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A B S T R A C T   

Cone beam computed tomography (CBCT) is a diverse 3D x-ray imaging technique that has gained significant 
popularity in dental radiology in the last two decades. CBCT overcomes the limitations of traditional two- 
dimensional dental imaging and enables accurate depiction of multiplanar details of maxillofacial bony struc
tures and surrounding soft tissues. In this review article, we provide an updated status on dental CBCT imaging 
and summarise the technical features of currently used CBCT scanner models, extending to recent developments 
in scanner technology, clinical aspects, and regulatory perspectives on dose optimisation, dosimetry, and diag
nostic reference levels. We also consider the outlook of potential techniques along with issues that should be 
resolved in providing clinically more effective CBCT examinations that are optimised for the benefit of the 
patient.   

1. Introduction 

Digitalisation of medical imaging has brought major transformations 
in dental radiology with restructuring of the imaging process (image 
acquisition, post-processing, and image review methods), which enables 
more efficient image archiving and communication (PACS systems) [1]. 
Dental x-ray imaging forms a variable combination of radiological im
aging techniques. The methods include 2D imaging (intraoral, cepha
lometric radiography, panoramic x-ray) and 3D imaging (multislice 
computed tomography [CT] and cone beam CT [CBCT]) techniques 
[2–6]. 

Traditional dental x-ray imaging has for decades applied 2D image 
acquisition and panoramic mode. However, superposition of true volu
metric anatomy in these overlaid 2D images conceals potentially 
important clinical findings that would require multiplanar visualisation 
to reveal local and typically focal findings in any possible orientation 
[3,5,7,8]. More specifically, due to human anatomy, projection radiog
raphy and panoramic imaging of the dental area are mainly performed 
from the mediolateral direction (from outside of the jaw towards inside 
of the oral cavity). As such, the labiopalatal (through lips to tongue) and 
buccolingual (through cheek to tongue) structures are overlaid and their 
dimensional nature can therefore only be subjectively estimated. Many 
clinically relevant structures, such as dental roots related to surrounding 

soft tissue and alveolar bony anatomy, are not adequately represented in 
traditional images and may lead to missed clinical findings, e.g. peri
apical lesions located on the tip of the root canal [9]. There are also 
additional complications in implementing imaging settings of the dental 
area. Parallel projections require a well-defined and maintained direc
tional setting of the radiography equipment to provide accurate geo
metric representation of the dental structures. Due to these limitations 
and acknowledging the complicated 3D anatomy of the dental area, 3D 
imaging has increased in popularity to provide an accurate depiction of 
the multiplanar details of maxillofacial bone structures and surrounding 
soft tissues [5,10]. 

Rapid progress in medical imaging physics and technology, involving 
several hardware and computational methods, has overcome many 
challenges to achieve 3D dental imaging (known as CBCT) and to offer 
tools to improve 3D image quality in terms of spatial resolution, 
contrast, and anatomical coverage [3,5]. CBCT is also known as digital 
volume tomography, which refers to representation of image data in 
digital forms, and most essentially, depiction of anatomy in three di
mensions. The development of CBCT began in 1995 when Italian de
velopers Attilio Tacconi and Piero Mozzo introduced the first dental 
CBCT model, the NewTom DVT 9000 [11]. The commercial launch of 
the device came a few years later, along with similar equipment devel
oped by Arai et al. in 1999 [12]. 
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The principle of CBCT adapts the basic CT technique where the x-ray 
tube exposes the patient from one side and an imaging detector mea
sures the attenuated x-rays on the other side of the patient, while both 
the x-ray tube and detector rotate around the patient [13] (Fig. 1). The 
exposure during the rotational scan can utilise either continuous expo
sure or pulsed exposure; the latter is increasingly applied in dental CBCT 
[14]. Pulsed exposure reduces the effective exposure time and reduces 
the dose to the patient [5]. The attenuation of the x-rays follows the 
basic physical interactions between radiation and atomic composition of 
the patient anatomy in the exposed field of view (FOV). These physical 
interactions include mainly photoelectric effect and Compton scattering, 
which set the basic balance for the contrast representation of the images. 
The contrast information in the image signal is mostly contributed by the 
photoelectric effect, whose contribution diminishes steeply as the x-ray 
photon energy increases. Therefore, the image contrast decreases when 
higher tube voltages are applied. At the same time, the contribution 
from scattering increases along with the spectral shift towards higher 
quantum energy x-rays [15]. 

3D image reconstruction is the core part of CT imaging in the 
computational aspect. Image reconstruction attempts to solve the 
mathematical inverse problem, namely how can the patient image 
(which is the 3D map of material-specific attenuation values in the pa
tient) be deduced from the x-ray shadow signal acquired during the 
exposure? Traditional analytical reconstruction algorithms have been 
used in typical mainstream CBCT scanners. These algorithms are typi
cally based on the approximate Radon inverse transformation intro
duced by Feldkamp et al. in 1984 [16]. In recent years, iterative 
reconstruction algorithms have been increasingly applied due to the 
potential for image quality improvements and artefact reduction 
[17,18]. The iterative image reconstruction approach may also mitigate 
one of the most pertinent challenges in CBCT, which is sensitivity to 
motion artefacts due to the relatively long scan time [19], which is 
inevitable with typical CBCT C-arm type gantry design. Recently, arti
ficial intelligence (AI) based deep-learning (DL) methods have been 
developed as the latest advancement in image reconstruction [20,21]. 
DL image reconstruction methods utilise large amounts of typical clin
ical or technical phantom image data (or both) to solve the recon
struction problem and to provide improved image quality. The challenge 
in these new AI-based reconstruction algorithms is that the learning data 
should be sufficiently representative to cover highly variable patient 
anatomy and contrast cases. Thus, the reconstruction method should be 
generalisable to all imaging cases and provide reliable and accurate 
image quality for all patients [21]. 

The distinctive exposure geometry utilised in CBCT scanners is 

characterised by the cone- or pyramid-shaped x-ray beam, which is 
directed on the selected dental part contained in the scan FOV. In this 
instance, the cone refers to a beam that is around the same dimensional 
size in the vertical (z) direction as compared to axial (x,y) direction 
(Fig. 1). Modern CBCT scanners use flat-panel detectors (FPD) structured 
as a pixel matrix of amorphous silicon thin-film transistors (TFT) or 
complementary metal-oxide semiconductors (CMOS) to capture the 
image signal. Both TFT and CMOS detector techniques are based on the 
indirect conversion principle, where the absorbed x-rays at the detector 
scintillation layer are first converted into light photons that are detected 
by photodiodes and finally read from the whole photodiode pixel ma
trix. By this process, one raw-data projection view from a single angular 
direction is acquired to be compiled with other projections in the CBCT 
raw data. The scintillation material that is used to absorb the x-rays and 
convert their energy into light photons consists of thallium-doped 
caesium iodide (CsI:Tl) or terbium-activated gadolinium oxysulfide 
(Gd2O2S:Tb). FPD technology provides benefits for imaging, including 
high spatial resolution, large dynamic range of signal levels, slim 
structure, and more streamlined imaging chain when compared with 
traditional image intensifier (II) or charge-coupled device (CCD) based 
image detectors, which have become obsolete in CBCT equipment 
[3,22,23]. CMOS technology provides even higher resolution, faster 
image readout, and lower electronic noise in comparison to current 
amorphous silicon detector models, which have potential for more 
optimised scans and improved clinical image quality [24]. 

Acquired raw data in the form of projection x-ray images go through 
various pre-processing steps before they can be used for image recon
struction. This pre-processing considers detector features and exposure 
factors, which corrects for different limitations and inherent variabilities 
of the detector. These include dark current adjustments of the detector in 
addition to gain and pixel defects by performing gain and offset 
correction. A series of raw data projections are acquired at a rapid rate 
during the rotational CBCT scan. Such a high frame rate may also leave 
partial signal from the previous projection image in the subsequent 
projection image readout. This possible latent image signal must be 
erased from the projection image data by applying afterglow correction. 
Exposure factors involve x-ray beam properties, which include x-ray 
spectrum (affected by tube voltage and beam pre-filtration), scatter 
distribution at the detector surface (depending on spectrum, scan, and 
patient geometry), focal spot size, and focus-to-detector distance 
(affecting image sharpness and tube output). Exposure factors also 
extend to detector response (based on the specific detector and readout 
electronics design), among other physical features of the scan [13,25]. 

One of the primary economic benefits of CBCT equipment when 

Fig. 1. The basic CBCT scan principle includes rotation of the gantry with an x-ray tube and image detector. The cone beam of the x-ray is attenuated through the 
patient and the FOV is exposed throughout the scan. Partial exposure of tissues is given within the rotational (axial) region around the FOV as the conical x-ray beam 
sweeps the required angular range to acquire the set of raw-data projection images, which are used to reconstruct the final three-dimensional CBCT image data. 
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compared with multi-slice CT scanners is related to the significantly 
lower requirement of x-ray output in CBCT scanners, which places it 
typically at the same level of x-ray tube current and spectral output as 
dental panoramic x-ray scanners [10]. The footprint for CBCT installa
tion (with or without cephalostat) requires only a few square meters of 
room space (similar to panoramic equipment) and therefore the transi
tion from panoramic imaging to CBCT does not require major alterations 
in dental facilities. Most CBCT gantry designs involve patient positioning 
in a standing or sitting position (in contrast to supine lying position), 
which also helps reduce equipment footprint [5,14]. Indeed, the gantry 
of vertical CBCT follows the structure of the panoramic device and may 
combine both functionalities (and also cephalometric imaging) in 
addition to providing an advanced digital detector, image reconstruc
tion and processing workstation, and related software package. The 
electrical supply and HPAC (heating, plumbing, air-conditioning) fac
tors required by the CBCT scanner are similar to panoramic x-ray 
equipment, and therefore does not require further renovations. 

Medical imaging examinations using x-rays must always conform to 
the main radiation protection principles, where the minimisation of the 
exposed anatomical region is a pivotal part of the optimisation of the 
medical exposure. Furthermore, minimisation of the exposed volume 
also improves image quality, as scattered radiation, which reduces 
image contrast, is mitigated with a smaller exposed FOV [13]. In dental 
CBCT imaging, varying FOV selection is an essential characteristic in all 
modern scanners, which enables indication-specific optimisation of 
image FOV and also affects radiation exposure to the patient. User ad
justments in FOV size and image quality settings also determine the 
voxel size used in the image acquisition. Acquired voxel size is directly 
linked to observed spatial resolution according to the sampling princi
ples. As such, small details in dental structures are represented more 
accurately with smaller voxel sizes. However, smaller voxel sizes require 
higher radiation doses to achieve the same signal-to-noise ratio (SNR) 
when compared with larger voxel size. According to Poisson statistics, 
the relative dose increase to maintain SNR is inversely proportional to 
the square root of the relative voxel volume decrease. For example, a 
four times larger voxel volume enables halving the dose with the same 
image noise [5,15]. 

One of the main strengths in CBCT imaging is the possibility to create 
various 3D visualisations and multi-planar reformats of the volumetric 
image data. This possibility is accentuated by production of isotropic or 
nearly isotropic image data, e.g. creating voxels where the voxel 
dimensional length is approximately the same in all three directions (x, 
y, and z) [5]. Isotropic image data enable similar image quality 
regardless of the projected direction of the reformatted slices, which 
significantly aids interpretation and review of the complex 3D anatomy 
of the jaw region. There is also a wide range of post-processing options to 
utilise 3D image data beyond cross-sectional views. These options cover 
traditional dental, virtual panoramic (curved multiplanar reformat) or 
cephalometric views, or bilateral multiplanar projections of the tem
pomandibular joint [10]. All CT imaging techniques, including dental 
CBCT, are inherently accurate in geometry. This means that the recon
structed images represent 3D x-ray attenuation distribution of the object 
and do not encompass diverging projection geometry with varying 
magnifying ratio of superimposed structures across the central beam 
axis, as in traditional dental imaging or in the acquired CBCT raw-data 
projections (before reconstruction). Therefore, the linear measurements 
can be performed accurately and reproducibly from multiplanar CBCT 
image data [26]. 

Although dental CBCT can produce superior spatial resolution with 
the smallest voxel sizes often < 100 µm, the low-contrast resolution to 
describe soft tissue structures is limited due to various physical and 
technical factors [10]. These factors include inevitable scattered radia
tion that reduces the contrast in the projection raw data and conse
quently also the final reconstructed image data. Scatter also causes 
streak artefacts emerging from metal surfaces. Another factor is beam 
hardening, which is caused by the higher attenuation of softer (lower 

quantum energy) x-rays in the polychromatic x-ray beam due to patient 
structures. Beam hardening increases the mean energy of the trans
mitted x-ray spectrum [15]. Thus, the resulting image data corre
sponding to the beam-hardened projections represent lower attenuation 
than the real attenuation in the patient. Softer x-rays may be completely 
depleted in this process (called photon starvation), and this is also 
related to artefact appearance. Thus, the beam-hardening effect is 
accentuated in the presence of extensive metallic restorations, dental 
implants, and orthopedic hardware [27]. Additional artefacts are pro
duced by undersampling, which are related to large density differences 
between metals and the surrounding lower attenuating structures, 
causing thin white streaks originating from the metal target. Thus, 
streak artefacts are caused by multiple sources, including scatter, beam 
hardening, and sampling issues [28]. Low-contrast resolution of CBCT is 
also decreased by truncation effects, which are caused by smaller FOVs 
than the whole surrounding anatomy [29,30] (Fig. 1). In CBCT scans, 
the rotating x-ray beam sweeps through all attenuating structures of the 
patient regardless of if they are inside or outside the FOV. Thus, extra 
FOV structures also cause decreases in signal in the acquired raw-data 
projection images, which appear as contrast deviation in the recon
structed images. Truncation artefacts appear as a band of lighter than 
expected gray scale voxels on the edge of the FOV if not corrected [29]. 
Another cause of the lowered soft-tissue contrast accuracy in dental 
CBCT is due to the lower number (typically hundreds) of raw-data 
projections when compared with multi-slice CT acquisitions (typically 
thousands of projections). Nevertheless, a sharp 3D representation of 
bony tissues is the key strength of dental CBCT imaging, and thus the 
limited soft-tissue contrast remains a tolerable limitation that is miti
gated through development of new scanner hardware and image 
reconstruction methods [5]. 

The required spatial resolution is driven by the smallest clinical de
tails that must be distinguished to make reliable clinical decisions. For 
example, a periodontal ligament gap in the range of 100 µm (0.1 mm) 
must be seen in periodontal CBCT applications for reliable diagnosis 
[31,32]. Spatial resolution is not only linked to the voxel size. Focal spot 
size, contrast resolution and range, detector motion unsharpness, de
tector fill factor, number of raw-data projections per rotation, noise 
performance, and reconstruction technique also clearly impact spatial 
resolution at the technical level. However, patient movement poses a 
significant challenge to spatial resolution [5]. Therefore, the observed 
spatial resolution, achieved in technical phantom scans in QA testing, is 
not reached in clinical scans with patients. Even if the patient would be 
perfectly fixated to the imaging position at the CBCT scan isocentre, 
hemodynamic pulsation produces periodical motion, which also extends 
to maxillofacial anatomy and scanned dental structures. This cardiac 
pulsation alone can create spatial unsharpness of 80 to 90 µm. When all 
relevant factors in clinical CBCT scans are considered, the motion blur is 
at the order of 500 µm (corresponding to 1 line pair per mm), thereby 
resulting in notably larger spatial uncertainty than the small voxel size 
[32,33]. In practice, involuntary patient motion can add even more 
unsharpness to the final image if not corrected. Therefore, different 
motion correction algorithms have been incorporated to several recent 
CBCT scanner models to overcome this image quality challenge and 
consequently offer sharper clinical images [34]. 

The main exposure parameters used in CBCT scans present the same 
general rules on image quality and radiation exposure of the patient as in 
other medical imaging modalities that use x-rays. Tube voltage and pre- 
filtration adjust the spectrum of x-rays, which in turn affects the image 
contrast (through balance between photoelectric effect and Compton 
scatter) and radiation dose. Tube current and exposure time are directly 
proportional to the tube output and the radiation dose, which affect 
image noise level according to Poisson statistics (noise level is inversely 
proportional to the square root of the dose). Dose is affected by tube 
voltage roughly as proportional to the voltage value squared [15]. 

In this review, we provide an updated summary of the current status 
of dental CBCT imaging, availability of different scanner models, recent 
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developments in scanner technology, and clinical aspects. We also 
address the regulatory perspective regarding dose optimisation, dosim
etry, and diagnostic reference levels. This review can be regarded as an 
update to our previous review article published in 2015 [5]. 

2. Technical characteristics of current dental CBCT scanners 

The last 5 to 10 years have seen a steady development of incremental 
technical CBCT features; current technology seems to be relatively static 
(see our previous CBCT review article [5]). Even so, new CBCT equip
ment models are continuously being developed and released. The sys
tems available on the market and used in clinical work vary remarkably 
in their imaging features and capabilities. The end users can select a 
proper CBCT device for their clinical needs from a wide range of 
different CBCT systems. The technical properties of the currently 
available scanners are summarised in Table 1 and are discussed in the 
text. To gather the data, an email inquiry was sent to each CBCT 
manufacturer with a request for brochures and technical data sheets of 
various CBCT devices. As some of the manufacturers did not respond to 
the inquiry or were not willing to share technical information for this 
review article, the data were completed as comprehensively as possible 
by searching for technical specifications from the manufacturers’ bro
chures and manuals and from other information available on the 
internet (mostly from manufacturers’ webpages). Recent scientific 
literature was also searched with the keywords “CBCT technology” and 
“Dental CBCT” to obtain updates on the essential technical and review 
articles published since our previous review. A recent review article 
from Gaêta-Araujo et al. [14] comprehensively summarised features of 
currently and formerly available CBCT equipment from 1996 to 2019. 
Their study included altogether 279 different CBCT models from 47 
manufacturers, of which 203 systems were reported to be still available 
in 2020. 

2.1. General features 

CBCT systems are typically divided into three different categories 
according to FOV size: (1) large FOV (>15 cm maximum scan volume 
height), (2) medium FOV (from 10 to 15 cm field height), and (3) small 
FOV (≤10 cm field height) [35]. Most of the devices also allow pano
ramic imaging, and with an additional arm, cephalometric imaging with 
the same unit. A few CBCT systems also have 3D photography capability 
for assisting pre-operative treatment planning and follow up. Moreover, 
some of the dental CBCT systems currently available may also be used 
for orthopaedic CBCT imaging. All currently available systems have a 
dose display (as required by regulations) that are mostly based on 
computational estimations. A major portion of the CBCT systems present 
dose after each exposure using a dose quantity of dose-area product 
(DAP) or kerma-air product (KAP or PKA, similar to DAP in diagnostic 
radiology), although a few systems use computed tomography dose 
index (CTDI) for this purpose. Some systems report both dose quantities. 

2.2. Gantry size and type 

The size and geometry of CBCT systems vary mostly on the technique 
used for patient positioning. The weight of the systems ranges from 67 
kg up to 1050 kg. Most devices allow scanning both in standing and 
sitting positions, while a few systems utilise scanning only in a supine 
position. Gaêta-Araujo et al. [14] reported that 80% of the CBCT devices 
were either wall- or floor-mounted standing position systems (mostly 
with wheelchair access), while supine lying position was used only in 
3% of the devices. While the standing position is the most used for dental 
CBCT scanning, it is vulnerable to patient movements especially when 
sufficient head fixation tools are not used. To minimise patient motion- 
related artefacts, standing devices can typically also be used in a sitting 
position due to motorized columns of the systems, allowing vertical 
movements of x-ray tube and detector head. This also allows access to 

wheelchair patients. Some of the vendors also provide motion- 
correction algorithms and other solutions to improve image quality 
regardless of patient movement. For example, 3Shape X1 Scancomfort 
device (3Shape A/S, Copenhagen, Denmark) uses head-tracking tech
nology to measure patient movement during the scanning, and recon
struction software then readjusts data for any motion to deliver sharp 
images. Although standing-position systems are frequently used, seated- 
and supine-position systems may allow a more comfortable imaging 
experience to a patient and thereby reduce motion-related artefacts. 
Some of the seated systems also have a vertical column, which provides 
access to wheelchair patients. Supine lying position equipment require 
significantly larger room dimensions than the standing and seated sys
tems and may also have other essential requirements for the space, 
possibly due to the greater weight of such systems. 

2.3. Field of view (FOV) 

The FOVs available in dental and maxillofacial CBCT systems vary 
from FOVs suitable for a single jaw or a few teeth (D × H usually 4 × 4 
cm or 5 × 5 cm, or from 2 × 2 cm in freely adjustable FOV systems) to 
full craniofacial imaging (from approximately 15 × 15 cm up to 26 × 30 
cm or 17 × 32 cm). The FOV dimensions depend on the detector size and 
shape, beam projection geometry, and the ability to collimate the beam 
[22]. While most of the devices utilise either one or a few prefixed FOVs 
(up to 23 different FOVs) planned for different indications, a user can 
freely adjust the FOV in the certain limits in both the vertical and the 
horizontal cross-sectional volumes in some equipment. Additionally, 
some CBCT devices allow stitching of the adjacent 3D volumes either in 
the horizontal or vertical direction, or both, resulting in larger FOVs. We 
want to emphasise that the FOV along with the voxel size is one of the 
most important parameters that affects patient radiation dose and image 
quality and should be selected according to the clinical task. 

2.4. Data collection during the scan 

For CBCT data reconstruction, a scan arc of at least 180◦ should be 
used to acquire the projection images [22]. Most currently available 
dental CBCT systems use a rotation angle of 360◦ for data acquisition; 
the range varies between 180◦ and 540◦ depending on the system. In a 
few devices, it is possible to select two or three different rotation angles 
for scanning, which allows reduced radiation exposure to the patient. 
While the lower angular range typically helps reduce patient dose [36], 
this may also reduce image quality. Moreover, some CBCT units utilise 
offset of the central ray of the beam from the rotational centre of the 
device to expand the width of the FOV, effectively imaging half of the 
field through the first 180◦ of rotation and the adjacent half through the 
second 180◦ of rotation. This strategy allows reduction in the size and 
expense of the flat panel detector. The number of projection images per 
rotation varies remarkably between devices. This may also affect image 
quality to some extent as the increased number of samples theoretically 
provides higher image quality. The grayscale depth of the image data 
varies between 12 and 16 bits, and almost every new CBCT model uti
lises either 14 bits or 16 bits. 

2.5. Voxel and focal spot size 

Most modern dental CBCT systems allow selection of the voxel size 
used according to clinical requirements. Since our previous dental CBCT 
review article in 2015 [5], the voxel sizes available in the devices have 
tended to be even smaller, possibly due to improved image reconstruc
tion algorithms, image noise reduction, and patient movement correc
tion methods. The smallest voxel size currently available is 50 µm 
(Smart3D-X scanner, LargeV Instrument Corp Ltd., Beijing, China), 
while the largest possible voxel size is 600 µm (Planmeca CBCT systems, 
Planmeca Oy, Helsinki, Finland). The voxel size is related to spatial 
resolution. Therefore, smaller voxel sizes enable higher spatial 
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Table 1 
Technical characteristics of the currently available dentomaxillofacial CBCT equipment.  
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Asahi Roentgen Auge Solio Z CsI / 
aSi 

60–100 2–12 2.5 
mmAl 

0.6 0.100–0.315 8.5–17 8.5–17 Continuous N/A 180 / 
270 / 
360 

12 1.37 
£

1.16 
£

2.29 

Seated / 
Standing / 
Wheelchair 

5.1 £ 5.5; 
9.7 £ 10; 
16.1 £ 10 

200 No MAR, scout 
image 

Carestream CS 8100 3D CsI / 
CMOS 

60–90 2–15 2.5 
mmAl 

0.6 0.075–0.400 3–15 3–15 Continuous <120 220 14 1.20 
£

1.40 
£

2.40 

Seated / 
Standing / 
Wheelchair 

4 £ 4; 5 £ 5; 
8 £ 5; 8 £ 8; 
8 £ 9 

95 No MAR 

Carestream CS 8200 3D CsI / 
CMOS 

60–90 2–15 2.5 
mmAl 

0.6 0.075–0.400 3–15 3–15 Continuous <120 220 14 N/A Seated / 
Standing / 
Wheelchair 

4 £ 4; 5 £ 5; 
8 £ 5; 8 £ 8; 
12 £ 10 

95 No MAR 

Carestream CS 9300 60–90 2–15 0.7 0.090–0.500 12–28 6.2–20 32–55 16 160 No  

(continued on next page) 

T. Kaasalainen et al.                                                                                                                                                                                                                           



PhysicaMedica88(2021)193–217

198

Table 1 (continued ) 

M
an

uf
ac

tu
re

r 

Tr
ad

en
am

e 

D
et

ec
to

r 

Tu
be

po
te

nt
ia

l,
kV

p 

Tu
be

cu
rr

en
t,

m
A

 

To
ta

lfi
ltr

at
io

n 

Fo
ca

lS
po

t,
m

m
 

V
ox

el
Si

ze
,m

m
 

Sc
an

ni
ng

tim
e,

s 

Ex
po

su
re

tim
e,

s 

Sc
an

m
od

e 

R
ec

on
st

ru
ct

io
nt

im
e,

s 

R
ot

at
io

na
ng

le
,◦

G
re

ys
ca

le
,b

it 

Sp
ac

er
eq

ui
re

m
en

ts
(D
​×
​W
​×
​H

),
m

 

Pa
tie

nt
Po

sit
io

ni
ng

 

FO
V
(D
​×
​H

),
cm

 

W
ei

gh
t,

kg
 

3D
fa

ce
sc

an
 

O
th

er
in

fo
rm

at
io

n 

CsI / 
aSi 

2.5 
mmAl 

Continuous 
/ pulsed 

190 / 
360 

1.60 
£

1.16 
£

2.38 

Seated / 
Standing / 
Wheelchair 

5 £ 5; 8 £ 8; 
10 £ 5; 10 £
10; 17 £ 6; 
17 £ 11; 17 
£ 13.5 

Carestream CS 9600 CsI / 
CMOS 

60–90 
(60–120 
option 
CBCT 
90–120) 

2–15 2.5 
mmAl 
þ 0.15 
/ 0.7 
mmCu 

0.3 
/ 
0.7 

0.075–0.400 5.5–40 5.5–40 Continuous N/A 360 14 1.67 
£

1.28 
£

2.53 

Seated / 
Standing / 
Wheelchair 

4 £ 4; 5 £ 5; 
5 £ 8; 6 £ 6; 
8 £ 5; 8 £ 8; 
10 £ 5; 10 £
10; 12 £ 5; 
12 £ 10; 16 
£ 6; 16 £
10; 16 £ 12; 
16 £ 17 

210 Yes MAR, scout 
image 

Carestream 9500 CsI / 
aSi 

60–90 2–15 2.5 
mmAl 

0.7 0.200–0.300 24 10.8 Pulsed <140 360 14 1.73 
£

1.64 
£

2.40 

Seated / 
Standing / 
Wheelchair 

9 £ 15; 18.4 
£ 20.6 

176 No  

Cefla Dental Group MyRay Hyperion X5 CsI / 
aSi 

90 4–15 6 
mmAl 

0.6 0.080–0.160 6.4–16.8 1.6–4.4 Pulsed 0–15 N/A 16 1.03 
£

0.87 
£

2.25 

Seated / 
Standing / 
Wheelchair 

6 £ 6; 6 £ 7; 
8 £ 6; 8 £ 7; 
10 £ 6; 10 £
7; 10 £ 10 

99 No MAR, scout 
image 

Cefla Dental Group MyRay Hyperion X9 
Pro 

CsI / 
aSi 

90 2–16 6.5 
mmAl 

0.5 0.068–0.150 3.6–14.4 1.6–8.0 Pulsed 0–15 180 / 
360 

16 1.14 
£

1.39 
£

2.45 

Seated / 
Standing / 
Wheelchair 

4 £ 4; 6 £ 6; 
7 £ 6; 8 £ 6; 
8 £ 8; 10 £
6; 10 £ 8; 10 
£ 10; 13 £
8; 13 £ 10; 
13 £ 16 

155 No MAR, scout 
image, real-time 
mA-modulation 

Dabi Atlante Eagle 3D CsI / 
CMOS 

60–85 4–8 2.5 
mmAl 

0.5 0.080–0.500 N/A 7–32 Pulsed 22–97 N/A N/A 1.27 
£

1.12 
£

2.44 

Seated / 
Standing / 
Wheelchair 

5 £ 5; 6 £ 8; 
8 £ 8; 8 £
12; 8 £ 16; 
13 £ 16; 18 
£ 16; 23 £
16 

115 No MAR, scout 
image, motion 
correction 

Dentium Rainbow CT CsI / 
CMOS 

60–100 4–12 N/A 0.5 0.200–0.300 19 N/A N/A <60 N/A N/A N/A Seated / 
Standing / 
Wheelchair 

5 £ 5; 16 £
10; 16 £ 18 

N/A No  

Dentsply Sirona Orthophos SL 3D CsI / 
aSi 

60–90 3–16 2.5 
mmAl 
þ 0.3 

0.5 0.080–0.220 2.2–14.4 N/A Pulsed N/A N/A N/A 1.37 
£

1.04 

Seated / 
Standing / 
Wheelchair 

5 £ 5.5; 8 £
8; 11 £ 10 

N/A No MAR 
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/ 1.0 
mmCu 

£

2.25 
Dentsply Sirona Axeos CsI / 

aSi 
85 3–16 2.5 

mmAl 
þ 0.3 
/ 0.5 / 
1.0 
mmCu 

0.5 0.080–0.220 2.2–14.4 N/A Pulsed N/A N/A N/A 1.37 
£

1.04 
£

2.25 

Seated / 
Standing / 
Wheelchair 

5 £ 5.5; 8 £
8; 11 £ 10; 
17 £ 13 

191 No MAR 

Dürr Dental VistaVox S CsI / 
CMOS 

50–99 4–16 5.8 
mmAl 

0.5 0.080–0.200 2–18 0.5–20 Pulsed N/A 180–540 14 1.55 
£

1.21 
£

2.21 

Seated / 
Standing / 
Wheelchair 

5 £ 5; 13 £
7; 13 £ 8.5 

180 No  

Genoray Papaya 3D Premium N/A 60–90 4–12 N/A 0.5 0.075–0.400 7.7–14.5 N/A N/A N/A 180 / 
360 

N/A 1.20 
£

1.13 
£

2.38 

Seated / 
Standing / 
Wheelchair 

3.5 £ 4; 4 £
5; 7 £ 7; 8 £
8; 14 £ 8; 14 
£ 14; 23 £
24 (19 
programs 
available) 

160 No Freely adjustable 
FOV 

HDX Will DENTRIα CsI / 
CMOS 
or CsI 
/ aSi 

80–110 4–10 2.5 
mmAl 

0.5 0.100–0.300 N/A 8–36 Pulsed <60 360 14–16 1.36 
£

1.20 
£

2.46 

Seated / 
Standing / 
Wheelchair 

16 £ 8; 16 £
14.5 (freely 
adjustable 
FOV) 

243 No Freely adjustable 
FOV, scout 
image, MAR 

HDX Will Eco-X CsI / 
aSi 

60–90 4–10 2.5 
mmAl 

0.5 0.200–0.300 N/A 8–24 Pulsed N/A 360 14 1.23 
£

0.98 
£

2.31 

Seated / 
Standing / 
Wheelchair 

10 £ 8; 12 £
10; 16 £ 9 

N/A No AI-MAR, mA- 
modulation 

HDX Will Q-Face CsI / 
CMOS 

60–90 4–10 2.5 
mmAl 

0.5 0.100–0.300 8–36 N/A Pulsed <60 360 14 1.39 
£

1.53 
£

2.36 

Seated / 
Standing / 
Wheelchair 

5 £ 16; 8 £
16; 9 £ 16; 
14.5 £ 16; 
16 £ 16; 16 
£ 21 

305 Yes MAR 

ImageWorks Corp. Panoura X-era CsI / 
CMOS 

70–90 2–4 2.5 
mmAl 

0.2 0.090–0.230 N/A 12–20 N/A N/A 360 16 1.37 
£

1.07 
£

2.31 

Seated / 
Standing / 
Wheelchair 

4.4 £ 6.4; 8 
£ 7.9; 11 £
7.9; 15.6 £
7.9 

210 No  

Imtec Iluma LFOV CsI / 
aSi 

120 1–3.8 N/A 0.3 0.090–0.400 7.8–40 7.8–40 Continuous 120 190 / 
360 

16 1.68 
£

1.96 

Seated up to 21.1 £
14.2 

350 No  
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£

2.16 
Imtec Iluma SFOV CsI / 

aSi 
120 1–3.8 N/A 0.3 0.090–0.400 7.8–40 7.8–40 Continuous 120 190 / 

360 
16 1.68 

£

1.96 
£

2.16 

Seated up to 10.8 £
9.6 

350 No  

Instrumentarium Orthopantomograph 
OP300 

CsI / 
CMOS 

57–90 4–16 3.2 
mmAl 

0.5 0.085–0.300 10–20 2.3–12.5 Pulsed <30 360 16 1.39 
£

0.97 
£

2.41 

Seated / 
Standing / 
Wheelchair 

6 £ 4; 6 £ 8 200 No MAR, scout 
image 

Instrumentarium/ 
PaloDEx / Kavo 

Orthopantomograph 
OP 3D 

CsI / 
CMOS 

60–95 
(CBCT 
95) 

2–16 3.2 
mmAl 

0.5 0.080–0.400 27–45 1.7–20 Pulsed <30 360 16 1.10 
£

0.77 
£

2.44 

Seated / 
Standing / 
Wheelchair 

5 £ 5; 6 £ 9; 
6 £ 11; 9 £
14 

120 No MAR, scout 
image, FOV 
adjustable in 
height direction 
(0.5 cm steps 
between 5 and 9 
cm) 

Instrumentarium / 
PaloDEx / Kavo 

Orthopantomograph 
OP 3D Pro 

CsI / 
CMOS 

57–90 
(CBCT 
90) 

3.2–16 3.2 
mmAl 

0.5 0.085–0.420 11–42 1.2–12.6 Pulsed <30 360 16 1.13 
£

0.83 
£

2.41 

Seated / 
Standing / 
Wheelchair 

5 £ 5; 6 £ 8; 
8 £ 8; 8 £
15; 13 £ 15 

200 No MAR, scout 
image. FOV 
freely positioned 

Instrumentarium/ 
PaloDEx / Kavo 

Orthopantomograph 
OP 3D Vision ¼ i-CAT 
V17 

CsI / 
aSi 

90–120 3–8 10 
mmAl 

0.5 0.125–0.400 4.8–26.9 2–7.4 Pulsed <30 360 16 1.34 
£

1.22 
£

1.82 

Seated / 
wheelchair 

5 £ 8; 8 £ 8; 
4 £ 16; 6 £
16; 8 £ 16; 
10 £ 16; 11 
£ 16; 13 £
16; 17 £ 23 

231 Yes scout image 
(option) 

LargeV Instrument Smart3D-X CsI / 
CMOS 

60–100 2–10 N/A 0.5 0.050–0.250 N/A 9.5–18.5 Pulsed <60 360 N/A 1.51 
£

1.79 
£

2.36 

Seated / 
Standing / 
Wheelchair 

5 £ 8; 8 £ 8; 
12 £ 8; 15 £
9; 16 £ 10 

250 No deep-learning 
based 
reconstruction 
algorithm, MAR, 
panoramic image 
can be 
reconstructed 
from CBCT 
image dataset 

Morita Veraviewepocs 3D 
R100 

CsI / 
CMOS 

75–90 1–10 2.5 
mmAl 
þ 0.2 
mmCu 

0.5 0.125 9.4 9.4 Continuous 60–240 180 / 
360 

14 1.30 
£

1.02 
£

2.36 

Standing / 
Wheelchair 

4 £ 4; 4 £ 8; 
8 £ 8 

190 No scout image 
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Morita 3D Accuitomo 170 CsI / 
aSi 

60–90 1–10 3.1 
mmAl 

0.5 0.080–0.250 5.4–30.8 5.4–30.8 Continous 20–120 180 / 
360 

14 1.20 
£

1.62 
£

2.08 

Seated 4 £ 4; 6 £ 6; 
8 £ 8; 10 £
5; 10 £ 10; 
14 £ 5; 14 £
10; 17 £ 5; 
17 £ 12 

400 No scout image 

Morita Veraview X800 N/A 60–100 2–10 2.5 
mmAl 
þ 0.2 
mmCu 

0.5 0.080- 9.4–17.9 9.4–17.9 Continous N/A 180 / 
360 

N/A 1.20 
£

1.40 
£

2.33 

Seated / 
Standing / 
Wheelchair 

4 £ 4; 4 £ 8; 
8 £ 4; 8 £ 5; 
8 £ 8; 10 £
4; 10 £ 5; 10 
£ 8; 15 £ 5; 
15 £ 7.5; 15 
£ 14 

185 No scout image 

Owandy I-Max Touch 3D CsI / 
aSi 

60–86 6–10 2.5 
mmAl 

0.5 0.092 20 8 Pulsed 120 180 
(TMJ) / 
200 

14 1.27 
£

1.14 
£

2.45 

standing/ 
seated/ 
wheelchair 

4 £ 9; 5 £ 9; 
9 £ 8 

161 No  

Owandy I-Max 3D CsI / 
CMOS 

60–86 2–12.5 2.5 
mmAl 

0.5 0.088–0.175 21.2 6.2–7 Pulsed N/A 270 16 1.27 
£

0.95 
£

2.23 

Seated / 
Standing / 
Wheelchair 

5 £ 5; 8.5 £
5; 8.5 £ 9.3; 
11.6 £ 10.2 

67 No MAR 

Planmeca ProMax 3D s CsI / 
aSi 

60–90 1–14 2.5 
mmAl 
þ 0.5 
mmCu 

0.5 0.075–0.400 N/A 3–36 Pulsed 2–25 200 16 1.25 
£

1.00 
£

2.34 

Seated / 
Standing / 
Wheelchair 

4.2 £ 4.2; 
4.2 £ 6.8; 5 
£ 5; 5 £ 8; 
6.8 £ 4.2; 8 
£ 4; 8 £ 5 
(þdouble 
and triple 
scans) 

119 Yes Advanced 
stitching with up 
to three 
horizontal 
volumes and two 
vertical volumes, 
adaptive image 
noise optimizer, 
MAR, movement 
correction 

Planmeca ProMax 3D Classic CsI / 
aSi 

60–90 1–14 2.5 
mmAl 
þ 0.5 
mmCu 

0.5 0.075–0.400 N/A 3–36 Pulsed 2–25 200 16 1.25 
£

1.00 
£

2.34 

Seated / 
Standing / 
Wheelchair 

4.2 £ 4.2; 
4.2 £ 6.8; 5 
£ 5; 5 £ 8; 
6.8 £ 4.2; 
6.8 £ 6.8; 8 
£ 4; 8 £ 5; 8 
£ 8; 11 £ 5; 
11 £ 8; 
(þdouble 
and triple 
scans) 

119 Yes Advanced 
stitching with up 
to three 
horizontal 
volumes, 
adaptive image 
noise optimiser, 
MAR, movement 
correction 
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Planmeca ProMax 3D Plus CsI / 
aSi 

60–120 1–14 2.5 
mmAl 
þ 0.5 
mmCu 

0.5 0.075–0.600 14–35 3–36 Pulsed 2–55 200 / 
360 

16 1.43 
£

1.10 
£

2.39 

Seated / 
Standing / 
Wheelchair 

3.4 £ 4.2; 
3.4 £ 6.8; 4 
£ 5; 4 £ 8; 
6.8 £ 4.2; 
6.8 £ 6.8; 8 
£ 4; 8 £ 5; 8 
£ 8; 8.5 £ 5; 
10 £ 6; 8.5 
£ 8.5; 10 £
10; 16 £ 10; 
20 £ 6; 20 £
10 

141 Yes Adaptive image 
noise optimiser, 
MAR, movement 
correction 

Planmeca ProMax 3D Mid CsI / 
aSi 

60–120 1–14 2.5 
mmAl 
þ 0.5 
mmCu 

0.5 0.075–0.600 14–35 3–36 Pulsed 2–55 200 / 
360 

16 1.43 
£

1.10 
£

2.39 

Seated / 
Standing / 
Wheelchair 

3.4 £ 4.2; 
3.4 £ 6.8; 4 
£ 5; 4 £ 8; 
6.8 £ 4.2; 
6.8 £ 6.8; 8 
£ 4; 8 £ 5; 8 
£ 8; 8.5 £ 5; 
8.5 £ 8.5; 10 
£ 6; 10 £ 8; 
10 £ 10; 10 
£ 14; 16 £
8; 16 £ 10; 
16 £ 14; 20 
£ 6; 20 £ 8; 
20 £ 10; 20 
£ 14; 20 £
17 

141 Yes Adaptive image 
noise optimiser, 
MAR, movement 
correction, 4D 
jaw motion 

Planmeca Viso G5 CsI / 
aSi 

60–120 1–16 2.5 
mmAl 
þ 0.2 
/ 0.5 
mmCu 

0.5 0.075–0.600 N/A 1.5–36 Pulsed N/A 210 / 
360 

16 1.52 
£

1.39 
£

2.36 

Seated / 
Standing / 
Wheelchair 

3 £ 3 to 20 
£ 17 (0.5–2 
cm steps 
depending 
on the 
program) 

165 Yes Live virtual FOV 
positioning, 
adaptive image 
noise optimiser, 
MAR, movement 
correction, 4D 
jaw motion 

Planmeca Viso G7 CsI / 
aSi 

60–120 1–16 2.5 
mmAl 
þ 0.2 
/ 0.5 
mmCu 

0.5 0.075–0.600 N/A 1.5–36 Pulsed N/A 210 / 
360 

16 1.52 
£

1.39 
£

2.36 

Seated / 
Standing / 
Wheelchair 

3 £ 3 to 26 
£ 30 (0.5–2 
cm steps 
depending 
on the 
program) 

165 Yes Live virtual FOV 
positioning, 
adaptive image 
noise optimiser, 
MAR, movement 
correction, 4D 
jaw motion 

PointNix 50–90 4–10 N/A 0.5 0.160 19 N/A N/A 10–40 360 14 150 No MAR 
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Table 1 (continued ) 
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Point 3D Combi 
500C/S 

CsI / 
aSi 

1.25 
£

1.06 
£

2.30 

Seated / 
Standing / 
Wheelchair 

12 £ 9; 14 £
9 

PointNix Point 800 HD 3D Plus CsI / 
aSi 

50–90 4–10 N/A 0.5 0.183–0.427 19 N/A N/A 10–40 360 14 1.25 
£

1.06 
£

2.30 

Seated / 
Standing / 
Wheelchair 

10 £ 9; 12 £
9 

150 No MAR 

PreXion Excelsior CsI / 
aSi 

60–110 1–6 N/A 0.3 0.080–0.200 5.2–23.6 N/A Pulsed N/A 360 16 1.56 
£

1.16 
£

2.22 

Seated / 
Standing / 
Wheelchair 

5 £ 5; 10 £
5; 10 £ 8; 15 
£ 8; 15 £ 13 

N/A No  

PreXion Explorer CsI / 
aSi 

90–110 1–5 2.7 
mmAl 

0.3 0.074–0.300 10–20 5–10 Pulsed <60 360 16 1.56 
£

1.11 
£

2.27 

Seated / 
Standing / 
Wheelchair 

5 £ 5; 10 £
10; 15 £ 8; 
15 £ 16 

185 No  

QR Systems NewTom VGi evo CsI / 
aSi 

110 1–32 12 
mmAl 

0.3 
/ 
0.6 

0.100–0.300 15–25 0.9–6 Pulsed <60 360 16 1.64 
£

1.29 
£

2.33 

Seated / 
Standing / 
Wheelchair 

5 £ 5; 8 £ 5; 
8 £ 8; 10 £
5; 10 £ 10; 
12 £ 8; 15 £
5; 15 £ 12; 
16 £ 16; 24 
£ 19 

377 No Scout image, 
mA-modulation, 
MAR 

QR Systems NewTom 5G XL CsI / 
aSi 

110 1–32 11.2 
mmAl 

0.3 0.075–0.300 18–36 0.9–9 Pulsed <60 360 16 3.61 
£

1.75 
£

1.80 

Supine / 
seated 
(orthopaedic) 

6 £ 6; 8 £ 5; 
8 £ 8; 10 £
5; 10 £ 10; 
12 £ 8; 15 £
5; 15 £ 12; 
15 £ 22; 18 
£ 16; 21 £
19 

660 No Scout image, 
mA-modulation, 
MAR 

QR Systems NewTom 7G Body CsI / 
aSi 

70–120 5–120 21 
mmAl 

0.3 
/ 
0.6 

0.090–0.500 7.2–26 1.4–8.8 Pulsed <60 360 16 3.94 
£

2.05 
£

2.08 

Supine / 
seated 
(orthopaedic) 

4 £ 4; 6 £ 6; 
8 £ 6; 8 £ 8; 
10 £ 10; 13 
£ 6; 13 £ 8; 
13 £ 12; 15 
£ 6; 13 £
17; 13 £ 32; 
17 £ 12; 17 

1050 No Scout image, 
mA-modulation, 
MAR 
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Table 1 (continued ) 
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£ 17; 17 £
22; 17 £ 32 

QR Systems GiANO HR 
Professional 

CsI / 
aSi 

90 2–16 6.5 
mmAl 

0.5 0.068–0.300 6.4–33.6 1.6–10.4 Pulsed <60 360 16 1.39 
£

1.80 
£

2.45 

Seated / 
Standing / 
Wheelchair 

4 £ 4; 6 £ 6; 
7 £ 6; 8 £ 6; 
8 £ 8; 9 £
16; 10 £ 6; 
10 £ 8; 10 £
10; 13 £ 8; 
13 £ 10; 13 
£ 14; 13 £
16; 15 £ 6; 
16 £ 10; 16 
£ 18 

155 No Scout image, 
mA-modulation, 
MAR 

QR Systems NewTom Go CsI / 
aSi 

90 4–15 6.0 
mmAl 

0.6 0.080–0.160 6.4–16.8 1.6- Pulsed <60 360 16 1.03 
£

0.87 
£

2.28 

Seated / 
Standing / 
Wheelchair 

6 £ 6; 6 £ 7; 
8 £ 6; 8 £ 7; 
8 £ 10; 10 £
6; 10 £ 7; 10 
£ 10 

99 No Scout image, 
mA-modulation, 
MAR 

Ray Medical Rayscan α CsI / 
CMOS 

60–90 4–17 2.6 
mmAl 

0.5 0.100–0.300 4.-14 N/A Pulsed N/A 360 N/A 1.48 
£

1.12 
£

2.30 

Seated / 
Standing / 
Wheelchair 

5 £ 9; 10 £
10 

150 No MAR 

Ray Medical Rayscan αþ CsI / 
CMOS 

60–90 4–17 2.6 
mmAl 

0.5 0.070–0.300 4.9–14 N/A Pulsed >4 360 16 1.48 
£

1.12 
£

2.30 

Seated / 
Standing / 
Wheelchair 

4 £ 3 to 16 
£ 10 

148 No MAR, freely 
adjustable FOV 

Ray Medical Rayscan Studio CsI / 
CMOS 

60–90 4–17 N/A 0.5 0.070–0.300 4.9–16 N/A Pulsed N/A 360 16 N/A Seated / 
Standing / 
Wheelchair 

4 £ 3 to 20 
£ 20 

N/A Yes MAR, freely 
adjustable FOV 

Saletec Acteon WhiteFox CsI / 
aSi 

105 6–10 9.2 
mmAl 

0.5 0.100–0.500 18–27 6–9 Pulsed 30 360 14 1.89 
£

1.58 
£

2.48 

Seated / 
Standing / 
Wheelchair 

6 £ 6; 8 £ 8; 
12 £ 8; 15 £
13; 20 £ 17 

275 No Scout image 

Shenzen Anke 
High-technology 

Dentom CBCT CsI / 
aSi 

50–90 1–10 N/A 0.5 N/A N/A N/A Pulsed N/A 360 16 N/A Seated / 
Standing / 
Wheelchair 

4 £ 4 to 16 
£ 13 
adjustable 
FOV 

N/A No Freely adjustable 
FOV, MAR, 
image noise 
correction 

Soredex Scanora 3D CsI / 
CMOS 

60–90 4–12.5 6.6 
mmAl 

0.5 0.133–0.350 10–26 2–6 Pulsed 60–240 360 12 1.60 
£

1.40 

Seated 6 £ 6; 7.5 £
10; 7.5 £
14.5;13 £
14.5 

310 No  

(continued on next page) 
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Table 1 (continued ) 
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£

1.97 
Soredex Scanora 3Dx CsI / 

aSi 
60–90 4–10 6.6 

mmAl 
0.5 0.100–0.500 18–34 2.4–6 Pulsed 60–240 360 14 1.60 

£

1.40 
£

1.97 

Seated 5 £ 5; 5 £
10; 8 £ 10; 8 
£ 16.5; 14 
£ 10; 14 £
16.5; 18 £
16.5; 24 £
16.5 

310 No  

Soredex Cranex 3D CsI / 
CMOS 

60–90 4–12.5 3.2 
mmAl 

0.5 0.133–0.350 10–26 2.3–6 Pulsed 60–240 180 / 
360 

14 1.60 
£

1.40 
£

1.97 

Standing / 
Seated / 
Wheelchair 

6 £ 6; 7.5 £
10; 7.5 £
14.5;13 £
14.5 

200 No  

Soredex Cranex 3Dx CsI / 
CMOS 

57–90 4–16 3.2 
mmAl 

0.5 0.085–0.400 10–40 1–9 Pulsed 60–240 180 / 
360 

14 1.96 
£

1.41 
£

2.41 

Standing / 
Seated / 
Wheelchair 

5 £ 5; 6.1 £
7.8; 7.8 £
7.8; 7.8 £
15; 13 £ 15 

200 No  

Trident X-View 3D PAN CsI / 
CMOS 

61–85 4–10 2.5 
mmAl 

0.5 0.160 15 9.2 N/A >10 230 14 1.07 
£

1.72 
£

2.23 

Standing / 
Seated / 
Wheelchair 

8.5 £ 8.5 125 No  

Vatech Green 16/18 CsI / 
CMOS 

60–99 4–16 N/A 0.5 0.080–0.300 4.9–9 N/A N/A N/A 360 14 1.49 
£

1.13 
£

2.17 

Seated / 
Standing / 
Wheelchair 

5 £ 5; 8 £ 9; 
12 £ 9; 13 £
10; 16 £ 9; 
18 £ 10 

134 No MAR 

Vatech Green 21 CsI / 
CMOS 

60–120 4–10 N/A 0.5 0.200–0.400 18 N/A N/A N/A 360 14 1.57 
£

1.53 
£

2.18 

Seated / 
Wheelchair 

8 £ 8; 12 £
9; 17 £ 11; 
17 £ 15; 21 
£ 19 

321 Yes  

Vatech Pax-i3D CsI / 
CMOS 

50–90 4–10 N/A 0.5 0.120–0.300 15–24 N/A N/A N/A 360 14 1.29 
£

1.12 
£

2.34 

Seated / 
Standing / 
Wheelchair 

5 £ 5; 8 £ 5; 
8 £ 8; 12 £ 9 

N/A No  

Vatech Pax-i3D Green CsI / 
CMOS 

50–100 4–16 2.8 
mmAl 

0.5 0.080–0.300 5.9–15 N/A Pulsed 13–212 360 14 1.33 
£

1.20 
£

2.34 

Seated / 
Standing / 
Wheelchair 

5 £ 5; 8 £ 5; 
8 £ 8; 12 £
9; 17 £ 15 

182 No Scout image, 
MAR 

(continued on next page) 
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resolution and delineation of smaller fine structures, such as in dental 
trauma cases. Not only voxel size but also the focal spot size affects 
spatial resolution. Most of the recent CBCT systems utilise a focal spot 
size of 0.5 mm (range 0.2 to 0.7 mm). The smaller the focal spot size, the 
smaller the penumbra at the detector, which results in a sharper image 
[25]. 

2.6. Exposure settings 

Most of the dental CBCT devices use a pulsed x-ray beam exposure, 
although a few vendors still utilise a continuous radiation exposure. 
Usually, the pulsed irradiation results in lower patient doses than 
continuous exposure mode, as the radiation is turned off intermittently 
during the image acquisition process. Only a few CBCT systems use fixed 
tube current and tube potential for 3D imaging, whereas most scanners 
enable these to be changed in certain limits, resulting in better possi
bilities for scan optimisation in terms of radiation dose and image 
quality. Typically, tube current values selectable for 3D imaging are 
between 2 and 15 mA, but the range covering all units is 1 to 120 mA. 
Tube voltages range from 50 to 120 kVp, with typical values between 60 
and 90 kVp. However, the lower kVp values may not always be available 
in CBCT scans, but only in the panoramic or cephalographic imaging 
modes. As in multi-slice CT scanners, the kV optimisation would also be 
beneficial in CBCT scanning. The total x-ray tube filtration of the 
equipment that affects the x-ray spectra varies remarkably (from 2.5 
mm-Al at minimum up to 21 mm-Al [NewTom 7G Body, QR Systems srl, 
Verona, Italy]). Additionally, more CBCT vendors are currently offering 
an additional copper filtration in their newest systems, whereas 6 years 
ago this was only available in the Planmeca CBCT systems. The addi
tional copper filtration is used to harden the photon beam and to reduce 
patient dose. The set of x-ray spectra from the scanners is presented in 
Fig. 2. 

2.7. Scan time 

The scanning times of current CBCT vary between 2 and 45 s, 
depending, for example, on the acquired number of projections and 
rotation arc of the scan. The exposure times are typically less than this 
because of the pulsed irradiation and ranges from 0.5 to 40 s. 

2.8. Image reconstruction 

The reconstruction technique still mostly used in dental CBCT sys
tems utilises 3D filtered back projection (FBP) by Feldkamp-Davis-Kress 
(FDK) algorithm [25] due to its simplicity and rapid reconstruction 
times. However, as discussed previously [5], CBCT, with its limited 
amount of projections, shorter angular range in data acquisition, and 
truncated data could benefit considerably from more advanced iterative 
reconstruction techniques. Recently, some CBCT models have been 
introduced that use iterative reconstruction methods (X1 Scancomfort, 
3Shape A/S, Copenhagen, Denmark) or DL-based reconstruction 
methods (Smart3D-X scanner, LargeV Instrument Corp Ltd., Beijing, 
China). The reconstruction times differ between the scanners from 
almost real-time reconstructions up to a few minutes, depending on the 
acquisition parameters (FOV, voxel size, number of projections, rotation 
angle), hardware (processing speed, data transfer from acquisition to 
reconstruction computer), and software (reconstruction algorithms) 
used. 

2.9. Metal-artefact reduction techniques 

Metal restorative materials (e.g. dental implants, metal fillings and 
crowns, fixed orthodontic appliances) and related artefacts are common 
in dental imaging. Metal implants result in streaking and beam- 
hardening artefacts in the CBCT images that can be seen as dark 
shading and bright streaks, especially around highly attenuating Ta
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metallic objects within the image volume [37]. However, many dental 
CBCT systems currently have noise/scatter correction and metal-artefact 
reduction algorithms to overcome the decreased image quality due to 
highly attenuating metal implants. 

3. Quality assurance 

Optimisation of radiological imaging equipment should span the 
wider context of quality management and quality assurance (QA) to 
connect the optimal setting of examination parameters to technical 
conformance of the scanners. This also applies to dental CBCT. QA 
process and quality control (QC) tests form important part of medical 
imaging quality and safety in any radiological imaging method. QA aims 
to assure that the technical performance and vendor specifications of the 
equipment are continuously maintained in clinical use and through the 
equipment life cycle. QC is a key part of QA to periodically assess that 
quality requirements are met. On a more general level, QA and QC also 
aim to reduce uncertainties and errors and to reduce the likelihood of 
accidents and incidents. 

Manufacturers have specific QA programmes for imaging equipment 
and should conform to applicable standards, such as those provided by 
DIN (German institute for standards) [38,39] and guidelines such as 
published by SEDENTEXCT [40] and European Federation of Organi
sations for Medical Physics (EFOMP) [41]. However, clinical staff should 
also be aware of the testing needs and perform regular QA tests, as 
required for the user and to monitor the constancy of their equipment. 
Thus, the QA and QC activities and responsibilities cover vendor, ser
vice, and users as connected shareholders in the overall quality and 
safety of imaging. While focusing on the clinical use of CBCT scanners, 
image quality evaluation is a particularly important part of the overall 
QA programme and should be integrated together with radiation 
exposure and technical performance monitoring for all CBCT scanners 
regardless of specific application area. 

Without going into details of QA/QC testing procedures, typical 
image quality tests focus on the following properties: image grayscale 
values (CT numbers), image uniformity, (high contrast) spatial resolu
tion, low-contrast resolution (contrast-to-noise ratio [CNR]), image 
noise, artefacts, and geometric precision. Scanner calibrations related to 
image quality testing typically include geometric and detector pixel 
calibration. Testing of radiation output typically includes measurements 
of KAP or DAP and air kerma at the focus-to-detector distance and in 
phantom dose indicators (e.g. traditional CTDI). It should be emphasised 
that possible Hounsfield Unit (HU) scaling in dental CBCT is only 
indicative and cannot be accurately calibrated as compared to multi- 
slice CT. 

As an example of the practical dental and ear, nose, and throat (ENT) 
radiology CBCT (Instrumentarium OP300) user level image QA, phan
tom testing is performed quarterly based on vendor phantoms and in
tegrated QA and calibration application (the vendor advises a 6-month 
frequency for the phantom scan procedure). Image quality tests mainly 
follow the previously mentioned typical targets. Three separate phan
toms are used for image quality tests, including 3D calibration phantom, 
QC phantom, and constancy test phantom (Fig. 3). 

The resulting QA/QC documentation may be provided by automatic 
log files and images. Spatial resolution can be determined subjectively 
from line-pair pattern or objectively from a point source providing high- 
contrast impulse response function in the form of an MTF curve (as a 
function of spatial frequencies). 

Technical QA procedures of dental CBCT may offer automatic fea
tures for QA monitoring and analysis purposes. By an integrated and 
automatic QA software, the regular CBCT QA process can be streamlined 
and does not require detailed technical knowledge from the users. 
However, in addition to the scanner image QA phantom testing, the 
users also perform regular display monitor QA, which ensures that the 
overall image review process chain is covered in the QA programme and 
conforms to the general radiology QA programme (of all modalities) for 

consistency. In addition to this user-level regular testing, further 
technical-level testing of the scanner is performed during regular 
maintenance service visits by the vendor, including x-ray tube and ra
diation output specific parameters. 

4. Patient dose and optimisation aspects 

The overarching principles of optimisation and justification have 
been present in the radiation protection system since its establishment in 
the ICRP publication 26 [42], from where they have later been adopted 
to international and European safety standards [43,44]. In medical use 
of radiation, justification requires that the radiological procedure must 
improve the diagnosis and treatment of patients. Moreover, an indi
vidual patient must benefit from that particular exposure, considering 
the specific characteristics of the exposed person. Therefore, justifica
tion requires weighing the benefits and possible harm caused by the 
exposure. In medical exposures, the harmful effects of ionizing radiation 
are minimised as far as practically possible to maximise the net benefit 
to the patient (i.e. the patient exposures are optimised). 

Optimisation starts from a proper selection of equipment, competent 
and trained operators, and day-to-day working methods. QA processes 
must also be established to ensure compliance with regulations and 
proper functioning of the equipment. Optimisation of the exposure 
should be done at the level of individual patient, such as through se
lection of the appropriate imaging modality, x-ray tube voltage, filtra
tion, exposure time, tube current, field size, and voxel size and from 
information from earlier examinations. In recent CBCT devices, low- 
dose protocols have become increasingly common (see a recent review 
for a discussion of possibilities and limitations [45]). However, the lack 
of automatic exposure control in dental CBCT devices has limited opti
misation efforts. This has also been noted in the ICRP publication 129 
[46] and discussed in relation to the recent EURADOS survey [47]. Thus, 
on-site optimisation of imaging parameters is of great importance. In the 
optimisation process, a multi-professional team is a prerequisite for 
optimal results, as technical, diagnostic, and dosimetric aspects must be 
considered (see e.g. ICRP Task Group 108, https://www.icrp.org). 

Differences in radiation dose levels are large not only between 
various CBCT devices from different vendors but also within the same 
scanner models [14,35,48,49]. The same authors also stated that a 50- 
fold difference in radiation exposure to a patient can easily be 
observed when changing the settings in specific CBCT equipment. 
Widely varying non-optimised doses were also found for example in the 
SEDENTEXCT research project [40] and in the European DIMITRA 
(dentomaxillofacial paediatric imaging: an investigation toward low- 
dose radiation induced risks) project [50]. A recent study by the IAEA 
[51] revealed that optimisation in dental and maxillofacial CBCT im
aging was still not at a mature stage, 7 years after the publication of 
SEDENTEXCT guidelines. This conclusion was also supported by a sur
vey performed by the EURADOS working group 12 [47]. 

5. Dosimetry and use of diagnostic reference levels 

CBCT dosimetry still lacks a consensus on dose metrics at a practical 
level (KAP vs. CTDI, or some other dose quantity) [47,51]. This may also 
have implications on optimisation, as comparisons of dose levels be
tween clinics, or even between different vendors or models, may be 
difficult. We have discussed CBCT dosimetry issues and related chal
lenges in our previous publication [5]. To fulfil the need for practical 
guidance in QC of CBCT devices, the joint EFOMP-ESTRO-IAEA protocol 
was published in 2017 [52]. The protocol is applicable to all CBCT de
vices and is described at a practical level that can be directly applied in 
the clinics. The topics cover the assessment of image quality and radi
ation output of the device and include a discussion on image quality 
phantoms. 

Several studies have investigated radiation exposures to patients 
from dentomaxillofacial CBCT examinations. Effective and organ doses 
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have been determined using thermoluminescent dosimeters (TLD), 
optically stimulated luminescence (OSL) dosimeters, and metal
–oxidesemiconductor field-effect transistor (MOSFET) detectors 
[53–55]. Recent studies have also used Monte Carlo simulations to es
timate effective and organ doses [53,55–57]. The magnitudes of these 
biological dose quantities vary remarkably in dental CBCT depending on 
the FOV size, positioning, and exposure parameters. An example of a 3D 
dose map produced with a Monte Carlo simulation is shown in Fig. 4. 

5.1. Conversion coefficients from DAP to effective dose 

Effective doses can also be estimated using appropriate dose con
version factors from DAP or KAP. Mah et al. reported in their review 
article the usage and magnitudes of effective dose conversion co
efficients for dental CBCT equipment and examinations [49]. They re
ported that conversion coefficients range from 0.035 to 0.31 µSv/ 
mGycm2 with a mean value of 0.129 µSv/mGycm2. They found FOV size 
significantly affects the obtained conversion coefficients and depends in 
part on the relative contribution of thyroid and salivary glands and their 
inclusion in the primary beam. 

For the current review, we also performed Monte Carlo simulations 
to provide conversion coefficients from DAP (mGycm2) to effective dose 
(µSv) with various scan scenarios. Our simulations were motivated by 
the fact that highly variable FOV size, spectral characteristics, and scan 
modes involving applied mAs (by pulsed exposure and mA levels) and 
angular scan range (typically between 180◦ and 360◦ in axial plane) in 
different scanner models make it difficult to report effective doses 
comprehensively and also specifically for relevant dental CBCT in
dications. The variable scan scenarios in our Monte Carlo simulations 
covered three different FOV sizes, three x-ray photon spectra, variable 
anatomical FOV positions (mainly focusing on small FOV), and angular 
scan range (Table 2). Three x-ray spectral qualities were chosen to 
represent soft, medium, and hard x-ray beam spectrum produced by low, 
medium, and high added filtrations, respectively (adapted from the data 
in Fig. 2), corresponding to different scanner models. Three FOV sizes 
were chosen to represent typical small, medium, and large FOVs 
(Table 1). Anatomical FOV positions were selected by the relevant main 
indications for the scan of third molar (wisdom tooth) on the lateral side, 
upper and lower canine in the antero-lateral position, and anterior 

centre position of the jaw. Medium FOV was positioned in the lateral and 
anterior position due to larger coverage of the dental structures in 
mandible and maxilla in the same scan. Large FOV was centred for 
whole skull indication. All simulations were performed with 360◦

rotation with additional simulations using 200◦ latero-posterior rotation 
for selected FOV and anatomical positions (third molar small FOV and 
whole skull large FOV). Simulations were performed with PCXMC 2.0 
rotational version (STUK, Helsinki, Finland). As a necessary part of the 
effective dose conversion coefficient calculations, organ doses were also 
determined and thyroid dose contribution was given a specific emphasis 
due to the relevance for shielding aspects. 

As shown in Table 2, the DAP to effective dose conversion co
efficients vary from 0.06 to 0.3 µSv/mGycm2 with an average of 0.18 
µSv/mGycm2. Thus, our conversion coefficients from DAP to effective 
dose are also consistent with those reported by Mah et al. [49]. A whole- 
skull scan with large FOV (20 × 20 cm) applying soft spectrum and 
partial rotation represented the lowest conversion coefficients. The 
highest conversion coefficients were found with the highest photon 
energy spectrum and small FOV, demonstrating the contribution of 
scatter with higher photon energies and dose collection from partially 
exposed tissue outside of the FOV. It should also be noted that the whole- 
skull scan does not have partially exposed tissue outside of the axial scan 
FOV, although the scatter from its larger FOV extends further in the 
vertical (craniocaudal) anatomical direction. The relative contribution 
of thyroid dose to effective dose varied from 3% to 16% with an average 
of 8%. Contributions around 10% were related to whole-skull exposure 
with higher photon energy spectrum, and the highest contributions 
extending to 16% were related to canine scans of the mandible (lower 
jaw), where partial exposure had most coverage to the thyroid position. 
Upper estimates of the thyroid effective dose relative contribution were 
additionally determined from two medium-spectrum simulations with 
200◦ and 360◦ rotation, which extended the scan FOV (26 cm diameter 
× 35 cm height) to include the thyroid entirely within the direct expo
sure (against the appropriate imaging practice). These simulations 
revealed a 35% contribution of thyroid dose to effective dose in 200◦

posterior rotation and 43% contribution in 360◦ full rotation, respec
tively. These results emphasise the general recommendation to limit the 
scan FOV by size and anatomical positioning to avoid direct thyroid 
exposure. 

Fig. 2. X-ray spectra from CBCT scanners referenced 
with 90-kVp tube voltage and typical 10◦ anode angle 
taking into account the total applied filtration by 
aluminium (solid lines) or combined aluminium and 
copper (dash lines). Mean photon energy (keV) of 
each spectrum is marked in parentheses on the spec
trum labels. As anticipated, increase in total filtration 
will significantly affect the spectral shape and mean 
energy of the beam. Furthermore, added copper 
filtration clearly reduces the lower energy part of the 
spectrum.   
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5.2. Diagnostic reference levels 

Diagnostic reference levels (DRLs) have been introduced as a prac
tical tool to facilitate optimisation. While the DRLs do not classify pa
tient exposures as good or bad, they contribute toward good imaging 
practices by indicating exceptionally high (or low) exposures. The Eu
ropean Basic Safety Standard [44] requires that “Member States shall 
ensure the establishment, regular review and use of diagnostic reference 
levels for radiodiagnostic examinations”. However, very few countries 
currently have established national DRLs in dental CBCT imaging 
(Table 3, see also [58] for a general discussion on optimisation and 
DRLs). Switzerland published their national DRLs for five dental in
dications [59] as did Finland for four dental or maxillofacial indications 
[60] and Sweden for three non-indication-based examinations in the 
dental region [61]. In the UK, Public Health England has suggested DRLs 
both for a specific adult and child CBCT protocol [62]. The DRL can be 
established at several levels, from European (regional) to national and 
local (clinic). However, as dental CBCT equipment are often in small 
private clinics that may not have access (although required by legisla
tion [44]) to medical physics expert service, national and regional ef
forts are needed to ensure widespread application of DRLs. 

6. Clinical aspects 

In 2D radiographs, the superimposition of different anatomical 
structures and geometric distortion may impair image interpretation. 
This can be avoided using 3D imaging (Figs. 5 and 6). If a 3D exami
nation provides new information compared to conventional 2D imaging 
and impacts treatment decisions or planning, it can be considered 

justified. Despite recent advances in CBCT, radiation doses of low-dose 
imaging protocols are still often higher than in conventional intraoral, 
panoramic, or cephalometric radiographs. Therefore, CBCT imaging 
indications and referral criteria are of utmost importance in clinical 
practice [46,63,64]. 

6.1. Guidelines 

Since the introduction of the CBCT technique in dental and maxil
lofacial imaging in the late 1990 s, the practitioners saw a long period of 
non-existent protocols or guidelines on how to approach optimisation 
and patient protection in clinical practice. Guidelines were first estab
lished at the international level by the American Academy of Oral and 
Maxillofacial Radiology in 2008 [65] and the European Academy of 
Dental and Maxillofacial Radiology (EADMFR) in 2009 [66], and further 
complemented by the EU-funded SEDENTEXCT consortium with its 
Safety and Efficacy of a New and Emerging Dental X-ray Modality 
research project in 2012 [40]. In addition to the European guidelines, 
national guidelines from different countries are also available, including 
a recent review compiling and summarising the CBCT-related guidelines 
from organisations and associations within North America [8,40,67]. 
Although the SEDENTEXCT panel members stated that especially the 
referral criteria should be reviewed and updated at intervals of no>5 
years, financial support for reviewing the guidelines is unfortunately 
still insufficient [40,68]. However, during the past 8 years, several 
systematic reviews and position statements focusing on various maxil
lofacial imaging indications of CBCT have been published. 

Fig. 3. Example of QC and constancy 
phantom scans and resulting axial im
ages from Instrumentarium OP300 
CBCT scanner: a) a constancy phantom 
positioned for the scan, b) an axial 
image of the uniform section of the 
constancy phantom with automatic 
reporting of the acceptance of the test 
results covering the material-specific 
contrast and noise values in addition to 
uniformity value, c) an axial image 
showing the different material cylinders 
in the QC phantom and d) an axial 
image of the high contrast line-pair 
patterns for the visual evaluation of the 
spatial resolution. Approximation of CT 
numbers (in HU; Hounsfield units) in 
density calibration is demonstrated with 
a fairly wide tolerance of material- 
specific densities, e.g. − 200 to + 200 
HU for acryl (PMMA) voxel values. It 
should be noted that this range of 
allowed density variation is over an 
order of magnitude greater than in 
typical multi-slice CT scanners.   
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6.2. CBCT imaging indications 

As children and young people are at greater risk of adverse effects of 
ionizing radiation, special care must be taken when imaging these pa
tient groups [69]. However, there are some indications that the opti
misation is insufficiently performed in the case of young patients [50]. 
Therefore, the European DIMITRA project proposed an ALADAIP prin
ciple (As Low as Diagnostically Acceptable being Indication-oriented 
and Patient-specific) when imaging children [50]. In paediatric 
dentistry and orthodontics, impacted or supernumerary teeth frequently 
need surgical intervention. CBCT scanning is justified if the exact posi
tion of the tooth, its relationship with intimate anatomical structures, 
and possible resorption of neighbouring teeth cannot reliably be 
assessed from 2D radiographs or if CBCT imaging will otherwise influ
ence treatment planning [50,70]. According to the updated EADMFR 
recommendation, preoperative CBCT imaging should not be used 
routinely to evaluate the relationship with mandibular third molars 
(wisdom teeth) and the mandibular canal, but only if the surgeon has a 
specific clinical question that cannot be answered by panoramic or 
intraoral imaging [68]. Traumatic or congenital loss of permanent teeth 
can be treated with an autotransplantation operation and the di
mensions of both the tooth transplant and the recipient site bone volume 
can be measured reliably from CBCT images. If orofacial cleft (lip and/or 
palate cleft) operations need volumetric assessment of bone defect, 
CBCT scanning can replace medical multi-slice CT scanning before a 
bone-grafting operation. Craniofacial syndromes, skeletal asymmetries 
requiring surgical intervention, and orthognathic surgery are other 
possible indications for CBCT imaging. One significant clinical disad
vantage of CBCT imaging is the longer scanning time compared to 
conventional imaging. Therefore, cooperation of paediatric patients 
must be considered. Movement of the patient during the scanning time 
can produce image artefacts and impair image quality [50,69,71,72]. 

The root canal anatomy of a single tooth may be complex, especially 
in multirooted molars and premolars, and all 2D radiographs have 
limitations in depicting morphological details of teeth and the sur
rounding alveolar bone structure. The European Society of Endo
dontology has published position statements in 2014 [73] and 2019 [74] 
on the use of CBCT in endodontics. It concluded that CBCT imaging 
should be considered in the following cases: suspicion of periapical 
pathoses when 2D radiographs are inconclusive and the patient has 
contradictory symptoms, assessment of root canal anatomy prior to 
initial endodontic treatment and in re-treatment cases, and prior to 
periradicular surgery [74]. Dental trauma, especially horizontal root 
fractures, and possible later complications such as resorptions and root 
canal obliterations, and developmental tooth anomalies can be accu
rately diagnosed in CBCT images [69,74]. In endodontic and dental 
trauma imaging, a higher spatial resolution may be required to delineate 
complex and detailed structures, such as root canals and fractures. 
However, it is good to remember that smaller voxels capture fewer x-ray 
photons and therefore provides more noise to the images, which may 
lead to use of increased radiation dose levels in scanning. We remind 
readers that the voxel size should be selected according to clinical 
indication. Additionally, although the theoretical spatial resolution of 
CBCT devices may be high due to small focal spot and voxel sizes, beam 
projection geometry, scatter, patient movement, detector motion blur 
and fill factor, number of projections, and reconstruction algorithms also 
impact the final spatial resolution and thus the capabilities of viewing 
detailed structures. As CBCT scanning can last from a few seconds up to 
45 s, the imaging is vulnerable to patient motion. As discussed previ
ously, the heart beating alone can induce 80–90 µm movement of the 
patient’s head [31,33]. 

In a recent nationwide survey conducted in co-operation with the 
Finnish Radiation and Nuclear Safety Authority, the most common im
aging indication was preoperative implant planning in the facilities 
performing CBCT examinations of the head and neck region in Finland 
[75]. Before a surgical operation, alveolar bone volume, restricting 

anatomical structures (e.g. sinuses, nerve canals), bone structure, and 
alveolar ridge morphology must to be assessed. Cross-sectional imaging 
is needed if clinical examination and conventional imaging are insuffi
cient. CBCT imaging is especially advisable before bone augmentation 
and sinus floor elevation operations. Successful occlusal rehabilitation 
with implants involves both surgical and prosthetic planning. In 
computer-guided planning, both CBCT data and digital impression are 
transferred to a software and the position of the implant in relation to 
occlusion can be planned virtually. After that, surgery can be performed 
with custom-made stereolithographic guides. Post-operative imaging 
with CBCT is restricted to specific complications, such as unexplained 
pain and infections. Metal restorations and implants can cause image 
artefacts and have a negative impact on image quality [76–78]. 

Only osseous structures can reliably be assessed when imaging the 
temporomandibular joint (TMJ). Soft tissues and intra-articular anat
omy should be evaluated from magnetic resonance images. The diag
nostic benefit of CBCT images and impact on treatment outcome 
currently remains uncertain [79,80]. The gold standard in maxillofacial 
trauma imaging is multi-slice CT, but CBCT may be indicated if soft- 
tissue imaging is not needed [40,81]. CBCT can also be advantageous 
in evaluation of the radiological characteristics of bony pathoses of the 
mandible and maxilla before surgical intervention [40]. 

6.3. Competency 

Since CBCT imaging has been in wide use for approximately 10–20 
years, most working-age dentists are not familiar with CBCT equipment, 
image acquisition, or referral criteria. It is also noteworthy that there are 
significant differences between undergraduate curricula regarding ra
diation physics, radiation biology, safety and protection, and training in 
3D-image interpretation. Continuing education is therefore essential 
and in many European countries, updating education in radiation pro
tection is mandatory. As a DentoMaxilloFacial radiologist is a registered 
speciality only in a few countries in Europe, EADMFR has published a 
recommendation of core competencies and minimum training re
quirements for dentists involved with dental CBCT [82]. Two training 
levels are recommended; a basic level for dentists who prescribe CBCT 
scans, and an advanced level for the dentists who perform CBCT imaging 
and evaluate the 3D images. The aim is to ensure that dentists have 
adequate knowledge and skills in the justification and optimisation 
processes and CBCT image evaluation. 

7. Use of patient shields in dental CBCT 

Use of wearable radiation shields for patients during x-ray exami
nations is a tradition that dates back over 70 years [83]. The rationale 
for these protective measures is to reduce radiation exposure to the 
radiosensitive organs of patients and thereby improve radiological 
optimisation and radiation safety. This tradition has been embraced by 
both radiology professionals and patients and reinforced by regulators. 
However, significant development of medical imaging technology has 
brought new and more effective tools for optimisation, thereby 
providing enhanced radioprotection for patients in most of the x-ray 
imaging examinations and interventional procedures. This development 
has also been acknowledged in several scientific publications, policy 
statements, and guidelines over the past decade. Accordingly, the 
weight of evidence has gradually questioned the legacy use of personal 
patient shields [83–88]. The evidence brought by these studies suggest 
that contrary to the historical perspective that shielding is always 
beneficial to patients, shielding may have an adverse effect on imaging 
examination and may actually increase the radiation exposure to pa
tients. In this review, we will not address this subject in depth. We will 
discuss what has been considered a consensus opinion to improve con
sistency in application of shielding in dental CBCT. We also discuss the 
use of thyroid shielding based on our Monte Carlo simulations that were 
reported in section 5.1. 

T. Kaasalainen et al.                                                                                                                                                                                                                           



Physica Medica 88 (2021) 193–217

211

In short, external radiation shields, mainly the thyroid collar shield, 
are not generally recommended in dental CBCT for radioprotection of 
patients, although different recommendations have also been presented 
[83,89]. The reasons for this alignment are as follows: 1) scan FOV 
should be optimised in all examinations, and thus the thyroid gland 
should not normally be in the primary x-ray beam, 2) use of a thyroid 
shield can easily interfere with the primary beam and cause significant 
artefacts, likely rendering diagnostically unacceptable images (as shown 
in Fig. 7), and 3) externally applied shielding is inefficient to protect 
radiosensitive organs from internal scatter. These reasons have also been 
discussed in a recent review by McGuigan et al. [90]. Radiation exposure 
from scatter to radiosensitive organs below the head and neck can al
ways be assumed to be low in all dental x-ray examinations regardless of 
specific modality and should not cause concern for e.g. pregnant patients 
[91]. As stated by the British Institute of Radiology in their recent and 
comprehensive patient shielding guidance, although there might be a 
slight benefit from thyroid shielding in dental CBCT studies with the 

largest FOVs, when consistent practices and risk of misplaced shields are 
considered, even this slight benefit can be seen as controversial [83]. 

To study the relative contribution of thyroid dose to effective dose, 
we performed Monte Carlo simulations as described in section 5.1. We 
found this contribution to be mainly below 10%. The highest contri
butions (reaching 15% to 16%) were related to scans of the mandible 
(lower jaw), where direct exposure is closest to the thyroid position. It is 
also such scans focused on the lower-jaw FOV where the risk of artefact 
from a thyroid shield is most pronounced. Higher contributions to 
effective dose from thyroid dose can be acquired with paediatric patients 
but also if the thyroid is partially or entirely in direct exposure (i.e. in the 
scan FOV). However, such FOV positioning should not occur with an 
appropriately performed CBCT scan. While considering the dental CBCT 
DRLs presented in Table 3 in combination with the conversion co
efficients shown in Table 2, the typical dental CBCT indications imply an 
effective dose of approximately 50–100 µSv. As such, the contribution of 
thyroid dose to effective dose can be assumed to be approximately 10 

Fig. 4. A) A photo of the physical exposure of an anthropomorphic adult female head phantom positioned for the CBCT scan with Planmeca Viso 7G CBCT scanner 
and B) a 3D dose distribution within an anthropomorphic phantom model (Atom 702-D, CIRS, Norfolk, VA, USA) produced with Monte Carlo simulation (ImpactMC, 
Vamp GmbH, Germany) corresponding to wide FOV of 26 × 30 cm (width × height) scan. Exposure was performed with 10 mA and 3.2 s effective exposure time (32 
mAs). DAP was 1370 mGycm2, corresponding to an estimated effective dose of 115 µSv (ratio of 0.084 µSv/mGycm2; effective dose divided by DAP). Mean photon 
energy of 64 keV of the x-ray beam was produced with 100 kVp tube voltage and 2.5 mm-Al plus 0.5 mm-Cu pre-filtration of the scanner. Rotational exposure 
covered an angular range of 210◦ in latero-posterior rotation (i.e. anterior part was not directly exposed). 
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µSv or less in most CBCT examinations. Only a part of this thyroid dose 
contribution can be reduced with an externally placed thyroid shield 
and the remaining portion of thyroid dose is accumulated from inter
nally scattered x-rays without relevant means of avoidance. Therefore, 
although thyroid shielding has dose-reduction capability, the contribu
tion of shielding in dental CBCT effective dose reduction can be regarded 
as fairly small and should be considered against the risk of artefacts 
caused by the shields. In summary, the use of external patient shields 
remains controversial [83,89], although modern technology with 
improving dose optimisation capabilities will gradually render tradi
tional shielding obsolete [83]. 

8. Future aspects 

8.1. General development for optimisation 

In general, dental CBCT technology has shown incremental but 
steady development in many specific areas and applications during the 
past few years. New scanner models have already enabled a wider se
lection of different FOV sizes to optimise imaging for specific indications 
(minimising the volume of exposed tissue) and to accommodate a larger 
FOV to cover the whole cranial anatomy [14]. The adjustability of FOV 
size has also improved, with more seamless and flexible diameter and 
height value settings to accommodate any individual target size and 
patient-specific anatomy. This flexibility is important, not only for the 
indication and for patient-specific optimisation of radiation exposure, 
but also for an easier patient positioning and streamlined scan 
procedure. 

8.2. Reconstruction methods 

Reconstruction methods are steadily progressing further from the 
traditional 3D Feldkamp algorithm. Iterative reconstruction methods 
have complemented traditional algorithms and have potential for 
reduced image noise and artefacts in various CT and CBCT applications 
[18]. Iterative methods attempt to solve the main reconstruction inverse 
problem in various converging steps. Iterative algorithms include 
varying methods regarding the level of modelling of the actual scan from 
a technical and physical perspective. Iterative reconstruction can be 
done either in the image domain or at the raw data level. The basic 
principle of iterative reconstruction is to gradually (in iteration steps) 
update the image data such that the raw data, which is simulated (in 
forward-projection) from this image data, will approach the true 
(measured) raw-data projections [29]. Thus, when the difference be
tween the simulated and the real raw data is sufficiently small (i.e. when 
the image data estimate will not change beyond the threshold value 
between the consecutive iteration steps), the iteration has reached the 
final solution. Iterative methods have shown a clear value in CT and 
CBCT imaging due to the flexibility of iterative methods to model 
various image acquisition geometries, and therefore provide more 
faithful assumptions of the actual image acquisition techniques [17]. 
The non-linearities built into iterative methods, mainly in the form of 
regularisation, have also revealed limitations of these methods as they 
may create images that deviate from traditional images on image 
texture, yielding even unnatural looking images [18]. This has raised 
concerns and has also highlighted the need for further development of 
reconstruction techniques [21]. 

The most recent advances in CT image reconstruction are focused in 
the realm of AI, where the DL image reconstruction algorithms are 
showing promising results for image quality improvements [92]. Due to 
its nature, the DL iterative reconstruction algorithm is based on the 
learning data, which should represent a balanced distribution of clini
cally relevant sets of image data, including various indications. This 
means that such algorithms are much more detached from the original 
linear approximations of image reconstruction and as such require 
careful clinical validation to demonstrate reliability in specific clinical 
settings [21]. Due to its flexibility in various tasks also included in the 
radiological imaging process, the development and clinical imple
mentation of DL algorithms in dental CBCT systems and clinical appli
cations are likely to be significant factors in the upcoming years. 

Regardless of the type of image reconstruction technique, the image 
reconstruction should also be able to perform corrections for metallic 
implants and involuntary patient movement during the scan. The chal
lenge with patient involuntary movement during the scan is emphasised 
in dental CBCT, as the scan times are considerably (approximately an 
order of magnitude) longer than with multi-slice CT scanners. The 
challenge has already been addressed by existing motion artefact 
correction methods, which have been integrated into CBCT 

Table 2 
Conversion coefficients from DAP to effective dose based on Monte Carlo sim
ulations. Conversion values cover three different FOV sizes (small, medium, 
large), three x-ray beam spectra (90 kV with variable added filtrations: soft, 
medium, hard), different anatomical positions corresponding to main dental 
indications, and example of partial 200◦ rotational exposure in third molar small 
FOV and whole skull large FOV scans in addition to default 360◦ rotation. Mean 
photon energies in keV are marked in parentheses in three spectra used in 
simulations.    

Spectra with 
90 kV     

Soft (46.5 
keV) 

Medium (54.9 
keV) 

Hard (65.3 
keV) 

FOV Location 2.5 mm-Al 2.5 mm-Al +
0.2 mm-Cu 

2.5 mm-Al +
1.0 mm-Cu 

Small (3 × 3 
cm) 

Third Molar 
(360◦) 

0.15176 0.22431 0.28592  

Third Molar 
(200◦) 

0.16687 0.24106 0.30310  

Canine (up) 0.15354 0.23188 0.29903  
Canine 
(down) 

0.09780 0.16181 0.21921  

Anterior 
centre 

0.13703 0.20972 0.27303 

Medium (8 
× 8 cm) 

Third Molar 0.12726 0.19384 0.25099  

Anterior 
centre 

0.11438 0.17811 0.23340 

Large (20 ×
20 cm) 

Skull (360◦) 0.06245 0.09721 0.12699  

Skull (200◦s) 0.05798 0.09071 0.11917  

Table 3 
Diagnostic reference levels of dentomaxillofacial CBCT examinations in various 
countries. Note that indications differ between the countries.  

Finland [60] KAP, PKA 

(mGycm2) 

Presurgical imaging of implant treatments (single tooth) 360 
Assessment of the relationship between a wisdom tooth and the 

mandibular canal 
380 

Assessment of the periapical region and the root canal 
morphology of the tooth 

550 

Imaging of the paranasal sinuses (excluding traumas) 1150 
Sweden [61]  
Part of jaw (1 quadrant) 300*/150** 
Upper or lower jaw (2 quadrants) 460*/180** 
Upper and lower jaw (4 quadrants) 540*/260** 
Switzerland [59]  
Wisdom tooth 662 
Single tooth implant 683 
Tooth position anomalies 542 
Pathological dentoalveolar modifications 569 
Endodontics 639 
UK [62]  
Adult (imaging prior to placement of a maxillary molar 

implant) 
265 

Child (imaging of an impacted maxillary canine of a 12-year- 
old child) 

170 

KAP = PKA = kerma-air product, *Upper level, **Lower level.   
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Fig. 5. Example clinical CBCT images in a case of apical periodontitis of the first maxillary incisor, presented in a) panoramic and b) intraoral images before root- 
canal treatment and later c-d) in CBCT images during treatment. 

Fig. 6. Example clinical CBCT images from extraction of the maxillary wisdom tooth and the second molar, indicating postoperative complication. Root fragment in 
the left maxillary sinus is targeted in the panoramic image and CBCT images. 
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reconstruction for certain vendors [34]. An example of motion artefact 
correction in combination with noise reduction is presented in Fig. 8. 

8.3. Developing optimisation tools 

Radiation exposure in CT imaging has been recognised as an essen
tial optimisation target for decades. Accordingly, there are many tech
nical optimisation features available [93], also for dental CBCT 
scanners. Low-dose scan protocols may utilise increased beam filtration, 
enhanced reconstruction settings, larger voxel size, and minimised tube 
output, either with lower tube currents or with lower effective mAs as 
enabled with pulsed exposure. Possible further improvements may 
involve tube voltage reduction if allowed by increased x-ray tube power, 
indication, and patient anatomy. This attempts to maximise the contrast 
in the image data by maximising the contribution of photoelectric effect 
at lower photon energies. Tube current modulation, which is routinely 
used in multi-slice CT scanners, may also be an efficient technique for 
optimisation in dental CBCT [6]. This technique aims to maintain a 
relatively constant net signal at the image detector for different raw-data 
projections of the image acquisition by producing tube current, which 

compensates for the changes in average projection-based attenuation of 
the patient while the x-ray tube is rotating around the patient during the 
scan. Beam-shaping filters also attempt to achieve the same goal of 
equalising the detector signal by prefiltering the peripheral part of the x- 
ray beam on every raw-data projection during the scan. This shaped 
prefilter has a shape of a bowtie and compensates the attenuation 
generated by the patient, assuming cylindrical patient geometry where 
the x-ray projections passing through the central part of the patient 
attenuate more than the peripheral x-rays. In addition to detector signal 
equalisation, beam-shaping filters also help by reducing peripheral ra
diation exposure to the patient and improve image quality by reducing 
the amount of scatter from the peripheral anatomy. However, these 
potential optimisation methods, namely spectral optimisation, tube 
current modulation, and beam-shaping filters, require further develop
ment for dental CBCT hardware and x-ray production performance [5]. 
Finally, image detectors are becoming more sensitive in capturing the 
relevant image signal and reduce electronic noise by integrating the 
digital signal readout electronics more closely to the detector elements 
and via development of entirely new detector material and detector type 
developments, such as photon-counting detectors [93,94]. 

Fig. 7. Example of an artefact caused by an inappropriately positioned thyroid shield with respect to the 8 × 15 cm FOV scanned with Instrumentarium OP300 CBCT 
scanner: a) a scan with an anthropomorphic head phantom with a thyroid shield positioned around the neck, b) an axial image with an artefact, c) an axial image 
without artefact when the scan was performed without a thyroid shield. 

Fig. 8. Example of ultra-low dose pa
tient images demonstrating the effect of 
CBCT noise reduction and motion arte
fact suppression algorithm in axial 
(upper row) and sagittal (lower row) 
reformats. Left: images with no correc
tions applied, Centre: images with noise 
reduction (AINO), Right: images with 
noise reduction and motion correction 
(CALM). Original images acquired with 
Planmeca ProMax Classic, 80 × 80 × 80 
mm FOV, 0.15-mm voxel size, 90-kVp 
tube voltage, and 18 mAs exposure. 
Images courtesy of Planmeca Oy, 
Finland.   
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8.4. Photon-counting detectors 

Current CT and CBCT image detectors are energy-integrating de
tectors that accumulate the total energy delivered from absorbed x-ray 
photons into measured signal intensity. Therefore, the detected signal 
does not reveal the characteristics of the applied photon spectrum. With 
photon-counting detectors, every absorbed photon releases electric 
charge carriers that are collected into measured charge signal as an in
dividual detection event per each x-ray photon. This photon-energy 
specific signal amplitude can then be compared to pre-set threshold 
levels and are consequently counted into the corresponding photon 
energy bin. Depending on the number of threshold levels, which also 
reflect the complexity of the photon counting detector read-out elec
tronics, multi-energy image data can be produced. Multi-energy image 
data may provide more advanced contrast representations (e.g. 
material-specific spectral imaging), yielding material density maps and 
virtual monochromatic images [94]. 

8.5. General future aspects 

These new hardware- and software-based methods can be combined 
with significant potential to improve image quality and reduce radiation 
exposure to patients, as foreseen with future CBCT scanners. As these 
developments have already been implemented in conventional CT im
aging and the speed of how these features are emerging in certain CT 
scanners (e.g. by AI algorithms and photon-counting detectors) also 
secure the future outlook for dental CBCT imaging. Despite these tech
nological advancements, the value of new technology comes with well- 
educated and trained users who can take full benefit of the scanners and 
use them safely. This also involves multidisciplinary teams of physicists, 
radiologists, clinicians, and engineers, who should work together for 
more effective optimisation process in any medical imaging modality. 
Dental CBCT scanners have shown clear technical advancements in the 
past decade and scanner technology, models, and applications have 
diversified. This technical development is proceeding alongside new 
hardware and software methods, which complement each other. The 
main task for us is to understand this development and to know what is 
available in current CBCT scanners. Thus, we can make sound decisions 
what is needed for clinical practice and how to use our CBCT scanners in 
an optimal way for the benefit of the patient. 
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