
1.  Introduction
Peatlands are unique ecosystems, which, in pristine condition, provide many ecological functions and eco-
system services, such as carbon sequestration, water regulation, and biodiversity. Globally, peatlands cover 
only 3% of the earth's land surface (about 400 million ha), but contain one-third of the global soil carbon 
pool (Greenup et al., 2000; Krimly et al., 2016). The northern hemisphere contains around 87% of global 
peatland resources (Strack,  2008), with the greatest peatland cover in boreal and arctic landscapes. For 
example, about 30% of total Finnish land area (9.15 million ha) is peatland (Turunen,  2008). However, 
14%–20% of global peatland resources have been affected by anthropogenic disturbances (Strack, 2008). In 
Finland alone, around 55% of the total peatland area has been used for forestry (Peltola et al., 2014), around 
0.8% for agriculture, and 2% for peat extraction purposes (Heikkilä et al., 2012).

The biogeochemical processes in peatlands are controlled primarily by peat moisture content (Weiss 
et al., 1998), which is in turn controlled by the water table depth (Asmuß et al., 2019). The water table 
interacts with soil organic carbon, which is a significant determinant of soil-organic-carbon dynamics (Ise 
et al., 2008). Reduced water levels are thought to increase oxygen availability in the surface soil, resulting in 
faster organic matter decomposition and, as a result, increased peat density (Laiho, 2006). Hydraulic prop-
erties are highly significant in explaining water, energy, and carbon exchange between the land surface and 
the atmosphere (Montzka et al., 2017). By nature, peat soils are extremely complex, porous media with a 
high degree of vertical and lateral heterogeneity. From an agricultural, forestry, and ecological perspective, 
effective management of peat soils requires a good understanding of the processes that control water flow 
and storage at a particular site (Schwarzel et al., 2006). Understanding how these complex peat processes 
might behave due to land use changes is crucial for hydrological modeling and sustainable management. 
Modeling water and solute transport under unsaturated conditions using the available hydrological models 
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(e.g., HYDRUS, HydroGeoSphere, DRAINMOD) requires proper parameterization of the soil water reten-
tion curve (SWRC) and the hydraulic conductivity function (Jaros et al., 2019; Weber et al., 2017a). How-
ever, the broader literature on peat properties is incomplete. Availability of comprehensive empirical data 
on the physical and hydraulic properties of different peat materials would help to improve the accuracy of 
hydrological models at the local, regional, and continental scale, thus assisting in management of this major 
global soil carbon pool.

The most common form of peatland disturbance is artificial drainage to lower the water table and make the 
land suitable for forestry, agriculture, and other human uses. Drainage of peatlands results in significant 
changes to the hydraulic and physical properties of the peat, through rapid peat decomposition and subsid-
ence due to consolidation of dry peat, which alters the natural functions of peatlands (Holden et al., 2006). 
Lowering the water table increases aeration of the overlying peat layer, which accelerates oxidation and 
mineralization of the organic matter, leading to enhanced carbon dioxide emissions (Hallema et al., 2015). 
It also causes collapse of the upper peat layer, resulting in shrinkage and a significant increase in bulk den-
sity of the material (Silins & Rothwell, 1998). Bulk density is related to many other peat physical properties 
(Liu & Lennartz, 2019). The bulk density and fiber content primarily define the porosity and pore size dis-
tribution, and are linked to differences in peat physical properties (Boelter, 1969). In peat soils with low bulk 
density and high fiber content, many large pores occur, allowing up to 80% of their saturated water content 
to drain and allowing rapid water movement. Fiber content decreases as decomposition progresses, result-
ing in increased bulk density and a higher proportion of small pores (Boelter, 1968), thereby restricting 
water flow due to a reduction in hydraulic conductivity (Rezanezhad et al., 2010). On the contrary, smaller 
pores have more suction, which increases volumetric water content and, hence, unsaturated K values (Price 
et al., 2008). However, reduced pore size and the altered geometry of air-filled pores in highly decomposed 
peat soils may still reduce unsaturated K values (Rezanezhad et al., 2010). In general, bulk density is a good 
indicator of any peat disturbance caused by compression (Golubev & Whittington, 2018), so any change in 
bulk density alters the hydrological properties of peat soils (Boelter, 1964).

Measuring the hydraulic properties of unsaturated soils, either in situ or in a laboratory is time-consum-
ing, laborious, and expensive, and it is difficult to find values, which are representative of field conditions 
for large catchment scales. Acquiring representative values for peat soils is especially difficult, due to the 
changes in physical and hydraulic properties across the landscape (Lewis et al., 2012), with depth (Könö-
nen et al., 2015) and when subjected to anthropogenic disturbances, for example, volume change due to 
dewatering (Holden et al., 2004). The alternative is to use theoretical models to predict hydraulic properties 
that are difficult and costly to measure (e.g., unsaturated hydraulic conductivity), using parameters that are 
relatively easier to measure, such as SWRC and saturated hydraulic conductivity.

In recent decades, van Genuchten-Mualem (vGM) SWRC and hydraulic conductivity models (Mualem, 1976; 
van Genuchten, 1980) have been extensively applied to mineral soils and have been proven to work well 
(Pan et al., 2019; Roy et al., 2018; Van Genuchten & Nielsen, 1985). However, application of the vGM mod-
els to peat soils is limited (Dettmann et al., 2014; Liu & Lennartz, 2019; McCarter & Price, 2014; Schwärzel 
et al., 2006; Weber et al., 2017b). Hydrological modeling, such as HYDRUS-1D, which requires vGM pa-
rameters (quantified using vGM models) was used on peat soils to investigate the effect of Sphagnum 
moss volume change on the unsaturated hydraulic conductivity (Golubev & Whittington, 2018; McCarter 
et  al.,  2017) and hydro-physical properties (Gauthier et  al.,  2018). In a study conducted on regenerated 
Sphagnum moss, the vGM parameters were calculated using direct curve fitting and inverse modeling, lead-
ing to the observation that the vGM parameters calculated using inverse modeling represented the field 
soil moisture dynamics better (Elliott & Price, 2020). In slightly decomposed sphagnum peat soils, bimodal 
or trimodal vGM models may better describe the unsaturated hydraulic conductivity curves (Dettmann 
et al., 2014; Weber et al., 2017a, 2017b). However, unsaturated hydraulic parameters in a variety of peat 
soils have been successfully estimated using the vGM unimodal model (Liu & Lennartz, 2019; Simhayov 
et al., 2018; Wallor et al., 2018). In this study, we used measured SWRC and saturated hydraulic conduc-
tivity values for peat soils under different land uses to derive the vGM parameters, a representative SWRC, 
and a hydraulic conductivity curve for each land use across peat layers, using the respective model. The 
specific objectives of the study were: (a) to parameterize the hydraulic and physical properties of peat soils 
under different land uses, (b) to test the applicability of the vGM models for peat soils subjected to different 
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management regimes, and (c) to examine the relationship between peat soil properties and to evaluate the 
predictive power of these relationships.

2.  Materials and Methods
2.1.  Study Sites

The analysis was conducted using the data on a set of managed and intact peatlands in Finland and Norway 
(Figure 1a). The peat types studied are mainly fen and bog types, with a few unknown peat types. A total of 
59 peatland sites (Table S1) were included (57 in Finland and two in Norway), represented by a total of 3,073 
samples. In this study, the degree of degradation and disturbance that the land use cases pose for peatlands 
was qualitatively assigned. Peatlands, which were used intensively for energy (peat extraction), agriculture 
and forestry, were considered to be the most disturbed areas. The peatland sites in Finland were selected to 
be spatially representative of the different peatland types and management practices found in Finland. The 
sites represented the following land use management practices:

1.	 �Pristine (undisturbed) peatlands (PP).
2.	 �Intact treatment peatlands, used to treat wastewater from mines or peat extraction sites (PPT).
3.	 �Drained (not intensively) treatment peatlands, used to treat wastewater from mines or peat extraction 

sites (DPT).
4.	 �Drained restored peatlands, originally drained for forestry but restored by drain blocking (or other 

means) to re-establish suitable hydrological conditions for peat formation (DRP).
5.	 �Peatlands drained for forestry purposes (DPF).
6.	 �Peatlands drained for agricultural purposes (DPA).
7.	 �Peatlands used for peat extraction purposes (PE).
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Figure 1.  (a) Locations of the study sites in Finland and Norway, and (b) images showing the peat sampling technique 
using cylinders applied at one of the peatland agricultural sites.
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2.2.  Data Collection and Preparation, and Statistical Analyses

All the data used in this study were collected in ongoing and past re-
search projects at the Water, Energy, and Environmental Engineering 
Research Unit, University of Oulu, Finland. The data were the outcome 
of measurements and analyses in the laboratory and in the field over the 
past ∼10 years. The method of peat sampling used at certain study sites 
is unknown. However, peat samples for laboratory analysis were typical-
ly collected from undisturbed soil cores or an exposed soil profile using 
a “toecutter auger” (cross-section 8  ×  8  cm, length 70  cm) (Mustamo 

et al., 2016). Consequently, known-volume (e.g., diameter 4 cm, volume 50 cm3) sharpened steel cylinders 
(Figure 1b) and plastic bags were used to hold the samples. To avoid any biochemical reaction, samples col-
lected for laboratory examination were stored in a dark room at a temperature of about 5°C (Boelter, 1968). 
The peat properties database included the data on saturated hydraulic conductivity (Ksat, n = 2,077), un-
saturated hydraulic conductivity (K, n = 22), bulk density (BD, n = 439), porosity (n = 444), specific yield 
(Sy, n = 284), and SWRC (n = 284) for different peat layers, determined in field and/or laboratory studies. 
Several conventional methods were used to measure Ksat. For most study sites, Ksat was measured either in 
the field (infiltrometer, piezometer slug tests, and falling head direct push piezometer) or in the laboratory 
(constant-head permeameter, flexible-wall permeameter, and rigid-wall permeameter). For some sites, it 
was measured in both. Bulk density was determined by dividing the weight of oven-dried soil (dried for 
24 h at 65°C until a constant mass) by the total volume (Boelter, 1968). The density of water (1 gm cm−3) is 
assumed to be equal to the weight of water. Porosity was calculated by subtracting the mass of oven-dried 
soil from the mass of saturated soil and dividing by the total volume (Mustamo et al., 2016). The SWRC of 
most samples was determined using a standard pressure plate apparatus, by placing saturated peat samples 
inside a pressure chamber (Dettmann et al., 2014; Schwärzel et al., 2006). Continuous unsaturated K and 
SWRC were measured at some study sites using high-capacity tensiometers (Chen et al., 2015), where the 
maximum applied pressure was −15,000 cm H2O (pF = 4.18) with 1 cm H2O pressure intervals. The SWRC 
measurements at some study sites were recorded at different pressure intervals than at other sites. Hence, 
the fitted vGM model (Equation 1) for the corresponding site was used to fill the gap. As a result, SWRC 
analysis, such as the average SWRC at a given pressure for a certain land use with several sites, could be 
calculated.

Statistical analyses of peat properties were performed for all the data, and aggregated based on land use 
and peat layer. Typically, peat can be grouped into two distinct horizontal layers, based on degree of decom-
position, as acrotelm (oxic layer) and catotelm (anoxic layer). Recently, a third layer, called the mesotelm 
(mostly anoxic, but sometimes oxic), has been included (Tfaily et al., 2014). In this study, the peat properties 
data for each land use type was grouped into three distinct layers (top, middle, and bottom layers) based on 
depth of measurement, and descriptive statistics on the main peat properties were produced accordingly 
(Table 1). Any superficial layer of living Sphagnum or disturbed milled peat present (peat extraction sites) 
was not included in the analysis.

From measured SWRC, the field capacity (FC) and wilting point (WP) of each peat sample were estimated at 
−0.01 MPa (pF 2) and −1.5 MPa (pF 4.2), respectively (Mezbahuddin et al., 2016), where    pF log h cm , 
where h (cm) is pressure head. Plant-available moisture (AM), that is, the amount of water held between 
FC and WP, was calculated as the difference in water content between FC and WP (Peverill et al., 1999).

The major datasets (Ksat, BD, Sy, porosity) in this study were not characterized by a perfectly normal dis-
tribution based on the Shapiro-Wilk test (P < 0.05). Thus, non-parametric statistical techniques, such as 
Spearman's correlation coefficient (rho), were used to evaluate any potential monotonic relationship be-
tween peat properties across all the data. Principal component analysis (PCA) was performed on all the 
data to identify patterns and relationships between peat variables under different land uses, and potentially 
to remove some unnecessary variables, for example, for regression models used in later stages. Two-way 
ANOVA was used to analyze the interactions between land use and peat layer on peat properties and deter-
mine the significance of these interactions. The Shapiro-Wilk test revealed that the residuals of the variables 
used in the ANOVA were not normally distributed (P < 0.05), so normality was not assumed. Furthermore, 
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Peat layer Sampling/measurement peat depth range (cm)

Top ≤30

Middle >30 to ≤60

Bottom >60

Table 1 
Grouping of Peat Into Different Layers Based on Measurement Depth
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non-parametric statistical tests, such as the Kruskal-Wallis test with a post hoc Dunn test with adjusted 
p-values, were used for not normally distributed data.

The Sy of peat can describe the change in water storage following a change in the water table and is thus a 
very important parameter. The Sy depends on porosity, which in turn depends on peat degree of decompo-
sition and peat depth (Menberu et al., 2016, 2018). Here, Sy was calculated from a simple drainage test in 
the laboratory and missing Sy values were estimated by calculating the difference in water content at 0 and 
0.01 MPa in the SWRC (Letts et al., 2000; Ronkanen & Kløve, 2005). The drainage test was performed on 
intact peat cores that were 10, 20, and 30 cm thick and gravity drained on a wire tray for 7 days (top layer) 
to 13 days (middle and bottom layers). Evaporation was prevented by covering the samples and storing 
them in a cool, dark environment (Ronkanen & Kløve, 2005). As a result, the Sy was determined as the 
ratio of water released to initial soil volume at the end of the drainage. However, acquiring representative 
Sy values for a given peat type is challenging, due to the spatial and vertical variability of peat properties. 
Hence, multivariate linear regression (MLR), linear mixed effect models (LME), and partial least squares 
regression (PLSR) models were tested here for their ability to describe Sy as a function of other important 
peat properties. From the RF feature importance model, predictor parameters were selected from among 
the most important parameters for Sy, which were relatively easier to measure in the laboratory and/or in 
the field. Hence, the data were split into training (70% of the data) and testing (30% of the data) datasets. The 
performance of the models was assessed using the testing data set and the best model was identified based 
on the coefficient of determination (R2). All statistical analyses were performed in the Python programming 
language and some statistical diagrams were plotted using Seaborn, Python's statistical data visualization 
library (Waskom et al., 2017).

2.2.1.  SWRC Model

The vGM model, which parameterizes soil hydraulic properties (Equation 1), was fitted to all measured 
SWRC and the average vGM fitting parameters of each land use as a function of the corresponding peat 
layer were quantified. The vGM fitting parameters were then used in Equation 2 to quantify the relative 
hydraulic conductivity (Kr), while the unsaturated hydraulic conductivity (K) of each data point was quan-
tified using Equation 3 (Mualem, 1976; van Genuchten, 1980).
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where h (cm) is pressure head and is positive, θ, θs, θr (cm3 cm−3) is measured, saturated, and residual wa-
ter content, respectively; Ksat is the geometric mean of saturated hydraulic conductivity measured in the 
corresponding peat layers for each land use; and α (cm−1), n (−), and m are the vGM fitting parameters, 
where  1 1 /m n are empirical parameters evaluated by inserting measured θ(h) into Equation 1 using 
the nonlinear least square optimization technique in the Python “curve fit” function in the SciPy module.

During optimization, the value of parameters α and n was allowed to vary from 0 to 1 and 1 to 5, respectively, 
while that of θr was allowed to vary from 0 to the minimum of measured θ(h) + 0.1 and θs was allowed to 
vary from the maximum of measured θ(h) to 1. Parameter α is inversely proportional to the air entry pres-
sure head, while parameter n is related to particle size distribution and influences the slope of the SWRC 
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(Liu & Lennartz, 2019; van Genuchten, 1980). Average SWRC, vGM parameters, and Kr(θ) were computed 
for each peatland under different land uses as a function of the corresponding peat layer.

3.  Results
3.1.  Descriptive Statistics for the Hydraulic and Physical Properties of Peat

The PP top layer and middle layer, the DRP top layer, and the PPT top layer had Sy values greater than 0.3, 
the highest for any land use and peat layer group. All layers in the two degraded peatland types (PE, DPA) 
had Sy values less than 0.2 (Table 2). The Sy values tended to decrease with depth under most land uses, but 
in PE and DPA, Sy behaved differently and seemed to increase with depth (Table 2, Figure 2). The top layer 
of DPA showed the highest BD (0.42 g cm−3), followed by the top layer of PE (0.2 g cm−3). The BD decreased 
with depth in PE, DPA, and DPF, but not in other types of peatland studied (Figure 2). The two degraded 
peatland types (PE, DPA) had the lowest Ksat values, while the highest geometric mean Ksat (4.30E-04 m s−1) 
was measured in the top layer in PPT (Table 2). The value of Ksat tended to decrease with depth under almost 
all land uses studied (Figure 2). The porosity behaved like Sy in most peat layers under all land uses (Fig-
ure 2). The top layers of DPA and PE had the lowest porosity values, 0.78 and 0.86, respectively (Table 2).

A total of 105 different land use and peat layer combinations were analyzed for differences in peat prop-
erties (e.g., DPA bottom layer vs. DPA top layer). Statistically significant differences in BD, Ksat, porosity, 
and Sy were observed for a total of 32, 59, 24, and 31 unique land use-peat layer combinations, respectively 
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Land use Peat layer

Sy BD (g cm−3) Ksat (m s−1) Porosity Sample depth (cm)

Mean SEM Mean SEM GMean GStd Mean SEM Mean SEM

PP Top 0.40 0.03 0.08 0.01 5.91E-05 11.83 0.93 0.01 18.44 0.61

Middle 0.33 0.03 0.09 0.01 2.99E-05 13.43 0.93 0.01 46.98 0.69

Bottom 0.23 0.03 0.15 0.01 3.54E-06 27.29 0.91 0.01 90.40 1.69

PPT Top 0.32 0.01 0.11 0.00 4.30E-04 9.54 0.91 0.01 15.71 0.68

Middle 0.26 0.01 0.12 0.01 4.63E-05 22.35 0.92 0.01 47.73 0.76

Bottom 0.26 0.01 0.11 0.00 1.77E-06 5.49 0.91 0.02 69.59 0.38

DPT Top 5.53E-05 20.84 19.84 0.43

Middle 2.75E-06 24.05 50.00 0.43

Bottom 1.77E-06 14.86 71.07 0.39

DRP Top 0.38 0.03 0.09 0.01 2.46E-05 10.23 0.93 0.01 20.18 0.89

Middle 1.51E-05 12.33 40.00 0.00

DPF Top 0.21 0.02 0.15 0.01 2.24E-05 23.62 0.91 0.01 17.70 0.49

Middle 0.21 0.02 0.13 0.01 1.69E-06 23.09 0.92 0.01 47.41 0.50

Bottom 0.12 0.01 4.13E-06 18.73 0.89 0.02 77.95 3.46

DPA Top 0.11 0.01 0.42 0.02 5.30E-08 8.26 0.78 0.01 15.67 0.65

Middle 0.14 0.02 0.18 0.01 2.67E-08 7.71 0.88 0.01 48.11 0.64

Bottom 0.19 0.02 0.16 0.00 5.85E-08 2.85 0.92 0.01 77.81 2.55

PE Top 0.15 0.01 0.19 0.01 8.57E-08 15.23 0.86 0.01 15.60 0.61

Middle 0.11 0.01 0.14 0.00 2.36E-08 10.39 0.90 0.01 46.78 0.64

Bottom 0.19 0.01 0.12 0.00 2.76E-08 5.03 0.89 0.01 73.74 1.30

Notes. GMean  =  geometric mean, GStd  =  geometric standard deviation, SEM  =  standard error of the mean, 
PP = pristine peatland, PPT = pristine treatment peatland, DPT = drained treatment peatland, DRP = drained restored 
peatland, DPF = forestry-drained peatland, DPA = drained peatland for agriculture and PE = peat extraction site. For 
the number of samples analyzed refer to Table S3.

Table 2 
Mean Peat Specific Yield (Sy), Bulk Density (BD), Porosity and GMean Saturated Hydraulic Conductivity (Ksat) in Peat 
for Each Land Use and Measurement Layer
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(Figure 3). The two groups shown in Figure 3 are statistically signficant (P < 0.05), as their respective con-
fidence intervals do not overlap. The top layer Sy and BD values of pristine and intact (PP and PPT) sites 
were significantly higher than the values estimated for the top layer of most disturbed sites (DPA and PE). 
However, the bottom layer Sy and BD values of pristine and intact sites (PP and PPT) were not significantly 
different from the values measured at the bottom layers of strongly disturbed sites (DPA and PE); for com-
parison of the remaining peat properties across similar peat layers, see Figure 3. The top layer AM value of 
PP sites was significantly lower than the values measured only for the top layers of PPT and DPF sites. How-
ever, the bottom layer AM values at the least disturbed and strongly disturbed sites were not significantly 
different. The top layer FC value for pristine PP sites was significantly lower than the values measured for 
the top layers of strongly disturbed sites (DPF, DPA, and PE). However, the FC value for the bottom layers 
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Figure 2.  Boxplot showing summary of peat properties, where BD is bulk density, Ksat is saturated hydraulic conductivity, Sy is specific yield, AM is available 
moisture, FC is field capacity, and WP is wilting point. Peat depth is the sampling/measurement depth. Rightward arrow indicates towards more degradation 
and leftward arrow towards lesser degradation or more pristine. PP = pristine peatland, PPT = pristine treatment peatland, DPT = drained treatment peatland, 
DRP = drained restored peatland, DPF = forestry-drained peatland, DPA = drained peatland for agriculture and PE = peat extraction site.
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of pristine and intact sites (PP and PPT) was not significantly different from the values measured for the 
bottom layers of strongly disturbed sites (DPA and PE) (Figure 4). Analysis of variance of peat properties 
based on land use revealed statistically significant differences in BD, Ksat, porosity, and Sy for a total of 7, 
12, 8, and 11 unique land use-based group means, respectively (Figure 5). On average, the highest BD and 
the lowest porosity, Sy, and Ksat values were observed at sites drained for agriculture (DPA), followed by peat 
extraction sites (PE) (Figure 5).

3.2.  SWRC and Associated Parameters for Peat Soils

In total, 286 measured SWRC for peat under all land uses were fitted using Equation 1, with the R2 between 
fitted and measured SWRC ranging from 0.73 to 1. The mean value of the vGM fitted parameters α, n, and 
θr for all peat soils (all land uses and peat layers) ranged from 0.02 to 0.08, 1.23 to 2.00, and 0.02 to 0.56, 
respectively (Table 3). From a total of 105 land use and peat layer group interactions, the only significant 
difference found (P < 0.05) was for α in the DPF middle layer (α = 0.02) compared with that in the DRP 
top layer (α = 0.08) and PP top layer (α = 0.08). However, the vGM parameters n and θr were significantly 
different for 19 and 26 unique land use-peat layer group interactions, respectively (Table S2). Calculation of 
vGM parameters based on land use is shown in Table 2 as Site Total.
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Figure 3.  Diagrams visualizing significant differences in specific yield, porosity, saturated hydraulic conductivity, and bulk density between group means 
(bars show 95% confidence interval) for different land uses and peat layers. The red groups are significantly different from the blue group (PP Top Layer, gray 
dashed lines show confidence interval of PP Top), since their confidence intervals do not overlap. These diagrams highlight significant differences between PP 
and disturbed peatlands layers, but significant differences between disturbance types can also be seen where confidence intervals do not overlap. PP = pristine 
peatland, PPT = pristine treatment peatland, DPT = drained treatment peatland, DRP = drained restored peatland, DPF = forestry-drained peatland, 
DPA = drained peatland for agriculture and PE = peat extraction site.
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Sites with the lowest Sy values (PE, DPA, and DPF) had the highest FC of all land uses. The highest water 
content at WP was observed at PE sites (about 0.62) and the lowest at DPF sites (about 0.17). DPF sites had 
the greatest amount of plant-available water (AM) while the PP top layer, PE middle layer, and DRP top 
layer had the smallest amounts (Table 3). The FC and AM of the peat tended to increase with depth for most 
land uses studied, while WP did not show any correlation with depth (Table 3, Figure 2).

From the total of 286 measured SWRC, the mean SWRC for each land use and peat layer was calculated 
to obtain a representative SWRC for each land use as a function of depth (Figure 6). The mean SWRC of 
each land use and peat layer was fitted using Equation 1. The vGM parameter values calculated using mean 
SWRC and those calculated using individual samples (Table 3) were not significantly different. Hence, the 
mean fitted SWRC of each land use and peat layer with the corresponding BD value is shown in Figure 6. 
The PP top layer and PPT top layer lost about 10% of their water content when the pressure head was in-
creased from pF 0 to pF 1, while the other layers lost less than 5% (Figure 6).

All peat layers in PP and PPT had the highest water content loss when the pressure head was increased from 
pF 0 to pF 2, with the change in water content ranging from 25% to 37% (Figure 6). Peat layers with relatively 
lower BD and high Sy values lost more water when the pressure head increased to pF 2, whereas at higher 
pressure head changes (water content lost between pF 2 and pF 3), peat layers with higher BD and lower Sy 
values lost more water (Figure 6).
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Figure 4.  Diagrams visualizing significant differences in available moisture, field capacity, wilting point and residual water content between group means 
(bars show 95% confidence interval) for different land uses and peat layers. The red groups are significantly different from the blue group (PP Top Layer, gray 
dashed lines show confidence interval of PP Top), as their confidence intervals do not overlap. These diagrams highlight significant differences between PP 
and disturbed peatlands layers, but significant differences between disturbance types can also be seen where confidence intervals do not overlap. For land use 
abbreviations refer to Figure 3 caption.
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Figure 5.  Diagrams visualizing significant differences in specific yield, porosity, saturated hydraulic conductivity (Ksat), and bulk density between group means 
(bars show 95% confidence interval) based on land use only. The properties depicted by the red lines and the blue line (pristine peatland, confidence interval 
shown by gray dashed lines) are significantly different. Ksat is saturated hydraulic conductivity. These diagrams highlight significant differences between pristine 
peatlands and disturbed peatlands, but significant differences between disturbance types can also be seen where confidence intervals do not overlap.

Land 
use Layers ns

α (cm−1) n θr AM FC WP

Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM

PP Top 34 0.08 0.01 1.75 0.08 0.32 0.03 0.18 0.02 0.53 0.03 0.36 0.03

Middle 15 0.05 0.01 1.50 0.07 0.24 0.04 0.28 0.03 0.59 0.02 0.31 0.03

Bottom 9 0.04 0.01 1.53 0.10 0.33 0.05 0.28 0.03 0.64 0.02 0.36 0.04

Site Total 58 0.07 0.01 1.65 0.05 0.30 0.02

PPT Top 29 0.05 0.01 1.87 0.15 0.25 0.03 0.31 0.03 0.58 0.01 0.27 0.02

Middle 3 0.02 0.01 1.72 0.34 0.24 0.12 0.41 0.05 0.67 0.01 0.26 0.04

Bottom 8 0.02 0.00 2.00 0.19 0.36 0.04 0.36 0.07 0.64 0.02 0.28 0.06

Site Total 40 0.04 0.01 1.89 0.12 0.27 0.03

DRP Top 36 0.08 0.01 1.95 0.08 0.45 0.02 0.11 0.01 0.56 0.02 0.45 0.02

DPF Top 23 0.05 0.02 1.39 0.04 0.08 0.04 0.49 0.04 0.72 0.01 0.23 0.04

Middle 23 0.02 0.00 1.42 0.04 0.02 0.02 0.58 0.03 0.75 0.02 0.17 0.02

Site Total 46 0.03 0.01 1.40 0.03 0.05 0.02

DPA Top 32 0.05 0.02 1.23 0.03 0.23 0.03 0.24 0.01 0.65 0.01 0.41 0.02

Middle 21 0.06 0.03 1.30 0.05 0.19 0.05 0.30 0.02 0.74 0.02 0.44 0.03

Bottom 20 0.02 0.00 1.47 0.04 0.28 0.03 0.39 0.01 0.74 0.01 0.35 0.02

Site Total 73 0.05 0.01 1.31 0.03 0.23 0.02

PE Top 18 0.03 0.01 1.43 0.07 0.34 0.05 0.25 0.02 0.71 0.01 0.46 0.02

Middle 3 0.04 0.02 1.38 0.16 0.56 0.04 0.17 0.01 0.78 0.01 0.62 0.02

Bottom 10 0.03 0.00 1.61 0.13 0.41 0.04 0.24 0.03 0.70 0.02 0.46 0.04

Site Total 31 0.03 0.00 1.48 0.06 0.39 0.03

Notes. SEM = standard error of mean (SEM), ns is number of samples, for land use abbreviations see Table 2.

Table 3 
Mean Values of the van Genuchten-Mualem Parameters (α, n), Residual Water Content (θr), Available Moisture (AM), 
Field Capacity (FC), and Wilting Point (WP) in Different Layers of Peat Under Different Land Uses
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In this study, unsaturated K values were measured at some of the DPF sites, and this information was used 
to verify the accuracy of the predicted K values. An example of measured and fitted SWRC, predicted Kr and 
K is provided in Figure S1 in Supporting Information. Predicted K and measured K in that example showed 
a high correspondence (R2 = 0.81) (Figure S1). The unsaturated K (log scale) in different peat layers under 
different land uses increased linearly with increasing soil water content in most cases except at DRP sites, 
where the increase remained non-linear (Figure 7).

As the soil progressed from less saturation to saturation, the slope of the unsaturated K versus soil water 
content became steeper at the most disturbed sites (PE and DPA) but gentler at pristine and intact sites (PP 
and PPT). An increase in pressure head from pF 0 to pF 1 resulted in relatively higher water content loss 
from the PP top layer and PPT top layer of around 10%, thereby decreasing unsaturated K in those layers 
by 93%. An increase in pressure head from pF 0 to pF 2 resulted in a decrease in water content of 13%–27% 
for all land uses (Figure 6) but decreased unsaturated K by 98%–100% for all peat layers under all land uses 
(Figure 7). A pressure head change from pF 2 to pF 3 resulted in a 16%–52% decrease in water content, while 
the unsaturated K decreased by 99%–100% in all cases.

3.3.  Relationship Between Peat Properties

The PCA analysis revealed the overall distribution of the data on the main peat properties by grouping pos-
itively related properties together (e.g., Sy, porosity, and θs), and negatively correlated variables on opposite 
sides (e.g., Sy vs. WP, FC, and BD) (Figure 7). The first two principal components (PC1 and PC2) explained 
most of the variation (about 67%) in the peat properties data, as shown in the PCA scree plot (Figure 8). The 
DPA and PE sites, which had higher BD, FC, and WP values (Figure 2, Table 2), formed a distinct cluster to 
the right in the PCA biplot (Figure 8). The PP, PPT, and DRP sites, which had relatively higher Sy, porosity, 
θs and Ksat values (Figure 2, Table 2), were mostly clustered to the left (Figure 8).

For a better understanding of, among other things, the significance or strength of the monotonic relation-
ship between peat properties, Spearman's correlation coefficient was calculated for all the aggregated data 
(Figure 9), and also for the data aggregated based on land use and peat layers (Figure S2). It was found 
that BD had a significantly (P < 0.05) positive monotonic correlation with FC, and significantly negative 
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Figure 6.  Fitted soil water retention curve (SWRC) based on measured mean SWRC and the corresponding bulk density (BD) values in different peat layers 
under different land uses. The error bars show the standard deviation of measured values.    pF log h cm  where h (cm) is pressure head.
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monotonic correlations with θs, θr, n, Ksat, porosity, and Sy (Figure 9b). The vGM parameter α showed the 
strongest negative correlation with AM (rho = −0.34). It also showed a weak but statistically significant 
positive correlation with Sy and weak but statistically significant negative correlations with soil depth, FC, 
and vGM parameter n (Figure 9). The parameter n showed statistically significant strongly negative corre-
lations with FC, AM, and BD, and strongly positive correlations with θs, θr, Sy, porosity, and Ksat (Figure 9).
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Figure 7.  Predicted unsaturated hydraulic conductivity (K) on log scale plotted against the predicted soil water retention curve for different peat layers under 
different land uses. Error bars show the 95% confidence interval of the geometric mean saturated hydraulic conductivity.

Figure 8.  Principal component analysis (PCA) scree plot (left) and biplot (right) for peat properties data, where θs and θr are saturated and residual water 
content, respectively, Sy is specific yield, Ksat is saturated hydraulic conductivity, AM is available moisture, BD is bulk density, FC is field capacity, and WP is 
wilting point. For land use abbreviations, see Table 2.
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3.4.  Estimating Specific Yield Using Regression Models

To predict Sy, peat properties that could be measured inexpensively and easily, and which are routinely 
measured, were used (BD, soil depth). After transforming the data using natural logarithms, both the mul-
tivariate linear regression model (R2 = 0.74, root mean square error [RMSE] = 0.086) and the partial least 
squares regression model (R2 = 0.74, RMSE = 0.086) predicted Sy satisfactorily, as shown in Figure 10. 
However, the models tended to overpredict at low values and underpredict at high values. The multivariate 
linear regression model using BD, and soil depth to predict Sy was:

    1 2 soil depthSy m BD m b� (4)

where Sy is a decimal fraction, BD is in g cm−3, and soil depth is in cm and all variables in Equation 4 are in 
natural logarithmic scale. Each coefficient's value and 95% confidence interval are as follows: m1 = −0.697 
(−0.819, −0.574), m2 = −0.104 (−0.193, −0.014), and b = −2.640 (−3.040, −2.241). Both BD and soil depth 
were significantly important for the model. However, the standardized regression coefficient in absolute 
values for BD (0.44) was numerically greater than soil depth (0.09), indicating that BD was relatively more 
important than soil depth for predicting Sy. Furthermore, an LME model was developed using BD and soil 
depth as fixed effects, and land use as a random effect. The LME model further revealed that BD was the 
most significant (P < 0.05) predictor of Sy, with land use differences accounting for 25.7% of Sy variance.
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Figure 9.  (a) Spearman's correlation coefficient (rho) and (b) corresponding significance level heatmaps for aggregated data on peat properties, where BD is 
bulk density, Sy is specific yield, Ksat is saturated hydraulic conductivity, α and n are van Genuchten-Mualem parameters, θr and θs, are residual and saturated 
water content, respectively, AM is available moisture, FC is field capacity, and WP is wilting point.
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4.  Discussion
Accurate data on the physical and hydraulic properties of peat soils are needed for hydrological modeling 
and to support sustainable land use and management. However, peatlands under different land uses have 
not been intensively studied or well documented to date, due to their complex and heterogeneous pore 
structures and associated changes in volume during water level drawdown (Schwärzel et al., 2006). Peat-
lands under different land uses may undergo different degrees of peat decomposition, thereby affecting 
the degree of change in their physical and hydraulic properties. Hence, this study analyzed the measured 
data on the hydraulic and physical properties of disturbed and pristine peatlands at 59 sites in Finland and 
Norway, with the aim of providing a unique data set and insights for peatland researchers, hydrological 
modelers, and stakeholders. Here, the effect of peatland management activities on the most significant 
physical and hydraulic properties of peat were thoroughly discussed. We also explored and suggested key 
peat properties as predictors.

4.1.  Impacts of Peatland Management on Peat Properties

Land use change alters the physical and hydraulic properties of peat. Use of peatlands for agriculture, peat 
extraction, and forestry requires the water table (which is mostly near the ground surface in pristine peat-
lands) to be lowered. This is typically achieved by creating a network of drainage ditches. The lowering of 
the water table causes the upper peat layer to collapse and increases aeration and decomposition of peat, re-
sulting in subsidence of the peat (Menberu et al., 2016; Price & Schlotzhauer, 1999; Silins & Rothwell, 1998). 
Peat subsidence as a result of compaction, consolidation, and loss of peat volume is reflected in the BD of 
peat (Minkkinen & Laine, 1998). Silins and Rothwell (1998) in Canada found that 7 years after the drainage 
of a peatland for forestry, the BD of the top 40 cm peat layer had increased by 63%. In the present study, the 
most disturbed sites (DPA, PE, and DPF) had higher BD values in all peat layers than the least disturbed 
sites (Figure 11). Compared with the mean BD value of undisturbed PP sites (0.10 g cm−3), the mean BD of 
DPA (0.28 g cm−3), PE (0.16 g cm−3), and DPF (0.14 g cm−3) sites increased by 187%, 61%, and 42%, respec-
tively. The mean and median BD in peatland drained for agriculture was significantly higher (P < 0.05) than 
under other land uses (Figures 5 and 11). Peat extraction sites had the second highest mean and median BD 
values, significantly higher than at PP and DRP sites (Figure 5 and 11).

Mean BD and Sy in the most disturbed peatlands (DPA, PE, and DPF) ranged from 0.14 to 0.28 g cm−3 
and 0.14 to 0.21, respectively. However, mean BD and Sy in formerly disturbed, now restored (DRP) and 
intact peatlands (PP, PPT) ranged from 0.09 to 0.11 g cm−3 and 0.30 to 0.38, respectively. The highest and 
lowest Sy values (0.40 and 0.11) were found for the top layer (30 cm depth) of pristine peat (PP) and highly 
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Figure 10.  Plots of predicted specific yield (Sy) values obtained using (left) a multivariate linear regression and (right) a partial least squares regression model 
by equating the remaining test data (30% of data) and the corresponding measured Sy values. R2 = coefficient of determination, RMSE = root mean square 
error.
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decomposed agricultural peatland (DPA), respectively, indicating the presence of a higher proportion of 
large pores in less decomposed intact peat. Large differences in Ksat values under different land uses and be-
tween peat layers were observed (Table 2). The lowest and highest geometric mean Ksat values (4.01E-08 m 
s−1 and 8.20E-05 m s−1) were found for the most disturbed peat (DPA) and intact treatment peatland (PPT), 
respectively (Figure 11). A previous study reported median Ksat values for relatively undecomposed fibric 
peat and deeply humified sapric peat of 2.8E-4 m s−1 and 1.0E-7 m s−1, respectively (Chason & Siegel, 1986; 
Letts et al., 2000). A previous study had reported Ksat values of 4.50E-06 m s−1 and 7.00E-6 m s−1 for well and 
moderately decomposed peat, respectively (Boelter, 1968).

The most disturbed sites in the present study (DPA and PE) had the highest BD values, which was reflected 
in their low Sy, porosity, and Ksat values (Figure 11). Compared with undisturbed PP, the mean Sy in DPA, 
PE, and DPF were lesser by 60%, 55%, and 41%, respectively. This was also reflected in the geometric mean 
Ksat values in DPA, PE, and DPF, which were lesser by 100%, 100%, and 68%, respectively, compared with 
that in PP (Figures 5 and 11). However, the Sy and BD in formerly disturbed, now restored peat (DRP) 
showed no significant differences from the values in intact peatlands, indicating peat recovery from distur-
bance (Figure 5).

The percentage change in peat porosity due to land use change was smaller than observed for BD and Sy. 
Previous studies of organic soils showed that greatly increased BD might not be accompanied by a marked 
decrease in total porosity (Päivänen, 1973; Silins & Rothwell, 1998), as was the case in this study. A study 
by Rothwell et al. (1996) on drained peatland in Canada found high water content near drainage ditches, 
an area where greater peat subsidence and higher BD were expected and concluded that water content was 
unaffected by ditch spacing. Despite the increase in BD due to peatland land use change found in the pres-
ent study, mean porosity in all land use cases was high (range 0.85–0.93). The porosity in DPA and PE were 
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Figure 11.  Boxplots summarizing peat properties for each land use, where BD is bulk density, Ksat is saturated 
hydraulic conductivity, Sy is specific yield, and peat depth is sampling/measurement mean depth. The most disturbed 
sites (peat extraction, agriculture, or forestry) are plotted in red.
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lesser by 8.5% and 4.6%, respectively, compared with PP, differences which were statistically significantly 
(Figure 5).

The BD at the most disturbed sites (DPA, PE, and DPF) decreased with peat depth, but not at the undis-
turbed sites (Figure 2). The Sy in undisturbed peat decreased with depth due to an increase in degree of peat 
decomposition, while in the most degraded peatlands types (PE, DPA) it increased with depth. This indi-
cates that peat compaction and decomposition were greater in the top layer than in the other layers (middle 
and bottom) of peatlands used for agriculture and peat extraction. It has been reported that intensive drain-
age and preparation of peatlands for peat extraction and agricultural use can lead to significant degradation 
of the upper peat layers (Kechavarzi et al., 2010). This can increase the BD in the top layer by 100%–300%, 
and that in the subsoil by 50%–100% (Parent & Ilnicki, 2002). The increase in BD in the top layer of highly 
disturbed peat could be due to a process called moorshing, which includes biological, chemical, and physi-
cal changes in the top layer as a result of water content loss and increased aeration (Oleszczuk et al., 2007). 
Furthermore, at agricultural peatland sites, some farmers add sand or silt to the field to improve soil fertility 
and trafficability. Preparation of sites for peat extraction involves the removal of the top layers, so that the 
relatively decomposed middle layer becomes the top layer and is subjected to further compaction.

In this study, the BD of the top layer in DPA, PE, and DPF increased by 441%, 140%, and 92%, respectively, 
compared with the top layer in intact PP. Silins and Rothwell (1998) in Canada reported similar changes 
after 6 years of drainage, when the BD of the top 30 cm peat layer was 90% greater than that of a reference 
undrained layer. This was primarily due to the loss of macropores in the top layer, causing subsidence and 
significant change in BD. The BDs in the middle layer in DPA, PE, and DPF were greater by 91%, 53%, and 
37%, respectively, compared with the middle layer in PP. However, this was not the case for the bottom layer 
at the most disturbed sites, where BD had lowered by 19% and 23% in PE and DPF, respectively, and was 
greater by only 3.3% in DPA compared with the bottom layer in PP, indicating that most of the disturbance 
occurred in the first two layers of peat (above 60 cm depth). In pre- and post-compression laboratory testing, 
Sphagnum moss samples from the 15–20 cm and 10–15 cm peat layers in Québec, Canada, showed a signifi-
cant increase in BD of 63% and 53%, respectively (Gauthier et al., 2018). The change in Sy across peat layers 
closely followed the opposing trend observed in BD. However, the Ksat values lowered with depth for all land 
use cases (Table 2, Figure 2). This is generally the case in peat (Morris et al., 2015; Päivänen, 1973) due to 
the increased degree of decomposition with increasing depth, especially in intact peatlands. Under com-
pression, physical changes in the structure of moss result in a general decrease in the Ksat. As compression 
progresses, large pores become smaller, resulting in a decrease in Ksat where the most saturated flow occurs 
(Golubev & Whittington, 2018). The Ksat in each peat layer at the two degraded peatland types (PE, DPA) 
lowered by 100%, and lowered on average by 60% at DPF sites, compared with the corresponding peat layer 
in PP (Table 2). However, the impact of microtopography (hummock and hollow) on peat properties should 
not be overlooked, especially for pristine or intact peatlands, which are covered with alternating hum-
mock-hollow microtopography. For equivalent depths below the surface, the Ksat value beneath hollows 
was lower than that measured beneath hummocks (Morris et al., 2015). Possible differences in Ksat between 
different sites could be due to dependency of Ksat on scale of measurement (Schulze-Makuch et al., 1999). 
Davis et al. (1996) showed that measured Ksat values increased as sample size increased, and also reported 
that measured Ksat values in surface soils differed significantly (1–3 orders of magnitude) between measure-
ment techniques; however, variation decreased as depth increased.

4.2.  SWRC and Hydraulic Conductivity Functions of Peat

At the lowest pressure tested (pF 0), the water content in the top peat layer was lower at the most disturbed 
sites, DPA and PE (0.76 cm3 cm−3 and 0.86 cm3 cm−3, respectively), while under the other land uses it was 
greater than 0.9 cm3 cm−3. At pF 0, the soil water content at the middle and bottom layers ranged from 
0.88 cm3 cm−3 to 0.96 cm3 cm−3 (Figures 6 and 12). Volumetric water content increased from top to bottom 
peat layers at the highly disturbed sites (DPA, PE), due to a decrease in BD with depth, but not at the oth-
er sites (Table 2, Figure 6). Increasing the pressure head by 10 cm (pF 1) resulted in a greater percentage 
change in water content (around 10%) in the top layers of undisturbed PP and intact PPT, and less than 5% 
change in water content under the other land uses. At pF 1, there was a decrease in unsaturated K of at least 
50%, with the highest percentage change (93%) observed in the top layers of PP and PPT (pristine and intact 
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sites). The matric suction and water retention characteristics of the soil structure determine how much 
water is retained in the soil. The hydraulic conductivity, which is constant in saturated soils and defined as 
a function of matric suction in unsaturated soils, is the primary cause of water flow variation in saturated 
and unsaturated soils (Ng & Shi, 1998).

A previous study reported a volumetric water loss of 54% and 15% from slightly decomposed Sphagnum 
peat and reed peat, respectively, and a loss of between 4% and 6% from highly decomposed reed peat at pF 
1.7 (Parent & Ilnicki, 2002). At pF 1.7, the least decomposed top layer of intact peatland in the present study 
(PP) lost about 30% of its moisture content, while the most decomposed PE and DPA sites (the two most 
degraded peatland types) lost 8% and 13%, respectively, of their moisture content (Figure 12a). Overall, for 
pF between 1.7 and 3.0, the least disturbed sites lost more water, so the volumetric water content in highly 
disturbed peat was higher. However, the unsaturated K at disturbed sites remained lower than at less dis-
turbed or intact sites. This may be due to the reduced pore size and altered geometry of air-filled pores in 
highly disturbed sites (Rezanezhad et al., 2010). However, Price et al. (2008) on Sphagnum mosses found 
that at 25 cm (pF 1.4) water pressure, the deeper (25 cm) samples had higher unsaturated K than the upper 
(5 cm) samples due to higher water retention at deeper layers. In our study, unsaturated K values in the 
bottom layer of heavily disturbed sites were found to be higher than in pristine and intact sites at pF > 3.0 
(Figure 12). Porosity under all land uses was high (Table 2), but at higher pF values (>1.7) water retention 
showed significant differences between land uses and peat layers, indicating greater importance of pore 
size distribution than porosity. The change in K differed by orders of magnitude between sites and/or peat 
layers, but the changes in other peat properties were smaller. This could be due to the dominant role of 
macropores in water movement in peat, with macropores greater than 50 μm and less than 1 µm reported 
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Figure 12.  (a) Fitted soil water retention curve and (b) modelled hydraulic conductivity (k) curve for the (left) top peat 
layer, (center) middle peat layer, and (right) bottom peat layer under different land uses. Red shading (more disturbed 
sites), green shading (less disturbed and more pristine sites).    pF log h cm  where h (cm) is pressure head.



Water Resources Research

in intact and drained peat, respectively (Lennartz & Liu, 2019; Mustamo et al., 2016). Overall, the moisture 
content near saturation (lower pF) in the top and middle layers of strongly disturbed sites (PE, DPA) was 
lower than in intact peatland. However, at high tension, the moisture content at strongly disturbed sites was 
higher than in intact peat, indicating the dominance of micro- and macropores in disturbed and intact peat, 
respectively (Figure 12). As soil BD increases, macropores shrink while meso- and micropores increase, af-
fecting pore diameter and distribution, and, hence, soil hydraulic properties (Indoria et al., 2020). However, 
Liu and Lennartz (2019) found that macroporosity in peat soils decreased as BD increased from 0.01 to 0.2 g 
cm−3, but there was no clear trend for macroporosity as BD increased from 0.20 to 0.76 g cm−3. All but one 
(DPA top layer, BD = 0.42 g cm−3) of the peat land use cases analyzed in this study had a mean BD value of 
less than 0.2 g cm−3 (Table 2).

The values of unsaturated K of the middle and bottom layers of intact peatlands (PP and PPT) were similar, 
but the top layer showed slight differences, especially at higher tensions (divergence). Similar divergence 
in the unsaturated K curve was observed between highly disturbed sites (DPA and PE), but at high tensions 
they showed slight convergence (Figure 12).

Peat samples from relatively less decomposed peat layers are susceptible to shrinkage at high pressure heads 
during SWRC measurements, which could lead to underestimation of volumetric water content if volume 
changes are discarded (Schwärzel et al., 2002; Wallor et al., 2018). Hence, the water content at high pressure 
head (θr) was optimized in this study, as described in the methods section. Peat samples from the highly 
disturbed and decomposed peat (PE) had the highest θr (0.56), and samples from the DPF site had the 
lowest (θr = 0.02) (Table 3). The FC determined from the SWRC was greater for highly disturbed peat (PE, 
DPA, and DPF) than intact peat (Table 3). This was because extremely disturbed sites had lower drainable 
porosity (lower Sy values; Table 2) due to a higher degree of peat decomposition resulting in smaller pores, 
enabling a significant amount of water retention at high tension. Peat soil samples from intact peatlands 
had large pores (minimally decomposed peats) and could hold a greater amount of water at saturation, but 
quickly drained out even at low-pressure heads due to their relatively higher Sy values (Table 2) and slightly 
lower FC values (Table 3). In this study, highly disturbed and intact peatlands had FC values ranging from 
0.65 to 0.78 and 0.53 to 0.67, respectively. Reported measured FC values for hemic peat (moderately decom-
posed peat) ranged from 0.48 to 0.70 (Boelter, 1969; Dunne & Willmott, 1996). An increase in volumetric wa-
ter content at WP has been related to an increase in degree of peat decomposition (Parent & Ilnicki, 2002), 
as was also found in this study (Table 2, Table 3).

For all land use cases, the mean value of the vGM parameter α ranged from 0.03 cm−1 to 0.08 cm−1 and 
was related to peat depth, Sy, vGM parameter n, AM, and FC. Spearman correlation analysis revealed that 
parameter α was significantly negatively correlated with peat depth (Figure  9). This could indicate that 
less decomposed peat layers or intact peatlands have relatively smaller air entry pressure and drain faster 
due to the presence of macropores (Kechavarzi et al., 2010; Liu & Lennartz, 2019). A previous study on the 
hydraulic properties of fen peat soils used for grassland found that α ranged in value from 0.0042 cm−1 to 
0.1659 cm−1, with a mean value of 0.0231 cm−1 (Gnatowski et al., 2010). It has also been shown to be neg-
atively correlated with depth (Wallor et al., 2018). On the other hand, the shape parameter n in this study 
ranged in value from 1.31 to 1.95 for all land use cases, with the highest values for intact peatland (PP, PPT). 
In the study by (Gnatowski et al., 2010), the value of n ranged from 1.1 to 1.7 (mean 1.3) for fen peat used 
for grassland. A decrease in n with increasing BD, as found here (Figure 9), has also been reported in other 
studies (Liu & Lennartz, 2019; Weiss et al., 1998). Price et al.  (2008) found that the vGM model did not 
predict the unsaturated K satisfactorily when only using the water retention data. In our study, the vGM 
model fitted parameters predicted the unsaturated K satisfactorily. However, the following sources of error 
in the vGM predictive model should be noted: (a) measurement (instrument) errors (b) limited validation 
data (e.g., unsaturated hydraulic conductivity) (c) variations in a scale of measurement (field-scale vs. labo-
ratory-scale) and corresponding methods used, for example, Ksat was measured both at field and laboratory 
scales using a variety of methods. For example, Bittelli and Flury (2009) showed that the pressure plate 
apparatus are prone to significant errors at low water potentials, especially at water potentials less than 
−20 m H2O.
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4.3.  Bulk Density: The Most Important Indicator of Other Peat Properties

Based on the results, BD was the most important physical property determining water retention capacity in 
peat and affecting other important peat properties. The data on BD are needed to calculate the volumetric 
nutrient concentration in peat and changes in element balances due to land use change (Minkkinen & 
Laine, 1998). For example, an increase in total nitrogen concentration and dissolved organic carbon has 
been reported in drained peatlands (Menberu et al., 2017) due to increased peat decomposition (Holden 
et al., 2004; Wells & Williams, 1996). An increase in BD could also increase soil thermal conductivity, a 
property responsible for many soil processes such as freeze-thaw cycles, which could influence N2O emis-
sions (Mustamo et al., 2019). BD could be used to estimate annual N2O emissions and pore water DOC 
concentrations (Liu et al., 2019). Peatland drainage lowers the water table and increases air-filled porosity, 
thereby enhancing the microbial activity and promoting aerobic decomposition of peat, which increases the 
BD (Holden et al., 2006).

Most peat physical and hydraulic properties examined in this study were found to be either positively or 
negatively correlated to BD (Figure 9), indicating its importance. Peat fiber content and BD provide signif-
icant information about peat physical characteristics and have been used to identify types of peat material 
(Boelter, 1969) by taking BD as a proxy for degree of peat decomposition (Boelter, 1968). Based on BD and 
degree of decomposition, peat materials have been classified as sapric (most decomposed, BD > 0.195 g 
cm−3), hemic (moderately decomposed, BD 0.075–0.195 g cm−3), and fibric (least decomposed, BD < 0.075 g 
cm−3) (Boelter, 1968, 1969). In our study, the top layers of DPA (BD = 0.42 g cm−3) and PE (BD = 0.19 g 
cm−3) could be classified as sapric, the top layer of PP (BD = 0.077 g cm−3) resembled fibric peat, and the 
other peat layers under different land uses were hemic peat (Table 2). The BD was shown to be the most 
important property in describing Ksat, porosity, and Sy (Figure 9). Liu and Lennartz (2019) showed that the 
hydraulic properties of peat soils could be estimated using the BD as proxy for peat decomposition and 
compaction; they further demonstrated a relationship between the various hydraulic properties and BD. 
Water yield (Sy) was correlated significantly with BD (Figure 9). Hence, by combining BD with other easily 
measurable peat properties (peat depth and porosity), it was possible to predict the Sy of peatland with a 
high degree of accuracy (Figure 10). Many peatland hydrological functions, including flood attenuation, 
baseflow contribution to rivers, and sustaining groundwater levels in surficial aquifers, are influenced by 
peat Sy (Bourgault et al., 2017). The water storage capacity of peat, which is measured by calculating the Sy, 
is crucial in planning peatlands for wastewater treatment (Heliotis, 1989).

Liu and Lennartz (2019) showed that peat soils with BD > 0.20 gm cm−3 behave hydraulically rather like 
mineral soils. In this study, the most disturbed top layer in peatland drained for agriculture had a BD value 
greater than 0.20 gm cm−3, while in the disturbed top layer of peat extraction sites, it was around this thresh-
old. As a result, in degraded and compressed peatlands, soil erosion, and runoff will increase, especially 
near-surface or overland flow runoff during precipitation, reducing peatlands' characteristic water storage 
capacity (Heinemeyer et al., 2019).

5.  Conclusions
Use of peatlands for a variety of human uses has significantly changed the physical and hydraulic proper-
ties of the peat. In analyses of the data based on 3,073 samples from 59 peatland sites, we have shown that 
peatland uses such as agriculture and peat extraction alter the physical and hydraulic properties of the peat 
more strongly than other land uses (e.g., forestry, water treatment). The top peat layer (30 cm depth) was 
most affected by agriculture and peat extraction, as indicated by the bulk density, specific yield, and porosity 
values. At these disturbed sites, the bulk density decreased with depth, while specific yield and porosity in-
creased. Overall, disturbed sites had higher bulk density, lower hydraulic conductivity, and lower drainable 
porosity as a result of greater compression. The van Genuchten-Mualem soil water retention model was 
applied successfully to different layers of peat under different land uses. A SWRC, hydraulic conductivity 
curve, and associated van Genuchten-Mualem parameters were computed for the different land uses and 
peat layers. Overall, α and n ranged in value from 0.03 to 0.08 cm-1 and 1.31 to 1.95, respectively, and both 
were strongly related to available moisture, field capacity, and Sy. Less disturbed sites lost significantly 
more moisture at lower matric tensions (below pF 1.7). At higher tensions, the volumetric water content of 
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strongly disturbed sites was higher than at intact sites, indicating the importance of pore size distribution. 
However, at all tension levels applied, the unsaturated K values at strongly disturbed sites remained lower 
than those at intact sites. Our results can be of great value to hydrological modelers and stakeholders, for 
better parameterization of hydrological models, integration of peat soils into large-scale models, and im-
proved peatland management and restoration options.

Data Availability Statement
All data will be uploaded online (Research data storage service IDA, DOI: https://doi.org/10.23729/
cc4c1daa-2671-43a7-b9bf-8c3d786db787) step by step when ongoing projects finalized.
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