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Abstract
Agile software development embraces change and manifests working software over comprehensive documentation and 
responding to change over following a plan. The ability to continuously release software has enabled a development approach 
where experimental features are put to use, and, if they stand the test of real use, they remain in production. Examples of such 
features include machine learning (ML) models, which are usually pre-trained, but can still evolve in production. However, 
many domains require more plan-driven approach to avoid hazard to environment and humans, and to mitigate risks in the 
process. In this paper, we start by presenting continuous software engineering practices in a regulated context, and then 
apply the results to the emerging practice of MLOps, or continuous delivery of ML features. Furthermore, as a practical 
contribution, we present a case study regarding Oravizio, first CE-certified medical software for assessing the risks of joint 
replacement surgeries. Towards the end of the paper, we also reflect the Oravizio experiences to MLOps in regulatory context.
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Introduction

Agile software development, which has rapidly become 
mainstream, embraces change [1], as well as manifests 
working software over comprehensive documentation and 
responding to change over following a plan [2]. However, 
there are many fields where a balance between plan-driven 

and agile development is needed, to ensure that enough 
attention is paid to practices such as risk management [3]. 
Such factors are essential for safety–critical, regulated 
domains, including medical devices.

However, instead of considering balance between plan-
driven and agile development in terms of risks [4], it is often 
perceived that fundamental contradictions exist between 
agile software development and regulations. To some extent, 
this is understandable, as regulatory bodies need time to 
certify things, whereas software development is more and 
more advancing towards continuous practices [5].

To further complicate the situation, applications that 
incorporate artificial intelligence (AI) and machine learning 
(ML) technologies are becoming popular due to their ability 
to build complex prediction systems. However, the process 
of continuous improvement is often complex and involves 
changes in the following areas: the application code, the 
model used for prediction, and the data used to develop the 
model. This also introduces further challenges for testing, 
verification, and validation [6], which in turn is affected by 
regulations.

This article is part of the topical collection “Artificial Intelligence 
for HealthCare” guest edited by Lydia Bouzar-Benlabiod, Stuart 
H. Rubin and Edwige Pissaloux.

 * Tuomas Granlund 
 tuomas.granlund@solita.fi

 Vlad Stirbu 
 vlad.stirbu@compliancepal.eu

 Tommi Mikkonen 
 tommi.mikkonen@helsinki.fi

1 Solita, Tampere, Finland
2 CompliancePal, Tampere, Finland
3 University of Helsinki, Helsinki, Finland

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/479169585?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0003-3955-0926
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00726-1&domain=pdf


 SN Computer Science (2021) 2:342342 Page 2 of 14

SN Computer Science

Despite the popularity of machine learning medical appli-
cations in the public and scientific space, these approaches 
suffer from limitations when considering their release as 
medical products. For instance, a recent survey on using 
ML on medical imaging [7] points out that the majority of 
the included papers failed to present the necessary data that 
are needed for reproducing the study itself, which is far less 
demanding than passing conformity assessment process. 
Furthermore, regulatory bodies do not, in general, provide 
guidelines how to fulfill their requirements in the context of 
ML, but only approve or fail the product, based on data that 
the applicant provides. As this process is expensive, and 
to a large degree non-transparent, there are few studies on 
how to meet regulatory requirements in ML context, apart 
from reports from regulatory bodies (e.g., [8]) or case stud-
ies from device manufacturers.

In this paper, we first introduce continuous software 
engineering practices, and then extend these practices to 
the emerging concept of MLOps, or continuous delivery 
of ML features to operations. Then, we consider MLOps 
in the light of regulations and the development of regula-
tory-compliant medical systems. As a hands-on contribu-
tion-related to MLOps, we present a case study regarding 
Oravizio,1 world’s first CE-certified medical software for 
assessing the risks of joint replacement surgeries. The focus 
of the case study is on ML features and their inclusion under 
the umbrella of regulatory requirements and implications. 
Our paper contribution is twofold: first, we introduce the 
methodology in which we mapped the state of the art in 
MLOps pipelines to the development practices employed in 
the Oravizio application, to identify the gaps in regulatory 
practice, then we presented the corrective actions taken to 
enhance the maturity of existing pipelines to an appropriate 
level under the new MDR regulatory framework. Although 
the investigation and the corrective actions reflect, to a 
large degree, the particularities of the environment in which 
Oravizio was developed, the same procedure can be used 
in similar constrained environments where organizational, 
legal, or data ownership limitations prevent the use of full-
fledged MLOps pipelines.

The paper is organized as follows. In Section “Towards 
MLOps”, we provide the necessary background of the paper, 
by introducing the path from agile software development to 
continuous delivery and further to MLOps. Then, in Sec-
tion “Regulatory Constraints for Medical ML systems”, 
we consider the implications of regulatory constraints on 
MLOps. In Section “Case Study: Oravizio”, we present the 
technical design of the case system. In Section “Discussion, 
we list key observations based on the case study and discuss 

the validity of the research. In Section “Conclusions”, we 
draw the final conclusions.

Towards MLOps

The concept of agile software development has been evolv-
ing for over 2 decades. While the origins of the approach 
manifest the value of people over the value of tools [2], 
today at the center of agile development is a toolset that 
allows delivering as soon as new features are available [5]. 
The goal of continuous deployment is to enable continuous 
flow of value-adding software artifacts from the develop-
ment to the actual production use with a quality assurance. 
A closely related concept, the DevOps approach [9, 10], can 
be described as a set of practices whose goal is to shorten the 
commit feedback cycle without compromising quality [11]. 
A continuous delivery pipeline, required to deploy software, 
consists of a set of tools that support the process, from code 
to delivery. These tools ensure that each stakeholder gets a 
timely access to what they need.

Machine Learning Lifecycle Challenges

Building on the success of continuous software development 
approaches [5, 12], in particular DevOps [13], it has become 
desirable to deploy machine learning (ML) components in 
real time, too. To this end, MLOps refers advocating auto-
mation and monitoring at all steps of ML system develop-
ment and deployment, including integration, testing, releas-
ing, deployment, and infrastructure management.

To understand the challenges related to MLOps, let us 
first explain the steps necessary to train and deploy ML mod-
ules [14]. As the starting point, data must be available for 
training. There are various somewhat established ways of 
dividing the data to training, testing, and cross-validation 
sets. Then, an ML model has to be selected, together with its 
hyperparameters. Next, the model is trained with the train-
ing data. During the training phase, the system is iteratively 
adjusted so that the output has a good match with the “right 
answers” in the training material. This trained model can 
also be validated with different data. If this validation is 
successful—with any criteria we decide to use—the model 
is ready for deployment, similarly to any other component. 
Once deployed, ML-related features need monitoring, like 
any other feature. However, monitoring in the context of ML 
must take into account inherent ML-related features, such 
as biases and drift that may emerge over time. In addition, 
there are techniques that allow improving the model on the 
fly, while it is being used. Therefore, the monitoring system 
must take these needs into account.

Based on the above, continuous deployment of ML fea-
tures is often a complex procedure that involves changes in 1 https:// oraviz. io/.

https://oraviz.io/
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the following areas: the application code, the model used for 
prediction, and the data used to develop the model. Often, 
these areas are handled separately by software developers, 
data scientists, and data engineers that rely on different skill 
sets and tool chains. For example, data engineers are focused 
on making the data more accessible, data scientists perform 
experiments for improving the data model, and the develop-
ers are worried about integrating the various technologies 
and releasing them to production (see Fig. 1). The lack of 
harmonized processes across these domains leads to delays 
and frictions, such as models never reaching production or 
deployments that are difficult to update or debug. Due to 
this variability, machine learning applications are more com-
plex than traditional applications. These characteristics make 
them harder to test, explain, or improve.

General Purpose MLOps Pipelines

Continuous Delivery for Machine Learning (CD4ML) [15] 
is an approach formalized by ThoughtWorks for automating 
in an end-to-end fashion the lifecycle of machine learning 
applications. In CD4ML, a cross-functional team produces 
machine learning applications based on code, data, and mod-
els in small and safe increments that can be reproduced and 
reliably released at any time, in short adaptation cycles. The 
approach contains three distinct steps: identify and prepare 
the data for training, experimenting with different models to 
find the best performing candidate, and deploying and using 
the selected model in production. This is illustrated in Fig. 2.

The first step has the goal of making the data discover-
able and accessible. It consists of collecting relevant data 
from different internal and external sources, transforming 
and exposing it in a format that is used by the data scientists 
to train the model. The data pipeline codifies the directed 

acyclic graph that contains the sources, the destinations, and 
the transformations performed on the data. As the source 
data used in this step can be very large, it is not practical to 
check it in version control. Instead, metadata that conveys 
the location, ranges, and other parameters that determine 
the shape of the data source used for training. Over time, 
the data can evolve over two axes: data schema or sampling 
frequency. Storing the pipeline, the source data metadata, 
and the code that performs the transformations is an effective 
data provenance mechanism.

The next step is to train model candidates based on the 
data collected in the previous step. The input data are split 
into training and validation data. The training data are 
used to evaluate combinations of algorithms that produce 
a model. The model is evaluated against the validation set 
to assess its quality. This process is codified as the machine 
learning pipeline. During development, the pipeline can 
change frequently and is difficult to reproduce the process 
outside the local environment without the assistance of spe-
cialized tools like Data Science Version Control (DVC)2 or 
Pachyderm.3 These tools provide git-like functionality that 
keeps track of data and code used in experiments, allowing 
execution on other environments. As most experiments do 
not yield good results, it is critical to preserve all data, meta-
data, metrics, and the code that captures how the experiment 
was conducted. This record supports the decision process 
for promoting a particular model to production. Tools like 
MLFlow Tracking4 are designed to support this process.

Fig. 1  Functional silos barriers when developing ML applications

2 https:// dvc. org/.
3 https:// www. pachy derm. com.
4 https:// mlflow. org/ docs/ latest/ track ing. htm.

https://dvc.org/
https://www.pachyderm.com
https://mlflow.org/docs/latest/tracking.htm
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The final step is to deliver the model into the production 
environment using a deployment pipeline. The process con-
sists of testing the model selected for production, packaging 
in the format suitable for production, followed by deploy-
ment. The deployment can follow one of the following pat-
terns: include in the application code as normal dependency, 
run it as standalone service, or deploy at runtime as data. 
A special case of deployment is online learning, where the 
models constantly learn in production. Versioning the model 
as static artifact will not yield the same results as they are fed 
different data. Once in production, continuous monitoring 
ensures that the model behaves as expected, and anomalies 
are detected and handled properly. The feedback loop allows 
the model to be improved over time using observations from 
production environment. The “locked” boundary and the 
special understanding of monitoring from a regulatory per-
spective are addressed in more details in Sect. 3.2.

CD4ML is not the only solution that aims to prevent the 
accumulation of hidden technical dept in machine learning 
applications [16]. While other solutions are heavily opti-
mized for a particular cloud infrastructure [17, 18], or an 
ML software stack implementation [19], the CD4ML model 
has the advantage that it can be used as a reference model in 
any application domain. Furthermore, it has the necessary 
phases documented at the appropriate level, and the imple-
mentation is based on open source components. These quali-
ties enabled us to effectively identify the following new parts 
of the delivery pipeline that need to be considered from a 
regulatory software development lifecycle perspective, to be 
able to continuously deliver ML components to production:

• model and its versioning,
• different data sets used for training model and their ver-

sioning,

Fig. 2  CD4ML pipelines and artifacts
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• monitoring the output of the model to detect bias and 
other problems.

In addition, parts relying on ML need to go through the 
same tests and staging process as any new software features. 
This part of the process will be largely overlooked in this 
paper, where we focus on new parts of the pipeline in a 
regulated context.

Regulatory Constraints for Medical ML 
systems

Previous work has shown that the relationship between regu-
latory actions and continuous deployment is not straightfor-
ward [20–22]. On one hand, risk management is easily over-
looked in the process of continuously changing software that 
is automatically deployed. On the other hand, the delivery 
pipeline—a key component in continuous deployment—can 
act as an element that brings rigor to the development, thus 
supporting regulatory activities.

Extending regulatory actions of DevOps to include 
model-related parts of MLOps looks easy on the surface. 
After all, all that is added in the regulatory process is the ML 
model and its training and monitoring. However, as Fursin 
et al. [23] pointed out, finding the relevant code and training 
models is only the tip of the MLOps iceberg. Therefore, it is 
not enough to consider models from the regulatory perspec-
tive, but instead, considering the whole is necessary. This, 
in turn, adds the complexity of regulatory actions compared 
to considering regulative requirements in the DevOps con-
text. The new parts—the models, training data sets, and bias 
detection—must be added under the regulatory umbrella to 
create regulatory-compliant medical ML systems.

Regulatory Landscape

The new revision of the EU legislation for medical devices 
is being implemented with two new regulations, Regulation 
(EU) 2017/745 on medical devices (MDR) [24] and Regula-
tion (EU) 2017/746 on in vitro diagnostic medical devices 
(IVDR) [25]. Regulation is a legal instrument in the EU 
legislation system that will enter into force directly in all 
Member States, aiming to harmonize the national adoptions’ 
differences. However, it is also possible to supplement EU 
regulations with national laws.

The regulatory framework can be interpreted to consist 
of several layers, including the following:

• Union harmonized legislation (i.e., regulations and direc-
tives),

• National legislation,
• Harmonized standards,

• Guidelines.

A vital feature of the regulatory framework is to limit 
legislative harmonization to the essential, product-related 
requirements [26]. The nature of the essential requirements 
is that they address the fundamental requirements of public 
interest, which are generally dealing with health and safety 
protection. They do not specify precise technical solu-
tions, only required outcomes and the hazards that need to 
be addressed. It should be noted, however, that MDR and 
IVDR are relatively detailed documents. In the context of 
medical devices, safety and state-of-the-art clinical perfor-
mance are the most critical features. For this reason, they 
are enforced in the annexes of MDR and IVDR: Annex I is 
titled as “General safety and performance requirements” and 
Annex II “Technical documentation.”

Medical device manufacturers can use harmonized stand-
ards to demonstrate conformity. The use is voluntary, but it 
is highly recommended as it provides a preassumption of 
conformity to those essential requirements that the standard 
aims to cover. Furthermore, international standards are a 
readymade and effective tool to address the requirements 
and are generally expected by the regulatory authorities. 
The suitable set of harmonized standards to be used must be 
selected based on the identified applicable essential require-
ments. Currently, there are no harmonized standards under 
the MDR or IVDR. As a result, there is a unique challenge 
for manufacturers on how to demonstrate conformity.

The EU Commission provides guidance documents to 
help manufacturers and stakeholders implement the regula-
tory requirements. These guidance documents are adopted 
by the Medical Device Coordination Group (MDCG) that 
was created by the Commission to ensure a harmonized 
implementation of MDR and IVDR in the Member States. 
The MDCG guidance documents are usually developed in 
active conjunction with the industry stakeholders. While the 
guidances are not legally binding, they provide advice and 
support for the manufacturers and, at the same time, con-
tribute to the expectation level of the regulatory authorities.

All of the layers mentioned above provide a general 
framework for medical device development. They also leave 
the responsibility to tailor the exact details of the develop-
ment process for the manufacturers.

Regulatory Considerations for AI/ML

The two new Regulations seek to remedy certain shortcom-
ings of the previous legislation and, as a result, introduce 
particular new concepts regarding, for example, scientific 
innovations and emerging manufacturing technologies. 
Against this background, it is surprising to see that AI/ML 
is not among them. However, the subject will be addressed 
in the future by MDCG as there is ongoing guidance 
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development with the title “Artificial Intelligence under 
MDR/IVDR framework” [27].

As discussed earlier, there are currently no harmonized 
standards under the new regulatory framework. Nonetheless, 
the EU commission’s recent standardization request [28] can 
be used as a source of information to get an insight into the 
expectations of regulatory authorities related to applicable 
standards. The use of a standard from the harmonization 
request list is easily justified. Therefore, the list of applicable 
standards can be used to define precise regulatory require-
ments based on the device type. As the standardization 
request list does not contain specific AI/ML device-related 
standards that would be generally available, the set of stand-
ards commonly used in medical device software develop-
ment is applicable also in the AI/ML context.

Medical device manufacturers are expected to demon-
strate the clinical benefits of their products to a sufficient 
degree. The device’s technical file must include a descrip-
tion of the technology used and adequate safety and perfor-
mance evidence. While an ML-based system can be a potent 
tool to utilize existing healthcare data to create new insights 
for the patients’ benefit, the ML model can be relatively 
complex and challenging to understand in full. Therefore, 
the manufacturers should pay special attention to the level 
of explicability and, in particular, to transparency of their 
ML solutions to enable clinical validation. Furthermore, as 
the clinical evaluation is an ongoing process throughout the 
lifecycle of a medical device, the post-market surveillance 
activities must be planned to monitor the device’s clinical 
performance.

One key feature of a specific ML system is the ability 
to learn, adapt, and optimize operations in real-time. The 
ability to improve by learning from data while perform-
ing the critical operation may be the most valuable asset 
of ML technology. However, this raises the question of the 
ML system’s autonomous operation in relation to the safety 
and clinical performance in the medical device domain. As 
a result, the regulatory authorities have traditionally pro-
moted the approach of “locked” algorithms [8, 29], where 
the system is designed, so that it is being trained during the 
development phase, and the ability to improve is disabled 
in real-world use. The study by Feng et al. investigated the 
problem of “locked” algorithms in the regulated medical 
space and proposed different policies for regulating modi-
fications to AI/ML-based medical software systems [30]. 
Although the study was motivated by the FDA’s proposed 
approach introduced in their discussion paper [8], the regula-
tory authorities have not yet adopted these proposals.

The limitations listed above can be mapped to the 
MLOps pipelines as policies. Although the general pur-
pose pipeline has the ability to deliver re-trained models 
throughout the entire application lifecycle in a continu-
ous fashion, the models are “locked” after the packaging 

state, while the monitoring phase is limited only for assist-
ing the post-market regulatory activities. As this setup 
reflects only the current regulatory practice, the policy 
can be revised when the practice evolves as the “locked” 
algorithm limitation is not technical by nature. We can 
envision that, as the practice of using ML technology in 
medical products becomes more mature, we will be able to 
change the restrictions encoded by this policy and enable a 
more dynamic model update behavior in production.

Risk Management for ML in Medical Applications

Algorithms are an essential ingredient of machine learn-
ing. The risks inherent to algorithm design propagate 
to medical machine learning applications due to their 
increased complexity, lack of transparency, inappropri-
ate use, or weak governance. According to Krishna et al. 
[31], algorithmic risk can be split into three categories: 
input data, algorithm design, and output decisions. Flaws 
in input data can lead to mismatches between the data 
used for training and the data used during normal use. 
Output decision flaws relate to incorrect interpretation or 
use of the output. Algorithm design flaws cover technical 
flaws, such as the lack of technical rigor or conceptual 
soundness during development, training, testing, and vali-
dation, as well as human biases, such as cognitive biases 
of model developers and users which can lead to flawed 
output. Moreover, usage flaws—incorrect implementation 
or integration in operations can lead to inappropriate deci-
sion-making, or security flaws. Inappropriate considera-
tion of these ML-related risks can have a dramatic impact 
on the effectiveness of medical products, considering their 
“locked” algorithmic state. For example, slight changes 
in patient demographics can render a product ineffec-
tive when deploying in a different geographic area, as the 
training data is different than the usage data. Similarly, a 
product may be considered ineffective, if similar patients 
are not treated similarly, due to the algorithm instabil-
ity. The similar inputs/similar outputs over same inputs/
same outputs approach [32] can be encoded into tests and 
enforced in an automatic fashion by MLOps pipelines dur-
ing development.

As new machine learning techniques are so opaque, it 
is hard to understand how they operate. Industry groups 
[33] and academia recognized the challenges associated 
with machine learning trustworthiness. Their proposals to 
improve trustworthiness include metrics like interpretabil-
ity (degree to which a human can understand the cause of 
a decision [34]) and explainability (the degree to which a 
human understands the behavior of a system [35]), or intro-
duce frameworks that allow to explain machine learning 
models as black [36, 37] or white boxes [38]. The intended 
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purpose, the associated Quality Management System, and 
the automated pipelines following DevOps practices pro-
vide a solid foundation for handling in a consistent way the 
design control and risk management activities related to 
machine learning. Practical experience is needed to evalu-
ate how medical manufacturers can digest these concepts.

Case Study: Oravizio

Oravizio is a medical device software product that employs 
machine learning technologies to provide decision sup-
port for the orthopedic specialist for patient-specific joint 
replacement surgery risk evaluation. Started as a preliminary 
study, the development continued with a research phase for 
the development of the ML models, and a productization 
phase that resulted in the release of the first product ver-
sion. The imminent MDR coming into force triggered an 
analysis of the development process. The aim was to identify 
potential opportunities to improve in the current practice to 
be utilized in the development of next product iterations, 
see Fig. 3.

In this section, we describe first the methodology we have 
used in this case study. Then, we provide a brief descrip-
tion of the application domain. We continue with a detailed 
description of the development processes used during the 
research and software development phases, and conclude 
with the regulatory gap analysis.

Methodology Considerations: Postmortem 
Investigation

One of the DevOps culture’s main drivers is that “you should 
run what you build” [39]. With this model, a development 
team with access to all aspects of the product development 
lifecycle has more autonomy. This means making informed 
local decisions, working with increased transparency, having 
visibility to tools and processes, and ultimately designing the 
software with production in mind, since every increment is 

deployable. However, there are often hard administrative and 
organizational barriers in regulated environments that make 
it difficult to always run what is being built. Therefore, the 
faults along the organizational boundaries separate the teams 
on either side as they develop, test, and validate different 
parts of the software system, often using non-harmonized 
processes.

Our investigation focuses on identifying the rifts in the 
development process lifecycle from the regulatory perspec-
tive. For this purpose, we use post-mortem, a DevOps disci-
pline used typically during incident response, to investigate 
the root cause of a defect in a software system and identify 
the corrective actions and draw the lessons learned, so that 
such incidents do not happen again. The investigation draws 
some similarities with the agile retrospective, as we seek to 
identify areas of improvements. However, it is not performed 
by the development team, and its focus is on longer term 
improvements and on establishing best practices.

The post-mortem investigation was performed after the 
team delivered the first iteration of the software system, e.g., 
Oravizio 1.0 release. The investigation aims to document 
how the software system was developed currently by the 
different teams involved and identify the regulatory gaps in 
the software development lifecycle that would be blockers 
when transitioning to the new MDR. The investigation find-
ings are to be used for developing new iterations of Oravizio, 
and serve as input when planning new regulated products.

Oravizio: An overview

Oravizio5 is a medical device software product that provides 
data-driven information about patient-level risks related to 
hip (total hip arthroplasty, THA) and knee joint (total knee 
arthroplasty, TKA) replacement surgery. Even though THA 
and TKA are highly effective surgical procedures with a high 
success rate, they involve a certain risk of adverse events. 

Fig. 3  Oravizio 1.0 development timeline

5 https:// oraviz. io/

https://oraviz.io/


 SN Computer Science (2021) 2:342342 Page 8 of 14

SN Computer Science

The most common adverse events after THA and TKA sur-
gery include re-operations, prosthetic joint infection, and 
other serious medical complications that can lead to death. 
However, a successful operation can dramatically improve 
the patient’s quality of life and reduce society’s costs.

In its current form, Oravizio provides three different dedi-
cated prediction models:

• Risk of infection within 1 year from surgery.
• Risk of revision within 2 years from surgery.
• Risk of death within 2 years from surgery.

Oravizio aims to help the surgeon collaborate and 
negotiate with a patient to make informed decisions when 
assessing the patient’s eligibility for surgery. Such a shared 
decision-making process is recognized to be a vital part of 
modern medicine. Oravizio provides both the patient-spe-
cific risks and the surgery’s expected outcomes in a fashion 
that is understandable to the patient. As people are generally 
not good at understanding risks and probabilities, it is essen-
tial to present the surgery’s risks and expected outcomes 
understandably to help the layman understand their practical 
meaning. Furthermore, the amount of patient history data 
behind Oravizio’s risk calculation model is so vast that it 
would be impossible for a surgeon to process it manually 
during a patient appointment. The risk calculation algo-
rithms combine manually submitted patient-specific data 
with comprehensive patient history data.

Oravizio 1.0 Development

Oravizio 1.0 was developed in close collaboration with a 
hospital that is specialized in joint replacement surgery 
and Solita, a European software company headquartered 
in Finland. The clinical partner hospital had accumulated a 
large volume of data from surgeries for more than 10 years. 
The development of Oravizio was based on the vision that 
this data asset might include factors that indicate risks for 
joint replacement surgeries down to an individual patient’s 
level. The preliminary study was carried out to validate the 
preconceptions.

Data consolidation and pre-processing During the 
development of Oravizio 1.0, the data included over 30,000 
patient records. However, the data were not well organized—
it was stored in various formats and computer systems, some 
of which had already been retired. As a result, consolidation 
and pre-processing were a considerable task. The first task 
was to consolidate the relevant data into a data lake. Second, 
the data needed to be pre-processed to determine its quality 
and ensure its uniformity and future utility.

Selection of variables The prepared data included over 
750 pre-operation variables from 2008 onwards. The varia-
bles included, for example, general information (age, gender, 

BMI), medication, laboratory values, diagnoses, patient-
reported information, and derivate variables. The clinical 
partner’s clinical know-how was used during the research, 
combined with research literature and computational meth-
ods, to decide the variables to be further analyzed by data 
scientists. The well-documented linking between particular 
variables and risks in joint replacement surgery was used as 
a baseline for the selection.

The goal was to select a relatively limited set of relevant 
variables with a significant impact on the calculation. The 
modest set of input variables ensures that the finished prod-
uct is practical to use, and the impact of individual risk fac-
tors can be illustrated in an easily understandable way. In the 
analysis, computational methods LASSO, Ridge regression, 
and Elastic net were used to select the most suitable param-
eters for the models.

Building and testing the machine learning algorithms 
Several mathematical methods were considered during the 
research. The aim was to create an explanatory machine 
learning model for each risk to enable validation and ensure 
regulatory compliance. It should be noted that the relations 
between the risk in joint replacement surgery and selected 
explanatory values were mostly known from clinical litera-
ture. The following methods were tested for building the 
risk models:

• Logistic regression.
• Decision tree-based methods (Random forest).
• Gradient boosting methods (XGBoost [40]).
• Weibull/Cox survival mode.

During the development, data from years 2008–2015 
were used for training, and data from years 2016 to 2018 
were used for testing. The performance was estimated with 
AUC values and ROC curves [41]. Based on the results, 
gradient boosting with XGBoost produced the best perfor-
mance. As a result, XGBoost was selected, and the final 
model for the product was built accordingly. The model is 
deterministic by nature. Therefore, it can be validated with 
test data in a test environment without the need to do the 
validation in the final production environment. To address 
the earlier discussed medical device regulatory constraint 
related to self-adaptation, Oravizio was designed to be 
deployed in a production environment with its ML model in 
a “locked” state. In practice, Oravizio’s models are trained 
during the development phase, and their ability to improve 
the outcome on the fly is disabled in production use for regu-
latory reasons.

Software development process Solita’s process for design-
ing and developing medical device software is well estab-
lished and supported by an ISO 13,485 certified quality 
management system. The process is an implementation of 
an agile development process, utilizing ideas, tools, and best 
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practices from several different agile methods. The process 
complies with the applicable regulation and international 
standards, namely IEC 62304, ISO 14971, and IEC 62366-1. 
The process is presented in Fig. 4.

In the process, the development tasks are divided into two 
nested cycles: the inner cycle for daily development tasks 
carried out in short iterations and the outer cycle for a formal 
execution of regulatory tasks needed for the final approval 
of the software release. With this approach, different level 

tasks can be assigned to persons according to their role 
and competence requirements, and they can be completed 
asynchronously.

Design and development requirements, i.e., design inputs, 
are reviewed at the release level. Once accepted, design 
inputs are transferred to the development cycle for further 
analysis and architectural design. Architecture design is veri-
fied against the requirements and the detailed unit design. 
After the implementation is done based on the accepted 

Fig. 4  Solita regulatory-compliant development process. For simplicity, risk management and usability engineering concepts are left out from 
the figure
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design, it is verified with the review and automated integra-
tion and system testing.

When all requirements have been implemented within 
the needed number of development iterations, the work can 
be transferred to the release cycle. In the release cycle, the 
software release is authorized through formal final testing, 
verification, review, and validation stages. Simultaneously, 
as the release tasks are performed, development work can 
continue in the development cycle with the requirements of 
the next release.

As a result of the regulatory requirements, the medical 
product, consisting of the ML models and application code, 
can only be accepted for deployment by authorized persons 
within the controlled design and development output review 
and validation processes. A release decision implies com-
pleteness of risk management activities, and therefore, risk 
managers and compliance officers are typically involved.

Development Process Gap Analysis

While Solita’s medical device software development pro-
cess can be considered state of the art, the same assessment 
does not apply to the ML development process used during 
Oravizio 1.0 development. ML development was based on 
a manual process: the steps of data consolidation, data pre-
processing, datalake creation, variable selection, ML method 
selection, model training, and validation were all done man-
ually, at least to some degree. There were no automatic CI or 
CD pipelines. Some process steps that were executed repeat-
edly were automated with shell scripts; however, the scripts 
were executed in local development machines.

The main reason for the level of manual work in the ML 
development process is that the ML development was done 
within a scientific research project, and the decision to pro-
ceed to commercial software product development was made 
only during the project. Furthermore, the research project 
was performed on the premises of the clinical partner hos-
pital. As the use of patient records is strictly regulated, the 
hospital’s computational environment is tightly restricted 
and isolated. In practice, only a few selected and accred-
ited data scientists had access to a restricted environment. 
In contrast, the rest of the development team, including 
software developers and risk managers, worked in Solita’s 
environment. The fact that the product development work 
was divided into two different organizations’ environments 
can be seen as a challenge for utilizing routine DevOps and 
MLOps practices.

To mitigate the challenge, all development artifacts, 
including the scripts that were used to create ML models, 
were stored in a mutually shared version control system 
(VCS). However, as the trained model exists as a binary 
file, the model handover from data scientists to software 
developers was done through a network drive. Even though 

the process included an element of disconnection between 
data scientists and software developers to a certain extent, 
the development team did not consider this as a problem due 
to the small team size and close cooperation.

By design, the production use of Oravizio does not gen-
erate data that could be used for re-training. Instead, the 
needed data are generated in other clinical processes of a 
hospital. Due to the ML development environment’s restric-
tive nature, frequent changes or re-trainings to the ML mod-
els were not anticipated.

However, the second iteration re-training with 45,000 
patient records improved models’ performance to a certain 
extent. As a result, the benefits of model re-training became 
evident.

Although active quality monitoring of the “locked” model 
performance in production might not be essential in all sets 
of conditions, it is a vital activity in the medical device 
domain due to the regulatory framework’s post-market 
surveillance requirements. Therefore, this capability was 
already implemented in the system in the first iteration to 
monitor systems’ clinical performance specifically.

Discussion

Designing Oravizio has given us much insight into the devel-
opment of medical software where ML is involved. Below, 
we summarize the key lessons learned in the process, fol-
lowed by a discussion regarding the limitations of this work.

Lessons Learned

From experimentation to production Numerous AI projects 
start with a feasibility study and data analysis to understand 
if it is possible to solve the problems with ML [42]. It is 
vital to be able to be agile during the data science and ML 
research phase—after all, there is always a certain level of 
uncertainty involved in the research, and the end result is 
usually achieved through trial and error. However, it is also 
reasonable to be prepared for the situation where the experi-
ment succeeds. In practice, it is recommended that there 
is a clear understanding of arranging and automating the 
re-learning, re-building, revalidation, and re-deployment of 
the model. Also, experimentation with new and improved 
methods should be considered. Ideally, these aspects are 
implemented already in the research phase using practices 
and tools familiar from MLOps. Immediate benefits are 
possible as automation potentially reduces the amount of 
manual work instantly.

Regulatory compliance In comparison to ML projects 
from non-regulated settings, there were some particular 
features and challenges in Oravizio development. When 
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developing a medical device product, it is essential to clearly 
understand applicable regulatory requirements and deter-
mine a regulatory strategy accordingly from the beginning 
of the project. In practice, the regulatory strategy was imple-
mented by choosing an explainable and deterministic ML 
model that is deployed to production in a “locked” state. 
This strategy enables easily verifiable regulatory compliance 
and validation of the end product. The unique challenge in 
the Oravizio project was the severely restricted access to the 
data used in model development.

Continuous training Based on our practical example, 
MLOps automation goals are achievable, and the addressed 

regulatory challenges solvable by implementing the con-
tinuous training pipeline presented in Fig. 5. The pipeline’s 
design builds on the general solution illustrated in Fig. 2 
and addresses specific regulatory constraints identified in 
the case study. As discussed previously, the data that can 
be used to re-train the model are not collected in Oravizio’s 
computational environment—only an anonymized audit trail 
is generated. However, it is possible to design the continuous 
training pipeline to operate inside the clinical partner’s con-
trolled environment and fetch new data from the data lake 
based on pre-defined triggers. The automated continuous 

Fig. 5  Continuous training pipeline, with arrows indicating data flows
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training pipeline design includes specific new steps that were 
not present in the first development iteration.

The data validation step ensures that the input data are as 
expected by checking data validity against the pre-defined 
data schema and value limits. In the unlikely event that data 
anomalies are found during the data validation, the pipe-
line’s execution is terminated for manual resolution. It is 
worth noticing that the manual resolution is the only process 
step where data engineers’ and data scientists’ involvement 
is needed once the continuous training pipeline operates 
automatically.

After re-training and building, the new model is verified 
with a subset of the data reserved only for testing. The per-
formance metrics are compared to the previously accepted 
model’s values, and the validation report is generated auto-
matically with relevant metrics and performance graphs. 
This practice of continuous re-verification is well aligned 
with the approach of continuous risk-monitoring, as sug-
gested by Babic et al. [32].

Once the model is packaged, and the validation report 
generated, these artifacts can be automatically delivered 
from the isolated and restricted environment to the devel-
opment team in another organization. The development team 
integrates the model into the software system.

With the continuous training pipeline approach pre-
sented above, the development team does not need access 
to the restricted environment beyond the continuous train-
ing pipeline’s installation and maintenance. The validation 
report, generated by the pipeline, can be used in validating 
the re-trained model to address the regulatory requirements 
related to clinical performance validation. Furthermore, the 
automated pipeline enables fairly effortless initial ML model 
development in new clinical setups and different health care 
environments.

Limitations

Oravizio was designed and implemented before the concept 
of MLOps had emerged. However, its design goals were 
mainly similar to MLOps characteristics in a regulatory con-
text, simply because this seemed the most straightforward 
way to realize the system. Hence, considering Oravizio in 
the light of regulated MLOps can be considered justifiable, 
although it is admitted that there are also some apparent 
mismatches. These mismatches, however, are not related to 
technical implementation but the organizational setup and 
data ownership. Improved understanding of such practicali-
ties forms a direction for future work.

There are some validity-related aspects that are associ-
ated with the case study. A clear threat to the validity of 
any single case study is that it is questionable to what extent 
empirical evidence can be relied on or generalized. In this 
particular case, the data are from an ongoing project that 

has been running in production for several years now. The 
involved organizations have invested much attention in 
ensuring the regulatory compliance of the implementation 
and related processes. The contents have been checked by 
the team working on Oravizio for accuracy to mitigate risks 
related to misconceptions with respect to the process and 
implementation. Finally, it can be questioned if the case 
study setup is typical, as the operation is run in collabora-
tion with a hospital and a private company. However, since 
the body of knowledge in the literature on how to handle 
possible biases is limited, we have little means to mitigate 
these threats.

Conclusions

Continuous software engineering has become commonplace 
in numerous contexts. The emerging practice of MLOps 
takes this one step further, also enabling continuous delivery 
of ML features. However, such continuous practices are not 
immediately compatible with regulatory requirements that 
may need authority involvement.

In this paper, we have presented a case study on deploying 
ML components to production in the medical context. Based 
on the case study, we pinpointed what parts of MLOps were 
not immediately compatible with the domain. In addition, 
we identified additional challenges that do not originate 
from technology but the organizational setup, which also 
affects on how MLOps can be implemented. In particular, 
this is related to the availability of training and testing data. 
In the future, we are studying opportunities to streamline 
further the deployment pipeline in the case study, based on 
the results of the paper.
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