
Vol.:(0123456789)

SN Computer Science (2021) 2:342
https://doi.org/10.1007/s42979-021-00726-1

SN Computer Science

ORIGINAL RESEARCH

Towards Regulatory‑Compliant MLOps: Oravizio’s Journey
from a Machine Learning Experiment to a Deployed Certified Medical
Product

Tuomas Granlund1 · Vlad Stirbu2 · Tommi Mikkonen3

Received: 24 December 2020 / Accepted: 24 May 2021 / Published online: 19 June 2021
© The Author(s) 2021, corrected publication 2021

Abstract
Agile software development embraces change and manifests working software over comprehensive documentation and
responding to change over following a plan. The ability to continuously release software has enabled a development approach
where experimental features are put to use, and, if they stand the test of real use, they remain in production. Examples of such
features include machine learning (ML) models, which are usually pre-trained, but can still evolve in production. However,
many domains require more plan-driven approach to avoid hazard to environment and humans, and to mitigate risks in the
process. In this paper, we start by presenting continuous software engineering practices in a regulated context, and then
apply the results to the emerging practice of MLOps, or continuous delivery of ML features. Furthermore, as a practical
contribution, we present a case study regarding Oravizio, first CE-certified medical software for assessing the risks of joint
replacement surgeries. Towards the end of the paper, we also reflect the Oravizio experiences to MLOps in regulatory context.

Keywords Mlops · RegOps · Machine learning · Healthcare · Medical software

Introduction

Agile software development, which has rapidly become
mainstream, embraces change [1], as well as manifests
working software over comprehensive documentation and
responding to change over following a plan [2]. However,
there are many fields where a balance between plan-driven

and agile development is needed, to ensure that enough
attention is paid to practices such as risk management [3].
Such factors are essential for safety–critical, regulated
domains, including medical devices.

However, instead of considering balance between plan-
driven and agile development in terms of risks [4], it is often
perceived that fundamental contradictions exist between
agile software development and regulations. To some extent,
this is understandable, as regulatory bodies need time to
certify things, whereas software development is more and
more advancing towards continuous practices [5].

To further complicate the situation, applications that
incorporate artificial intelligence (AI) and machine learning
(ML) technologies are becoming popular due to their ability
to build complex prediction systems. However, the process
of continuous improvement is often complex and involves
changes in the following areas: the application code, the
model used for prediction, and the data used to develop the
model. This also introduces further challenges for testing,
verification, and validation [6], which in turn is affected by
regulations.

This article is part of the topical collection “Artificial Intelligence
for HealthCare” guest edited by Lydia Bouzar-Benlabiod, Stuart
H. Rubin and Edwige Pissaloux.

 * Tuomas Granlund
 tuomas.granlund@solita.fi

 Vlad Stirbu
 vlad.stirbu@compliancepal.eu

 Tommi Mikkonen
 tommi.mikkonen@helsinki.fi

1 Solita, Tampere, Finland
2 CompliancePal, Tampere, Finland
3 University of Helsinki, Helsinki, Finland

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/479169585?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0003-3955-0926
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00726-1&domain=pdf

 SN Computer Science (2021) 2:342342 Page 2 of 14

SN Computer Science

Despite the popularity of machine learning medical appli-
cations in the public and scientific space, these approaches
suffer from limitations when considering their release as
medical products. For instance, a recent survey on using
ML on medical imaging [7] points out that the majority of
the included papers failed to present the necessary data that
are needed for reproducing the study itself, which is far less
demanding than passing conformity assessment process.
Furthermore, regulatory bodies do not, in general, provide
guidelines how to fulfill their requirements in the context of
ML, but only approve or fail the product, based on data that
the applicant provides. As this process is expensive, and
to a large degree non-transparent, there are few studies on
how to meet regulatory requirements in ML context, apart
from reports from regulatory bodies (e.g., [8]) or case stud-
ies from device manufacturers.

In this paper, we first introduce continuous software
engineering practices, and then extend these practices to
the emerging concept of MLOps, or continuous delivery
of ML features to operations. Then, we consider MLOps
in the light of regulations and the development of regula-
tory-compliant medical systems. As a hands-on contribu-
tion-related to MLOps, we present a case study regarding
Oravizio,1 world’s first CE-certified medical software for
assessing the risks of joint replacement surgeries. The focus
of the case study is on ML features and their inclusion under
the umbrella of regulatory requirements and implications.
Our paper contribution is twofold: first, we introduce the
methodology in which we mapped the state of the art in
MLOps pipelines to the development practices employed in
the Oravizio application, to identify the gaps in regulatory
practice, then we presented the corrective actions taken to
enhance the maturity of existing pipelines to an appropriate
level under the new MDR regulatory framework. Although
the investigation and the corrective actions reflect, to a
large degree, the particularities of the environment in which
Oravizio was developed, the same procedure can be used
in similar constrained environments where organizational,
legal, or data ownership limitations prevent the use of full-
fledged MLOps pipelines.

The paper is organized as follows. In Section “Towards
MLOps”, we provide the necessary background of the paper,
by introducing the path from agile software development to
continuous delivery and further to MLOps. Then, in Sec-
tion “Regulatory Constraints for Medical ML systems”,
we consider the implications of regulatory constraints on
MLOps. In Section “Case Study: Oravizio”, we present the
technical design of the case system. In Section “Discussion,
we list key observations based on the case study and discuss

the validity of the research. In Section “Conclusions”, we
draw the final conclusions.

Towards MLOps

The concept of agile software development has been evolv-
ing for over 2 decades. While the origins of the approach
manifest the value of people over the value of tools [2],
today at the center of agile development is a toolset that
allows delivering as soon as new features are available [5].
The goal of continuous deployment is to enable continuous
flow of value-adding software artifacts from the develop-
ment to the actual production use with a quality assurance.
A closely related concept, the DevOps approach [9, 10], can
be described as a set of practices whose goal is to shorten the
commit feedback cycle without compromising quality [11].
A continuous delivery pipeline, required to deploy software,
consists of a set of tools that support the process, from code
to delivery. These tools ensure that each stakeholder gets a
timely access to what they need.

Machine Learning Lifecycle Challenges

Building on the success of continuous software development
approaches [5, 12], in particular DevOps [13], it has become
desirable to deploy machine learning (ML) components in
real time, too. To this end, MLOps refers advocating auto-
mation and monitoring at all steps of ML system develop-
ment and deployment, including integration, testing, releas-
ing, deployment, and infrastructure management.

To understand the challenges related to MLOps, let us
first explain the steps necessary to train and deploy ML mod-
ules [14]. As the starting point, data must be available for
training. There are various somewhat established ways of
dividing the data to training, testing, and cross-validation
sets. Then, an ML model has to be selected, together with its
hyperparameters. Next, the model is trained with the train-
ing data. During the training phase, the system is iteratively
adjusted so that the output has a good match with the “right
answers” in the training material. This trained model can
also be validated with different data. If this validation is
successful—with any criteria we decide to use—the model
is ready for deployment, similarly to any other component.
Once deployed, ML-related features need monitoring, like
any other feature. However, monitoring in the context of ML
must take into account inherent ML-related features, such
as biases and drift that may emerge over time. In addition,
there are techniques that allow improving the model on the
fly, while it is being used. Therefore, the monitoring system
must take these needs into account.

Based on the above, continuous deployment of ML fea-
tures is often a complex procedure that involves changes in 1 https:// oraviz. io/.

https://oraviz.io/

SN Computer Science (2021) 2:342 Page 3 of 14 342

SN Computer Science

the following areas: the application code, the model used for
prediction, and the data used to develop the model. Often,
these areas are handled separately by software developers,
data scientists, and data engineers that rely on different skill
sets and tool chains. For example, data engineers are focused
on making the data more accessible, data scientists perform
experiments for improving the data model, and the develop-
ers are worried about integrating the various technologies
and releasing them to production (see Fig. 1). The lack of
harmonized processes across these domains leads to delays
and frictions, such as models never reaching production or
deployments that are difficult to update or debug. Due to
this variability, machine learning applications are more com-
plex than traditional applications. These characteristics make
them harder to test, explain, or improve.

General Purpose MLOps Pipelines

Continuous Delivery for Machine Learning (CD4ML) [15]
is an approach formalized by ThoughtWorks for automating
in an end-to-end fashion the lifecycle of machine learning
applications. In CD4ML, a cross-functional team produces
machine learning applications based on code, data, and mod-
els in small and safe increments that can be reproduced and
reliably released at any time, in short adaptation cycles. The
approach contains three distinct steps: identify and prepare
the data for training, experimenting with different models to
find the best performing candidate, and deploying and using
the selected model in production. This is illustrated in Fig. 2.

The first step has the goal of making the data discover-
able and accessible. It consists of collecting relevant data
from different internal and external sources, transforming
and exposing it in a format that is used by the data scientists
to train the model. The data pipeline codifies the directed

acyclic graph that contains the sources, the destinations, and
the transformations performed on the data. As the source
data used in this step can be very large, it is not practical to
check it in version control. Instead, metadata that conveys
the location, ranges, and other parameters that determine
the shape of the data source used for training. Over time,
the data can evolve over two axes: data schema or sampling
frequency. Storing the pipeline, the source data metadata,
and the code that performs the transformations is an effective
data provenance mechanism.

The next step is to train model candidates based on the
data collected in the previous step. The input data are split
into training and validation data. The training data are
used to evaluate combinations of algorithms that produce
a model. The model is evaluated against the validation set
to assess its quality. This process is codified as the machine
learning pipeline. During development, the pipeline can
change frequently and is difficult to reproduce the process
outside the local environment without the assistance of spe-
cialized tools like Data Science Version Control (DVC)2 or
Pachyderm.3 These tools provide git-like functionality that
keeps track of data and code used in experiments, allowing
execution on other environments. As most experiments do
not yield good results, it is critical to preserve all data, meta-
data, metrics, and the code that captures how the experiment
was conducted. This record supports the decision process
for promoting a particular model to production. Tools like
MLFlow Tracking4 are designed to support this process.

Fig. 1 Functional silos barriers when developing ML applications

2 https:// dvc. org/.
3 https:// www. pachy derm. com.
4 https:// mlflow. org/ docs/ latest/ track ing. htm.

https://dvc.org/
https://www.pachyderm.com
https://mlflow.org/docs/latest/tracking.htm

 SN Computer Science (2021) 2:342342 Page 4 of 14

SN Computer Science

The final step is to deliver the model into the production
environment using a deployment pipeline. The process con-
sists of testing the model selected for production, packaging
in the format suitable for production, followed by deploy-
ment. The deployment can follow one of the following pat-
terns: include in the application code as normal dependency,
run it as standalone service, or deploy at runtime as data.
A special case of deployment is online learning, where the
models constantly learn in production. Versioning the model
as static artifact will not yield the same results as they are fed
different data. Once in production, continuous monitoring
ensures that the model behaves as expected, and anomalies
are detected and handled properly. The feedback loop allows
the model to be improved over time using observations from
production environment. The “locked” boundary and the
special understanding of monitoring from a regulatory per-
spective are addressed in more details in Sect. 3.2.

CD4ML is not the only solution that aims to prevent the
accumulation of hidden technical dept in machine learning
applications [16]. While other solutions are heavily opti-
mized for a particular cloud infrastructure [17, 18], or an
ML software stack implementation [19], the CD4ML model
has the advantage that it can be used as a reference model in
any application domain. Furthermore, it has the necessary
phases documented at the appropriate level, and the imple-
mentation is based on open source components. These quali-
ties enabled us to effectively identify the following new parts
of the delivery pipeline that need to be considered from a
regulatory software development lifecycle perspective, to be
able to continuously deliver ML components to production:

• model and its versioning,
• different data sets used for training model and their ver-

sioning,

Fig. 2 CD4ML pipelines and artifacts

SN Computer Science (2021) 2:342 Page 5 of 14 342

SN Computer Science

• monitoring the output of the model to detect bias and
other problems.

In addition, parts relying on ML need to go through the
same tests and staging process as any new software features.
This part of the process will be largely overlooked in this
paper, where we focus on new parts of the pipeline in a
regulated context.

Regulatory Constraints for Medical ML
systems

Previous work has shown that the relationship between regu-
latory actions and continuous deployment is not straightfor-
ward [20–22]. On one hand, risk management is easily over-
looked in the process of continuously changing software that
is automatically deployed. On the other hand, the delivery
pipeline—a key component in continuous deployment—can
act as an element that brings rigor to the development, thus
supporting regulatory activities.

Extending regulatory actions of DevOps to include
model-related parts of MLOps looks easy on the surface.
After all, all that is added in the regulatory process is the ML
model and its training and monitoring. However, as Fursin
et al. [23] pointed out, finding the relevant code and training
models is only the tip of the MLOps iceberg. Therefore, it is
not enough to consider models from the regulatory perspec-
tive, but instead, considering the whole is necessary. This,
in turn, adds the complexity of regulatory actions compared
to considering regulative requirements in the DevOps con-
text. The new parts—the models, training data sets, and bias
detection—must be added under the regulatory umbrella to
create regulatory-compliant medical ML systems.

Regulatory Landscape

The new revision of the EU legislation for medical devices
is being implemented with two new regulations, Regulation
(EU) 2017/745 on medical devices (MDR) [24] and Regula-
tion (EU) 2017/746 on in vitro diagnostic medical devices
(IVDR) [25]. Regulation is a legal instrument in the EU
legislation system that will enter into force directly in all
Member States, aiming to harmonize the national adoptions’
differences. However, it is also possible to supplement EU
regulations with national laws.

The regulatory framework can be interpreted to consist
of several layers, including the following:

• Union harmonized legislation (i.e., regulations and direc-
tives),

• National legislation,
• Harmonized standards,

• Guidelines.

A vital feature of the regulatory framework is to limit
legislative harmonization to the essential, product-related
requirements [26]. The nature of the essential requirements
is that they address the fundamental requirements of public
interest, which are generally dealing with health and safety
protection. They do not specify precise technical solu-
tions, only required outcomes and the hazards that need to
be addressed. It should be noted, however, that MDR and
IVDR are relatively detailed documents. In the context of
medical devices, safety and state-of-the-art clinical perfor-
mance are the most critical features. For this reason, they
are enforced in the annexes of MDR and IVDR: Annex I is
titled as “General safety and performance requirements” and
Annex II “Technical documentation.”

Medical device manufacturers can use harmonized stand-
ards to demonstrate conformity. The use is voluntary, but it
is highly recommended as it provides a preassumption of
conformity to those essential requirements that the standard
aims to cover. Furthermore, international standards are a
readymade and effective tool to address the requirements
and are generally expected by the regulatory authorities.
The suitable set of harmonized standards to be used must be
selected based on the identified applicable essential require-
ments. Currently, there are no harmonized standards under
the MDR or IVDR. As a result, there is a unique challenge
for manufacturers on how to demonstrate conformity.

The EU Commission provides guidance documents to
help manufacturers and stakeholders implement the regula-
tory requirements. These guidance documents are adopted
by the Medical Device Coordination Group (MDCG) that
was created by the Commission to ensure a harmonized
implementation of MDR and IVDR in the Member States.
The MDCG guidance documents are usually developed in
active conjunction with the industry stakeholders. While the
guidances are not legally binding, they provide advice and
support for the manufacturers and, at the same time, con-
tribute to the expectation level of the regulatory authorities.

All of the layers mentioned above provide a general
framework for medical device development. They also leave
the responsibility to tailor the exact details of the develop-
ment process for the manufacturers.

Regulatory Considerations for AI/ML

The two new Regulations seek to remedy certain shortcom-
ings of the previous legislation and, as a result, introduce
particular new concepts regarding, for example, scientific
innovations and emerging manufacturing technologies.
Against this background, it is surprising to see that AI/ML
is not among them. However, the subject will be addressed
in the future by MDCG as there is ongoing guidance

 SN Computer Science (2021) 2:342342 Page 6 of 14

SN Computer Science

development with the title “Artificial Intelligence under
MDR/IVDR framework” [27].

As discussed earlier, there are currently no harmonized
standards under the new regulatory framework. Nonetheless,
the EU commission’s recent standardization request [28] can
be used as a source of information to get an insight into the
expectations of regulatory authorities related to applicable
standards. The use of a standard from the harmonization
request list is easily justified. Therefore, the list of applicable
standards can be used to define precise regulatory require-
ments based on the device type. As the standardization
request list does not contain specific AI/ML device-related
standards that would be generally available, the set of stand-
ards commonly used in medical device software develop-
ment is applicable also in the AI/ML context.

Medical device manufacturers are expected to demon-
strate the clinical benefits of their products to a sufficient
degree. The device’s technical file must include a descrip-
tion of the technology used and adequate safety and perfor-
mance evidence. While an ML-based system can be a potent
tool to utilize existing healthcare data to create new insights
for the patients’ benefit, the ML model can be relatively
complex and challenging to understand in full. Therefore,
the manufacturers should pay special attention to the level
of explicability and, in particular, to transparency of their
ML solutions to enable clinical validation. Furthermore, as
the clinical evaluation is an ongoing process throughout the
lifecycle of a medical device, the post-market surveillance
activities must be planned to monitor the device’s clinical
performance.

One key feature of a specific ML system is the ability
to learn, adapt, and optimize operations in real-time. The
ability to improve by learning from data while perform-
ing the critical operation may be the most valuable asset
of ML technology. However, this raises the question of the
ML system’s autonomous operation in relation to the safety
and clinical performance in the medical device domain. As
a result, the regulatory authorities have traditionally pro-
moted the approach of “locked” algorithms [8, 29], where
the system is designed, so that it is being trained during the
development phase, and the ability to improve is disabled
in real-world use. The study by Feng et al. investigated the
problem of “locked” algorithms in the regulated medical
space and proposed different policies for regulating modi-
fications to AI/ML-based medical software systems [30].
Although the study was motivated by the FDA’s proposed
approach introduced in their discussion paper [8], the regula-
tory authorities have not yet adopted these proposals.

The limitations listed above can be mapped to the
MLOps pipelines as policies. Although the general pur-
pose pipeline has the ability to deliver re-trained models
throughout the entire application lifecycle in a continu-
ous fashion, the models are “locked” after the packaging

state, while the monitoring phase is limited only for assist-
ing the post-market regulatory activities. As this setup
reflects only the current regulatory practice, the policy
can be revised when the practice evolves as the “locked”
algorithm limitation is not technical by nature. We can
envision that, as the practice of using ML technology in
medical products becomes more mature, we will be able to
change the restrictions encoded by this policy and enable a
more dynamic model update behavior in production.

Risk Management for ML in Medical Applications

Algorithms are an essential ingredient of machine learn-
ing. The risks inherent to algorithm design propagate
to medical machine learning applications due to their
increased complexity, lack of transparency, inappropri-
ate use, or weak governance. According to Krishna et al.
[31], algorithmic risk can be split into three categories:
input data, algorithm design, and output decisions. Flaws
in input data can lead to mismatches between the data
used for training and the data used during normal use.
Output decision flaws relate to incorrect interpretation or
use of the output. Algorithm design flaws cover technical
flaws, such as the lack of technical rigor or conceptual
soundness during development, training, testing, and vali-
dation, as well as human biases, such as cognitive biases
of model developers and users which can lead to flawed
output. Moreover, usage flaws—incorrect implementation
or integration in operations can lead to inappropriate deci-
sion-making, or security flaws. Inappropriate considera-
tion of these ML-related risks can have a dramatic impact
on the effectiveness of medical products, considering their
“locked” algorithmic state. For example, slight changes
in patient demographics can render a product ineffec-
tive when deploying in a different geographic area, as the
training data is different than the usage data. Similarly, a
product may be considered ineffective, if similar patients
are not treated similarly, due to the algorithm instabil-
ity. The similar inputs/similar outputs over same inputs/
same outputs approach [32] can be encoded into tests and
enforced in an automatic fashion by MLOps pipelines dur-
ing development.

As new machine learning techniques are so opaque, it
is hard to understand how they operate. Industry groups
[33] and academia recognized the challenges associated
with machine learning trustworthiness. Their proposals to
improve trustworthiness include metrics like interpretabil-
ity (degree to which a human can understand the cause of
a decision [34]) and explainability (the degree to which a
human understands the behavior of a system [35]), or intro-
duce frameworks that allow to explain machine learning
models as black [36, 37] or white boxes [38]. The intended

SN Computer Science (2021) 2:342 Page 7 of 14 342

SN Computer Science

purpose, the associated Quality Management System, and
the automated pipelines following DevOps practices pro-
vide a solid foundation for handling in a consistent way the
design control and risk management activities related to
machine learning. Practical experience is needed to evalu-
ate how medical manufacturers can digest these concepts.

Case Study: Oravizio

Oravizio is a medical device software product that employs
machine learning technologies to provide decision sup-
port for the orthopedic specialist for patient-specific joint
replacement surgery risk evaluation. Started as a preliminary
study, the development continued with a research phase for
the development of the ML models, and a productization
phase that resulted in the release of the first product ver-
sion. The imminent MDR coming into force triggered an
analysis of the development process. The aim was to identify
potential opportunities to improve in the current practice to
be utilized in the development of next product iterations,
see Fig. 3.

In this section, we describe first the methodology we have
used in this case study. Then, we provide a brief descrip-
tion of the application domain. We continue with a detailed
description of the development processes used during the
research and software development phases, and conclude
with the regulatory gap analysis.

Methodology Considerations: Postmortem
Investigation

One of the DevOps culture’s main drivers is that “you should
run what you build” [39]. With this model, a development
team with access to all aspects of the product development
lifecycle has more autonomy. This means making informed
local decisions, working with increased transparency, having
visibility to tools and processes, and ultimately designing the
software with production in mind, since every increment is

deployable. However, there are often hard administrative and
organizational barriers in regulated environments that make
it difficult to always run what is being built. Therefore, the
faults along the organizational boundaries separate the teams
on either side as they develop, test, and validate different
parts of the software system, often using non-harmonized
processes.

Our investigation focuses on identifying the rifts in the
development process lifecycle from the regulatory perspec-
tive. For this purpose, we use post-mortem, a DevOps disci-
pline used typically during incident response, to investigate
the root cause of a defect in a software system and identify
the corrective actions and draw the lessons learned, so that
such incidents do not happen again. The investigation draws
some similarities with the agile retrospective, as we seek to
identify areas of improvements. However, it is not performed
by the development team, and its focus is on longer term
improvements and on establishing best practices.

The post-mortem investigation was performed after the
team delivered the first iteration of the software system, e.g.,
Oravizio 1.0 release. The investigation aims to document
how the software system was developed currently by the
different teams involved and identify the regulatory gaps in
the software development lifecycle that would be blockers
when transitioning to the new MDR. The investigation find-
ings are to be used for developing new iterations of Oravizio,
and serve as input when planning new regulated products.

Oravizio: An overview

Oravizio5 is a medical device software product that provides
data-driven information about patient-level risks related to
hip (total hip arthroplasty, THA) and knee joint (total knee
arthroplasty, TKA) replacement surgery. Even though THA
and TKA are highly effective surgical procedures with a high
success rate, they involve a certain risk of adverse events.

Fig. 3 Oravizio 1.0 development timeline

5 https:// oraviz. io/

https://oraviz.io/

 SN Computer Science (2021) 2:342342 Page 8 of 14

SN Computer Science

The most common adverse events after THA and TKA sur-
gery include re-operations, prosthetic joint infection, and
other serious medical complications that can lead to death.
However, a successful operation can dramatically improve
the patient’s quality of life and reduce society’s costs.

In its current form, Oravizio provides three different dedi-
cated prediction models:

• Risk of infection within 1 year from surgery.
• Risk of revision within 2 years from surgery.
• Risk of death within 2 years from surgery.

Oravizio aims to help the surgeon collaborate and
negotiate with a patient to make informed decisions when
assessing the patient’s eligibility for surgery. Such a shared
decision-making process is recognized to be a vital part of
modern medicine. Oravizio provides both the patient-spe-
cific risks and the surgery’s expected outcomes in a fashion
that is understandable to the patient. As people are generally
not good at understanding risks and probabilities, it is essen-
tial to present the surgery’s risks and expected outcomes
understandably to help the layman understand their practical
meaning. Furthermore, the amount of patient history data
behind Oravizio’s risk calculation model is so vast that it
would be impossible for a surgeon to process it manually
during a patient appointment. The risk calculation algo-
rithms combine manually submitted patient-specific data
with comprehensive patient history data.

Oravizio 1.0 Development

Oravizio 1.0 was developed in close collaboration with a
hospital that is specialized in joint replacement surgery
and Solita, a European software company headquartered
in Finland. The clinical partner hospital had accumulated a
large volume of data from surgeries for more than 10 years.
The development of Oravizio was based on the vision that
this data asset might include factors that indicate risks for
joint replacement surgeries down to an individual patient’s
level. The preliminary study was carried out to validate the
preconceptions.

Data consolidation and pre-processing During the
development of Oravizio 1.0, the data included over 30,000
patient records. However, the data were not well organized—
it was stored in various formats and computer systems, some
of which had already been retired. As a result, consolidation
and pre-processing were a considerable task. The first task
was to consolidate the relevant data into a data lake. Second,
the data needed to be pre-processed to determine its quality
and ensure its uniformity and future utility.

Selection of variables The prepared data included over
750 pre-operation variables from 2008 onwards. The varia-
bles included, for example, general information (age, gender,

BMI), medication, laboratory values, diagnoses, patient-
reported information, and derivate variables. The clinical
partner’s clinical know-how was used during the research,
combined with research literature and computational meth-
ods, to decide the variables to be further analyzed by data
scientists. The well-documented linking between particular
variables and risks in joint replacement surgery was used as
a baseline for the selection.

The goal was to select a relatively limited set of relevant
variables with a significant impact on the calculation. The
modest set of input variables ensures that the finished prod-
uct is practical to use, and the impact of individual risk fac-
tors can be illustrated in an easily understandable way. In the
analysis, computational methods LASSO, Ridge regression,
and Elastic net were used to select the most suitable param-
eters for the models.

Building and testing the machine learning algorithms
Several mathematical methods were considered during the
research. The aim was to create an explanatory machine
learning model for each risk to enable validation and ensure
regulatory compliance. It should be noted that the relations
between the risk in joint replacement surgery and selected
explanatory values were mostly known from clinical litera-
ture. The following methods were tested for building the
risk models:

• Logistic regression.
• Decision tree-based methods (Random forest).
• Gradient boosting methods (XGBoost [40]).
• Weibull/Cox survival mode.

During the development, data from years 2008–2015
were used for training, and data from years 2016 to 2018
were used for testing. The performance was estimated with
AUC values and ROC curves [41]. Based on the results,
gradient boosting with XGBoost produced the best perfor-
mance. As a result, XGBoost was selected, and the final
model for the product was built accordingly. The model is
deterministic by nature. Therefore, it can be validated with
test data in a test environment without the need to do the
validation in the final production environment. To address
the earlier discussed medical device regulatory constraint
related to self-adaptation, Oravizio was designed to be
deployed in a production environment with its ML model in
a “locked” state. In practice, Oravizio’s models are trained
during the development phase, and their ability to improve
the outcome on the fly is disabled in production use for regu-
latory reasons.

Software development process Solita’s process for design-
ing and developing medical device software is well estab-
lished and supported by an ISO 13,485 certified quality
management system. The process is an implementation of
an agile development process, utilizing ideas, tools, and best

SN Computer Science (2021) 2:342 Page 9 of 14 342

SN Computer Science

practices from several different agile methods. The process
complies with the applicable regulation and international
standards, namely IEC 62304, ISO 14971, and IEC 62366-1.
The process is presented in Fig. 4.

In the process, the development tasks are divided into two
nested cycles: the inner cycle for daily development tasks
carried out in short iterations and the outer cycle for a formal
execution of regulatory tasks needed for the final approval
of the software release. With this approach, different level

tasks can be assigned to persons according to their role
and competence requirements, and they can be completed
asynchronously.

Design and development requirements, i.e., design inputs,
are reviewed at the release level. Once accepted, design
inputs are transferred to the development cycle for further
analysis and architectural design. Architecture design is veri-
fied against the requirements and the detailed unit design.
After the implementation is done based on the accepted

Fig. 4 Solita regulatory-compliant development process. For simplicity, risk management and usability engineering concepts are left out from
the figure

 SN Computer Science (2021) 2:342342 Page 10 of 14

SN Computer Science

design, it is verified with the review and automated integra-
tion and system testing.

When all requirements have been implemented within
the needed number of development iterations, the work can
be transferred to the release cycle. In the release cycle, the
software release is authorized through formal final testing,
verification, review, and validation stages. Simultaneously,
as the release tasks are performed, development work can
continue in the development cycle with the requirements of
the next release.

As a result of the regulatory requirements, the medical
product, consisting of the ML models and application code,
can only be accepted for deployment by authorized persons
within the controlled design and development output review
and validation processes. A release decision implies com-
pleteness of risk management activities, and therefore, risk
managers and compliance officers are typically involved.

Development Process Gap Analysis

While Solita’s medical device software development pro-
cess can be considered state of the art, the same assessment
does not apply to the ML development process used during
Oravizio 1.0 development. ML development was based on
a manual process: the steps of data consolidation, data pre-
processing, datalake creation, variable selection, ML method
selection, model training, and validation were all done man-
ually, at least to some degree. There were no automatic CI or
CD pipelines. Some process steps that were executed repeat-
edly were automated with shell scripts; however, the scripts
were executed in local development machines.

The main reason for the level of manual work in the ML
development process is that the ML development was done
within a scientific research project, and the decision to pro-
ceed to commercial software product development was made
only during the project. Furthermore, the research project
was performed on the premises of the clinical partner hos-
pital. As the use of patient records is strictly regulated, the
hospital’s computational environment is tightly restricted
and isolated. In practice, only a few selected and accred-
ited data scientists had access to a restricted environment.
In contrast, the rest of the development team, including
software developers and risk managers, worked in Solita’s
environment. The fact that the product development work
was divided into two different organizations’ environments
can be seen as a challenge for utilizing routine DevOps and
MLOps practices.

To mitigate the challenge, all development artifacts,
including the scripts that were used to create ML models,
were stored in a mutually shared version control system
(VCS). However, as the trained model exists as a binary
file, the model handover from data scientists to software
developers was done through a network drive. Even though

the process included an element of disconnection between
data scientists and software developers to a certain extent,
the development team did not consider this as a problem due
to the small team size and close cooperation.

By design, the production use of Oravizio does not gen-
erate data that could be used for re-training. Instead, the
needed data are generated in other clinical processes of a
hospital. Due to the ML development environment’s restric-
tive nature, frequent changes or re-trainings to the ML mod-
els were not anticipated.

However, the second iteration re-training with 45,000
patient records improved models’ performance to a certain
extent. As a result, the benefits of model re-training became
evident.

Although active quality monitoring of the “locked” model
performance in production might not be essential in all sets
of conditions, it is a vital activity in the medical device
domain due to the regulatory framework’s post-market
surveillance requirements. Therefore, this capability was
already implemented in the system in the first iteration to
monitor systems’ clinical performance specifically.

Discussion

Designing Oravizio has given us much insight into the devel-
opment of medical software where ML is involved. Below,
we summarize the key lessons learned in the process, fol-
lowed by a discussion regarding the limitations of this work.

Lessons Learned

From experimentation to production Numerous AI projects
start with a feasibility study and data analysis to understand
if it is possible to solve the problems with ML [42]. It is
vital to be able to be agile during the data science and ML
research phase—after all, there is always a certain level of
uncertainty involved in the research, and the end result is
usually achieved through trial and error. However, it is also
reasonable to be prepared for the situation where the experi-
ment succeeds. In practice, it is recommended that there
is a clear understanding of arranging and automating the
re-learning, re-building, revalidation, and re-deployment of
the model. Also, experimentation with new and improved
methods should be considered. Ideally, these aspects are
implemented already in the research phase using practices
and tools familiar from MLOps. Immediate benefits are
possible as automation potentially reduces the amount of
manual work instantly.

Regulatory compliance In comparison to ML projects
from non-regulated settings, there were some particular
features and challenges in Oravizio development. When

SN Computer Science (2021) 2:342 Page 11 of 14 342

SN Computer Science

developing a medical device product, it is essential to clearly
understand applicable regulatory requirements and deter-
mine a regulatory strategy accordingly from the beginning
of the project. In practice, the regulatory strategy was imple-
mented by choosing an explainable and deterministic ML
model that is deployed to production in a “locked” state.
This strategy enables easily verifiable regulatory compliance
and validation of the end product. The unique challenge in
the Oravizio project was the severely restricted access to the
data used in model development.

Continuous training Based on our practical example,
MLOps automation goals are achievable, and the addressed

regulatory challenges solvable by implementing the con-
tinuous training pipeline presented in Fig. 5. The pipeline’s
design builds on the general solution illustrated in Fig. 2
and addresses specific regulatory constraints identified in
the case study. As discussed previously, the data that can
be used to re-train the model are not collected in Oravizio’s
computational environment—only an anonymized audit trail
is generated. However, it is possible to design the continuous
training pipeline to operate inside the clinical partner’s con-
trolled environment and fetch new data from the data lake
based on pre-defined triggers. The automated continuous

Fig. 5 Continuous training pipeline, with arrows indicating data flows

 SN Computer Science (2021) 2:342342 Page 12 of 14

SN Computer Science

training pipeline design includes specific new steps that were
not present in the first development iteration.

The data validation step ensures that the input data are as
expected by checking data validity against the pre-defined
data schema and value limits. In the unlikely event that data
anomalies are found during the data validation, the pipe-
line’s execution is terminated for manual resolution. It is
worth noticing that the manual resolution is the only process
step where data engineers’ and data scientists’ involvement
is needed once the continuous training pipeline operates
automatically.

After re-training and building, the new model is verified
with a subset of the data reserved only for testing. The per-
formance metrics are compared to the previously accepted
model’s values, and the validation report is generated auto-
matically with relevant metrics and performance graphs.
This practice of continuous re-verification is well aligned
with the approach of continuous risk-monitoring, as sug-
gested by Babic et al. [32].

Once the model is packaged, and the validation report
generated, these artifacts can be automatically delivered
from the isolated and restricted environment to the devel-
opment team in another organization. The development team
integrates the model into the software system.

With the continuous training pipeline approach pre-
sented above, the development team does not need access
to the restricted environment beyond the continuous train-
ing pipeline’s installation and maintenance. The validation
report, generated by the pipeline, can be used in validating
the re-trained model to address the regulatory requirements
related to clinical performance validation. Furthermore, the
automated pipeline enables fairly effortless initial ML model
development in new clinical setups and different health care
environments.

Limitations

Oravizio was designed and implemented before the concept
of MLOps had emerged. However, its design goals were
mainly similar to MLOps characteristics in a regulatory con-
text, simply because this seemed the most straightforward
way to realize the system. Hence, considering Oravizio in
the light of regulated MLOps can be considered justifiable,
although it is admitted that there are also some apparent
mismatches. These mismatches, however, are not related to
technical implementation but the organizational setup and
data ownership. Improved understanding of such practicali-
ties forms a direction for future work.

There are some validity-related aspects that are associ-
ated with the case study. A clear threat to the validity of
any single case study is that it is questionable to what extent
empirical evidence can be relied on or generalized. In this
particular case, the data are from an ongoing project that

has been running in production for several years now. The
involved organizations have invested much attention in
ensuring the regulatory compliance of the implementation
and related processes. The contents have been checked by
the team working on Oravizio for accuracy to mitigate risks
related to misconceptions with respect to the process and
implementation. Finally, it can be questioned if the case
study setup is typical, as the operation is run in collabora-
tion with a hospital and a private company. However, since
the body of knowledge in the literature on how to handle
possible biases is limited, we have little means to mitigate
these threats.

Conclusions

Continuous software engineering has become commonplace
in numerous contexts. The emerging practice of MLOps
takes this one step further, also enabling continuous delivery
of ML features. However, such continuous practices are not
immediately compatible with regulatory requirements that
may need authority involvement.

In this paper, we have presented a case study on deploying
ML components to production in the medical context. Based
on the case study, we pinpointed what parts of MLOps were
not immediately compatible with the domain. In addition,
we identified additional challenges that do not originate
from technology but the organizational setup, which also
affects on how MLOps can be implemented. In particular,
this is related to the availability of training and testing data.
In the future, we are studying opportunities to streamline
further the deployment pipeline in the case study, based on
the results of the paper.

Acknowledgements The authors would like to thank Business Finland
and the members of the AHMED (Agile and Holistic MEdical software
Development) consortium for their contribution in preparing this paper.

Declarations

Conflict of Interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

http://creativecommons.org/licenses/by/4.0/

SN Computer Science (2021) 2:342 Page 13 of 14 342

SN Computer Science

References

 1. Beck K. Embracing change with extreme programming. Com-
puter. 1999;32(10):70–7.

 2. Beck K, Beedle M, Van Bennekum A, Cockburn A, Cunningham
W, Fowler M, Grenning J, Highsmith J, Hunt, A Jeffries R, et al.
Manifesto for agile software development. 2001. https:// agile
manif esto. org/. Accessed 21 Dec 21 2020.

 3. Mc Hugh M, Cawley O, McCaffcry F, Richardson I, Wang Z.
An agile v-model for medical device software development to
overcome the challenges with plan-driven software development
lifecycles. In: 2013 5th International Workshop on software engi-
neering in health care (SEHC), pp. 12–19. IEEE, 2013.

 4. Boehm B, Turner R. Using risk to balance agile and plan-driven
methods. Computer. 2003;36(6):57–66.

 5. Fitzgerald B, Stol K-J. Continuous software engineering: a road-
map and agenda. J Syst Softw. 2017;123:176–89.

 6. Braiek HB, Khomh F. On testing machine learning programs. J
Syst Softw. 2020;164:110542.

 7. Roberts M, Driggs D, Thorpe M, Gilbey J, Yeung M, Ursprung
S, Aviles-Rivero AI, Etmann C, McCague C, Beer L, et al. Com-
mon pitfalls and recommendations for using machine learning to
detect and prognosticate for covid-19 using chest radiographs and
ct scans. Nat Mach Intell. 2021;3(3):199–217.

 8. FDA. Proposed regulatory framework for modifications to arti-
ficial intelligence/machine learning (ai/ml)-based software as a
medical device (samd) - discussion paper and request for feed-
back., 2019. https:// www. fda. gov/ media/ 122535/ downl oad.
Accessed 14 Mar 2021.

 9. Debois P. Devops: a software revolution in the making. Cutter IT
J. 2011;24(8):3–9.

 10. Rajkumar M, Pole AK, Adige VS, Mahanta P. Devops culture and
its impact on cloud delivery and software development. In: 2016
International Conference on Advances in computing, communica-
tion, & automation (ICACCA)(Spring), pages 1–6. IEEE, 2016.

 11. Bass L, Weber I, Zhu L. DevOps: A software architect’s perspec-
tive. Addison-Wesley Professional; 2015.

 12. Fitzgerald B, Stol K-J. Continuous software engineering and
beyond: trends and challenges. In: Proceedings of the 1st Inter-
national Workshop on rapid continuous software engineering, pp.
1–9, 2014.

 13. Lwakatare LE, Kuvaja P, Oivo M. Dimensions of devops. In:
International Conference on agile software development, pp.
212–217. Springer, 2015.

 14. Mikkonen T, Nurminen JK, Raatikainen M, Fronza I, Mäkitalo N,
Männistö T. Is machine learning software just software: a main-
tainability view. In: Software quality days. Springer, 2021.

 15. Sato D, Wilder A, Windheuser C. Continuous delivery for
machine learning, Sept 2019. https:// marti nfowl er. com/ artic les/
cd4ml. html. Accessed 21 Dec 2020.

 16. Sculley D, Holt G, Golovin D, Davydov E, Phillips T, Ebner D,
Chaudhary V, Young M, Crespo J-F, Dennison D. Hidden tech-
nical debt in machine learning systems. In: Proceedings of the
28th International Conference on neural information processing
systems—Volume 2, NIPS’15, page 2503–2511, Cambridge, MA,
USA, 2015. MIT Press.

 17. AWS Solutions. AWS MLOps Framework. https:// docs. aws. ama-
zon. com/ solut ions/ latest/ aws- mlops- frame work/ welco me. html.
Accessed 14 Mar 2021.

 18. Google Cloud Solutions. Mlops: Continuous delivery and auto-
mation pipelines in machine learning. https:// cloud. google. com/
solut ions/ machi ne- learn ing/ mlops conti nuous- deliv ery- and- autom
ation- pipel ines- in- machi ne- learn ing. Accessed 14 Mar 2021.

 19. Baylor D, Breck E, Cheng H-T, Fiedel N, Foo CY, Haque Z,
Haykal S, Ispir M, Jain V, Koc L, Koo CY, Lew L, Mewald C,

Modi AN, Polyzotis N, Ramesh S, Roy S, Whang SE, Wicke M,
Wilkiewicz J, Zhang X, Zinkevich M. Tfx: a tensorflow-based
production-scale machine learning platform. In: Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’17, pp. 1387–1395, New York,
NY, USA, 2017. Association for Computing Machinery.

 20. Laukkarinen T, Kuusinen K, Mikkonen T. Devops in regulated
software development: case medical devices. In: 2017 IEEE/ACM
39th International Conference on software engineering: new ideas
and emerging technologies results track (ICSE-NIER), pp. 15–18.
IEEE, 2017.

 21. Laukkarinen T, Kuusinen K, Mikkonen T. Regulated software
meets devops. Inf Softw Technol. 2018;97:176–8.

 22. Lie MF, Sánchez-Gordón M, Colomo-Palacios R. Devops in an
iso 13485 regulated environment: a multivocal literature review.
In: Proceedings of the 14th ACM/IEEE International Symposium
on empirical software engineering and measurement (ESEM), pp.
1–11, 2020.

 23. Fursi G, Guillou H, Essaya Nn. Codereef: an open platform for
portable mlops, reusable automation actions and reproducible
benchmarking. arXiv preprint arXiv: 2001. 07935, 2020, 2020.

 24. European Parliament and the Council. Regulation (EU) 2017/745
on medical devices, 2017. https:// eur- lex. europa. eu/ legal- conte
nt/ EN/ TXT/? uri= CELEX: 02017 R0745 20200 424# tocId 168.
Accessed 21 Dec 2020.

 25. European Parliament and the Council. Regulation (EU) 2017/746
on in vitro diagnostic medical devices, 2017. https:// eur- lex.
europa. eu/ legal conte nt/ EN/ TXT/? uri= CELEX: 02017 R0746-
20170 505# tocId 157. Accessed 21 Dec 2020.

 26. European Commission. Commission notice – the ‘blue guide’ on
the implementation of eu products rules 2016. In: Official Journal
of the European Union, volume 59, 2016.

 27. Medical Device Coordination Group (MDCG). Ongoing guidance
development within MDCG Subgroups – October 2020. https://
ec. europa. eu/ health/ sites/ health/ files/ md sector/docs/mdcongoing
guidancedocs en.pdf. Accessed 21 Dec 2020.

 28. European Parliament and the Council. M/575 commission imple-
menting decision of 14.4.2021 on a standardisation request to the
european committee for standardization and the european commit-
tee for electrotechnical standardization as regards medical devices
in support of regulation (eu) 2017/745 of the european parliament
and of the council and in vitro diagnostic medical devices in sup-
port of regulation (eu) 2017/746 of the european parliament and
of the council, 2021. Retrieved: May 2021.

 29. Granlund T, Mikkonen T, Stirbu V. On medical device software
ce compliance and conformity assessment. In: 2020 IEEE Interna-
tional Conference on software architecture companion (ICSA-C),
pp. 185–191, 2020.

 30. Feng J, Emerson S, Simon N. Approval policies for modifications
to machine learning-based software as a medical device: a study
of bio-creep. Biometrics. 2020;77(1):31–44.

 31. Krishna D, Albison N, Chu Y. Managing algorithmic risks—Safe-
guarding the use of complex algorithms and machine learning. In:
Deloitte, 2017.

 32. Babic B, Gerke S, Evgeniou T, Cohen IG. Algorithms on regula-
tory lockdown in medicine. Science. 2019;366(6470):1202–4.

 33. High-Level Expert Group on Artificial Intelligence European
Commission. Ethics guidelines for trustworthy ai, 2019.

 34. Doshi-Velez F, Kim B. Towards a rigorous science of interpretable
machine learning, 2017.

 35. Bhatt U, Xiang, A Sharma S, Weller A, Taly A, Jia Y, Ghosh J,
Puri R, Moura JMF, Eckersley P. Explainable machine learning in
deployment. In: Proceedings of the 2020 Conference on Fairness,
Accountability, and Transparency, FAT* ’20, page 648–657, New
York, NY, USA, 2020. Association for Computing Machinery.

https://agilemanifesto.org/
https://agilemanifesto.org/
https://www.fda.gov/media/122535/download
https://martinfowler.com/articles/cd4ml.html
https://martinfowler.com/articles/cd4ml.html
https://docs.aws.amazon.com/solutions/latest/aws-mlops-framework/welcome.html
https://docs.aws.amazon.com/solutions/latest/aws-mlops-framework/welcome.html
https://cloud.google.com/solutions/machine-learning/mlopscontinuous-delivery-and-automation-pipelines-in-machine-learning
https://cloud.google.com/solutions/machine-learning/mlopscontinuous-delivery-and-automation-pipelines-in-machine-learning
https://cloud.google.com/solutions/machine-learning/mlopscontinuous-delivery-and-automation-pipelines-in-machine-learning
http://arxiv.org/abs/2001.07935
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02017R074520200424#tocId168
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02017R074520200424#tocId168
https://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=CELEX:02017R0746-20170505#tocId157
https://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=CELEX:02017R0746-20170505#tocId157
https://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=CELEX:02017R0746-20170505#tocId157
https://ec.europa.eu/health/sites/health/files/md
https://ec.europa.eu/health/sites/health/files/md

 SN Computer Science (2021) 2:342342 Page 14 of 14

SN Computer Science

 36. Guidotti R, Monreale A, Ruggieri S, Turini F, Giannotti F,
Pedreschi D. A survey of methods for explaining black box mod-
els. ACM Comput Surv. 2018;51(5):1–42.

 37. Molnar C. Interpretable Machine Learning. 2019. https:// chris
tophm. github. io/ inter preta ble- ml- book/. Accessed 21 Dec 2020..

 38. Freitas AA. Comprehensible classification models: a position
paper. SIGKDD Explor Newsl. 2014;15(1):1–10.

 39. Orban S. Enterprise devops: Why you should run what you build,
Aug 2015. https:// aws. amazon. com/ blogs/ enter prise- strat egy/
enter prise- devops- why- yoush ould- run- what- you- build/. Accessed
21 Dec 2020.

 40. XGBoost project. Xgboost extreme gradient boosting. https://
github. com/ dmlc/ xgboo st. Accessed 21 Dec 2020.

 41. Huang J, Ling CX. Using auc and accuracy in evaluating learning
algorithms. IEEE Trans Knowl Data Eng. 2005;17(3):299–310.

 42. Aho T, Sievi-Korte O, Kilamo T, Yaman S, Mikkonen T. Demys-
tifying data science projects: A look on the people and process
of data science today. In: International Conference on product-
focused software process improvement, pp. 153–167. Springer,
2020.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://aws.amazon.com/blogs/enterprise-strategy/enterprise-devops-why-youshould-run-what-you-build/
https://aws.amazon.com/blogs/enterprise-strategy/enterprise-devops-why-youshould-run-what-you-build/
https://github.com/dmlc/xgboost
https://github.com/dmlc/xgboost

	Towards Regulatory-Compliant MLOps: Oravizio’s Journey from a Machine Learning Experiment to a Deployed Certified Medical Product
	Abstract
	Introduction
	Towards MLOps
	Machine Learning Lifecycle Challenges
	General Purpose MLOps Pipelines

	Regulatory Constraints for Medical ML systems
	Regulatory Landscape
	Regulatory Considerations for AIML
	Risk Management for ML in Medical Applications

	Case Study: Oravizio
	Methodology Considerations: Postmortem Investigation
	Oravizio: An overview
	Oravizio 1.0 Development
	Development Process Gap Analysis

	Discussion
	Lessons Learned
	Limitations

	Conclusions
	Acknowledgements
	References

