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Abstract

Increasing body of experimental evidence suggests that anticancer and antimicrobial thera-

pies may themselves promote the acquisition of drug resistance by increasing mutability.

The successful control of evolving populations requires that such biological costs of control

are identified, quantified and included to the evolutionarily informed treatment protocol.

Here we identify, characterise and exploit a trade-off between decreasing the target popula-

tion size and generating a surplus of treatment-induced rescue mutations. We show that the

probability of cure is maximized at an intermediate dosage, below the drug concentration

yielding maximal population decay, suggesting that treatment outcomes may in some cases

be substantially improved by less aggressive treatment strategies. We also provide a gen-

eral analytical relationship that implicitly links growth rate, pharmacodynamics and dose-

dependent mutation rate to an optimal control law. Our results highlight the important, but

often neglected, role of fundamental eco-evolutionary costs of control. These costs can

often lead to situations, where decreasing the cumulative drug dosage may be preferable

even when the objective of the treatment is elimination, and not containment. Taken

together, our results thus add to the ongoing criticism of the standard practice of administer-

ing aggressive, high-dose therapies and motivate further experimental and clinical investi-

gation of the mutagenicity and other hidden collateral costs of therapies.

Author summary

Evolution of drug resistance to anticancer and antimicrobial therapies is widespread

among cancer and pathogen cell populations. Classical theory posits strictly that genetic

and phenotypic variation is generated in evolving populations independently of the selec-

tion pressure. However, recent experimental findings among antimicrobial agents, tradi-

tional cytotoxic chemotherapies and targeted cancer therapies suggest that treatment not

only imposes selection but can also affect the rate of adaptation by increasing mutability.
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Here we analyse a model with drug-induced increase in mutation rate and explore its con-

sequences for treatment optimisation. We argue that the true biological cost of treatment

is not limited to the harmful side-effects, but instead realises even more profoundly by

fundamentally changing the underlying eco-evolutionary dynamics within the microenvi-

ronment. Using the concept of evolutionary rescue, we formulate the treatment as an opti-

mal control problem and solve the optimal elimination strategy, which minimises the

probability of evolutionary rescue. We show that aggressive elimination strategies, which

aim at eradication as fast as possible and which represent the current standard of care, can

be detrimental even with modest drug-induced increases (fold change�10) to the base-

line mutation rate.

Introduction

The formation of cancer and emergence of antimicrobial resistance (AMR) are notorious

examples of fast paced evolution. Modern medicine has developed various drugs to target can-

cer and pathogen cell populations with the aim to drive them to extinction using aggressive,

high-dose therapies. However, these treatments frequently fail due to drug resistance, a phe-

nomenon where the drug loses its desired pharmacodynamical effects. The emergence of drug

resistance is the consequence of evolution which continues also during the treatment. Indeed,

the administration of treatment represents a major switch point in the evolutionary trajectories

of these populations, initiating a rapid phase of human-induced evolution.

The most desirable consequence of this treatment dynamics is the decay of the drug-sensi-

tive target population. The key question in such a situation is whether adaptive evolution can

happen fast enough to save the population from extinction. If the population is saved, we say

that an evolutionary rescue has occurred [1]. Introduced first in the field of conservation biol-

ogy, where the objective has been to design the most efficient intervention programs to save

endangered species from going extinct, the concept of evolutionary rescue can be readily

applied also to the study of drug resistance [2, 3] with the opposite goal in mind.

Evolutionary rescue can occur either by standing variation or by de novomutation. Rescue

by standing variation corresponds to the intrinsic resistance model in which the population is

sufficiently diverse to contain individuals that can survive in the changed environment. Rescue

by de novomutation, on the other hand, corresponds to the acquired resistance model in

which (partially-)resistant individuals are created by mutational processes after the initiation

of therapy. The deeply rooted paradigm of administering treatment as aggressively as possible

to maximize cell kill [4] has its origin in the somatic mutation theory of drug resistance [5],

where it is assumed that rescue mutations arise spontaneously and independently of the treat-

ment. The rationale of such aggressive elimination therapies is then to maximize the probabil-

ity of cure by eradicating the population as fast as possible thus minimising the rescue window

during which mutations can occur and save the population.

However, the gain of population decay comes necessarily with a cost, which realizes as col-

lateral damage at various scales. The most obvious examples of such damage are the clinical

side-effects of the treatment, which often result from the off-target exposure to the drug. For

example, traditional anticancer therapies hit also healthy tissues while antimicrobial agents

negatively affect the natural gut microbiome. The detrimental side-effects experienced by the

patient yield a toxicity constraint which have led to the maximum tolerated dose (MTD) para-

digm [6], where treatment is predominantly administered at the highest cumulative dose pos-

sible given the toxicity constraint.
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Recent research and experimental evidence suggest that the true biological cost of the treat-

ment is not limited to the harmful side-effects, but instead realize even more profoundly by

fundamentally altering the underlying eco-evolutionary dynamics within the microenviron-

ment. The harsh selection pressure induced by the treatment not only leads to the decay of the

sensitive cells, but it can also enhance the growth opportunities of the pre-existing or emerged

resistant cells, a well-known phenomenon of competitive release [4, 7]. In these cases, aggres-

sive chemotherapy can accelerate the population’s evolution towards treatment resistance as

by removing the competing sensitive cells the resistant cells have even more resources to reoc-

cupy the niche leading to relapse.

This problem has then motivated various authors to suggest so-called containment strate-

gies which use the minimal amount of control to keep the population burden in check while

deliberately maintaining sensitive cells to competitively suppress the growth of the existing

resistant cells as a form of ecological control [8–11]. Competitive release represents an impor-

tant ‘ecological collateral damage’ of treatment, which promotes the emergence of drug resis-

tance and leads to treatment failure. Besides the altered competition dynamics, beneficial

rescue mutations may become enriched in the off-target species and promote the emergence

of AMR by means such as horizontal gene-transfer [12].

In addition to the extensive ecological consequences, the treatment may also induce

changes to the intrinsic dynamics of the target cells other than Darwinian selection. Such ‘evo-

lutionary collateral damage’ can realize, for example, by the treatment enhancing the evolvabil-

ity of the population. Classical theory, based on the famous Luria-Delbrück experiments [13]

and somatic mutation theory of drug resistance, posits strictly that genetic and phenotypic var-

iation is generated independently of the selection pressure [14]. In contrast, recent experimen-

tal evidence suggests that the roles of mutation and selection cannot be fully separated from

each other as the drug therapies themselves may affect the way variation is generated. Studies

in bacteria demonstrate that stress alone can increase the genome-wide mutation rate, driven

by switch to more error-prone DNA repair mechanisms [15]. Recently, similar findings were

reported also in cancer in the context of targeted cytostatic therapies [16, 17]. Higher levels of

reactive oxygen species during the treatment may serve as another mechanism which increases

the mutation rate [18]. Besides the direct stress-induced mutation-rate plasticity, the spontane-

ous mutation rate could be modulated also indirectly via the population density, where lower

population densities seem to be strongly correlated with higher mutation rates [19]. On the

other hand, conventional genotoxic chemotherapies may also cause specific drug-induced

mutations, such as the reported distinct mutational signatures of platinum-based therapies

[20].

Secondly, natural selection can give rise to resistant phenotypes even in the absence of

genetic mutations as certain resistance mechanisms can be activated using epigenetic regula-

tion as a form of Lamarckian induction [21]. Cancer cells—especially stem-like cancer cells—

can exhibit diverse phenotypic plasticity, dynamically responding to changes in their environ-

ment. Cells can enhance their survival via life-history trade-offs by reallocating resources nor-

mally devoted to proliferation [22, 23]. Such quiescent, drug-tolerant cells can act as a

reservoir from which permanently resistant cells can emerge via further genetic mutations, or

alternatively, revert back to active proliferation upon treatment discontinuation [24]. Similar

phenomena are also widespread in bacterial populations whereby a subset of the population

expresses resistance-conferring efflux pumps as a function of drug exposure and concentra-

tion, in turn, allowing survival and reproduction until the occurrence of resistance mutations

[25–27]. Drug-induced phenotypic switching may thus significantly contribute to evolutionary

rescue in a dose-dependent fashion either by buying more time for adaptive evolution or even

by being a self-sufficient adaptation itself.
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Previous and other drug exposures may also influence the bacterial physiological response

and resistance trajectory to a particular drug. Resistance against one antibiotic may be associ-

ated with, long or short term, collateral sensitivity or resistance to other drugs showing another

form of therapy induced collateral damage and an opportunity for therapy optimisation. For

instance, collateral sensitivity profiles can be used to address the trade-off between maintaining

long-term sensitivity of the target population at the expense of short-term periods of high

resistance [28]. Or cellular hysteresis, which is the transgenerational change in cellular physiol-

ogy that is induced by one antibiotic and sensitizes bacteria to another subsequently utilized

antibiotic can be exploited by using fast sequential treatments [29].

Finally, the phenotypic mutation rate can also change due to the dose-dependency of the

required mutational targets [30]. Higher levels of stress can decrease the phenotypic mutation

rate as the target size for a single sufficient mutation could decrease, and because multiple

mutations may be required for the resistant phenotype. Alternatively, the target size may also

increase within some concentration ranges if the proportion of beneficial mutations increases

as the selection pressure becomes harsher. This way drug resistance may still emerge by grad-

ual stepwise adaptations, especially in drug sanctuaries [31]. Thus, even if the required evolu-

tionary distance increases with the drug concentration, this could be more than offset by the

higher mutational supply, stronger selection and resistance induction. All these findings pro-

vide compelling evidence that the rate of adaptation to the stressful environment is strongly

dose-dependent and not constant.

The outlined collateral damage occurring at various scales ranging from the whole patient

to the microenvironment of the target cells greatly complicate the combat against drug resis-

tance and require the integration of ecological and evolutionary dynamics into therapy design.

Eco-evolutionary control has to further factor in the underlying biological mechanism of con-

trol [32]. Therapy is often based on biomolecular interactions, such as drug–target or anti-

body–antigen binding [33]. The biophysics of molecular binding dictate a finite control

leverage, for an example, as seen in the Hill-function type pharmacodynamics which cause a

saturation of the drug’s effect. However, the different collateral damage caused by the drug do

not saturate in general, but can keep increasing with the dosage, or saturate at a different con-

centration. These observations point to a great scope in designing treatments using eco-evolu-

tionary control theory [32].

Majority of previous treatment optimisation models have focused on optimising the deliv-

ery mode with respect to some toxicity constraint (see e.g. [34]). The “second-wave” of treat-

ment optimisation has focused on the issue of competitive release and the investigation of

various containment strategies [11, 35]. Here we investigate the consequences of evolutionary

collateral damage, as realized by drug-induced resistance evolution, on treatment selection

using the rigorous methods of optimal control theory [36].

Only few previous theoretical studies of drug resistance have explicitly accounted for dose-

dependent mutation rates [37–39]. Liu et al. [37] find that the optimal delivery mode (e.g.

pulsed or continuous) of the MTD-strategy is robust against changes in the mutation rate in a

model for targeted cytostatic cancer therapy. Greene et al. [38] on the other hand show that

the dose-dependent mutation rate may have a significant impact on which delivery mode is

preferable (for more rigorous mathematical treatment of the presented model see [39]). In

contrast, we solve the optimal elimination strategy, which minimises the probability of evolu-

tionary rescue, and demonstrate the potential to improve treatment outcomes by reducing the

total cumulative dosage administered.

We identify and exploit a trade-off, where increasing the dosage reduces de novomutations

by decreasing the target population size faster, but at the expense of simultaneously generating

a surplus of treatment-induced mutations. By simulating virtual treatments in silico, we show
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that the probability of cure changes non-monotonically as a function of the drug concentration

and is maximized at an intermediate dosage. Our results highlight the importance of dose-

dependencies in resistance evolution and help to redefine the precise evolutionary objectives

of the treatment, providing a framework for systematic therapy optimisation.

Results

Dose-dependent mutation rate introduces a trade-off between mutation

intensity and target population decay

Here we set the therapy optimisation problem by formulating the specific control objectives

that we want to achieve while factoring in the eco-evolutionary dynamics of the target popula-

tion. We further demonstrate how drug-induced mutations affect realising these goals.

Fig 1C provides a schematic example of an evolutionary rescue: first, the population rapidly

declines as the treatment eradicates sensitive cells. Cells can however acquire mutations that

reduce their sensitivity to the drug. The emergent resistant cells are strongly favoured by natu-

ral selection but can nevertheless be lost due to stochastic extinction [40]. If resistant cells man-

age to establish, they will soon repopulate the released niche and rescue the population from

going extinct.

We use the term rescue window for the initial treatment period during which sensitive cells

can acquire mutations and the population can be rescued. We model the acquisition of rescue

mutants by a time-inhomogeneous Poisson process during the rescue window, where the rate

of gaining a new mutant at time t is given by the product of the (sensitive) cell population size

S(t, u(t)) and the phenotypic mutation rate μ(u(t)). Both of these factors depend on the drug

concentration u(t), as we explicitly take into account drug-induced effects. Because the growth

of resistant cells originates from a single cell, we must use stochastic population dynamics to

model the growth of small populations that have a considerable extinction risk due to inherent

stochastic fluctuations. The stochastic extinction risk for a simple birth-death process founded

by a single resistant (subscript R) cell is given by q ¼ dR
bR

(see e.g. [41]), where δR and βR are the

intrinsic death and birth rates respectively, leading to the net growth rate rR = βR − δR. For sim-

plicity, we assume that this stochastic extinction probability is a constant property of the resis-

tant cell and does not depend on the control variable u directly (by assuming complete

resistance) or indirectly via sensitive cell density (see Methods and materials). If control can

also be exerted to the resistant cells (partial sensitivity), the optimal control can further capital-

ize on this establishment probability.

Now consider an elimination strategy u : ½0;T� ! U ¼ ½0; uMTD�, which gives the desired

drug concentration over the treatment period. Here the end-time T is assumed fixed (see

Materials and methods for more discussion) and uMTD is the highest instantaneous drug con-

centration that can be delivered to the patient in question. Throughout, we assume that uMTD

� umax, where umax denotes the drug concentration where the pharmacodynamical effect is

assumed to have plateaued. We make such a distinction, because it is important to separate the

finite control leverage (umax) from the patient-specific constraint (uMTD) when using non-lin-

ear pharmacodynamics. For generality, we do not fix uMTD, but only umax, to allow meaningful

comparisons between the MTD-strategy and the optimal treatment strategy.

With these assumptions, the intensity of the Poisson process, or the total cumulative rate of

generating rescue mutations, is given by

n�rescueðuÞ ¼
Z T

0

Sðt; uðtÞÞmðuðtÞÞpf dt; ð1Þ
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where πf = 1 − q is the probability of establishment of a new mutant. This quantity corresponds

to the expected number of successfully established rescue mutants generated during the treat-

ment period. The probability of an evolutionary rescue by de novomutation is then [2]

1 � e� n� rescueðuÞ: ð2Þ

The exponential term is just the zero class of the Poisson distribution and hence the comple-

ment of this gives the probability that there is at least one cell which survived the rescue window.

A suitable objective of the treatment is then to minimise this quantity, which is equivalent to

maximising the extinction probability of the target population. Since the probability of establish-

ment is here just a constant, the objective functional for the optimal control problem reduces to

CðuÞ ¼
Z T

0

Sðt; uðtÞÞmðuðtÞÞdt; uðtÞ 2 U; ð3Þ

which corresponds to the expected number of mutant establishment attempts. The discussed

control problem is then to find the optimal elimination strategy, which minimises the cost func-

tional above from the space of all (Lebesque integrable) functions over the treatment period.

Because the rate of generating rescue mutations is proportional to the population size, a

characteristic feature of the rescue window is that the probability of evolutionary rescue

sharply decreases with decreasing population size. This phenomenon corresponds to the clas-

sical somatic mutation theory of drug resistance and justifies the MTD-strategy which aims to

minimise the probability of an evolutionary rescue by making the rescue window as short as

possible. Indeed, suppose that the phenotypic mutation rate μ is independent of the control

variable. Then, the MTD-solution u� uMTD is trivially the optimal treatment strategy (assum-

ing we have control leverage @S/@u< 0) and the treatment can be optimised only with respect

to the delivery mode that satisfies the cumulative toxicity constraint. However, if μ0(u)>0, then

clearly the MTD-solution is generally not optimal, because now the population size can be

decreased only at the expense of increasing the mutation rate leading to an interesting and

Fig 1. Drug-induced mutations realise an evolutionary collateral cost of therapy. A Before therapy the target cell population (blue circle) is well-

adapted to its microenvironment. B Initiation of control (drug therapy) drastically changes the growth conditions of the target population pushing it

below zero level of growth (light blue plane). At the same time opportunities to adapt to the new conditions create a selection pressure for resistance to

evolve. Furthermore, the therapy can change the mutational wiring both qualitatively and quantitatively (red mesh). The effect of therapy on the

mutational processes represent an evolutionary collateral damage of control, which can expedite the emergence of resistance (red arrow and circle). C

The treatment eliminates the sensitive cell population (blue) but an evolutionary rescue can occur if a resistant mutant (red squares) manages to

successfully establish during the rescue window. Here we derive optimal treatment strategies that minimise the probability of evolutionary rescue while

taking into account drug-induced mutations.

https://doi.org/10.1371/journal.pcbi.1009418.g001
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potentially exploitable trade-off, where the optimisation can be done also with respect to the

cumulative drug concentration.

Fig 2 shows an example of the intensity at which rescue mutations are generated during

treatment. If no treatment is administered (u = 0), the population grows to its carrying capac-

ity and generates rescue mutants with the constant baseline mutation rate μ0. When treatment

is administered (u(t)>0), the mutation probability sharply decreases as the population size

decreases. However, the drug-induced effects create a mutational peak in the beginning, where

the probability of rescue mutations rises above the baseline mutation rate as control is being

applied to a large population size. Higher doses lead to a higher early mutational peak, but the

probability of rescue mutations decreases faster as the sensitive cell population diminishes

faster than at lower doses. Lower doses on the other hand have a lower early mutational peak,

but as it takes longer to eliminate the sensitive cells, the mutation probability decreases more

slowly, thus prolonging the rescue window. The optimal strategy, which minimises the total

cumulative rate of generating rescue mutations (or the area under the intensity profile), is a

trade-off between these opposing treatment effects.

For evolutionary rescue to occur, the time at which the rescue mutation emerges plays no

role. Early and late mutations are considered equally bad if the clinical objective is to maximise

Fig 2. Time-dependent mutation rate profiles. Each treatment strategy u(t) leads to a characteristic mutation

intensity profile S(t, u(t))μ(u(t)), which gives the rate of gaining a rescue mutant as a function of time. If no treatment

is administered (u(t) = 0), the population grows to its carrying capacity and generates rescue mutations at a constant

baseline mutation rate (blue). A dose-dependent mutation rate introduces a trade-off, where treatment can be used to

decrease the population size only at the expense of simultaneously increasing the mutation rate. This creates a sharp

mutation peak at the beginning, when treatment is applied to a large population size. The optimal treatment strategy,

which minimises the probability of evolutionary rescue, exploits this trade-off by balancing the early mutational peak

such that the area under intensity profile is minimised. The plotted intensity profiles were generated using the constant

doses given in the legend and the same model and parameters as given in the Methods section (Eq 7 and Table 1).

https://doi.org/10.1371/journal.pcbi.1009418.g002
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the probability of a complete cure. However, if evolutionary rescue does occur then the time of

mutation is integral in determining the expected rescue fraction. This is simply because resis-

tant cells that emerge early during the treatment period can generate much more growth than

resistant cells that occur late. To minimise the expected number of resistant cells at the end of

the treatment period, we need to weigh each mutation by the growth it can generate. Assuming

a simple exponential growth of the resistant cell population at rate rR, the cost functional needs

to be modified with a discount term erRðT� tÞ, which equals to the growth generated by a resistant

cell that emerged at time t. We refer to the problem

CdiscountedðuÞ ¼
Z T

0

Sðt; uðtÞÞmðuðtÞÞerRðT� tÞdt; uðtÞ 2 U: ð4Þ

as the discounted problem and show that the strategy, which minimises the expected number

of resistant cells at the end, uses even lower doses to further reduce the early mutational peak.

Intermediate dosages become optimal already with modest dose-dependency

When the perturbed growth dynamics and the dose-dependent mutation rate are specified,

the optimal treatment strategy, which minimises the chosen objective, can be calculated using

the methods of optimal control theory. As the cost functional (3) depends only on the sensitive

cells (and there are initially so few resistant cells present that their competitive effect on the

sensitive cells is negligible), we can use deterministic dynamics to calculate the mutation inten-

sities. Using a logistic growth model with Hill-type pharmacodynamics and linear dose-depen-

dent mutation rate (Eq (7), Materials and methods) we first solved the optimal control

problem (3) using the Forward-Backward Sweep Method [36], which is based on Pontryagin’s

minimum principle. The optimal control strategy u(t) together with the optimally controlled

trajectories are shown in S1 Fig. Resistance will always emerge when using the deterministic

dynamics due to the infinitesimal mutational flux generated during each time step. We thus

further performed stochastic population dynamics simulations to gain a more realistic depic-

tion of resistance evolution, as discussed later.

To gain further insights, we solved the same problem using an alternative approach based

on the Hamilton-Jacobi-Bellman equation. The resulting control map u(S, t) (S2 Fig) is explic-

itly time-dependent only at the end of the treatment period, which is a boundary effect due to

the fixed end-time. Therefore, the results are insensitive to the precise time implementation

provided the end-time T is sufficiently large such that the sensitive cells can be eliminated dur-

ing the treatment. In these cases, we can solve for a closed-loop control law u(S), which

depends only on the current population size (S3 Fig). If the treatment period is shorter, the

precise implementation time becomes important as the optimal treatment strategy will switch

to use no control towards the end.

The time-independent control law can be derived analytically in an implicit form from the

Hamilton-Jacobi-Bellman equation by requiring stationarity (see S1 Text). As we set the ini-

tial resistant cell population to zero and consider only elimination strategies, we can separate

the sensitive and resistant dynamics so that the cost functional and the dynamics are indepen-

dent of the number of resistant cells. For problem (3) with arbitrary density-dependent

growth rate r(S), pharmacodynamics d(u) and dose-dependent mutation rate μ(u), we derive

the following equation (see S1 Text)

mðuÞ � r Sð Þ � d uð Þ � m uð Þ½ �
m0ðuÞ

d0ðuÞ þ m0ðuÞ
¼ 0; ð5Þ

which can readily be solved for the control law u(S). Notice that here we assumed nothing
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about the precise functional form of the dose-dependent mutation rate μ(u), the pharmacody-

namics d(u) or the density-dependent growth model r(S) except that these are all differentia-

ble functions with respect to u. The only technical modelling assumption we have made is

that of the log-kill hypothesis, where the control leverage depends only of the drug concentra-

tion and specifically does not depend on the population size. Therefore, the density depen-

dence realises solely through the assumed density dependent growth rate r(S), which itself can

be approximated to simple exponential decay during treatment. Hence, the optimal therapy is

often close to a constant dose and lead us to compare simple constant treatment strategies.

Implementing the precise density and time dependencies lead only to marginal improve-

ments and would be more difficult to realise clinically. However, the relative gain of the precise

density and time implementation increases, when the drug is less effective (dmax is smaller)

and when the pharmacodynamical profile is less steep (the Hill-coefficient is closer to 1). More

generally, therapy optimisation with time-dependent protocol manipulations present a vast

scope, e.g., an in vitro study with drug combinations demonstrate their ability to suppress, pre-

vent or even reverse resistance against one of the drugs when a particular dosing is model is

used [42]. New therapy strategies in this time dependent domain are being developed (see e.g.

[43]), however, as all closed loop protocols hinge on continuous monitoring of the target cell

population, formidable practical obstacles to their experimental testing remain [44].

Substituting the linear dose-dependent mutation rate and Hill-type pharmacodynamics in

Eq (5), we obtained the optimal elimination strategy as a function of the key parameter α
(which is the slope of the assumed linear dose-dependent mutation rate) and compared its per-

formance to other constant treatment strategies. Fig 3 displays the optimal constant treatment

strategy u� (the black dash-dot line) in the relevant region of parameter α. Higher doses

increase the cumulative mutation intensity or the expected number of rescue mutants gener-

ated. As different drugs have different toxicity constraints, there is no universal MTD to com-

pare the optimal dose to. Hence, we regard the MTD as a variable and show few contour lines,

where the labels denote the relative cumulative mutation intensity compared to the optimal.

The red background color denotes the assumed fold change (FC) to the baseline mutation rate

for corresponding α and constant dose.

We notice that the clinical gain of the optimal treatment depends heavily on the drug toxic-

ity; the optimal treatment can lead to substantial gains with already modest drug-induced

mutation if the drug is well-tolerated and administered close to, or at, the pharmacodynami-

cal plateau (here umax = 1000). On the other hand, no substantial gains are achievable even for

a highly mutagenic drug if it is also poorly tolerated (i.e., MTD and optimal dosage are close

to each other). Here we concentrated our analysis on the case α = 10−8, which leads to only

modest fold-change of less than 10 (the vertical dashed line in Fig 3) when compared to the

base mutation rate. Following the dashed line reveals that gains on the order of 25—100% are

achievable already well below the maximum dose umax, which produces up to almost 5 times

more rescue mutations than the optimal. We further note that the rescue probability scales

exponentially in the amount of rescue mutations generated (see Eq (2)). Therefore, these dif-

ferences are substantial at the probability level, whenever the baseline mutation intensity Nμ0

is relatively high but still mutation-limited. Indeed, in extreme cases, applying MTD in con-

trast to the optimal intermediate dosage will switch the emergence of resistance from a rare,

mutation-limited, stochastic event to an inevitable outcome.

Stochastic cell population model demonstrates the efficacy of intermediate

dosage therapy under dose-dependent mutation

To further validate our results we performed stochastic simulations and compared various

constant therapies in terms of rate of successful eliminations and the size of rescued
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populations (Fig 4). The simulations revealed a characteristic bimodal distribution of the final

population sizes after treatment, in which the first mode corresponds to the extinct popula-

tions and the second mode to the expected size of the rescued populations. The maximisation

of the first mode corresponds to the cost function defined in Eq (3), where the probability of

an evolutionary rescue is minimised, whereas the minimisation of the second mode corre-

sponds to the discounted cost function Eq (4). Hence, both modes can be analyzed and opti-

mised mathematically using the simpler deterministic dynamics discussed above.

Fig 4 summarizes the results obtained from stochastic simulation. Fig 4A displays the bimo-

dality of the distribution of final population sizes. Each treatment strategy leads to its own

characteristic bimodal distribution. Fig 4B shows how the zero mode, that is, the probability of

cure, changes as a function of the dose. The different mutation intensities have a substantial

impact on the probability of cure and we notice how therapies close to the optimal treatment

strategy outperform and lead to substantially better expected treatment outcomes. Similarly

Fig 4C shows an interesting non-monotonic dose response in the expected final population

sizes of the target populations that survive from the therapy (the mean of normalized final pop-

ulation sizes N(T)/K conditioned on non-extinction).

The solution of the discounted problem uses even less control in the beginning to shift the

expected mutation time to later time points. This of course comes at the expense of increasing

Fig 3. Optimal therapies substantially reduce the number of resistance mutations generated compared to MTD. The costs of constant therapies C
(u;α) were evaluated while varying the key parameter α, which quantifies the strength of dose-dependent mutation rate. The plotted contour lines

correspond to the cumulative mutation intensities (the expected number of rescue mutants) relative to the optimal constant treatment C(u;α)/C(u�;α).

Thus, the 1-isoline (drawn as black dash-dot line for emphasis) gives the optimal constant dose as a function of the parameter α, while the 2-isoline

gives the cases where the corresponding MTD produces 100% more rescue mutations than the optimal dose. The red background color indicates the

assumed fold change (FC) to the baseline mutation rate. We notice that substantial improvements are possible even for modest fold-changes depending

on how well the drug is tolerated (how close the MTD is to umax). The probability of evolutionary rescue scales exponentially in the amount of the

rescue mutations. We consider the case α = 10−8 in detail, which corresponds to the cases given by the vertical dashed line. Similarly, the horizontal

dashed line corresponds to the MTD used in stochastic simulations.

https://doi.org/10.1371/journal.pcbi.1009418.g003
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the total cumulative mutation rate, and hence, decreases the probability of a cure. This might

be acceptable if the probability of evolutionary rescue is in any case high. However, treatment

attempting for a cure is always riskier in the sense that if evolutionary rescue does occur, the

rescue mutations take likely place very early on thus leading to relapse more quickly. There-

fore, it is the baseline expectation of the likelihood of evolutionary rescue which should ideally

guide the treatment choice and the precise evolutionary objectives of the treatment.

We conducted the simulations by setting the baseline (drug-free) mutation intensity at the

start of therapy to S0 μ0 = 0.1. If the baseline mutation intensity is close to 1 or higher, then

evolutionary rescue occurs with very high probability in any case, and the relative role of the

drug-induced mutations become less important. However, we would like to emphasize that

the viability of any elimination strategy relies on mutation limitation, and in these cases, the

drug-induced effects become crucially important, and the optimised treatments may lead to

substantial improvements as demonstrated in Fig 4.

Discussion

The evolution of drug resistance is a particularly problematic and frequent outcome of cancer

and antimicrobial therapies. Recent research suggests that these treatments may enhance the

Fig 4. Non-monotonic dose responses. nsim = 2000 constant therapies were simulated for each dose while recording the final population sizes N(T). A

Example of a bimodal distribution of the normalized final population sizes N(T)/K using the optimal constant dose u = 104.5 that minimises the rescue

probability (cost function Eq (3)). The zero mode corresponds to the proportion of extinct populations (cure) and the second mode corresponds to the

expected size of the rescued population. Each dose leads to its own characteristic bimodal distribution. B The proportion of extinct populationsN(T) =

0 plotted as a function of dose. The probability of cure displays non-monotonicity and is maximised in the neighborhood of the optimal dose u = 104.5

(dashed line), which was determined analytically using the stationary Eq (5). C The mean final population sizes of the rescued populationsN(T)/K
plotted as a function of dose (the extinct populations were excluded). The expected rescue size is minimised at u = 60 (dashed line), which agrees to the

numerical solution S3 Fig of the discounted problem Eq (4).

https://doi.org/10.1371/journal.pcbi.1009418.g004
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evolvability of the target population not only via inducing intense selection pressures but also

via increasing mutability, and thus the speed of adaptation. Although it remains unclear

whether the observed increases in the mutation rate are simply an indirect physiological

response to stress or rather an adaptive trait itself, such mutation rate plasticity has a clear

implication for evolutionary theory: any stress-induced increase in mutation supply will neces-

sarily (all else equal and barring mutational meltdown) increase the potential for resistance

evolution and one can no longer isolate mutational processes from the underlying severity of

selection.

Here we have analysed a model with drug-induced increase in mutation rate, which leads

to an interesting trade-off, where the population size can be decreased only at the expense of

simultaneously increasing the mutation rate. Using the concept of evolutionary rescue, we for-

mulated the treatment as an optimal control problem and solved the optimal elimination strat-

egy, which minimises the probability of evolutionary rescue. We showed using stochastic

simulations that aggressive elimination strategies, which aim at eradication as fast as possible

and which represent the current standard of care, can be detrimental already with modest

drug-induced increases to the baseline (drug-free) mutation rate.

The assumed increases in the mutation rate are roughly the same order of magnitude as

those reported in a recent meta-analysis focusing on common antibiotics in sub-inhibitory

concentrations [45]. It seems likely that the drug-induced effects may be even more pro-

nounced in cancer treatments given their known mutagenicity, and in clinically relevant con-

centrations above MIC which leads to rapid decay as assumed in our model. On the other

hand, it is also probable that the required mutational targets change at higher concentration

ranges, thus in turn decreasing the phenotypic mutation rate. Nonetheless, the basic conclu-

sion of our work remains, namely that the mutation rate can in many clinically relevant set-

tings be highly dose-dependent, and this in turn implies that the MTD-strategy is no longer

necessarily optimal. Therefore, it will be of great importance to properly investigate the various

mutagenic and other resistance-promoting properties of different anticancer and antimicro-

bial therapies across wide concentration ranges to recover the drug-specific mutation rate

profile.

Our main focus was to solve the optimal elimination strategy, which minimises the proba-

bility of an evolutionary rescue, and the optimal solution thus reduces to the MTD-strategy in

the limit of dose-indepedent mutation rate (α! 0). Recently, however, the objective of elimi-

nating the tumor burden has been challenged and so-called containment strategies have been

proposed to specifically avoid the competitive release of the resistant cells. Such paradigm shift

in treatment may greatly improve treatment outcomes especially in those situations where

there is high abundance of pre-existing resistant cells and a complete cure cannot be expected.

First proofs of concept have already been made by Gatenby and colleagues in preclinical

mouse models and advanced metastatic cancers [46, 47] and recently also in the context of

antimicrobial resistance [35]. Based on these findings, Hansen et al.[35] argue that all viable

treatment strategies must trade-off between minimising mutations (to prevent the emergence

of new resistant cells) and maximising competition (to suppress the growth of the existing

resistant cells).

To put our results into a wider context, consider Fig 5 which illustrates this fundamental

trade-off between the two alternative evolutionary pressures that can be induced by treatment.

So far, the discussion of treatment optimisation has exclusively concentrated on the blue

trade-off curve, in effect assuming that MTD-strategies minimise the expected number of res-

cue mutations. The key result obtained here is that this is not generally true when there are

drug-induced effects present as the optimisation must then be performed on a completely dif-

ferent trade-off curve. Neglecting the effects of drug-induced resistance can lead to situations

PLOS COMPUTATIONAL BIOLOGY Drug-induced resistance evolution necessitates less aggressive treatment

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009418 September 23, 2021 12 / 22

https://doi.org/10.1371/journal.pcbi.1009418


where the MTD-strategy lies well below the correct trade-off curve and is thus a particularly

detrimental strategy as it fails to optimally prevent acquired resistance by de novomutation,

but also applies maximal damage to the ecosystem making the containment of pre-existing

resistant cells impossible.

Using the methods presented here, one can identify the optimal mutation-minimising solu-

tion and thus potentially gain substantial improvements. Furthermore, the insights gained

while studying the discounted problem may be useful also in the context of containment strat-

egies, where partial elimination is sought while lowering the tumor or pathogen burden to an

acceptable level. Thus, when the clinical objective shifts from cure to resistance management,

an initial elimination strategy which minimises the expected number of resistant cells becomes

a rational objective. While it is well-known that attempting a cure may be riskier in terms of

expediting progression because of standing variation [48], the discounted problem shows that

this could be the case also when relapse originates by de novomutation.

Fig 5. Trade-offs in treatment optimisation. Every treatment strategy is necessarily a trade-off between preventing acquired

resistance, by decreasing the population size, and suppressing pre-existing resistance, by allowing intercellular competition. The rate

at which the population size can be decreased is constrained from above by the toxicity constraint as well as by finiteness of control

leverage and, on the other hand, from below by the population burden constraint, which forces to apply control to stabilize the

population size at some acceptable level. When no drug-induced effects are present (α = 0), the optimal treatment strategy is found

somewhere on the blue Pareto-frontier; the arrow points to the direction where the cumulative drug concentration increases and the

optimal elimination strategy (the green point) is given by the MTD-strategy. However, if drug-induced effects are present (α> 0),

the optimisation must be done on a completely different, yellow Pareto-frontier, which exhibits a bifurcation point after which

increasing the cumulative drug concentration becomes detrimental with both respects. In these cases, the optimal elimination

strategy (the green point) is reached at intermediate dosages at the bifurcation point, which can be identified using the methods

presented here. Hence, substantial Pareto-improvements (represented by the green arrow) may be achieved by switching from the

MTD-strategy to the optimised treatments.

https://doi.org/10.1371/journal.pcbi.1009418.g005
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For the case of AMR evolution, our result that intermediate dosage therapy is optimal is

particularly interesting as it may also reduce detrimental off-target species effects, such as

enriching for resistance in off-target species [12] or compromising community resilience and

functioning [49]. Such effects are prevalent in bacterial communities and possibly important

to the AMR problem as a whole [12]. As stated above, intermediate dosages may also be opti-

mal in containment strategies [35], which may be useful in chronic infections prevalent owing

to factors such as antimicrobial tolerance [23] and biofilms [50] as features of the pathogen

population and immunocompromised conditions in the patient. Our findings therefore con-

tribute to an emerging body of evidence showing an increasing scope of utility for intermediate

dosages in antimicrobial therapy. Drug-induced mutagenesis has also been observed for

viruses [51]. Although the pharmacodynamics differ considerably from cellular systems, some

of our observations may also extend to viruses, at least the observation that other concentra-

tions than the MTD may lead to better therapy outcomes when mutation rate effects of drugs

are accounted.

The approach taken here has many advantages. We presented a way of formulating the pre-

cise objectives of the treatment in evolutionary terms, which provides an interesting theoretical

framework for further treatment optimisation avenues. We specifically considered the effects

of drug-induced resistance, an often neglected cost of treatment, and showed that reducing the

cumulative drug dosage can be preferable even when the objective of the treatment is elimina-

tion, and not containment. Therefore, our results further add to the ongoing criticism of

administering aggressive, high-dose therapies, which may realize not only an ecological, but

also an evolutionary cost of control.

The predicted non-monotonic dose responses of the target populations are also immedi-

ately amenable to experimental investigation, where a lot of future study is needed to gain a

better quantitative knowledge of the modes and extent of drug-induced effects. Drugs with

reported increases in mutation rate present a good starting point (see e.g. [15, 16, 45]). Our

work makes concrete testable predictions, which potentially allows to robustly detect the pres-

ence of drug-induced resistance evolution without a need to try measure the actual mutation

rate directly [52], but instead focusing on the dose-dependency in the observed rescue proba-

bilities. If indeed such phenomena increase the rate of adaptation, we should see similar non-

monotonic dose responses in the rescue probabilities as in Fig 4, a result that could be

exploited in therapy optimisation. Fully disentangling the individual terms behind such a dose

response, i.e. intrinsic mutation rate, effects of varying mutational targets, phenotypic plastic-

ity and the role of selection and establishment, would require more detailed modelling, e.g., a

stochastic treatment of the resistance mutations below their establishment threshold.

When interpreting the more quantitative predictions made by our work, care must be

taken, as they naturally depend on parameter values and more implicit modelling choices (see

Materials and methods for more discussion). For instance, this is the case for the linear dose-

dependent mutation rate, where we currently lack extensive data on the dose dependency.

However, since nothing in the derivation of Eq (5) hinges on this particular choice, the pro-

vided analytical approach can be used to generalize our results to a wide class of models and

empirically obtained functional forms.

Another important modelling assumption of our work is that the mutation rates are not

strictly coupled to birth events (see Fig 6), which may explain why Liu et al. [37] did not find

the dose-dependent mutation rates important in the context of cytostatic treatments. This is

because then one actually assumes that the therapy effectively prevents any mutations from

accumulating. There are several reasons why we think that this, otherwise common modelling

choice, is a poor assumption in the context of treatment models. Firstly, the mutation rate

term in our model should not be interpreted as just the genomic substitution rate (which only
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rarely actually lead to a more adaptive phenotype), but rather as the Poisson intensity of gener-

ating resistant phenotypes in a given environment. While the majority of spontaneous geno-

mic mutations do indeed occur during replication, there is no underlying reason why specific

drug-induced mutations and non-genetic phenotype transitions could not also happen in

other phases of the cell cycle. Indeed, recent evidence from single cell sequencing shows that

neurons accumulate somatic mutations at a constant rate throughout life without cell divi-

sion, with similar rates to mitotically active tissues [53]. Even if the considered phenotypic

transitions occurred proportional to the cell turnover, it would be an unwarranted simplifica-

tion to assume that even purely cytostatic treatments would completely halt cell division in

the entire cell population. If this, however, would be the case, then evolutionary rescue could

occur only via standing variation, which again shifts the focus of treatment optimization

towards containment strategies (if one has no direct control leverage over the resistant cells).

The purpose of our work was to analyse a minimal model to study the effect of drug-

induced resistance evolution instead of providing the most realistic and comprehensive

description of the underlying processes. The provided optimal control approach can be used

to generalise our results to a wide class of models, once we have a better quantitative under-

standing of the various dose-dependencies involved. Given the wide-spread use of aggressive,

MTD-style therapies, these results may be important and worth of further investigation even if

they only apply to certain drugs. In any case, we believe that identifying and factoring into

therapy optimisation the various, as of yet unknown or unquantified, biological costs of thera-

peutic control represent a major goal and unifying principle going forward.

Methods and materials

Dynamical model for drug resistance

Consider the problem of finding the optimal elimination strategy that minimises the probabil-

ity of evolutionary rescue by de novomutation in the case of drug-induced resistance. First,

Fig 6. Schematic illustration of the model. A A minimal model for drug resistance distinguishes sensitive (S) and resistant (R) cells,

which follow their own birth-death processes. A treatment can be used to target sensitive cells, but sensitive cells can become

resistant via rescue mutations. B Specification of dose-dependent death and mutation rates. We analyse a Hill-type

pharmacondynamics and linear dose-dependent mutation rate, but any pharmacodynamics with finite control leverage and

monotonically increasing mutation rate will lead to qualitatively similar results reported here. The dashed lines denote the growth

inhibitory drug concentration.

https://doi.org/10.1371/journal.pcbi.1009418.g006
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consider the following general dynamical model for drug resistance:

( _S ¼ rSðNÞS � dSðu;NÞS � mSðuÞSþ mRðuÞR

_R ¼ rRðNÞR � dRðu;NÞRþ mSðuÞS � mRðuÞR
ð6Þ

S(t) and R(t) are the state variables denoting the population densities for the sensitive and

resistant cells, respectively. The functions rS(N) and rR(N) are the unperturbed growth rates at

which sensitive and resistant cells, respectively, grow in the absence of treatment. The growth

rate can be different for the sensitive and resistant cells, for example, due to the fitness cost

that results from maintaining the resistance mechanism. Constant growth rates lead to the

exponential growth model (which is suitable only for small populations) while common den-

sity-dependent choices, which depend on the total population size N(t) ≔ S(t) + R(t) via com-

petitive interactions, include logistic riðNÞ ¼ rið1 � N
KÞ and Gompertz riðNÞ ¼ rilogðKNÞ growth

models, where K is the assumed common carrying capacity and i 2 {S, R}.

The function di(u, N) models the pharmacodynamics of the drug dictating how the

obtained concentration of the drug, which is represented by the control variable u, translates

into cell death. Some drugs can also be cytostatic in nature, meaning that they decrease the

birth rate instead of increasing the death rate, which can have important consequences [54]

but nevertheless leads to the same mean-field growth as above. Finally, the pharmacodynami-

cal effect may additionally depend on the total population size N. By definition, we concentrate

on cases where dS(u, N)� dR(u, N)� 0 meaning that resistant cells have a selective advantage

during treatment.

Finally, the function μS(u) is the rate at which sensitive cells become resistant. Importantly,

we allow this rate, too, to explicitly depend on the dosage u. Furthermore, note that we do not

distinguish between the precise cause (genetic and non-genetic) of the change in phenotype,

but only consider the transition between the two compartments. Reversible adaptive (epige-

netic) changes can be modelled by adjusting the μR term.

To demonstrate the qualitative impact of the dose-dependent mutation rate, consider the

following simple model with logistic growth, Hill-type pharmacodynamics and linear dose

dependency

_S ¼ rSð1 � S � RÞS � dmax 1 �
1

1þ u
h

� �k

 !

S

� ðm0 þ auÞS; Sð0Þ ¼ 1

_R ¼ rRð1 � S � RÞRþ ðm0 þ auÞS; Rð0Þ ¼ 0:

8
>>>>>><

>>>>>>:

ð7Þ

This model follows closely the scaled dynamical model (i.e. K = 1) used by Greene et al.
[38] but includes more realistic non-linear pharmacodynamics. Now the cost function of Eq

(3) can be minimised with respect to the dynamics (7) with two alternative methods based

either on Pontryagin’s Minimum Principle (see e.g [34, 55]) or the Hamilton-Jacobi-Bellman

(HJB) equation (see e.g. [44, 55]).

Pontryagin’s minimum principle leads to a system of ordinary differential equations that

must be solved with mixed boundary conditions, for example, by using the Forward-Backward

Sweep Method [36]. The HJB approach on the other hand requires the solution of a partial dif-

ferential equation for the cost-to-go function, which comes at a higher computational cost. We

solve the optimal control problem using both these methods and furthermore provide some

analytical insights to the optimal treatment strategy using the stationary profile obtained from

the HJB solution (see S1 Text for further details).
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Stochastic simulation

To further demonstrate the qualitative impact of the dose-dependency, we performed a sto-

chastic simulation of different constant therapies ranging from low to high concentrations.

Each dosage yields its characteristic intensity profile at which rescue mutants are being gener-

ated. We show how this connects to the mutational profile and the resulting distribution of

rescue fractions that survive treatment.

The stochastic simulation consists of simulating the system given in Eq (7) for a range of

constant doses and different initial conditions S0, corresponding to different effective baseline

mutation rates. For each dose, nsim = 2000 virtual treatments were administered while record-

ing mutation events and final numbers of sensitive and resistant cells. Unlike the deterministic

system, the stochastic birth and death process allows the population to go extinct (a cure). By

calculating the proportion of extinct populations for each dose we can estimate the probability

of evolutionary rescue and its dose-dependency. Furthermore, by recording the mutational

events and stochastic extinctions, we could verify that the resistance establishment probability

is indeed approximately independent of the dose as assumed in cost function of Eq (3).

For the stochastic system, we need to explicitly specify the birth and death rates and how

the carrying capacity is realized (parameter θ) [56]. The event propensities for the Gillespie

algorithm are

bS ¼ ðbS � ðbS � ySÞðSþ RÞ=KÞS

bR ¼ ðbR � ðbR � yRÞðSþ RÞ=KÞR

dS ¼ ðdS þ ðyS � dSÞðSþ RÞ=K þ dðuÞÞS

dR ¼ ðdR þ ðyR � dRÞðSþ RÞ=KÞR

m ¼ ðm0 þ auÞS

8
>>>>>>>>>><

>>>>>>>>>>:

ð8Þ

where the events are defined as

S !
bS Sþ 1

S !
dS S � 1

R !
bR Rþ 1

R !
dR R � 1

S;R !m S � 1;Rþ 1:

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð9Þ

Parameter values that were used in this study are given below in Table 1. We note that the

key parameter α that sets the drug-induced mutation rate slope was selected so that the dose-

dependent mutation rate covers an order of magnitude (see Fig 3 and e.g. [15]). The key ele-

ments to observe the discussed trade-off are finiteness of control leverage (with molecular

binding based control this is generally true) and monotonically increasing dose to intrinsic

mutation rate dependency. The other parameters are chosen such that, the therapy can enforce

the sensitive population to decay while the resistant cell can grow once established. These rates

then set a sufficient time T that ensures that in most cases the sensitive population has been

eradicated and the resistant population, if established, occupies a substantial part of the

released niche. In practice, the end-time is sufficiently long if the control map obtained from

the HJB solution becomes stationary (see example S2 Fig). As discussed earlier the product S0
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μ0 fixes to what degree the evolution of resistance is mutation limited. If that product is large

to begin with there is not much help in optimising the therapy-induced mutations. In such

case the objective of the treatment should move away from eradication.

Supporting information

S1 Fig. Numerical solutions using Forward-Backward Sweep Method. Solution of the opti-

mal control problem (3) using Forward-Backward Sweep Method with parameter values speci-

fied in Table 1 (main text). A Optimal treatment strategy uopt(t) as a function of time. B The

optimally controlled trajectories S(t) and R(t). In deterministic dynamics the population

always experiences an evolutionary rescue. C The dynamics of the multipliers λS(t) and λR(t)
corresponding to the sensitive and resistant cells respectively. The multiplier values can be

interpreted as sensitivities of the optimal cost C(uopt) to the perturbations in the respective

state variables.

(TIF)

S2 Fig. Control map obtained from the stochastic Hamilton-Jacobi-Bellman approach.

Here the color denotes the optimal control to be applied at the given population size and time.

The carrying capacity has been scaled to K = 100. Notice, how the control values start to

change in time only at the end of control period, when t> 20.

(TIF)

S3 Fig. Time-independent control laws. Feedback controls u(S) for the two optimal control

problems obtained via the inverse function method. The dashed lines give the optimal constant

doses, respectively. The analytically derived stationary profile matches the numerical solution,

but cannot be applied to the discounted problem due to the explicit time-dependence.

(TIF)

Table 1. Table of parameters used. ([t] = unit of time, [u] = unit of drug concentration).

Symbol: Meaning: Value:

μ0 baseline mutation rate 10−6/[t]
α slope coefficient of μ(u) 10−8/([u] � [t])
bS intrinsic birth rate of sensitive cells 0.8/[t]
dS intrinsic death rate of sensitive cells 0.3/[t]
rS intrinsic growth rate (βS − δS) of sensitive cells 0.5/[t]
bR intrinsic birth rate of resistant cells 0.5/[t]
dR intrinsic death rate of resistant cells 0.1/[t]
rR intrinsic growth rate (βR − δR) of resistant cells 0.4/[t]
dmax maximum death rate by treatment 1.0/[t]
umax drug concentration where the death rate has saturated 103 � [u]

k Hill-coefficient of d(u) 2.3

h drug concentration yielding 50% of dmax 40 � [u]

T fixed end-time of treatment cycle 35 � [t]
K carrying capacity 106

S0 initial population size of sensitive cells 105

R0 initial population size of resistant cells 0

θS carrying capacity parameter for sensitive cells 0.8 � [t]
θR carrying capacity parameter for resistant cells 0.5 � [t]

https://doi.org/10.1371/journal.pcbi.1009418.t001
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