is common; however, long-term consequences may include renal impairment and
elevated blood pressure [26]. In addition, hormonal deficiencies, such as hypopituitarism,
primary hypothyroidism, and hypogonadism, have been described after NE [27].

2.2. Acute Kidney Injury

Renal involvement in acute PUUV-HFRS, including transient proteinuria, microscopic
hematuria, and AKI, usually begins on the third or fourth day of the illness. During the
second week, oliguria is followed by polyuria and usually a full recovery of the renal
function. Hemodialysis treatment is needed in 4-6% of the hospitalized patients [23].
AKI, as evaluated by the elevated serum creatinine level, is found in 84% of hospital-
treated patients [23].

The typical renal histological finding is acute tubulointerstitial nephritis. Hantaviruses
can infect tubular epithelial cells, glomerular endothelial cells, and podocytes of the hu-
man kidney, and disrupt cell-to-cell contacts in these cells. This is supposed to diminish
the barrier function of the kidney, and thus be the cause of proteinuria [28]. The lack of
histological endothelial cell damage suggests that the loss of barrier function is due to
inflammation or cytokines instead of endothelial cell death [5,29]. A high degree of pro-
teinuria is a special feature of PUUV-associated tubulointerstitial nephritis [23]. A distinct
feature is also medullary hemorrhages, which have been found in 20-60% of acute phase
renal biopsies [23]. The presence of hemorrhages in a renal biopsy specimen is a quite
specific finding and should alert the pathologist to the possibility of a hantavirus infection.

Several markers indicating the severity of AKI have recently been described [23].
It is unclear how much these biomarkers reflect the inflammatory response to the virus
clearance or tissue damage. Interleukin-6 (IL-6), a cytokine produced by various cells, is
elevated during acute NE and is associated with severe AKI [30]. Increased pentraxin-3
(PTX-3), a rapid marker of local activation of innate immunity and inflammation, associates
with AKI and a low platelet count [31]. Furthermore, indoleamine 2,3-dioxygenase (IDO),
the soluble urokinase-type plasminogen activator receptor (suPAR), and GATA-3, have
been reported to associate with severe PUUV-induced AKI [32-34].

2.3. Capillary Leakage

Increased vascular permeability in various organs is characteristic of the pathogenesis
of hantavirus infections [6,16]. Plasma leakage from vasculature into tissues explains
many clinical features, such as hemoconcentration, hypotension and shock, abdominal
symptoms due to retroperitoneal edema, and pleural effusion [16,29]. Data suggests
that the endothelial barrier function is impaired because of an enhanced permeability
instead of direct cellular cytotoxicity or the injury of vascular cells. In a Finnish study
with 546 patients with PUUV infection, thrombocytopenia was associated with clinical and
laboratory variables reflecting severe capillary leakage [11]. Current knowledge implies
that several simultaneous factors are involved in the increased vascular permeability [35].
The extent of the capillary leakage in the hantavirus infection is influenced by virus
characteristics, viral load, and host factors [5].

2.4. Hemorrhagic Manifestations

Bleeding symptoms are mild in NE. A decreased platelet count may predispose
to bleedings. Petechiae of skin and mucosa, ecchymoses, conjunctival bleedings, and
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epistaxis are seen in one-third of the NE patients. In addition, conjunctival bleeding,
metrorrhagia, macroscopic hematuria, melena, and hematemesis may occur [5,6]. When
gastroscopy was performed to ten consecutive patients with acute PUUV infection, a
hemorrhagic gastropathy was observed in all of them [36]. In addition, severe and even
fatal hemorrhages of the pituitary gland, kidneys, heart, liver, lungs, and peritoneal cavity
have been reported [37,38]. A complicated case of spleen hemorrhage has also been
described [39].

3. Thrombocytopenia in PUUV Infection
3.1. Thrombopoiesis and Platelet Activation

Alow platelet count seems to be caused by increased platelet destruction in PUUV infection.
Bone marrow examinations have shown an increased amount and size of megakaryocytes
during acute NE [40]. An increased mean platelet volume and immature platelet fraction,
together with an elevated thrombopoietin level, also refer to an active thrombopoiesis in
the bone marrow [19,20,41]. An enlarged spleen is a frequently detected lymphoid organ
involvement in NE patients. Splenomegaly associates with inflammatory laboratory variables,
inversely with high leukocyte count and directly with the CRP level, but not with a low platelet
count. Thus, the enhanced splenic sequestration of platelets as a cause for a lowered platelet
count does not seem to play a significant role in PUUV infection [42].

The interaction of platelets with PUUV-infected endothelium is suggested to underlie the
lowered platelet count [5,17]. The cellular entry of hantaviruses is mediated by 33-integrins
on platelets, endothelial cells, and macrophages [43]. Hantavirus interacts with platelets via
the GPIIb/IIIa (also known as integrin «IIbf33) receptor, which contributes to the binding of
quiescent platelets to the infected endothelium, platelet activation, viral dissemination, and
induction of endothelial responses [17]. Platelet activation contributes to conformation changes
in integrin GPIIb/Illa, enabling it to bind fibrinogen, vVWE and fibronectin that are required for
platelet aggregation [44]. These events are suggested to contribute to the decreased amount of
circulating platelets and to an increased vascular permeability.

Lowered levels of disintegrin and metalloproteinase with a thrombospondin type 1 do-
main 13 (ADAMTS13), along with altered platelet ligands of allb(33, such as an elevated von
Willebrand factor (vWEF), fibrinogen, and decreased fibronectin, have been reported during
acute PUUV infection [13]. vWF is produced in the endothelium and megakaryocytes and
then carried in the o-granules of the platelets. The primary function of vVWF is to mediate
platelet adhesion and aggregation to the injured endothelium in both primary hemostasis
and thrombosis [45]. An elevated level of circulating vVWF may imply endothelial injury
and platelet adhesion to vasculature, but also the release of vVWF from activated platelets
in the acute phase [13]. Fibrinogen, an acute phase protein and a platelet ligand of «IIb(33,
contributes to fibrin clot formation due to thrombin in vascular and tissue injury. Increased
fibrinogen may reflect an acute phase reaction in the liver that is strong enough to outweigh
the consumption because of ongoing coagulation activity during the acute phase of NE [12,13].
Increased fibrinogen correlates to the decreased platelet count, which further implicates platelet
activation and consumption. Enhanced platelet adhesion via vWF and altered platelet ligands
thus imply increased platelet adhesion and activation during NE, which may result in platelet
consumption and the encountered thrombocytopenia [13]. In summary, the mechanisms of
thrombocytopenia remain elusive, but we expect that altered platelet-endothelial cells inter-
actions are involved. The severity of thrombocytopenia is not associated with the upcoming
AKI. Interestingly, glucosuria, which sometimes appears early during acute PUUV infection,
predicts thrombocytopenia in NE [46].

Elevated levels of platelet receptors, soluble P-selectin, and glycoprotein VI, a collagen
receptor mediating platelet activation at the site of vascular injury where collagen is
exposed, have been shown in acute NE. These in vivo markers for platelet activation were
especially increased in Swedish patients with disseminated intravascular coagulation (DIC)
and thrombosis [20]. When assessed in the whole blood using impedance aggregometry
Multiplate®, platelet aggregation in NE was impaired and correlated with the low platelet
count. In addition, platelet aggregation was found to be defective among patients with
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near normal platelet counts. However, platelet adhesion to the collagen surface was intact
when studied by a platelet function test, PFA-100® [19].

3.2. Decreased Platelet Count Association with Pentraxin-3, Cell-Free DNA, and Interleukin-6 Levels

A low platelet count has been linked to various inflammatory markers reflecting the
disease severity in NE. Increased levels of circulating plasma cell-free deoxyribonucleic
acid (cf-DNA) have been reported to associate with thrombocytopenia and leukocytosis
during acute disease [47]. Cell-free DNA originates from apoptotic and necrotic cells
indicating the amount of cellular damage [48]. However, the urinary excretion of cf-DNA
is not increased and does not seem to correlate with the severity of AKI. Elevated levels of
cf-DNA possibly reflect the apoptosis occurring in the acute phase, as the levels correlate
with the cf-DNA band intensity in the quantitative analysis [47]. IL-6 is a proinflammatory
cytokine responsible for acute phase reactants and inflammatory responses by activating T
cells and promoting B cell differentiation [49]. In NE, increased plasma IL-6 levels associate
with both severe AKI and more severe thrombocytopenia [30,50,51]. High plasma suPAR
levels are also found to associate with thrombocytopenia [33].

Pentraxin-3 (PTX-3), an acute phase protein, is generated at the site of inflammation
in various cells and tissues, mainly by dendritic cells and macrophages in response to
inflammatory signals [52]. PTX-3 recognizes different pathogens, bacteria, viruses, and
fungi, modulates complement activity by binding C1q, and facilitates pathogen recognition
by macrophages and dendritic cells [52]. Furthermore, PTX-3 interacts with factor H,
which activates the alternative pathway of the complement system [53]. High PTX-3 levels
during acute NE associate with a severe outcome of the disease, especially severe AKI,
thrombocytopenia, and a longer hospitalization [31]. Plasma terminal complement complex
SC5b-9 levels correlate with severe thrombocytopenia [15]. Thus, PTX-3 is considered to
have a role in the disease pathogenesis because of the cross-linkage of coagulation and
complement system activation [6,14,15].

In some German studies, severe thrombocytopenia has been associated with severe
PUUV-induced AKI [54-56]. However, in a Finnish study with 546 NE patients, no associa-
tion was found between the severity of thrombocytopenia and AKI [11]. These divergent
study results can be explained by rather small study populations in the German studies
and different host genetic factors influencing the clinical picture [6,11,23].

4. Coagulopathy in PUUV Infection
4.1. Endothelial Activation

Endothelial cells in the vasculature of various organs are major targets of hantaviruses.
Although hantavirus replication takes place in the vascular endothelium, this does not seem
to cause direct cytopathologic effects to the infected endothelial cells in vitro studies [5,57].
Hantavirus antigens are encountered in endothelial cells in HFRS, and in endothelial cells
in lung capillaries during HCPS [16,58]. Endothelial cells regulate vascular integrity, as well
as hemostasis, thrombosis, inflammation, and angiogenesis. Hantavirus infection alters
endothelial responses, resulting in endothelial dysfunction and increased capillary perme-
ability, which is the hallmark of the disease pathogenesis [57]. During the clinical course,
this is represented as hemorrhages or oedema, hemoconcentration, and hypotension.

In a Swedish study, levels of endothelial glycocalyx degradation and leukocyte adhe-
sion molecules serving as indicators of endothelial dysfunction and markers of vascular
repair were elevated, and correlated with the disease severity of the PUUV infection [22].
Another study suggests an imbalance between factors contributing to angiogenesis and
vascular integrity, namely angiopoietin-1 and its antagonist angiopoietin-2 [59]. Thus, the
PUUV-induced deregulation of angiopoietin levels may contribute to endothelial dysfunc-
tion and disease severity [59].

Regarding the upregulation of proinflammatory cytokines, IL-6, tumor necrosis factor-
o (TNF-o0), and interferon vy (IFN-y), all capable of activating the endothelium, have been
reported to be elevated in hantavirus infections [35,60]. Proinflammatory cytokines are
produced in macrophages or dendritic cells as a response to the recognition of hantaviruses,
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which cause a change from the anti- to the pro-adhesive phenotype of endothelial cells.
Pro-adhesive cells bind monocytes through intercellular adhesion molecule 1 (ICAM-1)
and integrin 32—-integrin interaction, and platelets through vVWF-allb33 integrin interac-
tions [35]. Elevated levels of soluble endothelial cell receptors, such as E-selectin, ICAM,
and tumor necrosis factor receptor (TNFR)-1, are present in acute HFRS [51,61,62]. Finally,
activated macrophages and platelets promote coagulation and fibrinolysis and comple-
ment and contact pathway activations along with various mediators involved in immune
responses [6,35].

The lack of an appropriate animal model has limited the knowledge of hantavirus
infection pathogenesis, although macaque monkeys (Macaca fascicularis) infected with wild-
type PUUV strains are able to produce a disease resembling human PUUYV infection [63,64].

4.1.1. Neutrophil Activation

Neutrophils, the most abundant blood leukocytes in humans, play an important role
in the innate immune response at the sites of infection or inflammation. Neutrophils aim to
kill invading microbes by producing reactive oxygen species and releasing antimicrobial
proteins, such as myeloperoxidase (MPO) and human neutrophil elastase (HNE), in a
process of degranulation [65]. Neutrophils also release neutrophil extracellular traps
(NETs), consisting of extracellular chromatin accompanied with histones and granule
proteins, that have the potential to entrap and kill pathogens [66]. Increased amounts of
circulating histones, cf-DNA, and histone—DNA complexes have been described during
acute PUUYV infection, suggesting NET formation [47,67,68]. Hantaviruses are capable of
inducing NETosis through 32 signaling [67]. We recently found that neutrophil activation
is mediated by PUUV-infected endothelial cells [69]. It is known that, when activated,
leukocytes bind to endothelial cells via ICAM-1 and transmigrate to tissues. In addition,
we reported increased levels of MPO, HNE, histone H3, and IL-8, a chemotactic factor of
neutrophils, during acute NE, suggesting neutrophil activation through NETosis and/or
degranulation [69]. Neutrophil activation markers were not only associated with the
severity of AKI, but also with a low platelet count, leukocytosis, and elevated tissue
plasminogen activator (tPA), a marker indicating fibrinolysis [69]. A summary of the
vasculopathy in HERS is presented in Figure 1.
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Figure 1. Vasculopathy in HFRS. Hantaviruses infect endothelial cells (EC) lining the vasculature. The infected ECs express

viral Gn/Gec glycoproteins and upregulate ICAM-1 adhesion molecules, to which circulating platelets and neutrophils

adhere. The interactions activate platelets and neutrophils (through neutrophil extracellular traps, NETs), which promote

coagulation through thrombus and fibrin clot formation. At the same time, the infected ECs induce the local production of

bradykinin that is released into the bloodstream, which, together with complement membrane attack complex, compromises

the EC barrier function, resulting in increased blood flow into tissues. Another factor produced by infected ECs, tissue

plasminogen activator (tPA) solubilizes blood clots and thereby contributes to EC permeability. The activity of tPA is

inhibited by plasminogen activator inhibitor (PAI)-1 that is upregulated in the more severe HFRS cases (caused by DOBV

hantavirus). This image was created with BioRender.com.
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NETosis is also considered to be important in host defense through procoagulant
mechanisms. NETs support histones and neutrophil DNA fragments in order to induce
coagulation activation during sepsis and inflammation [70]. Histones recruit and promote
platelet and endothelial activation, while negatively charged DNA provides an activated
surface for the assembly of coagulation factors [71]. Neutrophil elastase released from
NETs can inhibit the tissue factor pathway inhibitor (TFP1) [72] and thrombomodulin (TM),
thus impairing the protein C pathway and enhancing thrombin generation [73].

In an acute PUUV infection, plasma cf-DNA concentrations, considered to be orig-
inated from apoptotic cells or NETs, correlate with prothrombin fragments, F1+2, and
APTT, which comprise the screening coagulation tests. In addition, associations with
complement activation SC5b-9 and C3 are found [14]. This may imply mutual interactions
between NETosis and complement activation. More knowledge has emerged that NETs can
serve as a platform for complement activation, while activated complement proteins can
also stimulate NET formation [74]. In addition, increased plasma cf-DNA levels associate
with PTX3 during acute NE are probably explained by the opsonization and clearance of
apoptotic and necrotic cells [47].

4.1.2. Vascular Endothelial Growth Factor, Bradykinin, and Nitric Oxide

Vascular endothelial growth factor (VEGF) induces angiogenesis in the endothelium
and may also increases vascular permeability via 33 integrin signaling [75]. VEGF levels
are elevated in hantavirus infection, during which, the degradation of vascular endothelial
(VE)-cadherin may enhance vascular permeability [76-78]. VE-cadherin is an endothelial
adhesion molecule that maintains cell contact integrity and regulates vascular permeability
via the VEGF receptor 2 (VEGF-R2) [79]. Increased hantavirus-induced permeability has
been inhibited by antibodies against VEGF-R2 [80]. However, some studies indicate a
role for VEGF in endothelial remodeling and vascular repair rather than dysfunction or
damage [22,35,81].

As mentioned above, the vascular leakage of endothelial cells (increased capillary
permeability) is another key element in the pathobiology of hantavirus disease. Bradykinin
(BK) is an inflammatory peptide that promotes vasodilation, vascular permeability, edema
formation, and hypotension. The potent vasodilator BK is generated locally by endothe-
lial cells from HMW kininogen by the kallikrein—kinin proteolytic system [82]. When
hantavirus-infected endothelial cells are incubated with plasma proteins involved in the
kallikrein—kinin pathway, the kallikrein—kinin system is activated via factor XII and BK
production is increased, resulting in an enhanced vascular permeability in vitro [83]. The
kallikrein-kinin system activation, with the enhanced synthesis and release of BK, probably
contributes to the vascular leakage in vivo. There are two reported cases of severe PUUV-
infected patients who were successfully treated with the BK type 2 receptor antagonist,
icatibant (a decapeptide similar in structure to BK but containing five nonproteinogenic
amino acids), which further supports the role of BK in the disease pathogenesis [68,84,85].

An enhanced nitric oxide (NO) formation associates with elevated TNF-« and with the
degree of hypotension in acute NE [50,86]. NO is constitutively formed in the endothelial
cells by endothelial NO synthase (eNOS) and in macrophages and neutrophils by inducible
nitric oxide synthase (iNOS), mainly in response to inflammatory stimuli and cytokines.
NO is important both in the inhibition of platelet activation and the aggregation and
promotion of vasodilatation that increases blood flow in the vessels [87]. NO has also
been reported to exhibit antiviral effects on the hantavirus replication cycle in cell culture
studies and in mouse models in vivo [88]. Endothelial cells can also restrict immune
responses through NO release. In addition, cytotoxic T cells may contribute to the capillary
damage via immunopathology, caused by the increased release of NO and TNF-& in PUUV
infection [50,86].

Host genetic factors influence the clinical outcome of PUUV infection [5,6]. The eNOS
gene polymorphism G894T (Glu298Asp) has been reported to associate with clinically
severe NE [21]. This eNOS polymorphism (G894T) results in decreased enzymatic activity
and decreased basal NO synthesis and release in blood vessels [89,90]. In the kidney,
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NO produced by mesangial and tubular cells is a significant regulator and protector of
renal blood flow, glomerular filtration rate, and tubular function [91]. Those subjects
who were TT-homozygous for the eNOS G894T gene variant were more susceptible to
severe AKI, hemoconcentration, a higher blood leukocyte count and a longer hospital
stay when compared with the other genotypes [21]. This gene variant may play some role
in the endothelial and kidney dysfunction during NE, possibly via reduced constitutive
NO formation. However, the eNOS G894T variant was not associated with the depth of
thrombocytopenia. Furthermore, the G2087A gene polymorphism of inducible NOS has
been found to associate with hypotension, especially among the A-allele carriers, during
acute NE [21].

4.2. Coagulation Activation

Tissue factor (TF), a protein present in subendothelial tissue and circulating leuko-
cytes and platelets, is the major activator of the blood coagulation cascade leading
to thrombin formation. TF expression is sustained by proinflammatory cytokines,
chemokines, and procoagulative microparticles (MPs), which are phospholipid mem-
brane vesicles shed from various cell types. MPs derived from platelets and erythrocytes
can activate thrombin generation in a factor XII-dependent manner [92]. Thrombin plays
a crucial role in hemostasis.

A study with PUUV-infected human umbilical vein endothelial cells showed increased TF
expression in the endothelium [93]. Coagulation can be induced by both the TF
(i.e., extrinsic pathway) and contact system, also known as the plasma kallikrein—kinin
system (i.e., intrinsic) pathways. Incubation of plasma proteins with hantavirus-infected
endothelial cells has been shown to result in the cleavage of high molecular weight kininogen,
an elevation in enzymatic activities of FXIla, and an enhanced BK liberation, thus indicating
plasma kallikrein-kinin system activation [83]. The activation of the contact system can be
both procoagulative via the activation of intrinsic coagulation pathway and proinflammatory
via the kallikrein—kinin system activation, leading to enhanced BK-mediated responses [94].

PUUV infection causes the activation of coagulation pathways in the acute
stage [12,13,95,96]. Increased circulating prothrombin fragments 1+2 (F1+2), the fibrin
degradation product D-dimer, and diminished amounts of physiologic anticoagulants,
antithrombin (AT), protein C (PC), and protein S (PS), indicate enhanced in vivo thrombin
formation [12,14,96]. Thrombin generation may also take place in the shed microparticles
in vivo, although no difference in the procoagulant activity of MPs in peripheral circulating
blood could be detected when comparing the acute and recovery stages of PUUV infec-
tion [41,97]. In a recent study, increased circulating extracellular vesicle (i.e., microparticle)
TF activity was observed during NE, which was significantly associated with plasma
levels of tPA and PAI-1 [98]. Particularly, the extracellular TF activity was shown to peak
in patients with DIC compared with patients who did not have DIC. This suggests that
endothelial cells may be the possible source of the procoagulative TF that drives coagulation
activation [98].

The thrombin generation assay, calibrated automated thrombogram (CAT) method,
can be used to assess the overall coagulation capacity in plasma. The hemostatic balance
and thrombin generation in platelet-poor plasma has been evaluated using the CAT as-
say in acute NE [99]. The in vitro thrombin generation capacity was decreased and the
time to peak was prolonged in the acute phase when compared with the recovery phase.
Thrombocytopenia and an increased fibrinogen level correlated with the decreased endoge-
nous thrombin potential (ETP) and peak thrombin concentration, which suggests thrombin
activation and platelet consumption. Diminished ETP, however, did not correlate with the
bleeding symptoms that were reported in one-third of the PUUV-infected patients [99].
Together with the low platelet count, enhanced fibrinolysis, and signs of increased thrombin
generation in vivo, this set of data suggests a mild to moderate consumption coagulopathy
during acute NE. Thrombocytopenia, loss of physiological anticoagulants, enhanced fibri-
nolysis, and diminished plasma thrombin generation potential in vitro, shift the overall
hemostatic balance toward a hypocoagulable state and bleeding tendency.



Viruses 2021, 13, 1553

8 of 15

4.3. Fibrinolysis

Fibrinolysis has been suggested to be enhanced during acute NE. In one study a
24-fold increase in acute phase D-dimer levels was noted [12]. The coagulation vari-
ables, F1+2 and D-dimer, also associate with thrombocytopenia and the maximum cre-
atinine level [41]. In addition, tPA is strongly and acutely upregulated, especially in
patients with hemorrhages and also in PUUV-infected cynomolgus macaques, as well as in
PUUV-infected cultured endothelial cells. In contrast, the urokinase plasminogen activator
(uPA) and plasminogen activator inhibitor-1 (PAI-1) level remained unaltered [93,100,101].
PAI-1 functions as the main inhibitor of plasminogen activators and hence fibrinolysis (i.e.,
physiological breakdown of blood clots). The finding of increased tPA activity most likely
reflects the activation of fibrinolysis. Furthermore, interferons can induce tPA expression
directly through the signal transducer and activator of transcription 1 (STAT1). Elevated
tPA levels are associated with the length of hospital stay, weight gain, minimum platelet
count, leukocytosis, and high levels of terminal complement complex, IL-6, and maximum
hematocrit level [101]. A study with PUUV-infected human umbilical vein endothelial
cells demonstrated that PUUV was also able to increase PAI-1 levels in the acute phase [93].
Furthermore, an increased tPA /PAI-1 ratio has been suggested to contribute to the hemor-
rhages during acute NE [100,101]. Genetic polymorphism of PAI-1 has also been shown to
associate with the severity of AKI among Finnish NE patients [102].

4.4. Disseminated Intravascular Coagulation (DIC)

Signs of DIC are common during acute hantavirus infection [12,16,96,103]. However,
the applied diagnostic criteria for DIC have varied in different studies. The laboratory
abnormalities in this form of consumption coagulopathy include a prolonged activated
thromboplastin time (APTT) and PT/international normalized ratio (INR), decreased levels
of platelet and fibrinogen, and an increased amount of the fibrin degradation product,
D-dimer. The excessive activation of coagulation includes thrombin generation, possi-
bly leading to microvascular thrombosis when overcoming the anticoagulant system.
The consumption of coagulation factors and platelets may lead to bleeding seen in DIC.

According to the modified scoring system of the International Society of Thrombosis
and Haemostasis (ISTH), DIC was diagnosed in 28% of patients during acute NE [96]. DIC
was also associated with a more severe disease. A similar finding was reported in a Finnish
study, where DIC was diagnosed in five of the nineteen hospital-treated patients according
to the ISTH criteria [12]. However, no associations were found between the positive DIC
score and elevated levels of D-dimer and F1+2. In addition, the score was not predictive of
the clinical outcome of NE [12]. In Swedish case series studies, acute PUUV infection has
been associated with a transient increased risk of acute myocardial infarction and stroke,
as well as with venous thromboembolism [8,9].

5. Complement Activation

The complement system is a tightly regulated network of proteins bridging innate
and adaptive immunity. It plays an important role in host defense, inflammation and in
the clearance of microbes and damaged cells and immunocomplexes. It can be activated
by three major pathways: the classical, the alternative, and the lectin-dependent. They all
converge at complement component C3, which is the main component of the complement
in the blood, resulting in the formation of the activation products, C3a, C3b, and C5a and
the end product of the complement cascade, the membrane attack complex (MAC) C5b-9.
MAC causes the osmotic lysis of the target cells [104]. The complement system is linked to
the coagulation and fibrinolytic system via multiple interactions through a complex serine
protease system [105].

The complement system is activated in acute NE, which is implicated by increased
SC5b-9 levels and decreased C3 [15,106]. Complement activation of the classical pathway
associates with a more severe clinical disease, although activation through the alterna-
tive route has been shown to be more common [106]. Anaphylatoxins C3a and C5a can
contribute to the endothelial cell activation and permeability along with directing MAC-
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mediated vascular injury [107]. Hantavirus infection induces galectin-3 binding protein
(Gal-3BP) production, a glycoprotein reported in chronic viral infections that associates
with MAC levels. Excessive Gal-3BP formation is suggested to sensitize the infected cells
for complement attack [35]. Complement attack against glomerular endothelial cells may
also contribute to kidney dysfunction in hantavirus infection, as Gal-3BP has been found
to be produced in the glomeruli and tubular epithelium of PUUV-infected macaques [35].

SC5b-9 can increase endothelial permeability via ligating (33-integrin, releasing BK and
platelet-activating factor [108,109]. Additionally, the MAC complex can mediate cellular
reactions and the formation of inflammatory cytokines that are able to alter endothelial
function. These observations further link complement activation to the impairment of
endothelial integrity and vascular permeability.

Interactions between Coagulation, Predictive Biomarkers and the Complement System

Multiple connections between the host’s inflammatory response and coagulation path-
ways in NE have been demonstrated. PTX-3, an acute phase reactant produced at the site
of inflammation, has been reported to associate strongly with different variables reflecting
thrombin formation and the activation of both coagulation, complement, and endothelium
in acute NE [14]. Elevated PTX3 levels associate with F1+2 and lowered endothelial marker
ADAMTS13. Furthermore, PTX3 associates with the consumption of the platelet ligand, fib-
rinogen. In addition, PTX3 levels correlate with diminished levels of natural anticoagulants,
such as AT, PS free antigen, and PC [14]. PTX3 is known to activate the classical complement
pathway by binding the complement component C1q [110], and to interact with P-selectin [111].
It can also interact with factor H, the alternative complement pathway regulator [53]. These are
all possible mechanisms linking together PTX3, coagulation activation, and thrombocytopenia.
In NE, PTX3 correlates directly with the terminal increased complement component complex
SC5b-9 and inversely with the C3 levels [31]. To conclude, these findings emphasize the role of
PTX3 in the crosstalk between coagulation, complement activation, and inflammation in the
pathogenesis of hantavirus infection.

Antithrombin (AT) functions as a serine protease inhibitor that inhibits coagulation
enzymes, especially thrombin and activated coagulation factor X. Furthermore, AT inhibits
both classical and lectin pathway complement enzymes. AT also has anti-inflammatory
properties [112]. AT induces the endothelial release of prostacyclin and thus suppresses
platelet activation and aggregation, inhibits the adhesion of neutrophils to the endothe-
lium, and decreases the production of the cytokines IL-6 and TNF in the endothelial cells.
In addition, AT inhibits leukocyte activation by downregulating P-selectin activity [112].
Lowered AT activity, commonly seen in sepsis, can be reduced due to impaired AT synthe-
sis in the liver, AT degradation by proteases, consumption by excessive thrombin formation,
and increased vascular permeability [112,113]. Reduced AT activity has been demonstrated
to associate with high PTX3, cf-DNA, IL-6 and low plasma C3 during acute NE. These
biomarkers have been shown to predict severe PUUV infection characterized by throm-
bocytopenia, high leukocyte count and longer hospitalization [15,30,31,47]. In addition,
low AT activity correlates with low platelet count [12]. The finding of depleted AT activity
and biomarkers predicting disease severity is in line with studies reporting correlations
between reduced AT activity and poor outcomes in sepsis and critically ill patients [114].

Elevated plasma cf-DNA levels, considered to be originated from apoptotic cells or NETs,
associate with thrombin formation (i.e., prothrombin fragments F1+2), reduced AT activity, and
complement activation. The capacity of hantaviruses to induce NET formation through (32
signaling has been demonstrated to contribute to the disease immunopathology [67]. In addition,
cf-DNA associates with PTX3 in NE, probably explained by the opsonization and clearance of
apoptotic and necrotic cells [31]. NETosis is considered to be important in host defense through
the innate immune response, but also through procoagulant mechanisms. NETs support
histones and neutrophil DNA fragments in inducing coagulation activation during sepsis and
inflammation [70,74]. Histones recruit and activate platelets, while negatively charged DNA
provides an activated surface for coagulation factors to assemble. Furthermore, neutrophil
elastase released from NETs can inhibit the TF pathway inhibitor [72] and thrombomodulin,
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thus impairing the PC pathway [73]. In addition, reduced complement C3 levels, indicating
the alternative pathway activation of the complement system, associate with the loss of natural
anticoagulants, PC and PS free antigen, as well as with APTT. This refers to an ongoing
interaction between the activated complement and coagulation systems [14]. The main findings
regarding the activation of coagulation, endothelial cells, and the complement system are
summarized in Table 1.

Table 1. The main alterations in the laboratory markers of coagulation, endothelial cell activation, and complement system

in acute Puumala hantavirus infection.

Coagulation Markers Acute-Phase References
APTT Prolonged [12]
Prothrombin time Shortened [12]
Thrombin time Shortened [12]
Fibrinogen Increased [12,13]
F1+2 Increased [12]
D-dimer Increased [12]
Antithrombin activity Decreased [12]
Protein C activity Decreased [12]
Protein S free antigen Decreased [12]
Plasma PTX-3 Increased [31]
Plasma cf-DNA Increased [47]
tPA activity Increased [69,93,100]
PAI-1 Not altered [100,101]
Platelet Ligands and Markers of Endothelial Cell Activation Acute Phase References
vWF:Ag Increased [13]
vWEF:RCo Increased [13]
Fibronectin Decreased [13]
ADAMTSI13 activity Decreased [13]
Complement Activation Acute Phase References
SC5b-9 Increased [15,106]
C3 Decreased [15,106]

Abbreviations: APTT = activated partial thromboplastin time, F1+2 = prothrombin fragments, vVWF:Ag = von Willebrand factor antigen,
vWEF:Rco = von Willebrand factor ristocetin cofactor activity, ADAMTS13 = a disintegrin and metalloproteinase with a thrombospondin
type 1 domain 13, SC5b-9 = complement protein SC5b-9, C3 = complement protein C3, cf-DNA = cell free DNA, PTX-3 = pentraxin-3,
tPA = tissue plasminogen activator, PAI-1 = plasminogen activator inhibitor 1.

6. Conclusions

Current knowledge refers to multiple interactions between activated coagulation
and complement pathways during acute NE. NETosis also plays a role in this triangular
relationship. As reviewed above, these findings that are associated with the pathogenesis
of PUUYV infection are suggestive of immunothrombosis, with the potential to aid innate
immunity and host defense against pathogen invasion.
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