
Biological Control 163 (2021) 104761

Available online 3 September 2021
1049-9644/© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Review 

Models of natural pest control: Towards predictions across 
agricultural landscapes 

Nikolaos Alexandridis a,*, Glenn Marion b, Rebecca Chaplin-Kramer c,d, Matteo Dainese e, 
Johan Ekroos a,1, Heather Grab f, Mattias Jonsson g, Daniel S. Karp h, Carsten Meyer i, j,k, 
Megan E. O’Rourke l, Mikael Pontarp m, Katja Poveda f, Ralf Seppelt k,n, Henrik G. Smith a,m, 
Emily A. Martin o,2, Yann Clough a,2 

a Lund University, Centre for Environmental and Climate Science (CEC), Lund, Sweden 
b Biomathematics and Statistics Scotland, Edinburgh, UK 
c Stanford University, Woods Institute for the Environment, Natural Capital Project, Stanford, USA 
d University of Minnesota, Institute on the Environment, St. Paul, USA 
e Eurac Research, Institute for Alpine Environment, Bozen/Bolzano, Italy 
f Cornell University, Department of Entomology, Ithaca, USA 
g Swedish University of Agricultural Sciences, Department of Ecology, Uppsala, Sweden 
h University of California – Davis, Department of Wildlife, Fish, and Conservation Biology, Davis, USA 
i German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany 
j University of Leipzig, Faculty of Biosciences, Pharmacy and Psychology, Leipzig, Germany 
k Martin Luther University Halle-Wittenberg, Institute of Geoscience & Geography, Halle (Saale), Germany 
l Virginia Polytechnic Institute and State University, Department of Horticulture, Blacksburg, USA 
m Lund University, Department of Biology, Lund, Sweden 
n Helmholtz Centre for Environmental Research – UFZ, Department of Computational Landscape Ecology, Leipzig, Germany 
o Leibniz University Hannover, Institute of Geobotany, Zoological Biodiversity, Hannover, Germany   

H I G H L I G H T S  

• We review models of natural pest control assessing usability across agroecosystems. 
• Ecological complexity and context sensitivity impede correlation-based predictions. 
• A trade-off of generality with realism hinders mechanistic modeling across systems. 
• Similarities in causal relationships can inform contextually bound generalizations. 
• This framework will allow knowledge synthesis and transfer in less studied regions.  
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A B S T R A C T   

Natural control of invertebrate crop pests has the potential to complement or replace conventional insecticide- 
based practices, but its mainstream application is hampered by predictive unreliability across agroecosystems. 
Inconsistent responses of natural pest control to changes in landscape characteristics have been attributed to 
ecological complexity and system-specific conditions. Here, we review agroecological models and their potential 
to provide predictions of natural pest control across agricultural landscapes. Existing models have used a 
multitude of techniques to represent specific crop-pest-enemy systems at various spatiotemporal scales, but less 
wealthy regions of the world are underrepresented. A realistic representation of natural pest control across 
systems appears to be hindered by a practical trade-off between generality and realism. Nonetheless, observa-
tions of context-sensitive, trait-mediated responses of natural pest control to land-use gradients indicate the 
potential of ecological models that explicitly represent the underlying mechanisms. We conclude that modelling 

* Corresponding author at: The Ecology Building, Sölvegatan 37, 22362 Lund, Sweden. 
E-mail address: nikos.alexandridis@cec.lu.se (N. Alexandridis).   

1 Current address: University of Helsinki, Department of Agricultural Sciences, Helsinki, Finland.  
2 These authors share senior authorship. 

Contents lists available at ScienceDirect 

Biological Control 

journal homepage: www.elsevier.com/locate/ybcon 

https://doi.org/10.1016/j.biocontrol.2021.104761 
Received 31 December 2020; Received in revised form 28 August 2021; Accepted 1 September 2021   

mailto:nikos.alexandridis@cec.lu.se
www.sciencedirect.com/science/journal/10499644
https://www.elsevier.com/locate/ybcon
https://doi.org/10.1016/j.biocontrol.2021.104761
https://doi.org/10.1016/j.biocontrol.2021.104761
https://doi.org/10.1016/j.biocontrol.2021.104761
http://crossmark.crossref.org/dialog/?doi=10.1016/j.biocontrol.2021.104761&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Biological Control 163 (2021) 104761

2

natural pest control across agroecosystems should exploit existing mechanistic techniques towards a framework 
of contextually bound generalizations. Observed similarities in causal relationships can inform the functional 
grouping of diverse agroecosystems worldwide and the development of the respective models based on general, 
but context-sensitive, ecological mechanisms. The combined use of qualitative and quantitative techniques 
should allow the flexible integration of empirical evidence and ecological theory for robust predictions of natural 
pest control across a wide range of agroecological contexts and levels of knowledge availability. We highlight 
challenges and promising directions towards developing such a general modelling framework.   

1. Introduction 

Crop yield losses to invertebrate pests worldwide are substantial (e. 
g., up to 20% of major grain crops is lost to insects) and predicted to 
increase with ongoing climate warming (Deutsch et al., 2018). Top- 
down control of crop pests by their natural enemies, such as arthropod 
predators and parasitoids, is an essential ecosystem service, valued at US 
$4.5 billion/yr in the US alone (Losey and Vaughan, 2006). Crop pests 
can also be controlled bottom-up, by the availability of their host plants 
in space or time (Pedigo and Rice, 2014). This bidirectional natural pest 
control holds the potential to at least partially replace intensive agri-
cultural practices aimed at pest regulation, including wide-spread 
pesticide use (Khan et al., 2014; Tschumi et al., 2015; Holland et al., 
2017). However, similar to the transition from calendar-based insecti-
cide application to integrated pest management (Palladino, 2013), 
mainstreaming natural pest control in global agriculture would benefit 
from reliable predictive tools, applicable across a variety of management 
contexts and agroecosystems (Kleijn et al., 2019). 

Applicable tools exist to model and map a range of ecosystem ser-
vices, including crop pollination by invertebrates, based on detailed 
land-use information and biophysical characteristics of different land 
covers (Sharp et al., 2014). Similar to the case of pollinators and polli-
nation, land uses surrounding agricultural fields affect the abundance 
and diversity of natural enemies and their potential to provide 
ecosystem services (Tscharntke et al., 2005). In contrast to pollination, 
however, natural pest control involves an additional trophic level. As 
such, complex interactions between natural enemies, pests and crops 
cause diverse outcomes for crop damage and yields across agro-
ecosystems (Tscharntke et al., 2016; Karp et al., 2018). This ecological 
complexity has so far restricted the potential to consistently link specific 
landscape characteristics to enhanced pest suppression (Englund et al., 
2017), with efforts to assess natural pest control based on spatially 
explicit land-use information having limited predictive scope (e.g., Rega 
et al., 2018). Consequently, we lack general models predicting the nat-
ural pest control potential of agricultural landscapes, while the trans-
ferability of pertinent ecological models outside the specific cases for 
which they were developed is unknown (Seppelt et al., 2020). 

Here, we evaluate the ability of existing models to predict the in-
teractions between natural enemies, pests and crops in response to land- 
use changes across agroecosystems. To this end, we review models of 
natural control of invertebrate pests, assessing the capabilities of 
different approaches and techniques, with a particular focus on models 
that represent ecological complexity. We examine the systems and 
processes that are modelled, as well as the main properties of model 
output. Based on our review, we identify and discuss major challenges 
and highlight promising directions for the development of models that 
predict natural pest control responses to agricultural land use across 
agroecosystems. Our ultimate goal is to help design a modelling 
framework for natural pest control that facilitates the transfer and 
synthesis of knowledge worldwide. 

2. Literature search 

We do not aim for an exhaustive review of models of natural pest 
control, but rather for a description of the available modelling ap-
proaches, with a focus on land-use and landscape-scale studies. A search 

of the Core Collection of ISI Web of Science over all available years with 
the topic argument: model* AND land* AND (biocontrol OR “biological 
control” OR “pest control” OR “natural control”) returned 448 publi-
cations (search date: 25 June 2018). Repeated follow-up review of 
search results suggests no qualitative shift from our conclusions. We 
reviewed the abstracts of the collected publications, discarding non- 
modelling studies as well as studies of non-crop systems, importation 
or augmentative biocontrol and weeds or vertebrate pests. We retained 
172 studies modelling natural control of invertebrate pests in agricul-
tural systems, published between 1978 and 2018. A list of the reviewed 
publications and collected information about their models are provided 
in the Supplementary Material. Of the respective models, 105 make 
predictions that stem directly from correlations among system compo-
nents (correlative), and 67 are based on the explicit representation of 
causative agents and their interrelations (mechanistic) (Fig. 1a). 
Although this distinction represents only extremes of the correlation- 
process continuum (Dormann et al., 2012), in practice, models can 
often be meaningfully divided into these two categories, if only in 
relative terms. 

In the following sections, we present a more detailed examination of 
the collected mechanistic models of natural pest control. Although 
correlative and mechanistic approaches share certain strengths and 
weaknesses, they can complement each other in ecological research. 
Dormann et al. (2012) illustrate the benefits of this approach in species 
distribution modelling, noting that a recent decline in the number of 
mechanistic relative to correlative applications calls for further exami-
nation of the specific capabilities of mechanistic modelling. A similar 
trend in our results (Fig. 1b) supports such a focused examination in the 
context of natural pest control. Furthermore, mechanistic models typi-
cally have the benefit of transparent assumptions and easy interpreta-
tion (Cuddington et al., 2013). These properties warrant a deeper look 
into the potential of mechanistic models to address inconsistencies in 
observed responses of natural pest control to land-use changes (Karp 
et al., 2018) and indications of complex mechanisms as the underlying 
causes of variation (Martin et al., 2019). Efforts to better understand and 
predict natural pest control may thus benefit from mechanistic model-
ling, just as other ecological fields, such as biodiversity research (Urban 
et al., 2016; Pontarp et al., 2019a,b; Hagen et al., 2021), have benefitted 
from the development of novel mechanistic frameworks. 

Mechanistic models of natural pest control were separated into three 
approaches (Fig. 1a), representing strategies that produce models with 
different characteristics. “Specific” models are developed to represent 
narrowly defined crop-pest-enemy systems, and are therefore assumed 
to lack generality. “Theoretical” models focus on essential features un-
derlying the behaviour of natural pest control across systems, hence are 
assumed to be general. “Conceptual” models represent causal relation-
ships that may apply to several systems, without quantifying them. This 
approach is considered as general, but also as the only one unable to 
generate precise predictions. We expect a trade-off between generality, 
precision and realism, in that in practice ecological models have to 
sacrifice one of these elements to retain the other two (Levins, 1966). 
This constraint is linked to the statistical problem of overfitting, in 
which appropriate model complexity is limited by the informativeness 
of available data (Dormann et al., 2012). We tested the expected trade- 
off using the number of modelled processes as a proxy for a model’s 
ability to represent the breadth and detail of real-world phenomena. We 
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built a list of potential ecological, agronomic and economic processes, 
and listed for each model which of these processes are explicitly rep-
resented. These general processes can be modelled at different levels of 
organization, using mathematical or algorithmic expressions of varying 
complexity, along with the respective model parameters. Consistent 
nomenclature was thus favoured over publication-specific terminology. 
The same principle was followed for the identification of main output 
variables. In contrast, publication terminology was adopted when 
assigning a set of represented crop, pest and natural enemy organisms to 
each model. As a result, organism categorization reflects the diversity of 
the reviewed publications and corresponds to various taxonomic or 
functional levels of biological organization. Finally, for each mecha-
nistic model, we documented the modelling techniques employed, the 
spatiotemporal extent and resolution, plus spatial and stochastic 
characteristics. 

3. Correlative models 

The main objective of the correlative models captured by our se-
lection criteria is to explore patterns and test general theories that relate 

natural pest control to surrounding land use, at scales ranging from 
fields to regions. The search argument resulted in models primarily 
applied at landscape or larger scales. Early models describe relationships 
between predictor and response variables based on multiple linear 
regression (e.g., Downie et al., 1999), with random effects eventually 
included in mixed-effects models (e.g., Clough et al., 2005). Generalized 
linear (e.g., Dong et al., 2015) and additive models (e.g., Cotes et al., 
2018) are increasingly used to relax statistical assumptions. More 
specialized techniques, such as autoregression (Bommarco et al., 2007), 
maximum entropy (Ceccarelli et al., 2015) and redundancy analysis 
(Egerer et al., 2018), are employed for temporal, spatial and community 
modelling, respectively. Structural equation models are at the interface 
between correlative and mechanistic modelling, as they allow for a 
significant increase in the former’s mechanistic basis, towards investi-
gating interaction networks (e.g., Diekötter et al., 2007). 

Most correlative models of natural pest control expect that compo-
sitional (e.g., proportion of non-crop habitat) and/or configurational 
complexity (e.g., field edge density) of the landscape surrounding a field 
enhances pest suppression. Two mechanisms are thought to underlie 
these general expectations, in spite of potential inconsistencies caused 

Fig. 1. (a) Number of reviewed publications following contrasting modelling approaches, sequentially separated based on their mechanistic basis, generalization 
potential and approach to generality (Allaire et al., 2017). (b) Number of reviewed publications featuring correlative and mechanistic models for each publication 
year. (c) Number of processes represented per reviewed model (for a list of processes, see. Fig. 3a), among models following three contrasting mechanistic ap-
proaches: specific representation of a crop-pest-enemy system or general representation of natural pest control through conceptual or theoretical modelling. Box 
bands, lower and upper edges represent the 2nd, 1st and 3rd quartiles, respectively. Whiskers extend to the most extreme values within 1.5 × the interquartile range 
from the box; more extreme values are indicated with dots (R Core Team, 2019). 

N. Alexandridis et al.                                                                                                                                                                                                                          



Biological Control 163 (2021) 104761

4

by ecological complexity and context-sensitivity (Tscharntke et al., 
2016). First, landscape simplification into extensive crop monocultures 
is expected to enhance specialist pest abundance and dispersal, by 
increasing the density of their host plants (Root, 1973). Second, 
compositional and configurational complexity is thought to enhance the 
activity of natural enemies by providing them with limiting resources, 

such as nesting sites and alternative food sources (Landis et al., 2000), as 
well as resource continuity (Iuliano and Gratton, 2020; Schellhorn et al., 
2015). Meta-analyses of empirical studies have investigated the gener-
ality of these expectations, revealing positive effects of landscape 
complexity on the diversity and abundance of natural enemies but, 
critically, rather inconsistent responses of pest suppression and crop 

Fig. 2. Number of reviewed publications featuring 
mechanistic models of specific systems (a) 
geographically belonging to each region defined in 
the World Bank Development Indicators (WBDI) 
(Arel-Bundock et al., 2018), and representing 
different (b) crop, (c) pest and (d) natural enemy 
organisms (Wickham, 2016). Certain models do 
not represent all categories of organisms; others 
represent more than one organism in a category, 
and, in some cases, organisms belonging to a 
category are part of the model but not further 
identified (indicated as unspecified). Organism 
names may not be independent, as they reflect the 
nomenclature of each publication.   
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yield (Bianchi et al., 2006; Chaplin-Kramer et al., 2011). Analysis of 
recent correlative models extending to global scales indicates similar 
inconsistencies, suggesting the need for closer investigation of complex, 
context-sensitive ecological mechanisms that may lie behind them (Karp 
et al., 2018). Variability in responses seems to be partly mediated by 
functional traits of the involved organisms (Martin et al., 2019; Tam-
burini et al., 2020). 

As a unified understanding of natural pest control currently eludes 
us, correlative approaches for predictive purposes require the develop-
ment of distinct models for systems of interest. This task involves an 
extensive collection of data, including an array of land-use, agronomic, 
abiotic and biotic environmental variables. The logistic difficulties 
involved in such data collection hinder the development of predictive 
models for most agroecosystems. Furthermore, correlative models 
typically make several assumptions, such as stationarity of ecological 
processes or lack of adaptability, which may not hold in novel or non- 
equilibrium contexts often associated with environmental change 
(Dormann, 2007). 

4. Mechanistic models 

4.1. Different approaches to mechanistic modelling 

Most of the reviewed mechanistic models are specific (Fig. 1a), i.e., 
aim at a highly realistic representation of observed crop-pest-enemy 
combinations. Such models include the largest number of processes 
per model (Fig. 1c), and typically require significant amounts of data. 
For instance, in order to model natural pest control of the Senegalese 
grasshopper along a latitudinal transect of the Sahel, Axelsen (2009) 
represented crop and natural vegetation, pest population dynamics and 
migration, competition with another grasshopper, predation by in-
vertebrates and birds, climatic influences and different pesticide treat-
ments. The model represents 14 ecological and agronomic processes in 
space and time and requires input for tens to hundreds of parameters, 
depending on the objectives of the application. Not surprisingly, specific 
models of natural pest control have only been developed for a few 
combinations of crops, pests and enemies around the world (Fig. 2a). 
These models originate (based on first author affiliation) exclusively in 
North America, Europe, Oceania and East Asia, the world regions with 
the highest GDP per capita (World Bank DataBank, 2018). The modelled 
systems also represent the Caribbean, South-East Asia and West and East 
Africa, but with a relatively small number of studies in these regions. 
The remaining regions are not represented at all (Fig. 2a). There is 
considerable variability among the represented crops (Fig. 2b). Aphids 
are by far the most represented pests (Fig. 2c), while enemies are, to a 
lesser extent, dominated by lady beetles, parasitoid wasps and spiders 
(Fig. 2d). 

The fewer theoretical models of natural pest control (Fig. 1a) aim at 
increasing general understanding and predicting fundamental aspects of 
pest control dynamics across many systems. For instance, Hambäck et al. 
(2007) used a rather simple model of pest population growth and 
migration to reproduce broadly observed patterns of field area – aphid 
density relationships, and assess the impacts of nutrient availability and 
natural control, irrespective of absolute population numbers observed in 
each case. The collected theoretical models represent, on average, the 
fewest processes per model among the three approaches (Fig. 1c), and 
they consistently lack an explicit or implicit representation of space. 
Even when investigating spatial factors, such as field area, modelled 
processes are approximated by averaging their effects over space. A 
focus on a few crucial processes, as well as on general patterns, such as 
area – density relationships, instead of absolute numbers, results in a 
mismatch with observed phenomena, in terms of both system repre-
sentation and predictive scope. This mismatch is exacerbated by the 
complexity of modelled phenomena, limiting the ability of theoretical 
models captured in our review to inform policy or management of nat-
ural pest control. 

In contrast to quantitative modelling approaches, conceptual models 
require minimum model specification and no parameter estimation. By 
evading these data-hungry modelling steps that can narrow model 
applicability and increase uncertainty (Dormann et al., 2012), concep-
tual models gain higher potential for representations that are both 
general and holistic, in terms of the number (Fig. 1c) and nature of their 
processes (Levins, 1998). In one of the three reviewed conceptual 
models, Ekroos et al. (2014) developed a highly abstract but compre-
hensive representation of the processes that control the effectiveness of 
agri-environment schemes for biodiversity conservation and provision 
of ecosystem services, including natural pest control, in a variety of 
agroecosystems. The abstract nature of such models typically hinders 
translating their representation of a system into quantified responses to 
multifaceted socioecological change, preventing model analysis towards 
improved understanding and reliable predictions. 

4.2. Components, spatiotemporal scale and resolution 

Various techniques have been applied for mechanistic modelling of 
natural pest control, involving trade-offs between a model’s ability to 
represent different processes (or formulation flexibility), ease of 
analyzing model output (or analytical tractability) and frugality in the 
use of computational resources (or algorithmic efficiency). None of the 
identified techniques appears to possess all of these qualities (Table 1). 
Spatially explicit and stochastic representations are particularly sus-
ceptible to these trade-offs, as they consistently lack analytical tracta-
bility, trading off formulation flexibility for algorithmic efficiency. Most 
models are dynamic, either continuous in time or with discrete steps. 
Time steps vary from 1 s (Lester et al., 2005) to 1 yr (Kean and Barlow, 
2001), and the temporal extent varies from 1 min (Banks and Yasenak, 
2003) to 600 yr (Bianchi et al., 2009). The majority of the models 
represent spatial processes explicitly or implicitly, with the rest aver-
aging their effects over space. Spatial resolution varies from 0.01 mm 
(Lester et al., 2005) to 500 m (Milne et al., 2015) and spatial extent from 
4.5 m (Provencher and Riechert, 1994) to 700 km (Milne et al., 2015), in 
terms of largest dimension of the respective model entities. These scale 
extremes represent entirely different systems, so the respective models 
cannot be linked through direct up- or down-scaling. 

The majority of mechanistic models represent the general ecological 
processes of reproduction, mortality, dispersal, environmental filtering 
(or species sorting) and predation, along with the anthropogenic pro-
cesses of land use and agricultural management (Fig. 3a). A considerable 
proportion of models also represent competition, biological develop-
ment (or ontogeny), parasitism and herbivory. Isolated cases of specific 
and conceptual models combine some of these processes with socio-
economic or case-specific ecological processes, which, as a result, appear 
at the edges of the processes ordination (Fig. 3b). The abundance of 
enemies, pests and, to a lesser degree, crop plants are the main outputs 
of the majority of mechanistic models (Fig. 3c). Crop yield, i.e., the 
harvested product of crop plants, is explicitly predicted by only 7 of the 
67 reviewed models, as greater focus is generally put on pest suppres-
sion. A few models predict economic variables related to natural pest 
control (Fig. 3c), as well as parameters of population dynamics and 
behavioural or physiological characteristics, by simulating individual 
organisms. 

4.3. Capabilities and limitations of mechanistic modelling 

Explicit representation of causative agents of observed ecological 
change is a necessary, although not sufficient, condition towards ex-
trapolations in space and time that are more reliable than those based 
purely on correlation (Gotelli et al., 2009). Deviation between these 
predictions and observations can generate knowledge about the role of 
specific processes and indicate the most productive areas for future 
research (Soetaert and Herman, 2009). Furthermore, mechanistic 
models based on first principles are less likely to produce the right 
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results for the wrong reasons, as unrealistic representations typically 
result in stronger bias than in purely correlative models, and hence are 
easier to detect (Dormann et al., 2012). However, model realism does 
not guarantee predictive performance, while data requirements for 
model parameterization and validation can prove just as challenging as 
for correlative approaches (Dormann et al., 2012). Correlative models 
can perform equally well or better than mechanistic models of the same 
system (Fordham et al., 2018). Optimal choice of modelling approach 
depends on system complexity, information availability, and the aim of 
the study, i.e., explanation or prediction (Robertson et al., 2003). 

Lack of information can be particularly restrictive for mechanistic 
modelling, in situations where the generation of precise and accurate 
predictions relies on high levels of model complexity, as the develop-
ment of complex models requires in-depth knowledge of system function 
and data for model parameterization (Ings et al., 2009). Complex sys-
tems analysis can benefit ecological applications, interpretation of 
empirical data and theory development, particularly on emergent 
properties of ecological systems (DeAngelis and Mooij, 2005). However, 
complexity can also increase uncertainty of model predictions (Cud-
dington et al., 2013), and limit a model’s transferability to novel systems 
(Yates et al., 2018). Indeed, although advances in empirical and 
modelling research of natural pest control have generally increased 
model complexity over time, the average number of processes per model 
has only increased by 2 over 40 years, and relatively simple system 
representations are still common (Fig. 1c, 3d). 

5. Towards general predictive models 

Elucidating the role of ecological complexity in the provision of 

natural pest control would benefit from a wider adoption of mechanistic 
modelling approaches. However, generating reliable predictions across 
agricultural landscapes is a challenging task. Our findings are consistent 
with an anticipated trade-off between generality and realism among 
modelling strategies for biological populations (Levins, 1966): highly 
realistic models of natural pest control have to sacrifice generality by 
representing narrowly defined agroecosystems, whereas general theo-
retical models can only represent systems with a limited level of realism. 
The few general and relatively realistic conceptual models cannot pro-
duce quantitative testable predictions. Furthermore, model complexity 
can be both a strength and a weakness, and has to be adjusted to the 
diverse socioecological settings of planned model applications, along 
with the availability of knowledge and data. Agroecosystems in devel-
oping regions of the world are disproportionately afflicted by this 
methodological challenge. Research output per unit financial invest-
ment is increasing in these regions, but financial restrictions for 
ecological research are likely to persist in the near future (Holmgren and 
Schnitzer, 2004). Consequently, specific models of natural pest control 
for major agroecosystems worldwide may not be available soon, with no 
alternative, due to the lack of existing general and realistic predictive 
frameworks. Finally, predictions linked directly to agricultural appli-
cations are generally lacking, as model output primarily comprises 
ecological components of natural pest control and to a limited extent its 
agronomic and economic benefits, such as crop yield or net returns. This 
lack reflects the difficulty of obtaining accurate yield data across agro-
ecosystems (Holland et al., 2017), especially in the context of interdis-
ciplinary agricultural research (Beckmann et al., 2019). 

Approaches to mechanistic modelling of natural pest control that are 
positioned between the extremes currently occupied by specific and 

Table 1 
Examples of deterministic (always producing the same output given a particular input) and stochastic (including random elements) techniques used in mechanistic 
models of natural pest control. Technique classification is further based on the degree of explicitness in the representation of space and the distinction between discrete 
and continuous time representations, all viewed as critical factors in modelling ecological processes. Relative strengths (+) and weaknesses (–) are assigned to each 
technique for the following desired qualities of a modelling procedure: formulation flexibility (FF), analytical tractability (AT) and algorithmic efficiency (AE). We use 
the terms “individual-based” and “agent-based” to distinguish models that respectively pool/equate individuals at each time step from models that constantly track 
each agent. (See below-mentioned references for further information.)  
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theoretical models are almost completely unexplored. Our review in-
dicates promising directions towards bridging this gap (Fig.  4a). For 
instance, models of specific agroecosystems identify at least one of the 
crops, pests or natural enemies, but the rest of the organisms are often 
modelled without being specified. Such general representation of func-
tional roles instead of specific organisms suggests some potential for 
models that may apply to more than one agroecosystem. Typical attri-
butes of specific models, such as stochasticity or spatial explicitness, 
reduce a model’s analytical tractability, and may therefore need to be 
disregarded initially. Alternatively, theoretical models can be used as 
departure points. Sacrificing a substantial degree of a theoretical 
model’s generality can achieve the minimum level of realism required to 
represent the defining properties of a smaller group of agroecosystems. 
Existing theoretical models of natural pest control can provide both a 
methodological and a theoretical basis for such an approach. Should 
either direction or a combination of the two be followed, model devel-
opment will require that focal organisms share key functional roles (e.g., 
dispersal or diet attributes), and that the respective systems respond 
similarly to environmental change (e.g., landscape composition or 

configuration) as a result. Large-scale studies of natural pest control 
point to such similarities in causal relationships (e.g., Martin et al., 
2019; Tamburini et al., 2020). Based on these observations, agro-
ecosystems across the world can be separated into groups that share not 
only their response to change, but also the underlying mechanisms. 

The resulting contextually bound generalizations can achieve a 
useful compromise between generality and realism (Fig. 4b), similar to 
the way middle-range theories provide explanations that are valid in 
more than one case, but within a narrower range of conditions than 
grand theories (Meyfroidt et al., 2018). Each model would then resemble 
a “minimum realistic model”, which in managed marine ecosystems 
aims to include only key variables and interactions (Punt and Butter-
worth, 1995), or the “dominant processes” concept in hydrology, which 
identifies and models the most determinant hydrological processes 
(Grayson and Blöschl, 2001). Applying such an approach to a broad 
collection of agroecosystems would not only facilitate model develop-
ment for specific systems, but also help to uncover and model funda-
mental ecological principles or mechanisms across systems. Emerging 
differences between system groups can thus lead to a more complex, 

Fig. 3. (a) Number of reviewed publications representing each listed process in their mechanistic models. Single models may represent several processes. (b) 
Nonmetric multidimensional scaling (NMDS) showing the associations of processes represented among reviewed mechanistic models (stress = 0.2). The closer the 
processes are, the more often they are represented together (Barbosa, 2015; Oksanen et al., 2019). (c) Number of reviewed publications having each listed variable as 
the main output of their mechanistic models. Single models may have several variables as their main output. Note that a represented process in one model may be an 
output variable in another. (d) Number of processes represented per reviewed mechanistic model for each publication year. Small, medium and large circles indicate 
1, 2 and 3 models, respectively, with identical values. The red line was fitted to the data with least-squares second-degree polynomial regression. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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nuanced and, for that matter, consistent theory of natural pest control 
(Levins, 2005). Ultimately, the success of this approach will depend on 
its ability to predict benefits beyond the ecological components of nat-
ural pest control, such as avoided pesticide sprays and yield stability, 
which are crucial for the promotion of synergies in multifunctional 
landscapes and the management of risk by farmers. Although the in-
clusion of more variables may exacerbate existing methodological 
challenges, such model output will promote mainstreaming natural pest 
control in agriculture (Chaplin-Kramer et al., 2019), as well as its in-
clusion in promising frameworks that bridge ecology and agro- 
economics (Seppelt et al., 2020). 

An adequately general and realistic approach to models of natural 
pest control will have to consider the link between model complexity 
and predictive performance (Myung, 2000; Raick et al., 2006). Solving 
this difficult challenge can be facilitated by a strategy that constrains the 
many uncertainties behind predictive error. Conceptual models face 
fewer uncertainties than quantitative modelling techniques, but they 
cannot generate predictions at high quantitative detail (Justus, 2006). In 
the field of classical biological control this challenge has been partly 
addressed through qualitative mathematical modelling for the study of 
key issues, such as the role of environmental variability (Levins, 1969) 
and the mechanisms behind predator – prey correlation patterns (Levins 
and Schultz, 1996). The strengths of this approach include facilitation of 
participatory model development and inclusion of socioeconomic fac-
tors in models of ecological systems (Fulton et al., 2015). Qualitative 

modelling can therefore leverage available knowledge of experts and 
local stakeholders in poorly studied agroecosystems worldwide. 
Furthermore, qualitative analyses are increasingly generating quanti-
tative information about environmental change (Dambacher et al., 
2003; Alexandridis et al., 2021), while retaining the strengths of con-
ceptual models. Still, patterns such as non-linearities or transient dy-
namics are best investigated through quantitative techniques (Justus, 
2006). Qualitative models can then be used to address structural un-
certainty, before the development of quantitative models, where the 
study of potential system structures is often computationally impractical 
(Levins, 1998). Alternatively, qualitative and quantitative models of a 
system can be developed independently, based on the same ecological 
assumptions, towards the simplest form of multimodel inference, i.e., 
considering only predictions in which the two approaches agree 
(Fig. 4c). Qualitative and quantitative models typically require very 
different secondary assumptions, making common predictions relatively 
free of these side effects of model formulation and more robust to the 
associated uncertainties (Levins, 1966). 

6. Conclusions 

A practical trade-off between generality and realism among strate-
gies of ecological modelling appears to prevent the development of 
predictive models of natural pest control that can be applied across 
agroecosystems. The potential to bridge this gap, with existing models of 

Fig. 4. Promising directions towards general predictive models of natural pest control. (a) Transfer of specific models to systems of organisms that play similar 
functional roles, or adaptation of theoretical models to a more realistic representation of fewer functionally similar systems. The resulting mechanistic models should 
represent general ecological mechanisms within bounded agroecological contexts, and be able to predict the responses of natural pest control to environmental 
change across the respective agroecosystems. (b) The result should resemble middle-range theories (Meyfroidt et al., 2018), by incorporating empirical knowledge 
from specific cases and general ecological theory, hence being positioned between these extremes in terms of generality and realism of system representations. The 
validity of the ensuing models should be tested against case-level empirical evidence, while emerging differences between models can lead to a more complex and 
general understanding of natural pest control. (c) Common predictions (overlapping disks) of independently developed qualitative and quantitative (theoretical and 
specific) mechanistic models, with different combinations of the desired properties of generality, precision and realism (Levins, 1966) would account for un-
certainties in model formulation and increase predictive robustness. 
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specific systems or general theoretical models as the departure point, has 
not been adequately explored. Trait-mediated and context-sensitive 
similarities in causal relationships across the world can guide the 
grouping of diverse agroecosystems and the development of models that 
represent general ecological mechanisms under the respective agro-
ecological settings. A combination of qualitative and quantitative tech-
niques can constrain model uncertainty and broaden the exploitable 
ecological knowledge. More effort is required to develop, demonstrate 
and test such an integrated framework, while further empirical and 
modelling research would greatly benefit world regions that are un-
derrepresented in our review results. We contend that a systematic 
framework of contextually bound generalizations would catalyze this 
much needed progress, by facilitating the transfer of available under-
standing and its synthesis into consistent theory of natural pest control. 
Future model development can thus be, at least partly, channeled to-
wards a concerted effort to better understand and predict natural pest 
control around the world, promoting broadly the agricultural changes 
that are necessary to achieve sustainable development. 
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Krauss, J., Féon, V.L., Marshall, J., Moonen, A.-C., Moreno, G., Riedinger, V., 
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