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“We are what we repeatedly do; excellence, then, is not an act but a habit.” 

Aristotle 
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ABSTRACT 

Traditional Chinese medicine (TCM) has obvious efficacy on disease treatments and is a 

valuable source for novel drug discovery. However, the underlying mechanism of the 

pharmacological effects of TCM remains unknown because TCM is a complex system with 

multiple herbs and ingredients coming together as a prescription. As evidence-based science, 

there are many special theories in the TCM system that do not exist in modern medicine. For 

instance, TCM treats the human body as a holistic system in a balance of YIN and YANG. 

Another example is the meridian classification of herbs in TCM based on treatment selection 

for diseases in different positions of the human body. Some of these theories have been 

validated at the molecular level with the development of the system biological concepts. 

However, a lack of understanding of these theories is still the main bottleneck of their wide 

application. Therefore, it is urgent to apply computational tools to TCM to understand the 

underlying mechanism of TCM theories at the molecular level. TCM emphasizes a specified 

herb combination as a prescription based on the symptoms of the individual, which is also a 

kind of precision medicine at the biological level. Hence, it is also meaningful to use advanced 

network algorithms to explore potential effective ingredients and illustrate the principles of 

TCM in system biological aspects. 

In this thesis, we aim to understand the underlying mechanism of actions in complex TCM 

systems at the molecular level by bioinformatics and computational tools. In study Ⅰ, a machine 

learning framework was developed to predict the meridians of the herbs and ingredients. In 

detail, parameter optimization, model selection and feature selection were performed on four 

supervised classification methods (SVM, DT, RF and kNN) with features from four different 

types of fingerprints (Substructure, PubChem, MACCS, Extended fingerprint) and absorption, 

distribution, metabolism, excretion and toxicity (ADME) properties. Finally, we achieved high 

accuracy of the meridians prediction for herbs and ingredients, suggesting an association 

between meridians and the molecular features of ingredients and herbs, especially the most 

important features for machine learning models. 

Secondly, we proposed a novel network approach to study the TCM formulae by quantifying 

the degree of interactions of pairwise herb pairs in study Ⅱ using five network distance methods, 
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including the closest, shortest, central, kernel, as well as separation. We demonstrated that the 

distance of top herb pairs is shorter than that of random herb pairs, suggesting a strong 

interaction in the human interactome. In addition, center methods at the ingredient level 

outperformed the other methods. It hints to us that the central ingredients play an important 

role in the herbs. Our network modelling provides a novel systems medicine framework to 

characterise herb interactions and may further suggest novel herb combinations and potential 

ingredient combinations based on their synergistic interactions. 

Thirdly, we explored the associations between herbs or ingredients and their important 

biological characteristics in study III, such as properties, meridians, structures, or targets via 

clusters from community analysis of the multipartite network. We found that herbal medicines 

among the same clusters tend to be more similar in the properties, meridians. Similarly, 

ingredients from the same cluster are more similar in structure and protein target. These 

findings might provide novel insight for the understanding of TCM, suggesting that multipartite 

network models from TCM are suitable to study TCM from system biological aspects. 

In summary, this thesis intends to build a bridge between the TCM system and modern 

medicinal systems using computational tools, including the machine learning model for 

meridian theory, network modelling for TCM formulae, as well as multipartite network 

analysis for herbal medicines and their ingredients. We demonstrated that applying novel 

computational approaches on the integrated high-throughput omics would provide insights for 

TCM and accelerate the novel drug discovery as well as repurposing from TCM. 
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INTRODUCTION 

Modern medicine systems have been developing rapidly since the discovery of penicillin in 

1928. In modern medicine, the one-drug–one-target–one-disease drug discovery strategy has 

been used for many years with considerable success. However, many limitations and obstacles 

of this strategy have emerged gradually, including the lack of efficacy, drug resistance, and 

side effects, especially in complex diseases, such as cancer [1] and diabetes [2]. As a result, the 

Polypharmacology concept has been proposed and is becoming popular as a paradigm shift of 

drug discovery [3-10]. Polypharmacology concept means using multiple drugs on multiple 

targets to treat disease as an entire system in the format of multi-drug combination. Whereas, 

it remains a daunting task to search for all the potential synergistic drug combinations by wet 

experiments [11, 12]. Thus, it is of immense importance to develop cost-effective 

computational tools for searching potential drug combinations. Fortunately, in East Asia, 

traditional medicine has been using plant-derived natural products in the format of herb 

combination, also known as herb formulae, for disease prevention and treatment for thousands 

of years, especially in TCM [13, 14]. Herb formulae often combine a few herbs with multiple 

bioactive ingredients and thus produce synergistic effects in a personalized medicine manner. 

In this way, herb formulae perform with maximal therapeutic efficacy and minimal side 

effects[15]. 

Notably, many formulae have been on the market as capsules or injections for disease treatment 

across the world [16]. These formulae, from thousands of years of clinical experience, are 

among the valuable resources for drug combination discovery. Despite the obvious therapeutic 

effects on patients, the underlying synergistic mechanism remains unknown to us mainly 

because the TCM prescription is carried out under the guidelines of the principles of TCM 

theories.  

Traditional medicine (TM) treats the human body as a miniature universe and can be classified 

as five interacting elements: metal, wood, water, fire, and earth [17]. In addition, in TM, it was 

believed that the disease condition of the human body and corresponding symptoms are caused 

by the loss of balance [18, 19]. Thus, the process of disease treatment is to restore balance in 

the system [20] with either physical methods, such as acupuncture [21, 22], or chemical 
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approaches, such as herbal formulae. More importantly, there are precise medical concepts in 

TCM that classify diseases by Yin and Yang or certain inner channels of the body known as 

meridians [23]. In addition, according to organ selective distribution, herbs can be assigned to 

12 principal meridians. However, the meridian concept in TCM refers to the whole system of 

functionally related organs rather than the physical organ definition used in modern medicine. 

The meridian theory has existed and developed for thousands of years as one of the 

fundamental theories to guide TCM practice, whereas the underlying molecular basis of 

meridian classification for herbs is yet to be uncovered. Hence, to understand the complex 

system like TCM, it is crucial to explore the fundamental theories developed from the evidence 

of TCM practice on patients [24, 25]. 

Researchers have attempted to explain meridian with fascia networks [26] and perivascular 

space [27], but neither of them were confirmed by experiments. Although there is no widely 

accepted anatomical or physiological evidence for meridians, the meridian concept has been 

practiced for thousands of years in TCM to guide the prescription in the clinic [27-29]. 

Although the rationale of meridians for specific herbs has been investigated, such as Platycodi 

Radix (Jiegeng) [30] and Salvia miltiorrhiza burge (Danshen) [31, 32], there has been limited 

larger-scale analysis on meridians and other principles at the molecular level in TCM [33]. In 

fact, the biochemical and pharmacological properties of the bioactive ingredients in TCM herbs 

have been gradually uncovered by advanced technologies, which make the study at the 

molecular level possible. 

Recently, machine learning techniques have been utilized in the study of herbal formulae or 

drug combinations [34-36], drug–target networks of natural products [37], and the hot or cold 

nature of the herbs [38, 39]. However, machine learning studies focused on meridian 

classification by the chemical structure and physicochemical features of ingredient compounds 

are rare.  

Returning to the combination of herbs, computational methods have been developed to 

investigate the properties of herb pairs of herbal formulae, suggesting the feasibility of using 

machine learning and network modelling to understand herb–herb interactions [40-43]. Herb 

pairs in herbal formulae refer to a unique combination of two specific herbs, which are the most 

fundamental elements of TCM formulae [13]. For different diseases, various herbs with 
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different biological functions can be added into basic herb pairs as a more complex formula 

[40, 41]. Therefore, it is desirable to illustrate the rationale of certain herb pairs for a particular 

disease [33, 44]. However, one of the major bottlenecks is that a herb combination is inherently 

more complex than a drug combination, as herbs usually consist of multiple ingredients. Due 

to the multiple-ingredient system of herbs, it is difficult to determine the ingredients with 

synergistic effects and the underlying mechanism of actions (MOAs) of the therapeutic effects 

[43, 45-47]. Recent studies have elucidated that the synergistic effects of herb combinations 

might be associated with the interactions between their ingredients [48-51] at protein levels. 

Based on the remarkable success of network-based models in understanding the interaction 

between chemicals and diseases [52-54] in modern drug combinations, we can hypothesize that 

network pharmacology models based on the ingredient–target interactions would be promising 

to explore the herb pairs’ MOAs and further facilitate the phenotypic-based drug discovery 

from existing TCM herbs or ingredients. 

Furthermore, classification and clustering approaches are widely applied to elucidate the 

hidden relationships in complex systems, such as human biology and diseases. In fact, 

modularity analysis based on networks with nodes and edges is one special kind of 

classification to detect the subnetwork with specific characteristics [55, 56]. In detail, the nodes 

in a community detected from a network analysis would have a high intra-relationship and 

exhibit low inter-relationship with the other nodes outside the community [57]. Thus, it is 

meaningful to perform network module analysis in order to uncover the complex topology in 

networks. To understand the complex biological process systematically, such as signalling 

pathways or target-target interactions, it is of great importance to construct multipartite 

networks [58]. A multipartite network is a network that consists of multiple sets of nodes and 

edges by integrating mixed types of datasets from uni-partite networks with single sets of nodes 

and edges, which make it promising to detect complex underlying associations in biology [59]. 

Our study first investigated the classification of meridians by machine learning methods and 

revealed that meridians of herbs is predictable by machine learning methods with the molecular 

fingerprints and ADME properties as features. In addition, we demonstrated that the meridian 

concept has the molecular basis, which helps to understand the meridians at the molecular level. 

Furthermore, network-based models were built to quantify the interaction distance of a herb 
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pair within a protein–protein interaction network at the herbal, ingredient, and protein target 

levels. We adopted five distance metrics, including the closest, shortest, separate, kernel and 

center. By comparing the distances of random herb pairs and top herb pairs, we demonstrated 

that the underlying mechanism of herb combination is also derived from affecting neighbouring 

proteins in the human interactome. More importantly, the central active ingredients from 

individual herbs play an important role in herb combination. Also, a modularity analysis of 

multipartite networks was adopted to investigate the associations between TCM classifications 

and the chemical or biological features of the herbs or ingredients. To conclude, this thesis 

developed novel computational approaches to understand TCM systematically, which may help 

to identify the MOAs or active compounds of TCM theories or therapeutic effects and promote 

the modernization of TCM.



 

17 

 

1. REVIEW OF LITERATURE 

1.1. Natural products (NPs) 

1.1.1. Vital role of NPs in drug discovery 

Natural products refer to a series of chemical compounds or substances produced by living 

organisms (cells, tissues, and secretions of microorganisms, plants, and animals) through the 

pathways of primary or secondary metabolism [60]. Secondary metabolites are significant for 

the medical field, as these metabolites are not only essential for survival itself but also produce 

various pharmacological activities in disease treatment because of their chemical diversity in 

nature [61, 62]. As a result, for many years, researchers have put effort into the detection, 

isolation and identification of bioactive compounds, which is called bioprospecting [63]. 

However, these processes are relatively time-consuming and expensive on a commercial scale, 

which makes large-scale screening from natural products (NPs) challenging. Thus, producing 

the new compound by total synthesis or semi-synthesis based on the known structure of natural 

products was proposed. 

1.1.2. Drugs from NPs 

Over these years, with the development of computer science, computational approaches have 

become powerful tools for drug screening, design and modification, which further promotes 

the boost of natural products in drug discovery [64]. In addition, some virtual and physical 

natural product libraries or databases were constructed to help the virtual screening [65]. 

Consequently, numerous drug discoveries used NPs as a starting point and have achieved 

considerable success, especially analgesics, anti-infectives, anti-tumour drugs and HMG-CoA 

reductase inhibitors [66]. 

A well-known example is finding salicylic acid from the bark of the willow tree. The bark of 

the willow tree has been well known for its pain-relieving effects for a long history. To detect 

compounds with such bioactivity, compounds in the bark of the willow tree were isolated and 

tested. Finally, it turned out that the compound salicin can act against pain after it is hydrolyzed 

into salicylic acid by inhibiting the cyclooxygenase (COX) enzyme [67]. Furthermore, a 
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considerable number of anti-infection drugs, such as penicillin from Penicillium, are based on 

NPs [63]. Products have also been widely used to treat hypertension as well as congestive heart 

failure. 

1.1.3. Relationship between NPs and traditional medicine 

Traditional medicine is also known as indigenous or folk medicine. According to the official 

definition from the World Health Organization (WHO), traditional medicine is “the sum total 

of the knowledge, skills, and practices based on the theories, beliefs, and experiences 

indigenous to diverse cultures, whether explicable or not, used in the maintenance of health as 

well as in the prevention, diagnosis, improvement or treatment of physical and mental illness.” 

[68] 

Traditional medicine is evidence-based and has played a key role since ancient times in disease 

prevention and treatment. With thousands of years’ practice, traditional medicine has 

developed into various branches in different regions [54]. For instance, one of the main 

branches is traditional Chinese medicine from China. Besides traditional Chinese medicine, 

there are various kinds of traditional medicine, such as Traditional European medicine from 

Europe, as well as traditional indigenous medicine from Assam and the rest of NE India, Siddha 

medicine from South India, traditional Korean medicine from Korea, and Ayurveda from 

Indian. In addition, traditional African medicine referred to a range of traditional medicine 

disciplines involving indigenous herbalism and African spirituality). Unani is the perso-Arabic 

traditional medicine practiced in Muslim cultures in South Asia and modern day Central Asia 

while Islamic medicine is the science of medicine developed in the Middle East.  

However, many of these traditional medicines are claimed to be pseudoscience because the 

claimed effects or concepts in some traditional medicines are incompatible with the scientific 

facts or cannot be verified by scientific methods [69]. With the developments of the chemical 

field, the advanced methods of compound extraction, isolations and purification accelerate drug 

discovery by extracting pure natural products with biological activity, which led to modern 

medicine (MM) [70]. In modern medicine, traditional medicine is considered as alternative 

medicine, which refers to any practice that tends to achieve the healing effects of medicine but 

lacks biological plausibility and is untested, or untestable [71]. However, considering the 
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considerable success of natural products in drug discovery and some drawbacks of MM, it is 

time to reconsider the role of traditional medicine and exploit it with advanced technologies 

and approaches. 

1.2. Traditional Chinese medicine (TCM) 

1.2.1. Developing history of TCM  

As an important branch of traditional medicine, the history of traditional Chinese medicine 

goes back to 1100 Before Christ (B.C.). The ancient Chinese ancient book “Wu Shi Er Bing 

Fang” was written at that time and recorded 52 prescriptions. Additionally, 365 Chinese 

medicines were recorded in the book “Shennong Herbal” (~100 B.C.), and 850 herbal 

medicines are found in the book named “Tang Herbal” from 659 After Christ [72].  

TCM not only played an important role in disease treatment and prevention in ancient times 

but also is of great significance for the development of modern medicine, especially for novel 

drug discovery. For example, more than 8,000 TCM components have been reported to have 

various pharmacological effects. Particularly, TCM has become increasingly popular in the 

drug discovery field in recent years and there are a larger number of clinical TCM-related trials 

in clinicaltrials.gov. A good example is the discovery of artemisinin. In 1972, Chinese scientists 

discovered that the compound artemisinin derived from the herb Artemisia annua ( , 

qinghao) has antimalarial effects [73]. Another example is the inorganic compound arsenic 

trioxide (As2O3), which shows an obvious therapeutic effect for acute promyelocytic leukemia 

[74]. This compound has been used in TCM for a long time to cure erosion sore rot and malaria.  

Despite these successful applications of TCM, there is a giant gap between TCM systems and 

modern medical systems, as these two systems are under different theoretical guidelines. For 

instance, the syndrome and symptom classification used in TCM are different from the 

symptoms we use in modern medicine. These theories go beyond immediately perceivable 

sensations, although they have been proved effective in clinical practice. Therefore, it is of 

immense importance to understand the underlying molecular basis of these theories using 

computational tools so that we can build up a bridge between TCM and modern medical 

systems. 
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1.2.2. Theories in TCM 

In TCM, many theories developed from thousands of years of clinical experience for disease 

treatment. Some theories are related to the differentiation of the human body, such as meridian 

Tropism theory, Yin-Yang theory, and Five elements theory. At the same time, some theories 

are used to characteristic medicines properties, e.g. Siqi theory, Wuwei theory, and Jun Chen 

Zuo Shi theory [38]. For instance, herbs are classified according to their flavours (sour, salty, 

sweet, bitter, and pungent), which is called Wuwei theory 

Yin-Yang theory [75] is used to describe the physiological and pathological states of the human 

body. TCM believes that the imbalance between Yin and Yang is the cause of disease. 

Consequently, the goal of disease prevention and treatment are to restore the body’s Yin and 

Yang to a balanced state. 

Siqi theory [76] is defined as four main reactions of the human body (cold, hot, warm, or cool) 

after the administration of a specific medicine. For example, chewing a mint (Mentha spicata) 

leaf elicits a cold feeling, while masticating a piece of ginger (Zingiber officinale) leads to a 

hot sensation. A neutral remedy, such as Wolfberry (Lycium barbarum), may not be associated 

with an obvious cold or hot feeling. 

Meridian tropisms referred to 14 meridian channels (main channels) distributed longitudinally 

throughout the human body [77]. These meridians are related to disease-associated organs but 

are not the exact same as organs in modern medicine [78]. For example, Platycodon 

grandiflorum belongs to the lung meridian in TCM. In fact, it was reported that the active 

ingredient saponin in Platycodon grandiflorum has a close functional relationship with the lung 

and respiratory systems [30]. Furthermore, Salvia miltiorrhiza burge is classified as both Heart 

meridian and Liver meridian and thus this herb can be used to treat cardiovascular diseases and 

hepatitis [31] accordingly.  

1.2.3. TCM syndromes and precision medicine 

At present, the classification of diseases in precision medicine relies on DNA abnormalities, 

such as gene mutation, over-amplification, large-deletions, or recombination [79]. Thus, one 

of the important strategies for precision medicine is to identify the DNA abnormality and 
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discover drugs targeted on these abnormalities. However, there are some diseases not caused 

by genetic sequence abnormalities, especially those complex diseases. In contrast, the human 

body reflects individual differences, with different epigenetic pressures. Interestingly, there is 

a report that 29.8% of the 3294 TCM medicinals affect the epigenomes and miRNA expression 

of human cells [80]. In fact, there has been a long history of precision medicine in the TCM 

system in the processes of diagnosis and prescription.  

The syndrome is an important concept to realize precision medicine in TCM. The syndrome is 

a group of specific symptoms of diseases in the human body, which is also known as Pattern, 

or co-module, or Zheng [81]. TCM clinical practitioners would make diagnoses based on TCM 

syndromes of individual patients and give the corresponding herbs to adjust the disorders in 

the human body. 

One interesting rule in TCM is “the same treatment for different diseases” and “the same 

disease with different treatments.” This reflects TCM practitioners’ deep thoughts about the 

formula–syndrome relationship. It was reported that herbal formulae and TCM Syndrome can 

be explained well by co-module analysis [82]. Liu-Wei-Di-Huang (LWDH) formula is a good 

example of “the same treatment for different diseases” as LWDH has been used to treat 

multiple diseases—cancer, diabetes, and hypertension. In addition, it was found that the key 

genes in the network of LWDH formula are significantly close to the genes associated with 

these diseases and these LWDH-treated diseases share an overlapping molecular basis and 

show high phenotypic similarity. Therefore, the same LWDH formula can be used to treat 

different diseases[15]. 

Arthritis is a good example of “the same disease with different treatments”. The Cold 

Syndrome and Hot Syndrome are the two most common and representative syndrome classes 

that represent two opposite conditions. For example, in the arthritis rat model, the hot formula 

(Wen-Luo-Yin formula) is more effective on the hub nodes of the Cold Syndrome network, 

whereas the cold formula (Qing-Luo-Yin formula) tends to target the hub nodes of the Hot 

Syndrome network [83, 84]. This indicates that the same disease with different syndromes (cold 

and hot) should be treated with different formulae. 
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1.3. The data sources for TCM research 

The rapid development of molecular profiling technologies for extraction and identification 

helps research uncover the ingredients in herbal constituents [85]. In addition, with the rapidly 

emerging new omics technologies, people have better research tools to study complex problems, 

especially in the TCM area. Integration of these various kinds of omics data is of great 

significance for understanding MOAs at multiple levels, such as cells, tissues, organs, and 

organisms, as well as disease levels, which further leads to precision medicine. By detecting 

the molecular change in the human body (expression or protein or metabolites, etc.) after 

treatments with TCM, we can learn more about the precision medicine strategy of TCM. With 

the development of TCM pharmacology, an increasing number of databases of TCM were 

created [86]. 

Most of the latest databases of TCM provide information about prescriptions, herbs, ingredients, 

targets, diseases and their interaction relationships. These databases also enable users to 

perform network pharmacology analysis. However, the entire workflow for TCM is not as 

mature as its application in modern drugs although the omics data was widely applied in TCM, 

especially in system biology, and there are also a larger number of advanced methods can be 

utilized to make full use of omics [87].  

1.3.1. TCM databases 

TCM-ID 

For instance, TCM-ID [88] (http://bidd.group/TCMID/, Traditional Chinese Medicine 

Information Database) was developed in 2006 to provide comprehensive information on TCM, 

including prescriptions (n=1,588), their constituent herbs (n=1,313 herbs), herbal ingredients 

(n=5,669), and corresponding molecular information (n=3,725).  

Database@taiwan 

Database@taiwan [89] (http://tcm.cmu.edu.tw/), developed in 2011, was the world’s largest 

non-commercial TCM database at the time, including 20,000 pure compounds and 435 TCM 

herbs. The number of compounds in this database increased by about 61,000 in 2013.  
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TCMSP 

TCMSP [90] (Traditional Chinese Medicine Systems Pharmacology Database, 

https://tcmspw.com/tcmsp.php) was published in 2012 and updated in 2014, including 499 

Chinese herbs covering 29,384 ingredients, 3,311 targets and 837 associated diseases. In this 

database, a comprehensive network between Herbs–Compounds–Targets–Diseases (H–C–T–

D) was created. TCMSP also systematically calculated the 12 ADME properties for the first 

time to filter the ingredients in TCM that have poor oral absorbability and low drug-likeness. 

TCMID 

The Traditional Chinese Medicine Integrated Database (TCMID, 

http://119.3.41.228:8000/tcmid/) [91] integrates the data from Database@Taiwan, and Herb 

Ingredients’ Targets (HIT) [92] (http://lifecenter.sgst.cn/hit/) and was updated in 2018, 

including 49,000 prescriptions, 8,159 herbs, 25,210 ingredients, 3,791 diseases, 6,828 drugs, 

and 17,521 targets.  

TCM-Mesh  

TCM-Mesh [93] (http://mesh.tcm.microbioinformatics.org/#) was published in 2017, 

including 6,235 herbs, 383,840 compounds, 14,298 genes, 6,204 diseases, 144,723 gene–

disease associations and 3,440,231 pairs of gene interactions. Moreover, there are 34,144 herb–

ingredient pairs, covering 10,140 ingredients and 6,235 herbs. TCM-Mesh also provides 

163,221 side effect records (1,430 ingredients and 6,123 side effects) from TOXNET, and 71 

toxic records for 71 ingredients from SIDER [94]. 

YaTCM 

YaTCM [95] (Yet another Traditional Chinese Medicine database, 

http://cadd.pharmacy.nankai.edu.cn/yatcm/home) is a free web-based toolkit published in 2018. 

It contains 47,696 natural compounds, 6,220 herbs, 18,697 targets (with 3,461 therapeutic 

targets included), 1,907 predicted targets, 390 pathways, and 1,813 prescriptions with manually 

curated information. 
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ETCM 

ETCM [96] (The Encyclopedia of Traditional Chinese Medicine, 

http://www.tcmip.cn/ETCM/index.php/Home/Index/) is another web server tool established 

for the network analysis of TCM in 2018, including herbs (402), formulae (3,959) and 

ingredients (7,284). More importantly, ETCM not only includes the indication but also the 

Administration, Syndromes in Chinese, Syndromes in English and Dosage Form. For herbs, 

many quality-control characteristics were curated in ETCM.  

TCMAnalyzer 

TCMAnalyzer [97] (A Chemo- and Bioinformatics Web Service for Analyzing Traditional 

Chinese Medicine, http://www.rcdd.org.cn/tcmanalyzer) supports substructure search, 

similarity search, and scaffold search from the aspects of chemoinformatics.  

BATMAN-TCM 

BATMAN-TCM [98] (a Bioinformatics Analysis Tool for Molecular mechANism of 

Traditional Chinese Medicine, http://bionet.ncpsb.org.cn/batman-tcm/) is an online 

bioinformatics analysis tool that supports user-customized input and interactive analysis of the 

molecular mechanism of combinations of formulae or herbs in the holistic aspects. 

TM-MC 

TM-MC [99] (http://informatics.kiom.re.kr/compound/) is a database about Northeast Asian 

traditional medicine. TM-MC extracted 14,000 chemical compounds from 536 medicinal 

materials and 4,000 journal articles in MEDLINE and PMC. 

SymMap 

SymMap [100] (symptom mapping, https://www.symmap.org/) is an integrative database of 

traditional Chinese medicine that maps symptoms in TCM to modern symptoms and further 

diseases, covering 1,717 TCM symptoms, 499 herbs, 961 modern symptoms, 5,235 modern 

diseases, 4,302 targets, and 19,595 ingredients. SymMap completes the bridge from TCM 
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symptoms and diseases to modern symptoms and diseases at both the phenotypic and molecular 

levels.  

HERB 

The HERB [101] (high-throughput experiment and reference-guided database of traditional 

Chinese medicine, http://herb.ac.cn/) database was constructed in 2020. HERB not only 

provides gene expression profiling but also manually collects high-confidence targets and 

diseases from the literature for ingredients and herbs in TCM. In detail, this database contains 

6,164 gene expression profiles from 1,037 high-throughput experiments for TCM herbs or 

ingredients. In addition, 12,933 targets and 28,212 diseases were further linked to 7,263 herbs 

and 49,258 ingredients by statistical inference via Fisher’s exact test. 

TCMIO 

TCMIO [102] (Traditional Chinese Medicine on Immuno-Oncology, http://tcmio.xielab.net) is 

a comprehensive TCM-specific database for immuno-oncology (IO). Unlike the whole-scale 

herbs and ingredients in other databases, this database contains only formulae, herbs, 

ingredients, targets and diseases that are related to immuno-oncology.  

1.3.2. Terminological system from Chinese terms 

As TCM is a special system different from modern medicine, one of the greatest challenges in 

TCM study is how to correctly translate each TCM term into correspondent English so that 

international readers can understand the exact meaning. For instance, it is difficult to 

understand the term “quicken blood” in TCM. In fact, this term referred to the whole effect of 

“activating blood flow” or “promoting blood circulation”. Thus, it is necessary to create a 

standardized system for TCM terminology [103].  

Thanks to the developments of text mining technologies [104], researchers can standardize 

TCM terms and further build a bridge with modern medicine system, such as MeDisco/3T 

[105], ontology learning system [106] and TCMiner [107]. For example, a study has compiled 

3,800 standard indication terms for translating TCM indication terms from Chinese to English 

[108]. Furthermore, the SymMap database (https://www.symmap.org/) was constructed to 
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provide a mapping relationship between manually extracted 1,717 TCM symptoms of TCM 

and symptoms of modern medicine [100]. This hints at the promising potential to integrate 

TCM with modern medicine at both the phenotypic and molecular levels. In addition, a clinical 

data warehouse (CDW) system was built by integrating clinical records from 20,000 TCM 

inpatient data and 20,000 outpatient data. These records included manifestations (e.g. 

symptoms, physical examinations, and laboratory test results), diagnosis and prescriptions, 

which would provide novel insight for TCM medical knowledge discovery and TCM clinical 

decision support. In addition, the CNA system called TCMNetBench [109] was also 

constructed as TCM clinical networks automatically, such as herb combination network, 

symptom co-occurrence network and complication disease network. In total, TCMNetBench 

covers 151 distinct modern diseases, 91 distinct TCM diseases and 216 distinct syndromes, 

suggesting that clinical TCM prescription databases are valuable for precision medicine study 

of TCM [105]. More importantly, a unified traditional Chinese medical language system 

(UTCMLS) [110] was also developed by an ontology approach, covering four basic top-level 

classes,14 sub-ontologies from the division of TCM discipline, 104 TCM semantic types as 

well as 59 kinds of semantic relationships between concepts and semantic types. 

1.3.3. Target protein information 

The pharmacology targets are closely related to the MOAs in TCM. Additionally, target protein 

is an important element for network pharmacology analysis [111]. However, the target 

information for the majority of TCM is unknown.  

In the TCM, the validated ingredient-target interactions were mainly from four resources, 

including literatures, ChEMBL database [112], STITCH database [113] and HIT database [92]. 

For example, TCM-ID database and HERB database performed text mining from literatures. 

TCM-ID database, TCMAnalyzer database, and TCMIO database extracted bioactivity assay 

data from ChEMBL database while STITCH database. STITCH database provides a more 

comprehensive chemical-target interaction confidence score by considering all the information 

from literature mining, coexistence, concurrence, confusion. Compared with the prediction 

models for targets or docking methods [114], the interaction score is a more systematic 

characterization of chemical and target relationships. In addition, TCMSP collected compound-

target interactions from the HIT database.  
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Except for validated targets, most of the targets for TCM ingredients are the putative targets 

from prediction. Furthermore, the prediction methods for ingredient-target association. For 

instance, TCM-ID and Database@taiwan TCM database utilized a docking method. TCM-ID 

applied ligand–protein inverse docking strategy- INVDOCK [114] method to search targets 

among human and mammalian proteins in the protein database Protein Data Bank (PDB) [115] 

to predict targets. INVDOCK is a ligand–protein inverse docking strategy by dock compounds 

to known ligand-binding pockets of each of the protein entries in the PDB database. Similarly, 

Database@taiwan also obtained targets by virtual screening by docking and molecular 

dynamics.  

Nevertheless, those virtual screening by docking is time-consuming, limited to in target 

structure and relies on platform. Thus, target prediction models became popular in the research 

of TCM, such as the SysDT [116] model in TCMSP database, multi-voting chemical similarity 

ensemble [117] approach in YaTCM, MedChem Studio in ETCM database, balanced 

substructure-drug-target network-based inference (bSDTNBI) [118] approach in TCMIO, as 

well as Fisher’s exact test [119] for statistical inference in HERB. 

Overall, the target information in many TCM researches is mainly from prediction and the 

experimentally validated targets were not fully extracted from the literature or public target 

databases. In addition, the targets for herbs and formulae are usually considered as the absolute 

union of targets from related ingredients. However, the target for herbs is much more complex 

because of drug-drug interactions. Thus, specific target prediction models targeted at one herb 

or formula should be developed. For example, the similarity ensemble approach was proposed 

to associate herbs with their putative targets directly at the molecular level rather than merging 

all the targets of ingredients[120].  

1.3.4. Herbogenomics 

There have been various TCM databases only providing the information for formulae, herbs, 

ingredients, targets and diseases. However, TCM is a complex system that uses herb 

combination as a formula to treat diseases. It is a holistic system that relies on multiple targets 

and pathways. As a result, it is difficult to define the targets for herbs and formulae as single 

compounds, which becomes a bottleneck for mechanism demonstration. With advances in 
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computer science, large-scale data generation, storage and analysis are also developing. In the 

medical field, omics data, such as chemmics, genomics and proteomics, are becoming a 

powerful resource for novel findings in medicine [121], which is called a data-driven strategy. 

Recently, an increasing number of research papers have performed high-throughput 

transcriptome experiments for ingredients, herbs or formulae to study the holistic molecular 

effects of TCM. 

Genomics, as one of the most significant technologies, has been widely used in the biological 

fields [122]. Genomics also takes all gene sequence changes of the whole body as the research 

subjects. Those genes are interconnected with each other and work independently as complex 

system pathways, which is similar to holism in TCM. Therefore, genomics is suitable for 

exploring TCM effects at the molecular level. Herbogenomics [123] has been proposed as a 

novel concept—we can get the omics changes of the human body before and after treatment 

with TCM herbs, and further analysis could be done to explore the mechanism of the biological 

effects of herbs. Moreover, some novel approaches were also developed based on omics data 

to study TCM [124].  

Normally, the transcriptional profiling of TCM includes the following steps: 1) Preparation of 

the extracts of herbs or formulae. TCM involves the oral administration of decoctions; 2) Apply 

extracts on objects at different conditions. Experiments objects can be cell lines, animals or 

patients; 3) RNA extraction and microarray processing; 4) Microarray data analysis; 5) Wet 

experiments validation [125]. For example, the DNA as a microarray-based gene expression 

value of the Chinese medicinal formula Si-Wu-Tang was used to reveal its phytoestrogenic 

activity on the cell line level [126]. Besides testing the gene expression data of herbs through 

experiments, we can also integrate them with existing big public databases. For example, the 

next-generation Connectivity Map resource was used to interrogate gene expression signatures 

and obtained 102 TCM components to prove the MOAs of TCM [127]. Recently, HERB 

database was constructed in 2020 to provide high-throughput experiments and references for 

herbs and ingredients in TCM. They extract the raw count from records about TCM and 

ingredients in Gene Expression Omnibus Database (GEO) [128] to perform quality control, 

filtering, normalization and alignment. In addition, differentially expressed genes (DEGs) were 

calculated between samples treated with ingredients or herbs and control samples to 
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characterise the perturbation in transcriptional level. After getting the upregulated and 

downregulated genes, the downstream pathway analysis and go function are enriched.  

1.3.5. Metabolism 

Metabolic profiling is the representation of path-physiological, pharmacodynamic and 

pharmacokinetic conditions after being influenced by environments, genetic factors or gut 

microbiome factors [129]. It was believed structural similarities between TOM-derived 

compounds and human metabolites can facilitate the identification of their MOAs and 

potentially reduce toxicities [50].  

Chinmedomics is a multivariate data analysis method for herbal medicine using metabolite data 

[130]. This method could help researchers to understand the metabolites of integrated living 

systems and their dynamic responses to changes in both endogenous and exogenous factors. 

This approach has been applied successfully in TCM research [131, 132]. With a deeper 

understanding of TCM, it was found that some TCM herbs have pharmacological effects on 

the human body by adjusting the disordered gut microbiota environment under disease 

conditions. Thus, TCM-gut microbiota network pharmacology has become a “New Frontier” 

[133]. For example, many TCMs can be used as agents to prevent gut dysbiosis [134]. Dietary 

compounds and TCM have the bioactivity to ameliorate type-2 diabetes via regulating gut 

microbiota [135]. In addition, metabolites are the direct signature of phenotype symptoms, 

which can work as biomarkers for patients under different conditions [136]. It was also found 

that different tongue microbiota-imbalanced conditions are associated with Cold/Hot 

Syndromes in TCM [137]. 

1.3.6. Disease information 

Target-based drug discovery (TDD) and phenotypic drug discovery (PDD) are the two main 

strategies for drug discovery [138]. There are many databases that provide ingredient–disease, 

herb–disease, and formula–disease data. However, the symptoms and disease classifications 

described in the TCM system are different from those terms in modern medicine, as they appear 

under the guidelines of TCM theories. As a result, most databases use a TDD method to 

understand TCM, based on the hypothesis that if a compound displays activity on disease-
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related targets, it is a promising candidate to influence the disease. For example, the target–

disease associations in TCM-ID database come from the Therapeutic Target Database (TTD).  

Although TDD is popular for drug discovery, it is not perfect for TCM. This is mainly because 

most ingredient–target interactions in TCM databases are putative and thus the ingredient–

disease association from TDD-based methods is undirected and predicted. In addition, the 

herb–disease and formulae–disease pairs should not be considered as simple unions of 

ingredient–disease but combinations with synergistic effects.  

Considering the drawbacks of TDD approaches in TCM, the SymMap database was created to 

realise PDD drug discovery in TCM. SymMap mapped 1,717 TCM symptoms of 499 herbs in 

clinical practice to 961 modern symptoms as well as 5,235 modern diseases manually by highly 

experienced TCM practitioners. Furthermore, HERB manually extracted highly plausible 

diseases related to 394 herbs or ingredients from references. 

1.4. Artificial intelligence (AI) application in medicine 

Artificial intelligence (AI) [139], sometimes called machine intelligence, is intelligence 

demonstrated by machines to solve problems such as reasoning, knowledge representation, 

planning, learning, natural language processing, perception, and the ability to move and 

manipulate objects [140]. One of the branches of AI is machine learning, which is the scientific 

study of algorithms and statistical models that computer systems use to perform a specific task 

effectively. One advantage of machine learning is that it does not need explicit instructions but 

relies on patterns and inference instead. In addition, machine learning is powerful, especially 

when we face a complex problem involving a large amount of data and lots of variables. For 

example, massive amounts of imaging data (digital data adiology, pathology, dermatology, and 

ophthalmology) were generated in the medical area from patients or experiments [141].  

1.4.1. Classifications of AI methods 

Machine intelligence can also be classified into unsupervised learning [142] and supervised 

learning [143]. Unsupervised learning is to learn from only variables without considering the 

outcome (real value), while supervised learning is to learn from variables with real value as the 
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end point to refer to. For cluster methods, there are distance-based clusters such as K-means 

[144], K-Medoids [145], Fuzzy C means [146] and Hierarchical [147]. Probability-based 

methods are to obtain the probability distribution of input variables and the outcome result. 

Supervised learning [148] can also be classified into classification methods and regression 

methods based on whether the endpoint is the classification label or the continuous value. 

According to the underlying concepts, supervised learning can be classified into different types, 

including linear model, probability-based algorithm, instance-based algorithms, tree-based 

algorithms, and artificial neural networks. 

Linear algorithms 

Linear models are aimed at building a linear function between the variables with weight and 

the final endpoint. With this function, the endpoint of external samples can be predicted by 

fitting the variable feature into function. Traditional linear models include linear least-squares 

regression (LR) [149], logistic regression (LoR) [150], and linear discriminant analysis (LDA) 

[151].  

Probability-based algorithms 

Bayesian algorithms [152] are probability-based. For example, Naive Bayes’ theorem assumes 

that the features are independent of each other and the final probability is the joint probability. 

Instance-based algorithms 

Instance-based methods classify the samples into groups based on the feature’s similarity with 

instances in the training set. For example, as indicated in the name k-nearest neighbour (kNN) 

[153], kNN methods are assigned to a class by considering the closest k instances. The distance 

can be calculated by various distance measurements. Another popular instance-based method 

is the support vector machine (SVM) [154]. SVM is designed to achieve nonlinear separation 

in the original input space by projecting the data to a higher-dimensional space via kernel 

functions. 
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Tree-based algorithms 

Tree-based methodology aims to build up a tree for classification with one node as one filtering 

rule based on the import feature. Take decision tree (DT) [155], one of the most original tree-

based methods, as an example. The tree node is ordered by the importance of these features 

and the continuous dividing of samples into two or more subsets by this node (feature) until 

the samples in the subsets are pure enough (terminal node). 

Random forest (RF) [156] is developed from DT. Compared with DT, RF is a parallel 

procession of individual DT by random sample selection as a training set. Finally, the final 

classification can be decided using majority voting on multiple trees (decision forest).  

Artificial neural network algorithms 

Artificial neural networks (ANN) resemble the working process of the neurons of the human 

brain: information from environments as the input layer; the brain starts to connect the neurons 

to transform the information, which is called hidden layers; finally, correct judgments for the 

complex information is returned (output layer) [157]. 

1.4.2. Application of AI methods in medicine fields 

AI is becoming a major constituent of many applications in the medical field, including drug 

discovery, remote patient monitoring, medical diagnostics and imaging, risk management, 

wearables, virtual assistants and hospital management [158]. 

One of the good applications of supervised learning is that it is widely used in clinical medicine 

for prediction and diagnosis when there are already many record variables and corresponding 

labels from Clinical practice, especially the prediction of the patient’s survival [159]. At present, 

a variety of AI models have been applied to help the diagnosis and prognosis for more accurate 

decision-making. Among various methods, the models of neural deep networks are difficult to 

interpret while models from the decision tree are most interpretable [160].  

In addition, NNs have been widely applied to complex problems, especially those whose 

variables are huge. Recently, an inspiring study successfully predicted the protein structure 

using neural networks [161]. Protein is the fundamental element of humans to perform distinct 
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biological functions. As a result, structural prediction of proteins from their amino acid 

sequence can be used to determine the three-dimensional shape of a protein. Furthermore, deep 

convolutional neural networks are also state-of-the-art methods for medical image analysis 

[162]. For medical images, the realistic noise in them is usually mixed, complicated and 

sometimes unknown, which makes it a challenge to build up accurate models for image analysis.  

1.4.3. Application of artificial intelligence in TCM 

AI has been applied to solve complex problems in the TCM field [36, 163]. It was reported that 

there are 502 articles from 2000 to 2017 on machine learning models developed for TCM [164]. 

The application domain included symptom, syndrome differentiation, the efficacy of drugs and 

herbs. The most widely applied ML methods in TCM are BNs, ANNs as well as SVMs. There 

are various chemoinformatics, bioinformatics, and systems biology resources that can be used 

for drug–target networks construction of products [37]. It is increasingly popular to apply 

system biology approaches and machine learning techniques to complex biochemical and 

pharmacological datasets from TCM [34]. For example, a novel network-based methodology 

was developed to discriminate the potential effective drug combinations in clinical practice 

[35]. Clustering method was used to study the relationship between the hot or cold nature of 

herbs [38]. Unsupervised clustering method called a self-organizing map (SOM) was utilized 

to predict the cold and hot properties of herbs using fingerprints as chemical structure features. 

Moreover, the knowledge graph approach was promising to provide insight into the underlying 

mechanism by integrating comprehensive information in TCM together [165]. 

Tongue diagnosis [166] and pulse diagnosis [167] are important diagnostic methods in TCM, 

which are totally independent of the modern medicine system. Tongue diagnosis is to diagnose 

the disease or the condition of the body of a patient by looking at the texture of the tongue. 

Similarly, the pulse diagnosis is to diagnose patients by feeling their pulse beating at the 

measuring point of the radial artery. However, these diagnosis approaches require doctors to 

have rich experience to make the correct diagnosis [168]. Recently, an increasing number of 

image analyses have been performed to understand the tongue diagnosis or pulse diagnosis to 

make TCM diagnosis standardized. For instance, the approach of Bayesian networks was 

applied to explore the relationship between diseases and the chromatic and textural measures 

of tongue images from 455 patients affected by 13 common diseases, as well as 70 healthy 
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volunteers [169]. In addition, the tongue images of patients were used to predict clinical 

syndrome classification [170]. Also, a convolution neural networks model was developed to 

provide herbal prescriptions automatically based on features of tongue images [171]. 

1.5. System biological network and TCM 

1.5.1. Cluster methods for TCM 

Cluster methods are important analysis methods in network analysis to help find similarity 

groups. In TCM, cluster methods are widely applied to classify patients into subclass diseases, 

which can be seen as one kind of precision medicine. For example, patients with the same 

disease named kidney deficiency by TCM system were diagnosed into different subclasses 

according to their syndrome using the cluster model of the latent tree model, suggesting that 

those resultant clusters can be used as the basis for syndrome differentiation [172]. Similarly, 

a subspace clustering algorithm was applied for TCM syndrome differentiation for another 

disease acquired immune deficiency syndrome (AIDS) based on their symptoms [173]. 

Except for syndrome differentiation, cluster methods can also be used to understand the special 

theories in TCM. For instance, herbs can be clustered into 5–10 categories based on the drug 

response, amplitude, and the occurrence of time. These categories illustrated a close 

relationship between tissue organs and TCM meridians. In addition, the heterogeneous 

information network method was proposed to cluster herbs with the symptoms, disease, 

formulae, and function as the main herb features [174]. Another advanced network clustering 

algorithm applied in TCM is the Random Walk algorithm, which starts from a random node 

(drug, target, or disease) and calculates the similarity of this node and its adjacent node to 

construct a “drug–target–disease” network heterogeneously [175]. 

1.5.2. System pharmacology applied on TCM 

System pharmacology is a new concept that integrates system biology and pharmacology as a 

whole network. Thus, it has been widely applied in TCM for the exploration of active 

ingredients or targets and to understand therapeutic action mechanisms [176]. Generally 

speaking, the first step of network pharmacology analysis in TCM is to construct the 
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associations between five main entities, including formulae, herb, ingredient, target, and 

disease. Before 2014, multi-pharmacology networks contained herb–ingredients–target–

disease associations. Gradually, the formulae–herb–ingredient–target–disease association 

network was further constructed to better understand drug combination in TCM formulae. 

Secondly, network analysis can be performed based on the associations to find common 

patterns or central important node nodes. Thirdly, kyoto encyclopedia of genes and genomes 

[177] (KEGG) biological pathways and Gene Ontology [178] (GO) functional terms can be 

enriched in various databases to discover potential MOAs of bioactivity effects. Finally, a 

complex formulae–herb–ingredient–target–disease-pathways network can be built up. The 

applied domain of network medicine in TCM include symptom differentiation, herb properties 

[19], herb combination [80, 179] and TCM diagnosis. 

1.5.3. Network medicine for TCM symptom differentiation 

Symptom differentiation is an important premise of precision medicine. At present, increasing 

efforts are being made to exploit TCM syndrome studies using network medicine methods, 

which facilitate TCM modernization and personalized medicine. 

For instance, a complex network approach was proposed to map TCM symptoms to modern 

medicine symptoms [180]. In detail, 60 physical examination data on symptom terms as well 

as 199 TCM examination symptom terms were collected from 521 patients with fatty liver 

disease and 235 healthy subjects. The correlation between TCM and MM symptoms was 

calculated from the network. In addition, structural metrics are important to characterize 

network topology. Especially, the centrality metrics can be used to identify the significant 

symptoms. Finally, they found hub symptoms as biomarkers for fatty liver disease, including 

body mass index (BMI), low density lipoprotein, yellow tongue fur and thick tongue fur. This 

application illustrated the power of network medicine analysis 

Pattern classification by network analysis is an important and effective way for symptom 

differentiation. For example, it was reported that patients with rheumatoid arthritis can be 

classified into two main TCM patterns—the cold pattern and the heat pattern according to TCM 

theory. The classification pattern was obtained by a series of network analysis based on the 

differentially expressed genes of patients with rheumatoid arthritis [181]. It was found that 
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people classified as cold patterns in TCM have similar biomarkers with each other and are 

different from patients among heat patterns. The same is for people in hot patterns. In addition, 

the network biomarkers of Cold and Hot Syndromes in TCM suggested that cold and hot 

networks might give rise to different clinical phenotypes. 

1.6. The drug combination and TCM formulae 

1.6.1. Drug combination 

Many complicated diseases involve complex pathogenesis. Thus, it is difficult to use a single 

drug to treat such complex diseases with efficiency. Furthermore, some single drug treatments 

might cause some side effects as well as drug resistance [182]. In addition, recently, it was 

reported that the pharmaceutical industry started to get fewer drugs than before by more 

investment in the discovery of novel drugs. Considering all the above drawbacks of single drug 

strategies, drug combinations have been becoming increasingly popular because of their 

synergistic effects and fewer side effects.  

At present, many high-throughput screening methods have been applied to identify potential 

drug combinations and achieve some success. However, searching for the potential synergistic 

combinations among numerous compounds is impossible because wet experiments are time-

consuming, labour-intensive and expensive [11]. In contrast, the application of computational 

tools to immense available pharmacological data offers an alternative way to identify potential 

drug combinations. In contrast, the application of computational tools to immense available 

pharmacological data offers an alternative way to identify potential drug combinations. 

Especially, omics data could be used to represent the perturbations that a drug might raise for 

biological pathways or molecular interactions and thus help to understand the process 

systematically, which is called network pharmacology [4-6]. Multi–target drugs or drug 

combinations are designed to influence multiple disease-causing genes rather than focus on 

only one individual gene [7-10]. To realize network pharmacology paradigm, particular 

computational models should be developed to measure the perturbation of drug combinations 

on robust disease phenotypes by targeting multiple biological pathways [35, 54, 183]. 

Furthermore, compared to individual drug treatment, side effects in drug combination can 
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decrease accordingly by the reduced dose of individual constituents but achieve the same or 

stronger therapeutic effects [15]. 

Among various systematic methods, network pharmacology approaches have attracted 

considerable attention because of their potential for the understanding of drug interactions in 

many complex diseases more recently. For instance, the DrugComboRanker approach was 

developed to prioritize the most potential synergistic drug combinations by their functional 

protein–protein network [184]. Moreover, network-based methodology can be used to 

characterise the distance between two drugs in terms of target distributions among the protein–

protein network (PPI) [35]. They elucidate that drug combinations approved clinically are 

closer in PPI network than random drug pairs. Moreover, a modularity analysis and multipartite 

networks model might be a suitable approach for exploiting the MOAs of traditional medicine 

[185]. For example, the system pharmacology approach has been used to study the MOAs for 

blood stasis syndrome in the herb pair Angelica sinensis–Flos Carthami [186]. 

1.6.2. TCM formulae and herb pairs 

As the empirical paradigm of the drug combination, TCM formulae have developed for 

thousands of years and exhibit obvious synergistic effects. Hence, a deep understanding of 

TCM formulae might provide new insight for drug combination [13]. In the long history of the 

development of TCM, it was found that using several herbs together to relieve complex 

symptoms would achieve better effects than using single herbs. In modern medicine, concepts 

of system biology and drug combination were introduced because single drugs show the 

disadvantages of drug resistance and side effects. Similarly, TCM formulae can prevent and 

treat diseases at system biological levels, and herbs in formulae possess synergistic effects [14]. 

Thus, TCM is a valuable resource for drug combination discovery. In fact, many famous 

formulae have been approved as drugs on the market. One good example is the Fufang Danshen 

Diwan (Dantonic pill), which is approved for the market in many countries for cardiovascular 

diseases [16]. Dantonic pill is a botanical drug consisting of only Radix Salviae Miltiorrhizae 

(Danshen) and Radix Notoginseng (Sanqi). 

Herb pair is an important concept in TCM as TCM formulae were gradually developed from 

two herbs as the fundamental combinations to multiple herbs. A patient with the same diseases 
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might have different symptoms [4, 40, 41], which need more precise TCM prescriptions based 

on the condition of patients. For instance, the common herb pair Coptis chinensis (Huang Lian) 

and Evodia rutaecarpa (Wu Zhu Yu) has been used along with other herbs for many disease 

indications [187], including the inhibition of Heliobacter pylori [188] and the treatment of 

obesity [189]. The understanding of the underlying mechanism of herb pairs would hold the 

key to the discovery of novel drug combination as herb pairs are fundamental elements of the 

TCM formula [33, 44]. Recently, many computational methods have been developed to 

investigate the herb pairs and herb formulae. For example, Yu et al. found that TCM-herb 

properties can be used to discriminate known TCM herb pairs from non-TCM herb pairs by 

computational methods, including probabilistic neural network (PNN), k-nearest neighbour 

(kNN), and support vector machine (SVM) [41]. Another study revealed the chemical and 

pharmacological characteristics of herb pairs by the herb feature mapping in a network 

pharmacology model [40]. Notably, genetic algorithms [42] were applied for the discovery of 

herb combinations to treat lung cancer [43]. They showed that the predicted herb formulae tend 

to have higher degrees of connections in one herb–herb frequency network, suggesting the 

feasibility of using machine learning and network modelling for understanding herb–herb 

interactions. 

Despite these initial efforts, it is still difficult to elucidate the underlying MOAs of the stronger 

therapeutic effects of herb pairs as well as their synergistic effects as TCM formula is a complex 

system and normally involve multiple herbs with multiple ingredients [48, 49, 183]. Recent 

studies have shown that synergistic effects of herb combinations might stem from the 

interactions between their ingredients [50]. Additionally, ingredients within a herb might also 

interact synergistically to play pharmacology. To take a case in point, the synergistic 

antioxidant activity of Ginseng (the root of Panax ginseng) is caused by ginsenoside Rb1, 

ginsenoside Rg1 and ginsenoside 20(S)-protopanaxatriol [53]. The studies above focus on 

specific herbs and can be seen as the basis for a systemic model to characterize the interactions 

of TCM herbs at the molecular level. 
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1.7. Challenges of TCM 

Although TCM theory is self-consistent as a whole system and is independent of the modern 

medicine system, the MOAs of the theories and therapeutic effects remain unclear. To illustrate, 

the five elements and qi refer to more metaphysical concepts rather than physical evidence, 

which makes it difficult to be interpreted by modern physiological or medical entities [18]. 

Furthermore, biological targets for the majority of TCM ingredients are missing. How to define 

or characterise the target of one herb at a holistic level is still a big challenge in front of the 

modernization of TCM. More importantly, the toxicity caused by TCM and unknown 

concentration of TCM are also problems that impede the development of TCM.  

1.7.1. Toxicity caused by TCM 

Safety is always one of the most important principles for medicine. With the widespread 

application of TCM in many countries for disease treatments, the toxicity of TCM has gradually 

been reported and increased intensive concern [190]. Some toxicity caused by TCM can be 

seen as adverse effects, like many drugs on markets. However, as TCM is a complex system 

different from modern systems, the regulations and clinical research are limited compared with 

modern systems, which might lead to severe toxicity. At present, the toxicity of TCM is a 

critical problem and hinders the development and globalization of TCM. Thus, it is necessary 

to figure out the potentially toxic ingredients and understand the MOAs of toxicity. For 

example, advanced quality detection methods should be introduced to study the structure and 

bioactivity of ingredients in TCM medicine, such as TLC (Thin-Layer Chromatography) [191] 

and HPLC-fingerprint technique (High-Performance Liquid Chromatography) [192]. Also, the 

Good Agricultural Practices (cGAP) and Good Manufacturing Practices (cGMP) should be 

practiced during the growth and preparation period of TCM to avoid any external toxicity from 

pollution from the environment. Thirdly, the clinical biomarkers should be detected to help 

timely TCM toxicity diagnosis and treatment [193]. 

1.7.2. Ingredients in herbs and concentrations of ingredients 

In the future, to achieve optimal precision medicine using the formulae of TCM, we need to 

understand the TCM in quantification ways. Quantification includes two aspects: 1) the 
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concentration of ingredients in herbs; 2) the percentage of herbs in one formula. However, it is 

difficult to get the exact percentage of herbs in one formula because the percentage of herbs in 

one formula may vary according to the different patient’s syndrome by doctor diagnosis [194]. 

In addition, it is challenging to determine the concentration of ingredients or the biological 

activity ingredients because ingredients can be influenced by the gut microbiota [195]. Indeed, 

increasingly researches have shown that the original ingredients of herbs may not be absorbed 

directly but further be processed by gut microbiota in the intestines. In this process, herbal 

ingredients interact with gut microbiota and are transformed into active metabolites. Thus, it 

hints us at the importance of microbiota analyses by modern computational approaches. 
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2. AIMS OF THE STUDY 

This thesis aimed to build up a bridge between traditional medicine and modern medicine using 

multiple bioinformatics tools and further to better understand the underlying mechanism. With 

a better demonstration of the mechanism, we believe that the application of traditional medicine 

can be extended widely to many fields of disease, especially complex ones, and complement 

the disadvantages of modern medicine. Considering that traditional medicine is a different 

system compared with modern medicine, a molecular-level explanation for its unique and 

fundamental theories and principles is also vital for TCM modernization. In addition, some 

valuable principles in TCM, “Take the human body as a holistic system and use TCM formulae 

to treat disease”, are consistent with the emerging popular theory–drug combinations and 

multiple pharmacology after people gradually realise the challenges of modern medicine. To 

bridge TCM with modern medicine at the ingredient level, integrated information for TCM 

from TCM databases and other biological public databases should be extracted. 

Thus, our study consisted of three parts with specific objectives: 

1) To investigate the herb–meridian classification of TCM by machine learning methods 

using the structures of the ingredients and their ADME properties.  

2) To build network-based models to explore the mechanism of herb combination in TCM 

and further apply this model to discover novel drug combinations from TCM. 

3) To explore the associations between herbs or ingredients and their important biological 

characteristics, such as property, meridian, structure, or target via clusters from community 

analysis of the multipartite network.
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3. MATERIALS AND METHODS 

3.1. Data collection (Ⅰ, Ⅱ, and Ⅲ) 

3.1.1. Herb–ingredient relationship and ingredient structures (Ⅰ, Ⅱ, and III) 

Ingredients in TCM are not only important constituents of natural products but also valuable 

resources for drug discovery. As we know, the majority of TCM theories are mainly 

constructed at the herb level because of a lack of knowledge at the molecular level in ancient 

times. Thanks to the development of modern technology, the ingredients in herbs, as well as 

their target interaction with the human body were uncovered. To understand TCM at a 

molecular level, ingredients can be seen as the bridges to modern medicine systems. 

Particularly, the target and structure information of ingredients can be further used for 

pharmacology studies. 

We extracted the ingredient information of herbs from the TCM database called TCMID. 

TCMID is one of the largest databases of TCM, providing 49,000 prescriptions, including 

8,159 herbs and 25,210 ingredients. Only those ingredients with clear structure information 

were kept for further study.  

3.1.2. Herb–meridian association of herbs (Ⅰ) 

Meridian’s classification was concluded from thousands of clinical practices by the therapeutic 

effects of herbs for various diseases, which might be related to different parts of the human 

body. We collected the herb–meridian associations from the TCMID database and further 

confirmed these associations by the TCM ancient books. Only the meridians consistent 

between the records from TCMID and books were kept. According to TCM meridian theories, 

there are 12 principal meridians. However, considering that the aim of our study I is to build 

reliable machine learning models for meridian prediction, those meridians distributed by only 

fewer herbs will not be included when training the meridian models. 
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3.1.3. ADME properties of ingredients (Ⅰ) 

ADME properties refer to all the processes the compounds might undergo in the human body 

and mainly concern four aspects: absorption, distribution, metabolism and excretion. ADME 

properties can influence the pharmacokinetics of a compound. Therefore, to avoid side effects 

and improve efficiency in drug discovery, ADME is a key factor to consider as the optimization 

processes. As a result, we also took the ADME properties of the ingredients into consideration 

as features in study I. The SwissADME database [196] was utilized to calculate the 36 ADME 

properties (six drug-likeness-related from different models, four medicinal chemistry, nine 

pharmacokinetics, nine physicochemical-related, three water solubility properties–related as 

well as five lipophilicity-related). 

3.1.4. TCM formulae–herb relationship and herb pairs (Ⅱ) 

We managed to obtain 46,929 herbal formulae, and the related herbs consist of the formulae 

from TCMID, including 16,767 herbs. As herb pairs are the most fundamental component in 

the formulae, we calculate the herb pair frequency by the times of their coexistence in one 

formula, and the pairwise 349,197 herb pairs were obtained for further study. As one herb pair 

may be used to play distinct roles in the different herbal formulae, herb pairs with frequencies 

larger than 358 were selected for further study. On the other hand, we randomly generated herb 

pairs that did not exist in any actual herbal formulae as random herb pairs for comparison as 

top herb pairs. To validate the network model with an independent set, 268 herb pairs were 

extracted from traditional medicine literature as external dataset. 

3.1.5. Targets of ingredients (Ⅱ and III) 

The target information of ingredients indicate the potential pharmacological bioactivities of 

ingredients. Unfortunately, the target information for most ingredients is missing due to the 

expensive cost of target identification. To overcome this problem, we extracted the ingredient–

target interactions from the STITCH database [113] with the chemical–target interactions from 

both experimental evidence and text mining. Herbs and ingredients without target information 

were excluded. 
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3.1.6. Protein–protein interactions (Ⅱ) 

Finally, 243,603 protein–protein interactions among 16,677 proteins were collected from 11 

resources, including MINT [197], IntAct [198], InnateDB [199], PINA [200], HPRD [201], 

HI-II-14_Net [202], PhosphositePlus [203], KinomeNetworkX [204], Instruct [205], 

SignaLink [206] and BioGRID [207].  

3.2. Fingerprint calculation for ingredients (Ⅰ) 

To investigate the meridian classification using machine learning methods for TCM herbs, we 

determined that the fingerprint was used as a prominent feature to characterise the structural 

information of herbal ingredients. The canonical SMILES [208] is standardized by Open Babel 

[209] and further transformed into four kinds of fingerprint features using PaDEL-Descriptor 

[210] software separately, including Ext [211], PubChem [212], MACCS [213], and Sub [214]. 

Fingerprint is a string of binary bits to represent the particular substructure characteristics in a 

reference library. For instance, the PubChem fingerprint from the PubChem database contains 

881 bits, and the MACCS fingerprint from MDL Company consists of 166 bits. There are 307 

and 1024 bits in the Sub fingerprint and Ext fingerprint respectively. 
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3.3. Machine learning models (Ⅰ) 

 

Figure 1. Workflow of the study Ⅰ. Firstly, the meridian and ingredients information of herbs 

were collected. Secondly, the four types of fingerprints and ADME properties were 

calculated as features for ML. The herb feature is derived from the molecular feature by the 

average feature of all the contained ingredients. The meridian of the compounds is from the 

union meridians of all the related herbs. Thirdly, the whole dataset was split into training sets 

for model training and testing sets for model evaluation. The machine learning models were 

trained by parameter optimization, model selection, and feature selection. Finally, the 

important score was calculated to find the most important features relative to meridians. 
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3.3.1. Construction of compound-feature matrix and herb-feature matrix 

The features of a compound were integrated using various fingerprints and ADME features. In 

detail, there are 2,378 fingerprint features, including 1024 Ext, 881 PubChem, 307 Sub, and 

166 MACCS and 36 ADME property features. The machine learning models were first trained 

on different datasets using four fingerprint types separately to compare their performance. After 

determining the best fingerprint type, ADME features were added into the best fingerprint type 

to check the change of model performance. Finally, ܺ஼  matrix was prepared as the input of 

machine learning (ML) with 2,414 features for each of 10,053 compounds.  

In the study of drug combination, the feature of two drugs is usually considered the sum of the 

features of both drugs. In the same way, a herb is a mixture of multiple ingredients. As a result, 

herb features can be obtained as below:  

Let ܥ௝ = (ܿଵ, ܿଶ, … , ܿ௞) denote the set of ingredients in herb ݆, where ݇ means the number of 

compounds. The compound feature is defined as ܨ௖௢௠௣௢௨௡ௗ = ( ଵ݂, ଶ݂, … , ௡݂), in which ݊ is the 

total number of features. Then, the herb feature ܨ௛௘௥௕ = (݃ଵ,݃ଶ, … ,݃௡) is the average feature 

value of all compounds, i.e. 

௜݃(௜ୀଵ,…,௡) =
∑ ௙೔೎భ,೎మ ,…,೎ೖ

௞
 (1) 

To be specific, for all 646 herbs collected, the feature can be determined by the 2,414 features 

of their ingredients. The 646x2414 herb-feature matrix (HF) is defined as: 

HF =   

Fଵ
Fଶ
Fଷ 
Fସ
…

 

⎣⎣
⎢⎢
⎢⎢
⎢⎢
⎡⎡

0.2 0.1 0.3 0 0
0 0.1 0.1 0 0.8

0.1 0.6 0 0.1 1
0.5 0 0.1 0.3 0.1
0 0.4 0.2 0 0 ⎦⎦

⎥⎥
⎥⎥
⎥⎥
⎤⎤

଺ସ଺×ଶସଵସ

(2) 

As ADME properties have a close relationship with the biological effects of ingredients, to 

evaluate the influence of ADME, we also test the datasets with samples whose feature is only 

derived from the compounds with good ADME properties, mainly by logS ≤ -6, in all the three 

water solubility models and gastrointestinal absorption ≤ 30%. Accordingly, after the ADME 
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filtering, 583 herbs and 4,922 compounds were kept to compare the model performance with 

the models before filtering. 

3.3.2. Construction of herb–meridian matrix and compound-meridian matrix 

The meridian vector of herbs is denoted as ܯ௛௘௥௕ = (݉ଵ,݉ଶ, … ,݉ଵଶ) . Thus, the herb–

meridian matrix (HM) of the 646 herbs among the 12 meridians is as below: 

HM =

Lung Spleen Stomach Kidney … 

 

Mଵ
Mଶ
Mଷ
Mସ
…

 

⎣⎣
⎢⎢
⎢⎢
⎢⎢
⎡⎡

1 1 0 0 0
0 1 1 0 0
1 0 0 1 1
0 0 1 0 1
0 0 1 0 0⎦⎦

⎥⎥
⎥⎥
⎥⎥
⎤⎤

଺ସ଺×ଵଶ

(3) 

௝ܪ = (ℎଵ, ℎଶ, … ,ℎ௣) is a set of ݌ herbs with this compound. Similarly, the meridian vector of 

the compound is ܯ௖௢௠௣௢௨௡ௗ = (݈ଵ, ݈ଶ, … , ݈ଵଶ) and can be calculated by merging the meridians 

of the herbs in ܪ௝, i.e. 

݈௜,௜ୀଵ,…,ଵଶ = ௛భ,௛మ,…,௛೛∑)ܫ ݉௜ > 0) (4) 

 is an indicator function. The full compound-meridian (CM) matrix (compounds = 10,053 (∙)ܫ

and meridians = 12) was prepared as below: 

ۻ۱ =

Lung Spleen Stomach Kidney … 

 

    
Cଵ
Cଶ
 Cଷ 
Cସ
…

 

⎣
⎢
⎢
⎢
⎡

1 1 0 0 1
0 1 1 1 1
 1 0 0 1 1
1 0 1 0 1
0 0 1 1 0⎦

⎥
⎥
⎥
⎤

ଵ଴଴ହଷ×ଵଶ

(5) 

3.3.3. Training the machine learning models 

In the machine learning models, the endpoint of each meridian is binary, where “1” means a 

herb was recorded to be classified into a specific meridian while “0” means it was not. Four 

supervised ML methods SVM, DT, RF and kNN [215] were applied for the prediction of 

meridians by the R package caret [216]. SVM searches out a hyperplane to separate samples 

from different classes into individual space from a hyperplane, which achieves minimal error. 

DT resembles a decision tree with observations to determine the branch node. kNN methods 
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can classify the samples by a majority vote of its closest k neighbours, according to the distance 

by features. RF is based on tree votes by multiple decision trees, and the majority voted one as 

the final classification. To make the model robust, five-fold cross-validation [217] was utilized 

to avoid overfitting by samples split randomly into 70% as training sets and 30% as testing sets. 

The training samples were further split into five folds with the same size. Four folds were used 

for training, and the reminding one was kept for evaluation iteratively for each fold; thus, the 

process was repeated five times. After deciding the best model with the highest accuracy, the 

remaining 30% samples can be fit into models for external evaluation. To benchmark the model 

performance for each meridian, a permutation was adopted by randomly shuffling meridian 

labels according to the ratio of positive and negative samples, which can be seen as the baseline. 

The R scripts and input data are available at https://github.com/herb-medicne/meridian-

prediction. 

3.3.4. Evaluating the prediction accuracy for meridians 

We applied a confusion matrix to do model evaluation. The overall prediction accuracy is 

defined as: 

ݕܿܽݎݑܿܿܽ ݈݈ܽݎ݁ݒ݋ = ்௉ା்ே
்௉ାி௉ାிேା்ே

 (6) 

True positive (TP) indicates the number of positive samples (i.e. herbs or compounds) that are 

correctly identified for a given meridian, while false positive (FP) is the number of negative 

samples that are wrongly identified as positive. It was the same for true negative (TN) and false 

negative (FN). Balanced accuracy is defined as an evaluation metric of the average sensitivity 

and specificity to adjust the inflated overall accuracy for imbalanced data:  

ݕܿܽݎݑܿܿܽ ݈݀݁ܿ݊ܽܽܤ =
೅ು

೅ುశಷಿା
೅ಿ

ಷುశ೅ಿ
ଶ

 (7) 

Besides the evaluation mentioned above, the area under the receiver operating characteristic 

curve (AUROC) and Matthews correlation coefficient (MCC) [218] were also calculated. MCC 

is defined as: 

ܥܥܯ = ்௉×்ேିி௉×ிே
ඥ(்௉ାி௉)(்௉ାிே)(்ேାி௉)(்ேାிே)

 (8) 
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AUROC is defined as: 

AUROC = ∫ TPR൫FPRିଵ(ݔ)൯݀ݔଵ
௫ୀ଴  (9) 

In AUROC, the true positive rate (TPR) is TPR(ݐ) = ∫ ଵ݂(ݔ)݀ݔஶ
௧  while the false-positive rate 

(FDR) is FPR(ݐ) = ∫ ଴݂(ݔ)݀ݔஶ
௧  for a given classification threshold ݐ  . ଵ݂(ݔ)  refers to the 

probability density functions for the predicted score for an instance if it is positive, and ଴݂(ݔ) is 

the negative class. 

3.3.5. Identification of key features for the prediction of meridians 

To measure the contribution of each feature to the accurate prediction of the meridian 

classification, the varImp package [219] was adopted to score the features by their importance. 

Additionally, we used SARpy [220] to make statistics on the frequency of substructures and to 

find the key features for meridian prediction. The significance of each substructure is evaluated 

as the likelihood ratio by SARpy: 

݈݈݅݇݁݅ℎ݋݅ݐܽݎ ݀݋݋ = ்௉/ி௉
௉/ே

 (10) 

Among all the compounds classified into one meridian, compounds with a specific substructure 

is TP. The left compound that does not belong is FP. The top 10 substructures by the likelihood 

ratio score were selected as key features to analyse their association with meridians.  
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3.4. Network proximity model definition of herb pairs (Ⅱ) 

 

Figure 2: Workflow of the network construction between herb pairs based on interaction. 

Firstly, top frequent herb pairs were derived from existing herbal formulae by statistical 

analysis. Secondly, herb–ingredient, ingredient–target and target–target interactions were 

extracted from a public database. Thirdly, the network proximity of two ingredients can be 

calculated among PPI networks at the target level, and further distance between two herbs 

was calculated by the ingredient–ingredient distance at the ingredient level. In total, there 
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were five types of common network proximity methods to make comparisons to find the best 

model, including closest, shortest, separate, kernel and center distances. Finally, the best 

distance metrics that can discriminate herb pairs will be applied for novel combinational drug 

discovery. 

Among various systematic methods, network pharmacology approaches have gained 

increasing interest for their wide application in the field of drug interactions in various complex 

diseases. For example, DrugComboRanker was proposed to prioritize potential novel 

synergistic drug combinations with the PPI network as the background network to do 

calculations [184]. Additionally, the associated network and targets can be used to explore their 

MOAs. Cheng et al. proposed PPI-based approaches to characterise a good drug combination 

[35]. Like many successful application cases in exploring the relationship between chemicals 

and diseases, network-based models could also be potential for rational TCM herb interactions. 

In this study, the hypothesis is that using network pharmacology models to understand the 

drug–target interactions might provide novel insights into the underlying MOAs of herb 

combinations [132, 221, 222]. The frequencies of herb pairs in TCM herb formulae were 

calculated. Network-based models were built up to characterise the distance of herbs within a 

herb pair in a PPI network. The model applied five distance metrics (the closest, shortest, 

separate, kernel and center) separately to define the interactions of herbs at the herb, ingredient, 

and target levels. In addition, AUPRC and AUROC were used to evaluate models and thus help 

to decide the best distance methods that can discriminate the top frequent herb pairs against 

random herb pairs. 

3.4.1. Construction of network proximity models for herb pairs 

The herb–herb distance was calculated with ingredients as the nodes in which the distance 

between a pair of ingredients can be further obtained with their target as nodes in the PPI 

network. Given that (ܣ)ܫ = (ܽଵ, ܽଶ, … )  is a set of ingredients of herb A, while ܶ(ܽ) =

,ଵݐ) ,ଶݐ … ) is a set of targets for ingredient ܽ, the same is for herb B. Five measures from Cheng 

et al. were utilized to determine the distance between two herbs, including closest, separation, 

shortest, kernel and center [35]. 
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The closest distance is defined: 

݀ ூ(஺)ூ(஻)
௖௟௢௦௘௦௧  =

1
ห|(ܣ)ܫ|ห + ||(ܤ)ܫ||

ቌ ෍ ݉݅݊௕∈ூ(஻)݀݅(ܽ, ܾ)
௔∈ூ(஺)

 +  ෍ ݉݅݊௔∈ூ(஺)݀݅(ܽ, ܾ)
௕∈ூ(஻)

 ቍ  (11) 

݀݅(ܽ, ܾ) is the distance between two ingredient nodes in herbs A and B. ||I(A)|| and ||I(B)|| 

represent the numbers of ingredients for herbs A and B, respectively. Taking ingredients in 

herb A as starting points, all the pairwise distances of the ingredient in herb B were calculated, 

and the minimal distance was selected as the closest distance for the starting ingredient. Finally, 

the mean value of the closest distance for all the ingredients in herbs A and B was considered 

as their closest distance ݀ ூ(஺)ூ(஻)
௖௟௢௦௘௦௧ . 

The separation distance is developed from the closest distance using the average closest 

distances between A and B separately subtracted from the closest distance between A and B: 

݀ூ(஺)ூ(஻)
 ௦௘௣௔௥௔௧௜௢௡  = ݀ூ(஺)ூ(஻)

 ௖௟௢௦௘௦௧  −  
݀ூ(஺)ூ(஺) 

 ௖௟௢௦௘௦௧ +  ݀ூ(஻)ூ(஻)
 ௖௟௢௦௘௦௧

2
 (12) 

To obtain the shortest distance, the sum value of pairwise ingredient distances between nodes 

in herbs A and B was obtained, and this value was further normalized by the product of their 

sizes: 

݀ூ(஺)ூ(஻)
௦௛௢௥௧௘௦௧  =  

1
ห|(ܣ)ܫ|ห × ||(ܤ)ܫ||

෍ ݀݅(ܽ, ܾ) 
௔∈ூ(஺),௕∈ூ(஻)

(13) 

The kernel distance is the average exponent-based pairwise distance, which is normalized by 

their relative network sizes: 

݀ூ(஺)ூ(஻)
௞௘௥௡௘௟  =  

−1
ห|(ܣ)ܫ|ห + ||(ܤ)ܫ||

ቌ ෍ ݈݊ ෍
݁ି(ௗ௜(௔,௕)ାଵ)

||(ܤ)ܫ||
௕∈ூ(஻)௔∈ூ(஺)

+ ෍ ݈݊ ෍
݁ି(ௗ௜(௔,௕)ାଵ)

||(ܣ)ܫ||
௔∈ூ(஺)௕∈ூ(஻)

ቍ (14) 

In the center distance methods, we first determined the nodes with a minimal sum of distances 

as the center nodes of A and B, separately. Then, the distance between the two centers was 

considered the final center distance: 
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 ݀ூ(஺)ூ(஻)
௖௘௡௧௘௥  = ݀݅൫ܿ݁݊ݎ݁ݐூ(஺),  ூ(஻)൯(15)ݎ݁ݐ݊݁ܿ

ூ(஺ ௢௥ݎ݁ݐ݊݁ܿ  ஻) = ௨∈ூ(஺ ௢௥݊݅݉݃ݎܽ  ஻) ෍ (ݑ,ܾ)݅݀
௕∈ூ(஻ ௢௥  ஺)

(16) 

The equations above were defined to calculate the distances between two ingredients  ݀݅(ܽ, ܾ). 

Indeed, five kinds of network distance can be referred to by their target profiles T(a) and T(b), 

including: 

݀݅ (௔,௕)
௖௟௢௦௘௦௧  =

1
ห|ܶ(ܽ)|ห + ||ܶ(ܾ)||

ቌ ෍ ݉݅ ௝݊∈்(௕)݀ݐ(݅, ݆)
௜∈்(௔)

 + ෍ ݉݅݊௜∈்(௔)݀ݐ(݅, ݆) 
௝∈்(௕)

ቍ  (17) 

݀݅ (௔,௕)
௦௘௣௔௥௔௧௜௢௡ = ்݀݅(௔)்(௕)

 ௖௟௢௦௘௦௧  −  
்݀݅(௔)்(௔) 

 ௖௟௢௦௘௦௧ +  ்݀݅(௕)்(௕)
 ௖௟௢௦௘௦௧

2
(18) 

݀݅(௔,௕)
௦௛௢௥௧௘௦௧  =  

1
ห|ܶ(ܽ)|ห × ||ܶ(ܾ)||

෍ ,݅)ݐ݀ ݆) 
௜∈்(௔),௝∈்(௕)

(19) 

݀݅(௔,௕)
௞௘௥௡௘௟  =  

−1
ห|ܶ(ܽ)|ห + ||ܶ(ܾ)||

ቌ ෍ ݈݊ ෍
݁ି(ௗ௧(௜ ,௝)ାଵ)

||ܶ(ܾ)||
௝∈்(௕)௜∈்(௔)

+ ෍ ݈݊ ෍
݁ି(ௗ௧(௜,௝)ାଵ)

||ܶ(ܽ)||
௜∈்(௔)௝∈்(௕)

 ቍ (20) 

݀݅(௔,௕)
௖௘௡௧௘௥  = ,(௔)்݁ݎݐ൫ܿ݁݊ݐ݀  ൯ (21)(௕)்݁ݎݐ݊݁ܿ

Therefore, five distance methods were performed at both the target and the ingredient levels. 

In total, 25 different herb distances were utilized with an exhaustive combination of five 

network methods. Let us take the model with the closest methods at the ingredient level and 

the closest methods at the target level as an example. The closest distance for two herbs at the 

ingredient level can be defined as: 

݀ ூ(஺)ூ(஻)
௖௟௢௦௘௦௧  =

1
ห|(ܣ)ܫ|ห + ||(ܤ)ܫ||

ቌ ෍ ݉݅݊௕∈ூ(஻)݀݅(ܽ, ܾ)
௔∈ூ(஺)

 + ෍ ݉݅݊௔∈ூ(஺)݀݅(ܽ, ܾ) 
௕∈ூ(஻)

ቍ (21) 

݀݅(ܽ, ܾ) for ingredient a and ingredient b is defined as: 
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݀݅ ்(௔)்(௕)
௖௟௢௦௘௦௧  =

1
ห|ܶ(ܽ)|ห + ||ܶ(ܾ)||

ቌ ෍ ݉݅ ௝݊∈்(௕)݀ݐ(݅, ݆)
௜∈்(௔)

 + ෍ ݉݅݊௜∈்(௔)݀ݐ(݅, ݆)
௝∈்(௕)

 ቍ (22) 

,݅)ݐ݀ ݆) is the shortest path length between the two targets in the PPI network. 

3.4.2. Evaluating the discrimination performance of the proximity distances 

To evaluate the discrimination of network models for herb pairs with synergistic effects, 

AUROC was utilized with 200 top herb pairs as positive samples and 200 random ones as 

negative samples. There is other assessing criteria, such as true positive rate or recall rate. 

However, AUC is an overall evaluation that consider different thresholds. From the AUC for 

ROC curve, we can see the best threshold for classifying positive and negative with the most 

true positive and the least false positive. In addition, AUC is robust for the imbalance samples. 

To make the model robust, the process was repeated around 50 times to obtain the average 

AUROC and AUPRC. In addition, 268 herb pairs were extracted from the literature as external 

datasets to further validate the network models. 

3.4.3. Case study of the herb pair Astragalus membranaceus and Glycyrrhiza uralensis 

Huangqi decoction is a TCM formula consisting of two herbs: Radix Astragali (Huang Qi) and 

Radix Glycyrrhizae (Gan Cao). It is reported that the Huangqi decoction can be used to treat 

liver fibrosis [223] and cirrhosis disease [224], while neither Radix Astragali nor Radix 

Glycyrrhizae can achieve same effective alone. Therefore, it is important to identify the 

synergistic effects between them and explain why they may be used to treat liver diseases as 

one herb pair. 

Based on the best network model we have decided, the distances between Radix Astragali and 

Glycyrrhizae were calculated to compare to the distance of a random herb pair. Furthermore, 

we also calculated the center ingredients by the center methods. To exploit the potential MOAs 

for liver fibrosis of center ingredients, the minimum local PPI network from STITCH was set 

up by all the targets of the center ingredients. Pathway enrichment analysis was performed by 

enrichr [225] with the proteins in the local PPI network. 
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3.5. Multipartite network models for understanding Traditional Medicine (III  

3.5.1. Construction of bipartite network 

In study III, using a modularity analysis[55] of multipartite networks[58], we aimed to further 

illustrate that the classifications in TCM theories have close association with the chemical 

properties of herb ingredients. Herbal medicines and chemical ingredients were extracted from 

the TCMID database. The herbal medicines and ingredients are the two parts of a bipartite 

network. Afterwards, the disconnected nodes were removed to build a component of the graph. 

3.5.2. Construction of multipartite network and community detection 

Next, we verified our hypothesis that the herbs or active ingredients that are clustered into the 

same community are more similar in their features. In other words, the ingredient similarity 

Network (ISN) was constructed with ingredients as nodes and edges if two ingredients share at 

least one more natural product. Similarly, we reconstructed the natural product (TCM herbs) 

similarity network (NSN) by linking natural products if they have at least one common 

ingredient. Then, the communities were detected from ISN and NSN respectively by 

optimizing a modularity score [226].  

3.5.3. Similarity analysis of four types of features among communities 

Moreover, our study was based on four types of features, including meridians and properties 

of the natural products as well as protein targets and SMILE string of ingredients. Meridians 

and properties were collected from TCMID. Furthermore, The SMILE strings of these 

ingredients were from PubChem and identified or predicted protein targets were extracted from 

STITCH databases. The average pairwise intersection of meridian and property profiles was 

computed separately for each cluster in NSN. Likewise, the similarity of ingredients in each 

cluster was defined as the average Dice index of the SMILE string as well as the pairwise 

intersection of their protein targets. 
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4. RESULTS AND DISCUSSION 

4.1. Predicting meridians by machine learning approaches 

4.1.1. Distribution of meridians at the herb level and the compound level 

In total, 49,000 formulae, 8,159 herbs and 25,210 ingredients were collected from the TCMID 

database. Herbs without meridian information were excluded from further study and 464 herbs 

were left.  

To investigate the constitution of the meridian among herbs, we performed a data analysis for 

the distribution of meridians at both herb and ingredient levels. At the herb level, 333 herbs 

were classified as Liver meridian, followed by Lung (n=237), Heart (n=155), Stomach (n = 

235), Spleen (n=213), Kidney (n=181), and Large Intestine (n=111) (Ⅰ, Fig 2A). However, the 

other meridians are limited by the number of herbs, as there are less than 60 herbs in each of 

the five meridians: Bladder, Gallbladder, Small Intestine, Cardiovascular and Three End. 

Considering that unbalanced datasets might lead to over-interpretation in machine learning 

models, we focused only on the former meridians. 

We further analysed common herbs between different meridians. In fact, 89.8% of 646 herbs 

were classified into more than one meridian although the overlap rates that might vary between 

meridians. Kidney and Liver shared the largest number of herbs, with 51 in common. 

Furthermore, there are 36 overlapped herbs between Liver and Heart, followed by 30 herbs 

between meridian Liver and meridian Stomach (Ⅰ, Fig 2A). In addition, we found that all the 

herbs from Stomach, Spleen or Large Intestine meridians have the tendency to have multiple 

meridian classification according to TCM records. On the other hand, there are fewer herbs 

that belong to only one meridian. Similar patterns were also observed at the compound level 

(Ⅰ, Fig 2B). The high meridian overlapped rate among herbs demonstrated its multi–target 

characteristics through influencing different tissues of the human body. 

Besides the number of common herbs, we also utilized Jaccard coefficients [227] to evaluate 

the similarity between different meridians. The Spleen and the Stomach are most similar to 

each other, with Jaccard indexes of 0.31 and 0.42 at the herb level and the compound level 
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separately. In contrast, the Heart and the Large Intestine are quite different from each other 

among the meridian distribution, with 0.04 and 0.14 at the herb and compound levels, 

respectively (Ⅰ, Fig 2C-D). The average pairwise Jaccard index of the herb–meridians is 0.15. 

Likewise, the average Jaccard index is 0.26 for meridians of compounds. In short, a lower 

Jaccard value indicates weaker correlations between meridians. Thus, the prediction machine 

learning models were built up for each meridian in study Ⅰ. 

4.1.2. Prediction accuracy of meridians using machine learning approaches 

For each of the seven major meridians, we made a comprehensive comparison on the ML model 

performance on different ML approaches, feature types and data levels. To be specific, we 

combined four ML approaches (SVM, DT, RF and kNN) with seven types of features (Ext, 

PubChem, Sub, MACCS, ADME, Ext + ADME and all fingerprints + ADME) in a pairwise 

manner. Hence, we finally got 84 ML models. The ADME filtering data contained only 

compounds with higher water solubility and good gastrointestinal absorption (herbs = 583 and 

compounds = 4,922).  

The performance of all the models was evaluated by an accuracy matrix with the 30% dataset 

after training by 70% dataset. First, we focus on the overall performance of all the 84 models 

among all the seven meridians. Among all the seven meridians, the Large Intestine meridian 

achieved the highest overall prediction accuracy at 0.83 on average (p-value < 0.0001, 

Wilcoxon rank-sum test), followed by the Heart meridian at 0.72 and the Kidney meridian at 

0.68 (Ⅰ, Fig 3A). As different organ play different role with compounds, we take into our body. 

For instance, liver is metabolic while kidney is excretion. Thus, the prediction accuracies for 

meridians varied among different organs. In addition, the prediction accuracies is dependent of 

samples size of analysed datasets, with correlation coefficient -0.9. More importantly, Balanced 

Accuracy and Matthews value of ML models are considerably higher than the corresponding 

permutation models (Ⅰ, Fig S1, p-value < 0.0001, Wilcoxon rank-sum test), suggesting the 

general feasibility of predicting the meridians by machine learning models based on the 

chemical information of herbs and ingredients. 

Second, the comparison was performed among three data levels using the Balanced Accuracy 

metric. It was found that the predictions in compound-level prediction were much better than 
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those in the herb level (Ⅰ, Fig 3B, p-value < 0.001, Wilcoxon rank-sum test). The superior 

performance of compound-level predictions compared with the herb-level predictions might be 

because of the oversimplified way we determined the chemical fingerprint features for an herb. 

There are three potential reasons for the bad performance of the herb model we built up. First, 

the ingredients we collected from the TCM database might not be inaccurate in structure 

because of the limitations of techniques for the extraction and detection of active components 

in complex herb plants [228]. Second, it is challenging to determine the structural changes of 

ingredients in the human body caused by the ADME process, especially gut microbiota. The 

newly generated or lost ingredients would cause changes in therapeutic effects and thus cause 

bias in the meridian prediction model. Third, for the common ingredients of ingredients, we 

ignored their differences in actual concentration, which is also one drawback of our study. To 

sum up, the complex biological roles of the ingredient compounds in herbs vary a lot, such as 

their concentration, metabolism and inner interactions. However, that information was largely 

missing from TCMID and other resources. As a result, we assumed that all the ingredient 

compounds contribute to the pharmacology of the herb equally and thus took the average of its 

compound features as the herb features. Unlike herb-level data, with average features as the 

final feature for modelling, the compound-level data consist of compound features and 

meridians directly, which was more reliable.  

As we expected about the importance of ADME properties, filtering out compounds with poor 

ADME filtering increased the prediction accuracy in the Heart, Lungs and Stomach at the herb 

level (p-value < 0.05, Wilcoxon rank-sum test), while there is no increased tendency seen for 

the prediction of Large Intestine and Liver meridians.  

To investigate the best machine learning method for each meridian, we compared the prediction 

performance of different machine learning methods. Based on the finding that the prediction 

models at the compound level are better than the models at the herb level, the comparison was 

on models at the compound level. Comparing those top models of seven meridians, we found 

that RF provides better prediction than kNN, DT and SVM models in general (Ⅰ, Fig 3C), which 

suggests the advantage of the RF method. To be specific, the RF method was able to detect the 

predictive features using the Ensemble Learning technique. In other words, RF can avoid 

overfitting by average accuracy evaluation from multiple-decision trees. At present, many 
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advanced AI methods, such as Deep Learning, have been applied to the meridian prediction 

[229]. Neural networks might be promising tools for explaining complex topics, especially in 

TCM. 

The prediction accuracy of machine learning models by different feature types were evaluated. 

Models with the Ext fingerprint (1024 bits), the longest among all the four fingerprint types, 

achieved higher accuracy than other features with a p-value <0.05 by Wilcoxon rank-sum test 

(Ⅰ, Fig 3D). Besides, models using all the fingerprint types combined with ADME performed 

better than models using them individually in terms of the models with the most accuracies (Ⅰ, 
Fig 3D). In summary, we demonstrate that the integrated information of the diversity of 

fingerprints and ADME properties may help to uncover the underlying association for the herb–

meridian. Furthermore, the RF method represents a better prediction performance than the 

other methods.  

In addition, the AUROC (the area under the receiver operating characteristic) and the AUPRC 

(the area under the precision-recall curves) were also calculated and showed a high prediction 

of machine learning models (Ⅰ, Fig S4). The overall prediction accuracy of the models for each 

meridian at the compound level by Random Forest using all the available features is listed as a 

table (Ⅰ, Table 2). 

4.1.3. Important fingerprints and ADME features for meridian 

After determining the best predictive ability of the meridian classification models with RF as 

the method and fingerprint and ADME as the features, it is more significant for us to explore 

the molecular mechanism of the meridian classification. In detail, the importance score value 

was used to evaluate the contribution of each feature. The importance score was calculated by 

the change in prediction accuracy at the compound level after a feature was taken away. In 

detail, provided that dropping a feature causes a sharp decrease in prediction accuracy, this 

feature will be given a relatively larger score. As we had set up seven models for seven 

meridians, the top 30 most key features for each meridian were selected, covering 27 ADME 

properties and 32 fingerprints in total. 
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To evaluate the importance of the ADME properties across all seven meridians, bio-clustering 

heatmaps were generated by the importance score of the top ADME feature. As shown in the 

bi-cluster figure (Ⅰ, Fig 4B), lipophilicity [230], including iLOGP, WLOGP and MLOGP, are 

top-scored features among all seven meridians, including (mean Z-score 1.66, 0.74 and 0.67, 

separately). This suggested to us the importance of lipophilicity for the meridian classification. 

This is consistent with the significant role of Lipophilicity in pharmacokinetic properties and 

the overall suitability of drug candidates [230]. Another important feature is molar reactivity 

(MR), with a mean Z-score of 0.96. MR is used to measure the total polarizability of a substance. 

Additionally, solubility features illustrated comparably higher importance, with Z-around 0.92 

to 1.14. In summary, these results indicate that ADME properties are closely related to meridian 

classification by influencing the pharmacology and pharmacokinetics of ingredients in herb 

medicine. However, we need to note that some of the 36 ADME properties were determined 

by prediction models from the SwissADME database. Ideally, the experimentally validated 

ADME properties would be more accurate and thus help to improve the accuracy. Another 

limitation is that bioactivity might not stem from the original ingredients in herbs but from the 

metabolites transformed by gut microbiota or enzymes after oral administration [231]. As a 

result, more relevant factors that may affect the ADME of herbal medicine deserve to be 

considered as features to train the models. 

We also investigate the top fingerprint features using the bi-cluster method. Interestingly, we 

found that fingerprint features from the same types tend to cluster together (Rand Index of 0.66) 

(Ⅰ, Fig 4C). For instance, the most important fingerprint features for the Stomach meridian were 

clustered together (Ⅰ, Fig 4C). In contrast, the key fingerprints for the Kidney meridian are 

fingerprints from PubChem. The Spleen and the Lungs are closely related to Ext and MACCS 

fingerprints, respectively. Generally speaking, Ext fingerprints have the highest score when 

compared with the other three fingerprint types (Ⅰ, Fig S2). This tendency is also indicated by 

ML models’ better performances by Ext fingerprints (Ⅰ, Fig 3D). To conclude, informative and 

representative fingerprints are critical for ML prediction. 

It is worthy to note that raw TCM herb or other materials might be processed by different 

methods, such as baking with salt or honey as well as being cut into different parts. The aim of 

processing is to reduce the contents of toxic constituents, transform the structure of constituents, 



 

61 

 

or increase the solubility of active constituents.  After complex processing, the raw herb was 

prepared into separate TCM medicine with different therapeutic function or properties 

(meridian) [232].  In our study, the so-called meridian are based on the prepared TCM medicine 

and their constituents. 

4.2. Network distance models for TCM herb pairs 

4.2.1. Frequency of single herbs and herb pairs 

In total, 349,197 herb pairs were extracted from 46,929 TCM formulae, covering 4,415 herbs, 

4,330 ingredients with target information and 3,171 targets. In the network, 17,753 herb–

ingredient pairs and 25,050 ingredient–target associations were utilized for distance calculation 

among the embedding background network. In terms of the number of herbs contained in one 

formula, most of the herb formulae (97.9%) consisted of less than 20 herbs (around 4.93 herbs 

on average). In addition, we found that the top frequency herbs were associated with the 

immune system. This finding is consistent with the TCM combination principle that tonifying 

(adjuvant) herbs should be added based on the patient’s condition to improve the health of the 

human body (e.g. immune system), which will help anti-disease [233]. 

Of the 349,197 herb pairs, herbs of high frequency also have been intensively used in TCM 

formulae and usually combined with the other herbs (II, Fig 2). In addition, 99.4% of the 

349,197 herb pairs appeared in no more than 100 TCM formulae, whose combination might be 

from random chance rather than true synergistic effects and thus not a traditional herb pair. 

Therefore, the following study only focuses on the top herb pairs for further research as good 

herb pairs with synergistic effects (frequency  ≥ 200). 

However, there are some limitations in our study. First, the ingredient concentration is not 

considered because this kind of information is difficult to mine from the literature or TCM 

databases due to the inconsistency in different studies. In fact, the actual concentration of 

ingredients is relevant to the bioactivity effects. In our present methodology, we count the 

contribution of each ingredient equally, which may influence the accuracy of our model. 

Furthermore, the second limitation involves the herb pairs we selected. Our study focuses only 

on the top-frequency herb pairs in a larger number of prescriptions we can extract. There is no 
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strict threshold for the so-called “good” herb pairs, and not all the synergistic effects of 200 

herb pairs were validated by wet experiments. Whereas, it makes sense to some degree, as 

TCM is an evidence-based methodology; thus, the top frequency herb pairs can be seen as 

being validated by clinical experience. 

4.2.2. Network distance for top-frequent herb pairs 

Network modelling was performed at the target level and then at the ingredient level. In total, 

five distance approaches were tested at each level, including closest, separation, shortest, kernel 

and center, thus resulting in 25 (5*5) distance models. 

The network distance for the top herb 200 was compared to the distance from random herb 

pairs (II, Fig 3). In general, the average network distance of random herb pairs tends to be 

larger than that of top herb pairs (p-value <0.05). Among all 25 models, 16 show this tendency 

and the center-separation model showed the largest difference in distance by 0.489 (p-value = 

9.91E-28, t-test). As network distance is designed at quantifying the interaction between two 

subnetworks among the whole PPI background network, the shorter distance of top herb pairs 

suggests that herb pairs tend to have strong interactions. By these interactions, herb pairs can 

affect similar pathways to produce synergistic effects. 

Similar to our study, the distance-based-mutual-information (DMIM) approach [15] proposed 

by Li et al. is designed to evaluate the interaction score by taking herb frequencies into 

consideration. Compared with DMIM, our method focused more on molecular-level 

relationships between herb, ingredient and target. More specifically, with ingredients as the 

central connection nodes, the interaction between formulae will provide a novel insight for 

drug combinations that already exist in TCM. 

However, our network methods focus on protein–protein interactions, which means that our 

network model may only help identify combinations due to the MOAs, such as complementary 

action, neutralizing action and facilitating action but not the pharmacokinetic potentiation. In 

addition, target information of a majority of compounds, especially natural products, remains 

unclear although targets of compounds might be relevant to therapeutic effects. The same 

limitation exists in our study. As targets are the basis of our methodology, herbs or ingredients 



 

63 

 

were excluded if their target information is missing. To get more compound-target interactions, 

more advanced computational methods should be developed by considering herbal medicines 

as holistic system, such as the similarity ensemble approach (SEA)[120], and experimental 

methods, such as thermal proteomics profiling (TPP) [234]. 

4.2.3. Performance of the distance metrics for herb combination 

Taking the top herb pairs as positive samples and random herb pairs as negative samples, the 

AUROC and AUPRC were utilized to evaluate the discrimination power of these 25 models. 

The average AUROC 0.65 and AUPRC 0.72 certified that our network model can characterise 

the herb–pair interactions (II, Table 1). In detail, the center (ingredient)–separation (target) 

model and the center (ingredient)–shortest (target) model are the top two best models, with 

both high AUROC and high AUPRC (II, Fig 4).  

More interestingly, five approaches by the center distance at the ingredient level exhibit a better 

discrimination performance (mean AUROC 0.80, mean AUPRC 0.83) (II, Fig 5) than the other 

models. The center-based models emphasized the central ingredients. Center ingredients refer 

to these ingredients that are most close to all the other ingredients in one herb. It hints to us that 

the central ingredient nodes in one herb may play vital roles for herbal synergistic effects. 

To validate our model using external datasets, 268 known herb pairs from the literature were 

extracted. Finally, we found that top herb pairs are also closer than random herb pairs in the 

PPI network, suggesting that our model is robust. 

4.2.4. MOAs of the herb pair Astragalus membranaceus and Glycyrrhiza uralensis 

It has been reported that the combination of Astragalus membranaceus and Glycyrrhiza 

uralensis exhibits therapeutic effects for liver diseases [234] by inhibiting bile acid-stimulated 

inflammation in chronic cholestatic liver injury in mice [223, 224]. However, their active 

ingredients and MOAs are still unknown. Although oral bioavailability (OB) or drug-likeness 

(DL) has been widely used for filtering druggable ingredients in TCM studies [33], we did not 

consider the OB properties and DL properties of ingredients for this work as OB and DL values 

are usually not from experiments but predictions and might be changed because of the 
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interactions between the ingredients. Moreover, the OB and DL properties might be changed 

due to the interactions of the ingredients in the TCM formula. 

According to the center-based distance models, the network distances between these two herbs 

are shorter than those between the top 200 herb pairs in the training set. They are also much 

smaller than those between the random herb pairs and the top 10,000 top herb pairs (II, Table 

2). 

As we have identified the crucial role of central ingredients, the central ingredients of 

Astragalus membranaceus and Glycyrrhiza uralensis were also calculated by our center models. 

Astramembrannin i and glycyrrhizin were the central ingredients of Astragalus membranaceus 

and Glycyrrhiza uralensis respectively. Surprisingly, the synergistic effects for liver diseases 

of astramembrannin i and glycyrrhizin were supported by the literature [235, 236]. Furthermore, 

lupeol and isoorientin, by the central ingredients by center (ingredient)–shortest (target) model 

were also reported to be associated with liver fibrosis disease. For example, isoorientin has 

protective effects against hepatic fibrosis caused by alcohol through inflammation-related 

pathways [131]. Additionally, lupeol tends to protect oxidative stress-induced cellular injury 

of mouse liver by downregulating anti-apoptotic Bcl-2 and upregulating pro-apoptotic Bax and 

Caspase 3 [237].  

In addition to the literature, pathway enrichment and functional analysis were also adopted to 

uncover the underlying MOAs (II, Fig 6). It might be some liver disease-related pathways that 

contribute to the combination treatment effects of Astragalus membranaceus and Glycyrrhiza 

uralensis. 

4.3. Network modularity analysis using multipartite network models 

In total, 4,485 natural products (herbal medicines) and their 2,857 chemical ingredients from 

the TCMID database were collected as the two parts of a bipartite network. After getting the 

projected ISN and NSN network, disconnected nodes were excluded and a multipartite network 

with 7,004 nodes and 17,555 edges were obtained for further analysis. Using community 

detection, 42 and 24 communities were prioritized separately using a modularity score from 

both similarity networks. 
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We demonstrated that natural products or active ingredients within a cluster tend to have a 

higher similarity than random clustering (III, Fig 4). The network community analysis on ISN 

and NSN from similar ingredients or natural products indicates that bipartite modeling is useful 

for the interpretation of TCM. These communities reflect the underlying associations between 

herbs and ingredients. Specifically, natural products with similar profiles of the ingredients 

tend to cluster together by community analysis (III, Fig 4).  

Furthermore, those natural products in the same cluster might also have similar therapeutic 

effects, which might help to discover novel treatments. Similarly, the cluster of active 

ingredients in ISN can be used to predict the MOAs of newly discovered or synthesized 

compounds based on TCM classifications. A functionally unknown molecule with high 

structural similarity to any of the active ingredient clusters indicates analogous TCM properties 

and implications. More importantly, as drugs tend to have synergistic effects by acting on 

distinct biological pathways, members of different clusters might also have different biological 

effects and thus might be candidates for new drug combinations.



 

66 

 

5. CONCLUSION AND FUTURE PERSPECTIVES 

Although TCM has attracted extensive interest because of some well-known successful 

applications, TCM is facing great challenges in gaining recognition from international society 

due to its unclear constituents, MOAs and toxicity. 

Hence, using cutting-edge computational approaches, such as ML and network analysis, we 

investigated the MOAs of some fundamental TCM concepts, including meridians and formulae, 

which not only deepen the understanding of TCM but also offer a new viewpoint on how to 

boost the development of TCM. More importantly, the exploration of TCM would also 

facilitate drug discovery by identifying the active ingredients from TCM and offering novel 

disease treatment strategies. 

5.1. ML models for meridian prediction  

To make full use of valuable TCM resources, the first step is to understand the theories in the 

TCM system, as they are the fundamental element guiding TCM practice. Hence, in this thesis, 

we focus on meridian concept which is closely associated with diseases. Until now, the 

rationale of the meridian for herbs or the human body has yet to be validated by modern 

methods at the molecular or physical level. AI is emerging as an effective tool for solving many 

complex problems with the help of the surprising processing ability of computers. In 

addition, increasingly number of active components of TCM herbs have been identified by 

researchers for decades. As a result, we proposed a computational framework to investigate 

meridians with the hypothesis that therapeutic effects of TCM stem from the ingredients in 

herbs.  

First, herb distribution on meridians shows that herbs tend to have multiple meridian 

classifications, and the modes of distribution also varied among herbs (Ⅱ, Fig 2). In the ML 

model training, a one-vs-the-rest strategy was applied to each meridian separately. Finally, by 

embedding the representative feature of herbs with meridian information, the ML models 

exhibit reliable performance on the meridians’ prediction, especially at the compound level 

(average accuracy = 0.70 in all seven meridians) (Ⅱ, Table 2). These prediction models might 

be of great significance for herbs or compounds without meridian information.  
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In short, we brought up novel computational methods to understand the meridian of TCM, and 

the high prediction accuracy demonstrated that ML is a powerful and promising tool for TCM 

exploration. 

5.2. Meridian theory and molecular properties of ingredients 

To ensure the satisfactory performance of ML, the input features matter a lot for ML training. 

However, the meridian concept only exists for herbs and molecular features are only used to 

describe ingredients. To get the molecular features of herbs, we merged all the features of 

ingredients as features of a particular herb. The similar transformation is performed for the 

meridian of a compound. Those transformations help us to understand the meridian better at 

the molecular level by integrated relationships (herb–ingredient associations, herb–meridian 

associations and ingredient–feature associations). 

In our ML model, fingerprints were used to represent structural information, and ADME 

properties were added to represent the absorption, distribution, metabolism and excretion of 

molecules. The high prediction accuracy of these models illustrated the close associations 

between molecular features and meridians, especially the compound features with high 

importance scores.  

As a result, ML can not only predict meridians but also be used to interpret each feature’s 

contribution to meridians. The importance score provides us with insightful scopes for the 

underlying MOAs for meridians. In other words, predictive molecular features might be one 

factor determining the meridians of herbs and can thus be used for discovering novel active 

compounds from TCM herbs. 

5.3. Network model for quantifying the interactions between TCM  formulae  

Compared to the one-drug–one-target drug strategy of modern medicine, TCM tends to treat 

diseases with multiple herbs, multiple ingredients, and multiple targets. To overcome the side 

effects and drug resistance of single drugs, the drug combination concept was proposed and 

has become increasingly popular in clinical use, especially for complex diseases. Furthermore, 

TCM has experienced a long history of herb combination and developed into mature and 
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comprehensive theories and guidelines. Thus, we believed that formulae would be a valuable 

resource to discover synergistic ingredients as new drugs. Also, the study on TCM formulae 

may provide new insight for optimal drug combination strategy.  

Despite the potentials of TCM for drug discovery, the MOAs of herb combinations remain 

unclear to us. Therefore, we exploit the TCM formula as the second study of this thesis. In 

TCM, herb pairs are considered the foundation of formulae. Consequently, to explore the 

interactions between herb pairs in TCM, we applied network distance methods to define these 

interactions. 

To be more specific, network distance metrics were performed by integrating herb, ingredients 

and target information. We found that top herb pairs achieved shorter distances than random 

herb pairs in all the 25 models. AUROC and AUPRC were used for discrimination evaluation 

with AUROC 0.65 and AUPRC 0.72 in average. Among all 25 models, the best model was 

selected for further study, as it has the best discrimination ability for good herb pairs, namely 

the center (ingredient)–separation (target) model and the center (ingredient)–shortest (target) 

model. 

Taken together, we set up a network model for defining the distance between two herbs in a 

network, which represents their interactions among PPI networks. With our models, a TCM 

formula network with herbs as nodes and network distance as weighted length can be further 

constructed to uncover the hidden associations in TCM. 

5.4. Significant role of the central ingredients in the herb pairs 

In comparison with the other approaches, the network models we build up focus on the 

interaction between herbs rather than on single herbs. Using network algorithms, we considered 

the roles of each ingredient, each herb as well as their associations. For example, by multiple-

level networks between herb–ingredients–target–targets, the central distance at the ingredient 

level achieved better model performance, which suggests the crucial role of central 

ingredients.  



 

69 

 

To further validate our finding, we conducted a case study for the herb pair Astragalus 

membranaceus and Glycyrrhiza uralensis which have synergistic effects for liver disease. As 

we expected, the central ingredients lupeol and isoorientin from two herbs have been reported 

to be relevant to liver fibrosis. The pathway enrichment was also conducted to validate their 

therapeutic effects for liver diseases.  

Overall, through quantified interaction distances at both the ingredient and molecular levels, 

our network-based model would help to prioritize the potential synergistic ingredients.  

5.5. Promise of multipartite network model for TCM study 

By community analysis of multipartite networks which were converted from bipartite networks 

of herbal medicines and their ingredients, we found that herbal medicines among the same 

clusters tend to share more common properties, meridians, and ingredients from one cluster are 

more similar in structures and targets. More importantly, multipartite network models can be 

utilized to better understand the intricate relationship in TCM systematically. 

In summary, our study demonstrated that the utilization of computational methods 

accompanied with multi-omics data would be promising to unlock critical bottlenecks in the 

understanding of TCM, especially in the aspects of constituents, theories and therapeutic 

effects. This will be a big step towards TCM modernization. 

In the future, it is noteworthy to uncover the active ingredients in herbs, especially their 

structure and target information. Only in this way can the investigation of TCM be systematic 

and more accurate. Additionally, in the first study of meridian theory, only four common ML 

methods were used to probe the relationship between meridian concept and ingredients’ 

features. Other more advanced methods, such as artificial neural networks, could be utilized 

for a more accurate prediction meridian model as well as models for other TCM concepts. In 

fact, many advanced machine learning approaches have emerged as interesting candidates 

for the rationale of TCM, which may considerably accelerate the speed of drug discovery and 

disease treatment in this field [64]. After deciding the best model for herb pairs, a complex 

TCM formulae network should be constructed with all the herbs as nodes and their pairwise 

distance as length weight, which would help uncover the most synergistic herb pairs.  Moreover, 
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more multipartite network models should be generated by integrating a diversity of data in 

TCM to exploit the hidden relationships in TCM.
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