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ABSTRACT

Behçet’s disease (BD) is a heterogeneous multi-organ disorder in search of a unified 

pathophysiological theory and classification. The disease frequently has overlapping features 

resembling other disease clusters, such as vasculitides, spondyloarthritides and thrombophilias 

with similar genetic risk variants, namely HLA-B*51, ERAP1, IL-10, IL-23R. Many of the BD 

manifestations, such as unprovoked recurrent episodes of inflammation and increased expression 

of IL-1, IL-6 and TNF, overlap with those of the hereditary monogenic autoinflammatory 

syndromes, positioning BD at the crossroads between autoimmune and autoinflammatory 

syndromes. BD-like disease associates with various inborn errors of immunity, including familial 

Mediterranean fever, conditions related to dysregulated NF-B activation (e.g. TNFAIP3, NFKB1, 

OTULIN, RELA, IKBKG) and either constitutional trisomy 8 or acquired trisomy 8 in 

myelodysplastic syndromes. We review here the recent advances in the immunopathology of BD, 

BD-like diseases and the NF-B pathway suggesting new elements in the elusive BD 

etiopathogenesis.

Keywords: Behçet’s disease, NF-B pathway, chromosome 8 trisomy, phagocytes, HLA-B51, 

autoinflammatory syndrome, NFKB1, TNFAIP3, RELA, IKBKB, IKBKG.
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Introduction

Behçet’s disease (BD) is an idiopathic systemic vasculitis initially described by Hulusi 

Behçet [1] and Benediktos Adamantiades [2] in the 1930s as recurrent oral and genital ulcers, 

associated with anterior uveitis with hypopyon. The disease frequently affects young adults and 

classically exhibits a geographic distribution throughout the ancient “Silk Road”, with highest 

prevalence in Turkey, Iran and Japan [3]. BD lacks several features of classical autoimmune 

diseases, including female predominance, association with Raynaud’s phenomenon, secondary 

Sjögren’s syndrome, disease-specific and specific autoantibodies. Autoinflammatory syndromes, a 

subclass of inborn errors of immunity (IEI) [4], refer to seemingly unprovoked recurrent episodes 

of spontaneous innate immunity activation without usual hallmarks of autoimmunity (i.e., 

autoantibodies and antigen-specific autoreactive T and B cells). However, BD shares various 

genetic risk factors with autoimmune diseases, spondyloarthropathies and vasculitides, which we 

briefly review. Likely, BD is also an autoinflammatory disease with shared etiopathogenesis [5]. 

This is further supported by the clinical overlap between BD with familial Mediterranean fever 

(FMF) [6] and with conditions due to dysregulated NF-B activation [7]. We will review recent 

advances on BD etiopathogenesis with special emphasis on comparison to novel monogenic 

diseases with autoinflammatory features that display overlap with BD, and include an overview of 

the NF-B (nuclear factor kappa light polypeptide gene enhancer in B-cells) pathway.

Genetic risk factors

Associations between autoimmune diseases or autoantibody production and specific 

alleles of human leucocyte antigens (HLA) in the major histocompatibility region (MHC) region 

are well known. However, the mechanisms that mediate such susceptibility remain elusive. HLA-

B*51 is the strongest known identified genetic risk factor and responsible for 19% of the genetic 

susceptibility to BD [8, 9]. This association has been observed among several ethnic groups in 

GWAS studies [9, 10] imparting a 6-fold higher risk to develop BD [9, 11, 12]. The worldwide 

distribution of HLA-B*51 follows the ancient “Silk Road” [13, 14]. HLA-B*51 has a low affinity 

for peptides and hypothetically slow protein folding may have a role in BD pathogenesis through 

the unfolded protein response [15]. Killer Ig-like receptor DL1 (KIR3DL1), a polymorphic 

inhibitory receptor, interacts with HLA-B*51. KIR3DL1 allotypes seem further to modulate the 

clinical BD phenotype, potentially through NK cytotoxicity [16-18]. The low prevalence of HLA-A
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B*51 in many patients with bone fide disease, especially in non-endemic regions, suggests other 

factors must also be operative in BD or acting in epistasis. 

ERAP1 is a locus found in epistasis with HLA-B*51 [19]. ERAP1, encodes 

endoplasmic reticulum associated aminopeptidase-1 (ERAP1), a zinc metallopeptidase inducible 

by IFNγ representing the M1 aminopeptidase family. ERAP1 further processes proteasome-

derived peptides, especially those with a hydrophobic C-terminal amino acid, reducing them to 8-9 

residues, the optimal length of binding onto MHC class I molecules (e.g., HLA-B*51 and B*27) 

[19, 20]. Finally, the antigenic peptide repertoires are presented to CD8+ T cells (Figure 1).  A 

recent GWAS showed that an ERAP1 haplotype, encoding both p.R725G and p.D575N in strong 

linkage disequilibrium, conferred an increased risk for BD, mainly in HLA-B*51-positive patients 

or those with uveitis [17]. Surprisingly, homozygosity for ERAP1 variants is a risk factor for BD, 

but is protective against ankylosing spondylitis [21] and psoriasis [22]. This was further confirmed 

in a Spanish cohort [23]. The repertoires of MHC-bound peptides are altered in ERAP1-deficient 

mice [24]. Thus, BD homozygotes for these variants may have altered presented peptide 

repertoires. Interestingly, the ERAP1 crystal structure shows that the variant p.R725G can affect 

substrate sequence or specificity and reduce the enzymes activity [25, 26].

Beyond the B*51 allele

Like in most autoimmune disorders, several non-HLA genes are associated with BD. 

Besides the MHC class I region, two other major risk loci are shared with spondyloarthritides, 

namely IL23R and IL10. In a GWAS, five single nucleotide polymorphisms (SNPs) of IL-10 were 

strongly associated with BD [11, 12]. They were located in the promoter region and in the first, 

second and third introns, and in strong linkage disequilibrium with each other. Findings expanded 

previous results showing increased prevalence of IL-10 promoter polymorphisms in BD patients 

[27]. Functional tests showed lower IL-10 production after lipopolysaccharide stimulation by 

variant carriers, suggesting that low regulatory cytokine IL-10 expression may be a risk factor for 

BD [12]. IL-10 inhibits costimulatory activity of macrophages for T and NK cell activation and 

IL-1β, IL-6, IL-12, TNFα and IFNγ production. Analogous to ERAP1, SNPs immediately flanking 

the IL-10 gene have also been associated with inflammatory bowel disease [28] while IL-10R 

mutations abrogating IL-10 receptor signaling are associated with very early-onset inflammatory 

bowel disease [29]. These inflammatory bowel diseases display phenotypic overlap with BD. [30]. A
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Another group of BD susceptibility loci includes the proinflammatory IL-12 cytokine 

family. IL-12 is a heterodimeric cytokine that shares its p40 subunit with IL-23 and plays an 

important role in Th1 responses, NK cell cytotoxicity and IFNγ production. A recent meta-

analysis with two Turkish cohorts and 369 unrelated BD patients from 18 different geographic 

origins showed that an intronic variant in IL-12A, rs17810546, conferred a 1.7-fold increased risk 

for BD [31]. This result was replicated in a large cohort of Iranian patients [30]. Other variants 

relevant to this pathway were found in the intergenic region between IL-23R and IL-12RB2 in BD 

patients of European-descent and Asian populations [11, 12]. IL-23R encodes a subunit of the 

IL23 receptor capable of stimulating Th17 cell proliferation and increasing the production of IL-

1, IL-6, IL-17 and TNFα [32]. Interestingly, BD variants were closer to the IL-23R side of the 

hotspot. The association of IL-23R is similar to ankylosing spondylitis [33], psoriasis [34] and 

inflammatory bowel disease [35], clinical conditions that share phenotypic manifestations with 

BD. Thus, these findings provide evidence that abnormalities in the genetic control of cytokine 

levels may be relevant in the pathogenesis of BD in some groups of patients.

A putative role of genetic and environmental factors for BD is yet to be described. 

There is some evidence regarding the role of microorganisms on BD, such as the hyperreactivity 

against Streptococcus sanguinis antigens and the homology [36-38]. In addition, Staphylococcus 

aureus and some Prevotella species have also been identified as potential candidates [39]. 

However, a very unusual genetic-environment interaction of FUT2 variants was previously 

reported [20, 40, 41]. FUT2 variants (W143X and p.I129F) were associated with BD, for which 

homozygosity is also associated with distinct composition of gut microbiome and predisposition or 

resistance to different infectious agents, implicating microbial–host interface in disease 

pathogenesis.

Familial Behçet’s disease susceptibility loci

Most BD cases are sporadic, suggesting polygenic influence. However, familial 

clustering of BD occurs within a prevalence of 5-10% of the cases [42-47]. In a highly interesting 

study on 193 individuals from 28 multi-case families of Turkish origin, evidence for linkage was 

obtained in 16 chromosome regions: 1p36, 4p15, 5q12, 5q23, 6p22-24, 6q16, 6q25-26, 7p21, 

10q24, 12p12-13, 12q13, 16q12, 16q21-23, 17p13, 20q12-13 and Xq26-28 [43]. The strongest 

linkages were observed for 12p12-13 and 6p22-24, the latter contains TNFAIP3, a known 

regulator of the NF-κB pathway.  Interestingly, the above-listed regions contain multiple genes A
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encoding factors in NF-κB pathway (e.g., CHUK/IKBKA, TRADD, TP53, BIRC7, 

IKBKG/NEMO), while many of the others encode genes taking part in NF-B activation and 

downstream signaling (e.g., TNFSF1A, NOD2, NFATC2, NFATC3). Rare variants in components 

upstream of NF-κB have also been found in BD patients by targeted deep sequencing of TLR-4, 

FMF (autosomal recessive MEFV) and NOD2 genes [92]. The frequency of the most penetrant 

p.M694V mutation of MEFV was found to be increased in Turkish BD patients, again suggesting 

an overlap between these two conditions [5]. Dysregulation of the NF-κβ pathway is a common 

finding in disorders with BD or BD-like phenotypes, especially those in the field of NF-B-related 

autoinflammatory diseases [48].

New insights: NF-B pathway mutations

The NF-B pathway has been increasingly implicated in BD as several monogenic 

BD-like phenotypes have been identified [49].  NF-B has also been directly shown to play a 

crucial role in the pathogenesis of BD. Todaro et al [50] showed a paradoxical CD95 

hyperexpression in BD T cells associated with an insensitivity to CD95-induced apoptosis, 

probably attributable to the inhibitory action of antiapoptotic genes and mediated by IKK/ and 

IB upregulation, culminating with an increase on NF-B translocation to the nucleus. 

Interestingly, immunosuppressant therapies, like thalidomide, re-sensitized BD activated T cells to 

CD95-induced apoptosis and reversed all the abnormalities. Our group has previously reported 

that the inflammatory characteristics of BD could be associated with NF-B hyper activation in 

cells from BD patients, given the constitutive over-expression of phosphorylated p65 subunit [51]. 

Taken together, these data suggest that NF-B contributes to the regulation of the apoptosis-

related factors and pro-inflammatory signals in BD cells (Figure 2). Several components of the 

NF-B pathway have been specifically examined in BD or BD-like diseases that exemplify this 

concept [48].

NFKB1

A previous study provided evidence that the –94ins⁄del ATTG promoter polymorphism 

of NFKB1 encoding p105/p50 may have functional consequences in BD, especially in patients 

with ocular involvement [52]. Yenmis et al [53] expanded this finding by showing that the wild-A
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type rs696 polymorphism of NFKBIA, which results in miR449a-induced decreased expression of 

IBα (nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor, alpha) [54],  is 

also strongly associated with an enhanced risk of BD in Turkish patients. We recently reported a 

monogenic form of BD-like features in carriers of an NFKB1/p50 p.H67R variant with reduced 

nuclear entry of p50 and decreased transcriptional activity in luciferase reporter assays [55]. 

Intriguingly, patients with p.R157X had almost complete NF-κβ1 loss due to proteasome 

degradation of both the truncated and wild type protein (likely as a dimer) and displayed extreme 

pathergy-like hyperinflammatory responses (familial autoinflammatory necrotizing fasciitis) to 

minor surgery, due to enhanced macrophage inflammasome activation. Minor trauma may also 

incite pyoderma gangrenosum lesions in such patients [55, 56]. 

Tumor necrosis factor, α–induced protein 3 (TNFAIP3) and OTULIN

TNFAIP3 encodes the NF-B regulatory protein A20, a potent inhibitor of the NF-B 

signaling pathway. TNFAIP3 SNPs were demonstrated to confer risk for BD in Chinese [57] and 

Japanese [58] patients, whose mononuclear cells produced large amounts of IL-1β, IL-6 and TNFα 

after stimulation [58]. Moreover, Zhou et al [59] reported on five families of different ethnicities 

carrying six distinct high-penetrance heterozygous germline TNFAIP3 mutations, mainly located 

at the A20 ovarian tumor domain. Patients developed autoinflammatory disorders resembling BD, 

presenting with oral/genital ulcers, gastrointestinal involvement and pathergy. Furthermore, 

mutant A20 are likely to act through haploinsufficiency and patient-derived cells showed 

increased degradation of IB and nuclear translocation of the NF-B p65 subunit together with 

increased expression of NF-B-mediated proinflammatory cytokines. Indeed, whole exome 

sequencing in familial BD has now found several families with dominant loss of function 

mutations in TNFAIP3 [58, 60-64].

Simultaneously, the same group also identified two missense and one frameshift 

OTULIN autosomal recessive mutations in three distinct families with four affected patients with 

an BD-resembling autoinflammatory phenotype [65]. Patients presented with neonatal-onset fever, 

neutrophilic dermatitis or severe panniculitis and failure to thrive, but without obvious primary 

immunodeficiency, culminating with a clinical condition named Otulipenia. Both OTULIN and 

A20 are important gatekeepers of innate immunity by cleaving activating polyubiquitin chains 

generated by the linear ubiquitin assembly complex (LUBAC) and A20 on various target proteins 

in the NF-B canonical pathway targets [66]. A
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LUBAC-mediated ubiquitination is critical for regulation of immune signaling and cell 

death, mainly stimulating the IB kinase (IKK) complex. Interestingly, absence of LUBAC 

function represented by HOIL1 [67] or HOIP [68] subcomponent deficiencies attenuate NF-κB 

signaling and patients present with apparently paradoxical features of susceptibility to infection, 

due to hypogammaglobulinemia, and systemic autoinflammation with fever, high concentrations 

of acute-phase reactants, hepatosplenomegaly and lymphadenopathy. The former manifestation is 

secondary to lymphocytes and fibroblasts impaired IL-1β and CD40 activation and the latter is 

probably due to a yet unclear increased responsiveness to IL-1β in monocytes (Figure 2).

NF-κB essential modulator (NEMO)

Incontinentia pigmenti (IP) is a rare X-linked dominantly inherited genodermatosis 

caused by NEMO mutations in females, as affected males usually do not survive until birth. Two 

case reports showed the concurrence of IP with sporadic BD [69, 70] and two additional 

independent reports showed that at least heterozygous NEMO p.D406V mutation can cause 

familial BD in female family members [7, 71]. Interestingly, Takada et al [7] could not observe 

skewed X-chromosome inactivation in peripheral blood mononuclear cells nor in oral or intestinal 

mucosa in these patients. Despite the apparent absence of any mechanistic study with D406V BD 

carriers, we hypothesize that this mutation may be associated with NEMO loss-of-function, 

ultimately culminating with an increased IB degradation and, consequently, NF-B 

hyperactivity. Previous studies have found splice variants causing truncations in the 

IKBKG/NEMO transcripts leading to an expressed truncated protein, increased infections and 

decreased NF-κB activity [72, 73]. Alternatively, NEMO deleted exon 5–autoinflammatory 

syndrome (NEMO-NDAS) was also recently characterized with panniculitis, chorioretinitis, 

progressive B cell lymphopenia and hypogammaglobulinemia, and a high interferon gene 

signature [73]. The autoinflammatory features described in NEMO deficiency, including arthritis, 

colitis, and graft versus host disease (GVHD)-like dermatitis, are thought to be a failure of the C-

terminus of NEMO to recruit the A20/TNFAIP3, thus losing the negative regulation of the 

pathway [74].

RELA (p65)A
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A recently published study described a family with an autosomal-dominant 

mucocutaneous ulceration whose proband was dependent on anti-TNF therapy for sustained 

remission [75]. A heterozygous mutation of RELA (c.559+1G>A), encoding the NF-B subunit 

RelA, alters the canonical donor splice site downstream of exon 6 and showed segregation with 

the disease phenotype. Interestingly, the patients’ fibroblasts exhibited increased apoptosis in 

response to TNF, impaired NF-κB activation and defective expression of NF-κB–dependent 

antiapoptotic genes, whereas the patients’ PBMC were relatively spared of such abnormalities. 

Furthermore, RelA+/− mice develop cutaneous ulceration and similarly impaired NF-κB activation. 

Although merely linked to a single BD-like clinical manifestation, these findings are another piece 

of data in the puzzling hypothesis associating BD and the NF-B pathway.

Chromosome 8 trisomy and the risk of BD

The clinical phenotype associated with constitutional trisomy 8 is pleiotropic, variably with 

developmental delay, joint contractures, deep palmar and plantar creases, corpus callosum 

agenesis, skeletal and renal anomalies [76]. These germline cases usually harbor a constitutional 

trisomy 8 mosaicism (CT8M) pattern, with only some cell lines presenting chromosomal 

abnormality. There is a well-recognized association between CT8M and malignancies, in 

particular hematological myeloid malignancies and myelodysplastic syndrome (MDS) [77]. 

Alternatively, acquired trisomy 8 is also associated with hematologic malignancies and leukemia 

generally with a poor prognosis. BD has been increasingly associated both with CT8M [76, 78-80] 

and the acquired form secondary to myelodysplastic syndromes [81-86]. Our group recently found 

a patient with CT8M with refractory BD-like symptoms (namely, severe oral ulcers, intermittent 

fevers and abdominal pain with ulcerative inflammatory bowel changes) causing failure to thrive, 

despite immunosuppression, including anti-TNF and anti-IL-1 therapies (unpublished data). Due 

to refractory BD and the risk of progression to MDS, bone marrow transplantation was performed. 

In two years follow up, neither BD-like symptoms nor MDS have recurred. 

The precise pathogenesis of MDS is unknown, but it is suggested that immune 

dysregulation may play a role in the bone marrow failure, which might explain these systemic 

inflammatory findings as well [87]. The percentage of MDS patients with BD-like symptoms who 

displayed trisomy 8 was reported to be about 94.7%, which is much higher than the 37-53% of 

MDS patients with other cytogenetic aberrations [88]. Additionally, Lin et al [86] reported that 14 

of 19 (73.7%) patients with MDS and BD-like symptoms had trisomy 8. A recent systematic A
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literature review demonstrated that trisomy 8 seemed to correlate with BD features with an 

increased frequency of fever and erythema nodosum suggesting the existence of a “trisomy 8 

syndrome” in these patients [89]. To date, the association between trisomy 8 and features of BD is 

also poorly understood. Ripperger et al [90] reported the smallest gain of chromosome 8 in CT8M 

cases with malignancies so far, reducing the alleged critical region to 8p11.21-q11.21 harboring 31 

genes possibly associated with these manifestations. Intriguingly, these include the inhibitor of 

kappa light polypeptide gene enhancer in B-cells, kinase beta (IKBKB). 

Activation of IKKβ, the protein product of IKBKB, stimulates anti-apoptotic, pro-

inflammatory and proliferative pathways via NF-B activation. Notably, site-specific expression 

of constitutively hyper active IKKβ was sufficient to induce acute pancreatitis [91], 

myositis/muscle wasting [92, 93] and hepatitis [93] in mice models. Interestingly, local and 

systemic production of proinflammatory cytokines, including IL-6, IL-1β and TNFα, was 

increased in such animals, once again resembling autoinflammatory features. In contrast, 

epidermis-specific IKBKB knockout mice show inflammatory signs of NF-B hyper activation 

and can develop psoriasis-like lesions [94], also observed in p65 and c-Rel deletions [95]. The 

exact mechanism of disease initiation remains unclear in this disorder, but ablation of these 

components from epidermal keratinocytes seems to interfere with this balance and triggers an 

inflammatory response that is marked by the induction of inflammatory cytokines such as IL-1 

and TNF by NF-B. Therefore, although speculative, the evidence above suggests that IKBKB 

can contribute to activation of the NF-B signaling pathway, which, in turn, has received special 

attention recently due to new insights about BD pathophysiology. 

Issues on BD classification

BD is a heterogeneous disease which can affect virtually any organ systems, making 

its classification challenging. Autoantibodies are usually not evident in BD and there are no 

universally accepted diagnostic markers, forcing the physician to primarily rely on clinical criteria 

[96, 97]. Even though a positive pathergy test is considered suggestive for a BD diagnosis, its 

positivity not only vary widely in different populations and with different methodology used, but 

some data also indicate that its sensitivity is decreasing over time [98]. BD is considered to be a 

primary vasculitis, but it has been also argued to belong to the group of spondyloarthritides [99]. 

More recently, the autoinflammatory features of BD and the role of innate immunity have received A
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increasing attention and currently many consider BD to be in the crossroad of autoimmune and 

autoinflammatory diseases. Taken together, it is understandable why perhaps no other disease has 

given rise to as many classification criteria as BD and why some authors advocate there are 

clustered phenotypes possibly representing different disorders within one single condition [100].

The vasculitis spectrum

BD is classified among inflammatory vascular diseases, but has no predilection for 

specific type, affecting vessels of all kinds and sizes [101]. Although vascular injury is common, 

the pattern of vascular involvement is unique as BD lacks necrotizing vasculitis of small arteries 

(typical in antineutrophil cytoplasmic antibody-associated vasculitides), giant cells in large vessels 

(e.g., Takayasu arteritis), and immune complex-type cutaneous venulitis [102]. In some patients, 

antibodies against endothelial cell -enolase have been identified. Their significance is not clear, 

but they may have implications in particular in patients with cardiovascular involvement [103]. 

Furthermore, little evidence exists for vasculitis in some common BD manifestations, such as 

pseudofolliculitis and central nervous system lesions [104]. 

On the other hand, the diffuse inflammatory disease in all layers of the large veins 

characteristically involving substantial segments of the vessel wall and the vasculitis of the vasa 

vasorum, culminating with the formation of pseudoaneurysms of large arteries are singular among 

the primary vasculitis and are important links with this family of disorders [102]. Of note, the 

pulmonary artery aneurysms specific to this condition are still associated with bad prognosis and 

constitute one of the main causes of mortality in BD.

BD as a spondyloarthritis

Based on clinical features, Moll et al [99] back in the 1970s proposed the concept of 

“seronegative spondyloarthritides” and included BD in this classification. Since then, much has 

been debated regarding this topic, as BD patients rarely exhibit sacroiliitis [105] and, even though 

the disorder is associated with MHC class I, classical association is with HLA-B*51 rather than 

HLA-B*27 [106]. In contrast, several similarities suggest shared pathogenesis including the 

overlapping extra-articular clinical manifestations (uveitis, erythema nodosum and gastrointestinal 

involvement); the good response to TNF blockade therapy [107]; and the recent association of 

both BD and inflammatory intestinal diseases with IL-23R and IL-10 polymorphisms [11, 12]. In 

addition, some evidence suggests a role of microorganisms in BD similarly to reactive arthritis. A
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The pro coagulative aspect

Thrombosis is observed in 10-37% of BD patients, mainly in venous (superficial and 

deep) vessels, although arterial disease is a serious cause of morbidity and mortality, especially 

when it involves the pulmonary arteries [108, 109]. Nonetheless, some caveats persist regarding 

the etiopathogenesis of such pro coagulative state evident in BD. Some authors consider a pivotal 

role for impaired endothelial function, while others advocate that a subjacent thrombophilic factor 

is responsible for the thrombotic phenomena. Interestingly, despite the high frequency of rare 

thrombotic conditions (namely multiple thrombotic sites, thrombophlebitis or even intracardiac 

thrombosis), thromboembolic events are rare. This paradox can be explained by the high 

adherence of thrombi to the diseased veins [102]. In fact, this is the main argument used to justify 

the better response to immunosuppressants rather than anti-coagulation alone and to explain the 

low success rate of vascular interventions observed on thrombotic manifestations [110]. 

Furthermore, a progressive reduction of endothelial progenitor cells has already been described in 

BD patients, representing a mechanism of induction and amplification of vascular injury [111].

Differences in prevalence of vascular involvement are observed according to the 

geographic distribution, especially regarding arterial disease. This suggests a putative role of yet 

unknown genetic and environmental factors [112]. In large studies investigating the presence of 

thrombophilic factors as a leading cause of thrombosis in BD, no prevalence differences were 

found in different pro thrombotic factors (i.e., factor V Leiden, prothrombin G20210A 

polymorphism, MTHFR C677T polymorphism, factor VIII, anticardiolipin and anti-2-

glycoprotein I antibodies) between BD patients with or without thrombosis [113-116]. In addition, 

high thrombomodulin levels in BD [117] have strong correlation with pathergy phenomenon 

[118], although these abnormalities do not correlate with the occurrence of thrombotic events in 

the disorder. In summary, the mechanisms of thrombosis in BD are still unclear. However, based 

on the data presented above, thrombosis in BD may result from a combination of disorders in 

procoagulants, anticoagulants and fibrinolytic factors with the underlying vasculitis and 

endothelial injury [119]. 

Skin manifestations and interplay with other neutrophilic dermatoses 

Clinical features of BD frequently involve the skin and overlap with those observed 

with monogenic BD-like diseases. BD cutaneous manifestations frequently involve dense A
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neutrophilic inflammation. Erythema nodosum‐like lesions are seen mostly in females and occur 

in one‐third of patients with a typical clinical presentation of bilateral pretibial, painful, 

erythematous nodules. Papulopustular lesions usually occur on the trunk, buttocks and lower 

limbs, and consist of sterile folliculitis‐ or acne‐like lesions on an erythematous base. Superficial 

thrombophlebitis and the pathergy reaction complete the most frequent BD-associated skin 

manifestations [120]. Although not common, recurrent extragenital ulcers that heal with scarring 

are among the most specific cutaneous findings of BD. Extragenital ulcers can be seen on various 

locations such as the legs, axillae, breast, interdigital skin of the foot, and neck. 

Despite the vasculitic and thrombotic histopathological findings of BD in other organs, 

mucocutaneous lesions, namely oral ulcers, genital ulcers, erythema nodosum‐like lesions, 

superficial thrombophlebitis, and papulopustular lesions do not always present with vasculitic 

features histopathologically.  As a rule, histopathological assessment of early cutaneous lesions 

usually has features of a leukocytoclastic vasculitis, while later/established lesions may 

demonstrate a lymphocytic nodular perivasculitis or vasculopathy. 

The neutrophilic dermatoses (ND) are a heterogeneous group of non-infectious 

systemic syndromes characterized by the predominance of non-neoplastic neutrophilic 

inflammatory infiltrates in the skin, potential for extracutaneous involvement and a frequent 

association with multi-systemic diseases [121-123]. ND include acute febrile neutrophilic 

dermatosis [Sweet’s syndrome (SS)], pyoderma gangrenosum (PG) and BD.  All the ND can 

demonstrate pathergy.  Multiple ND can occur concurrently in the same patient. For instance, 

SS‐like lesions may be observed together with BD. Compared to BD, skin lesions on other ND are 

usually larger (up to 12 cm in SS), in plaques, or ulcerated (as in PG) [123]. Non-BD ND only 

sporadically affect internal organs, unlike BD. ND can occur concurrently with other disorders, 

particularly myeloproliferative disorders, inflammatory bowel disease, spondyloarthritides, and 

other disease states, or be triggered by medications (such as granulocyte colony-stimulating 

factor). Neonatal SS often heralds a serious underlying disorder and requires thorough 

investigation for viral etiology, primary immunodeficiency, neonatal lupus syndrome, genetic 

[123, 124]. Therefore, a wide diagnostic approach is warranted when evaluating patients with ND.

The role of phagocyte hyperactivity

Clinical and pathological data such as the pathergy phenomenon strongly suggest that 

neutrophil hyperactivity to various even minor stimuli is a prominent feature in BD pathogenesis. A
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Among others, exacerbated neutrophil activity due to altered oxidative burst [125], chemotaxis 

[126], phagocytic and microbicide activities [127] have been described. Takeno et al [128] showed 

that reactive oxygen species (ROS) production is increased not only in BD patients but also in 

asymptomatic HLA-B*51 carriers and transgenic mice expressing HLA-B*51. Our group recently 

assessed the classical phagocyte functions (oxidative burst, in vitro cytokine production, 

phagocytic and microbicide activities) in BD patients [129]. Patients with severe BD exhibited 

phagocytic dysfunction and some evidence of constitutive activation, especially in oxidative burst 

activity. We found significant correlations between BD patients’ activity score and constitutive or 

Streptococcus sanguinis-stimulated production of several cytokines (TNFα, IFNγ, IL-6, IL-23 and 

IL-8) by neutrophils and PBMC. The role of neutrophil extracellular traps (NET) release, active in 

neutrophil death [130], remains to be further studied in BD, while there is evidence for the role of 

NETosis in systemic lupus erythematosus [131], rheumatoid arthritis [132] and ANCA-associated 

vasculitides [133]. Our group recently showed an increased constitutive and a markedly soluble 

CD40L-stimulated NET release of BD patients [134].

Another class of phagocytic cells, monocytes, also bridge innate with adaptive 

immunity by processing and presenting antigens to T and B cells. Thus, it is reasonable to 

hypothesize that monocytes may play an important role in diseases with neutrophil hyperactivity. 

Yavuz et al [135] showed abnormal toll-like receptor (TLR)-2 and TLR-6 expression and response 

in neutrophils and monocytes of BD patients after S. sanguinis and its related heat-shock protein, 

HSP-60. Monocytes from BD and familial Mediterranean fever patients present higher oxidative 

burst activity than those from rheumatoid arthritis patients and healthy controls, especially when 

stimulated by sodium monourate crystals [136]. These data indicate innate immunity involvement 

with striking hyperresponsiveness of multiple phagocytic cell lines in BD.

Is BD an autoinflammatory disease?

Autoinflammatory diseases are inborn errors of the innate immune system and 

characterized by seemingly unprovoked episodes of sterile inflammation, fever and cytokine 

amplification  (Table 1)  [137, 138]. Monogenic autoinflammatory disorders classically develop 

early in childhood and have been associated mainly with the IL-1β, IL-18, TNFα, type I interferon 

(interferonopathies) and the NF-B pathways. NF-B acts downstream of these pro-inflammatory 

cytokines among other danger/stress signaling pathways and now there is an emergence of NF-B 

monogenic autoinflammatory disorders as sequencing becomes more available. Several typical A
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findings in BD overlap with those in monogenic autoinflammatory (Table 2) [6, 102, 139-144]. 

Promising results with IL-1 targeted therapies in BD suggest that this disease may be in the 

spectrum of polygenic (or complex) autoinflammatory diseases [85, 86]. In addition, most NF-B-

related autoinflammatory diseases respond to anti-TNF treatment, which is also observed on BD. 

Anti-TNF are well-known efficacious and usually last line therapies for BD refractory or severe 

conditions, with some pieces of evidence for mucocutaneous [145], ocular [146], vascular [147], 

neurologic [148] and gastrointestinal manifestations [149]. Further characterization of the NF-kB 

pathway components, activation and regulation in more of these monogenic autoinflammatory 

disorders may help delineate clinical features in relation to the molecular pattern of NF-kB 

activation and may aid in designing novel therapies.

Conclusions

Understanding the pathogenesis of BD is a pivotal step for the development of novel 

and efficacious therapies. An abnormal innate hyperinflammatory response and neutrophil 

hyperactivity are well-known hallmarks of the disorder. However, since most BD patients display 

polygenic inheritance and wide clinical phenotypic heterogeneity, these impede the creation of 

both a reliable classification and a unified pathophysiologic theory. BD has several 

autoinflammatory features including recurrent self-limited manifestations overlapping with 

different classic and newer autoinflammatory disorders. Recent findings from monogenic diseases 

sharing features with BD strongly suggest a major role for dysregulated innate immunity 

activation due to mutations in the NF-kB pathway in familial BD patients while GWAS studies 

suggest rare polymorphisms in NF-kB pathway and its activator and effector genes in polygenic 

cases. Additional studies are needed for the full comprehension of the role of these processes in 

BD. 
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TABLE LEGENDS AND FOOTNOTES

Table 1 – Main monogenic and polygenic autoinflammatory diseases described to date.

Abbreviations: APLAID, autoinflammation PLCG2 associated antibody deficiency and immune 

dysregulation; CAIN, C/EBPε-associated autoinflammation and immune impairment of 

neutrophils; CANDLE, chronic atypical neutrophilic dermatosis with lipodystrophy and elevated 

temperature; CRIA, cleavage-resistant RIPK1-induced autoinflammatory syndrome; DIRA, 

Deficiency of interleukin-1 receptor antagonist; DITRA, deficiency of the IL-36 receptor [IL-36R] 

antagonist; FCAS, familial cold autoinflammatory syndrome; FMF, familial Mediterranean fever; 

HA20, Haploinsufficiency of A20; IL-18PAP-MAS, IL-18-mediated pulmonary alveolar 

proteinosis and recurrent macrophage activation syndrome; MWS, Muckle-Wells syndrome; 

NEMO-NDAS, NEMO deleted exon 5–autoinflammatory syndrome; NFKB1-BLD and –FANF, 

NFKB1-associated Behçet-like disease and familial autoinflammatory necrotizing fasciitis; 

NLRC4-MAS, NLRC4 macrofage associated syndrome; NOMID, neonatal onset multisystem 

inflammatory disease; ORAS, otulin-related autoinflammatory syndrome; PAAND, Pyrin-

Associated Autoinflammation with Neutrophilic Dermatosis; PAPA, pyogenic arthritis, pyoderma 

gangrenosum and acne syndrome; PFAPA, periodic fever with aphthous stomatitis, pharyngitis, 

and cervical adenopathy; PFIT, pyrin activation in the autoinflammatory periodic fever, 

immunodeficiency, and thrombocytopenia; PRAAS, proteasome-associated autoinflammatory 

syndromes; SAPHO, synovitis acne pustulosis hyperostosis osteitis; SAVI, STING-associated 

vasculopathy, infantile-onset; SIFD, congenital sideroblastic anemia with immunodeficiency, 

fevers, and developmental delay; TRAPS, Tumor necrosis factor receptor-associated periodic 

syndrome.

Table 2 – Overlap between manifestations of Behçet’s disease and monogenic autoinflammatory 

diseases. 

Abbreviations: CAIN, C/EBPε-associated autoinflammation and immune impairment of 

neutrophils; DIRA, Deficiency of interleukin-1 receptor antagonist; HA20, Haploinsufficiency of 

A20; NFKB1-BLD and –FANF, NFKB1-associated Behçet-like disease and familial 

autoinflammatory necrotizing fasciitis; PAAND, Pyrin-Associated Autoinflammation with A
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Neutrophilic Dermatosis; PAPA, pyogenic arthritis, pyoderma gangrenosum and acne syndrome; 

TRAPS, Tumor necrosis factor receptor-associated periodic syndrome.
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FIGURE LEGENDS

Figure 1 – Endoplasmic reticulum associated aminopeptidase-1 (ERAP1) mechanism of action. 

The enzyme is present inside the antigen presenting cell (APC) endoplasmic reticulum (ER) and 

works as fine editing scissors of proteasome-derived peptides, reducing them to 8-9 residues (the 

optimal length). Finally, it facilitates the binding onto histocompatibility leukocyte antigen (HLA) 

class I molecules, which will be ultimately presented to CD8+ T cell receptor (TCR).

Figure 2 – A) Canonical and non-canonical NF-B activation pathways. Canonical pathway is 

activated by TLR (Toll-like receptors), T cell receptor, B cell receptor and cytokine receptors (eg, 

TNF, IL-1, IL-6, amongst others) and initiates a cascade that culminates with IB kinase (IKK) 

complex activation, represented by its three subunits: IKK , IKK and IKK (NEMO, NF-κB 

essential modulator). Ubiquitin ligase activity of linear ubiquitin assembly complex (LUBAC), 

constituted mainly by HOIP, HOIL-1 and SHARPIN, is required for the efficient activation of 

IKK and subsequent phosphorylation of IκBα, which, in turn, is the signal for releasing NF-B1, a 

dimer composed by p50 and RelA/p65. While OTULIN modulates the pathway by cleaving 

activating polyubiquitin chains generated by LUBAC, A20 acts on various target proteins. 

Similarly, phosphorylation and subsequent degradation of p105 is sufficient to modulate canonical 

NF-B activation pathway by stimulating ERK (extracellular signal-regulated kinases) and 

releasing regulatory dimers of p50. Non-canonical pathway is usually activated by different 

receptors, such as LTR (Lymphotoxin- receptor), BAFF-R (B-cell activating factor receptor), 

CD40, CD27 or OX40. NIK (NF-κB-inducing kinase)-mediated activation of IKK complex 

induces phosphorylation and polyubiquitination of NF-κB2 (p100 and RelB), which are the signals 

for proteasomal degradation of p100 into the active subunit p52, culminating with NF-κB2 

activation.  B) Protein structure and mutation sites of the main NF-B components (NFKB1, 

TNFAIP3, NEMO, OTULIN, HOIP and HOIL1) described in association with Behçet’s disease. 
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Table 1 – Main monogenic and polygenic autoinflammatory diseases described to date. 

Monogenic diseases Polygenic diseases 

Pyrin-associated diseases (FMF, 

PAAND) 

CAIN Crohn’s disease 

Cryopyrin-associated periodic 

syndrome (FCAS, MWS, NOMID) 

NEMO-NDAS Chronic recurrent multifocal 

osteomyelitis 

TRAPS NFKB1-BLD and -FANF Systemic onset juvenile 

idiopathic arthritis 

Mevalonate kinase deficiency IL-18PAP-MAS Behçet’s disease 

PAPA syndrome SAVI Gout 

Blau syndrome APLAID Adult-onset Still’s disease 

Majeed syndrome NLRP1-associated diseases PFAPA syndrome 

PRAAS/CANDLE ORAS SAPHO 

DIRA/DITRA SIFD Ankylosing spondylitis 

CRIA PFIT  

HA20-BLD NLRC4-MAS  

Abbreviations: APLAID, autoinflammation PLCG2 associated antibody deficiency and 

immune dysregulation; CAIN, C/EBPε-associated autoinflammation and immune impairment 

of neutrophils; CANDLE, chronic atypical neutrophilic dermatosis with lipodystrophy and 

elevated temperature; CRIA, cleavage-resistant RIPK1-induced autoinflammatory syndrome; 

DIRA, Deficiency of interleukin-1 receptor antagonist; DITRA, deficiency of the IL-36 

receptor [IL-36R] antagonist; FCAS, familial cold autoinflammatory syndrome; FMF, 

familial Mediterranean fever; HA20, Haploinsufficiency of A20; IL-18PAP-MAS, IL-18-

mediated pulmonary alveolar proteinosis and recurrent macrophage activation syndrome; 

MWS, Muckle-Wells syndrome; NEMO-NDAS, NEMO deleted exon 5–autoinflammatory 

syndrome; NFKB1-BLD and –FANF, NFKB1-associated Behçet-like disease and familial 

autoinflammatory necrotizing fasciitis; NLRC4-MAS, NLRC4 macrofage associated 

syndrome; NOMID, neonatal onset multisystem inflammatory disease; ORAS, otulin-related 

autoinflammatory syndrome; PAAND, Pyrin-Associated Autoinflammation with 

Neutrophilic Dermatosis; PAPA, pyogenic arthritis, pyoderma gangrenosum and acne 

syndrome; PFAPA, periodic fever with aphthous stomatitis, pharyngitis, and cervical 

adenopathy; PFIT, pyrin activation in the autoinflammatory periodic fever, 

immunodeficiency, and thrombocytopenia; PRAAS, proteasome-associated 
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autoinflammatory syndromes; SAPHO, synovitis acne pustulosis hyperostosis osteitis; SAVI, 

STING-associated vasculopathy, infantile-onset; SIFD, congenital sideroblastic anemia with 

immunodeficiency, fevers, and developmental delay; TRAPS, Tumor necrosis factor 

receptor-associated periodic syndrome. 
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Table 2 – Overlap between manifestations of Behçet’s disease and monogenic 

autoinflammatory diseases.  

Manifestation Disease (gene) 

Pathergy or other neutrophilic 

reaction to minor trauma 

 

PAPA syndrome (PSTPIP1) 

HA20 (TNFAIP3) 

NFKB1-BLD, NFKB1-FAANF (NFKB1) 

Oral/genital ulcers Mevalonate kinase deficiency (MVK) 

Cryopyrin-associated periodic syndrome (NLRP3) 

TRAPS (TNFRSF1A) 

NFKB1-BLD (NFKB1) 

CAIN (CEBPE)  

Uveitis Blau syndrome (NOD2) 

Cryopyrin-associated periodic syndrome (NLRP3) 

TRAPS (TNFRSF1A) 

Acne-like lesion DIRA (IL1RA)  

PAPA (PSTPIP1) 

Chronic recurrent multifocal osteomyelitis and 

congenital dyserythropoietic anemia (LPIN2) 

PAAND (MEFV)  

Abbreviations: CAIN, C/EBPε-associated autoinflammation and immune impairment of 

neutrophils; DIRA, Deficiency of interleukin-1 receptor antagonist; HA20, 

Haploinsufficiency of A20; NFKB1-BLD and –FANF, NFKB1-associated Behçet-like 

disease and familial autoinflammatory necrotizing fasciitis; PAAND, Pyrin-Associated 

Autoinflammation with Neutrophilic Dermatosis; PAPA, pyogenic arthritis, pyoderma 

gangrenosum and acne syndrome; TRAPS, Tumor necrosis factor receptor-associated 

periodic syndrome.  
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