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ABSTRACT 

The attenuation of radiation in forest canopies has been studied in depth within the 

photosynthetically active radiation (PAR, 400-700 nm), but we are still lacking knowledge on 

how the spectral composition of ultraviolet radiation (UV-B 280-315 nm, UV-A 315-400 nm) 

varies. Advances in knowledge on the effects of UV radiation has led to growing interest in its 

study as a trigger of regulatory responses in plants, rather than as a stressor, which is now 

considered to be rare in plants growing under natural conditions. Furthermore, a growing 

number of studies suggest that there are complex interactions in perception, signalling and 

responses of plants to solar spectral irradiance. My dissertation research is focussed on the 

acclimation and adaptation of leaf flavonoids to solar radiation in plant taxa from contrasting 

environments assessed through the study of optically measured leaf traits. These responses 

were studied in forest understorey taxa growing in a seasonally dynamic, but mostly low UV 

radiation environment, and in taxa growing at high elevation experiencing a high UV radiation 

environment in a "common garden" setting. More precisely, we examined: 1) how understorey 

spectral irradiance changes across shade, leaf-shade and sunflecks through the spring and 

among different forest stands, 2) how optically measured leaf traits and leaf flavonoids in 

understorey plants change through the growing season, 3) how these patterns relate to seasonal 

changes in spectral irradiance especially those in UV region, 4) do the patterns of optically 

measured leaf traits from a large set of taxa, mainly growing at high elevation, follow their 

patterns of phylogenetic relatedness and 5) how do their leaf traits relate to climatic conditions 

at their original collection sites. To study these questions, we adopted relatively new 

monitoring approaches, enabling us both to measure simultaneously the in situ spectral 

irradiance from the UV to near infra-red (NIR) regions, and leaf flavonols/flavones in vivo 

repeatedly with a leaf-clip in the field. Our analysis revealed a hierarchy among those factors 

affecting spectral composition of solar radiation in forest understoreys; most importantly 

understorey position (sunflecks, shade or radiation transmitted through the canopy of leaves), 

then stand composition, and date during spring. We found the optically measured leaf 

flavonol/flavone index (Iflav) in forest understorey species to be plastic and to adjust to changes 

in climatic conditions. Furthermore, species' leaf retention strategy (e.g., summer green, 

overwintering leaves) and new leaf production were found to affect the Iflav of plants. All these 

factors are reflected in the seasonal trends we describe in leaf flavonoids, measured optically 

(Iflav) and via leaf extracts, across understorey plant communities. For mountain environments, 

our objectives were to determine factors that underpin leaf flavonoid accumulation of high 

elevation taxa and whether patterns in optically measured leaf traits followed their phylogenetic 

relatedness or climatic conditions at their origin. Both these patterns could potentially constrain 

plant responses. To see if either pattern was present, we tested for a phylogenetic signal 

particularly in Iflav from a large set of taxa growing in a high-elevation environment and the 

relationship of mean Iflav of plants to climatic variables. The tests for a phylogenetic signal 

(Pagel's λ, range from 0 to 1) gave intermediate fitted λ values with significant results for Iflav 

and anthocyanin index (Iant), while for the smaller set of taxa growing in Kumpula Botanical 

Garden (southern Finland) only chlorophyll index (Ichl) showed significant results. Despite the 

relatively low signal for Iflav, we identified certain genera with mainly positive local 

autocorrelations (local Moran's I) meaning they contained species showing either with mostly 

high or mostly low leaf trait values. This suggests potential limitations in their leaf 

flavonol/flavone accumulation responses. Hence, some of these genera may be less well 

prepared against higher maximum UV radiation and may encounter constraints in migrating 
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upwards, if other compensatory photoprotection mechanisms fail. We did not find a 

relationship between Iflav and climate at the plants' origin, while our results suggested UV 

irradiance in the plants' current microhabitat to be important, albeit not the only driver for 

flavonoid accumulation. In most taxa, we did not find a clear indication of constraints on leaf 

flavonoid accumulation, thus no evidence that high UV radiation is a detrimental factor in their 

environment. The values of these optically measured leaf traits represent the outcome of 

complex interactions between the evolutionary and biogeographical history, and acclimation 

to the current growing conditions of the plants. In general across the three studies, these results 

provide evidence that optically measured leaf traits related to flavonoid accumulation are 

largely flexible and acclimate to local changes in the environment, as well as adjusting over 

the growing season.
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TIIVISTELMÄ 

Metsien kenttäkerroksen valo-oloja ja niiden muutoksia keväällä latvuston sulkeutumisen 

myötä on tutkittu paljon erityisesti niillä aallonpituuksilla, joita kasvit hyödyntävät 

fotosynteesissä (400-700 nm). Ultraviolettisäteilyn (UV) muutoksista metsien 

kenttäkerroksessa tiedetään sitä vastoin verraten vähän. UV-säteily (UV-B 280-315 nm, UV-

A 315-400 nm) muodostaa pienen osan maanpäällisestä auringon kokonaissäteilystä, mutta sen 

tiedetään olevan tärkeä kasvien vasteiden stimuloija. Auringon säteilyn eri aallonpituuksien 

vaikutukset kasveihin eivät ole suoraviivaisia, vaan niihin liittyy monimutkaisia 

vuorovaikutussuhteita aina valon havainnoinnista tuotettuun vasteeseen asti, esimerkiksi 

fotoreseptorien signalointireittien komponenttien välillä. Eräs usein havaittu kasvien vaste UV-

säteilylle on tuottaa ja kerryttää sekundaarisia aineenvaihduntatuotteita (kuten flavonoideja), 

jotka osaltaan suojaavat kasveja säteilyn haitallisilta vaikutuksilta (engl. photoprotection). 

Tässä väitöskirjassa tutkin kasvien lehtien flavonoidien akklimaatiota ja adaptaatiota auringon 

säteilyyn kahdessa hyvin erilaisissa ympäristöissä. Metsän kenttäkerrosta luonnehtii 

tyypillisesti alhainen auringon säteilytaso ja lyhytaikainen korkea säteilytaso valoaukoissa. 

Vuoristoissa UV-säteilyarvot sitä vastoin ovat usein korkeita, ja siellä tutkimme eri puolilta 

maailmaa tuotuja kasveja samassa ympäristössä. Tutkimme 1) miten metsän kenttäkerroksen 

auringon säteilyn määrä ja säteilyn suhteellinen määrä spektrin eri aallonpituuksilla muuttuvat 

keväällä eri latvustoisissa metsiköissä, 2) miten aluskasvuston lehtien flavonoidien määrä 

muuttuu kasvukauden aikana, mitattuna optisesti sekä määrittäen lehtiuutteista, 3) miten nämä 

muutokset vertautuvat auringon säteilyn ja erityisesti UV-alueen säteilyn muutoksiin keväällä, 

4) noudattavatko vuoristossa kasvavien kasvilajien optisesti mitatut lehtien ominaisuudet 

taksonien evolutiivisia sukulaisuussuhteita ja 5) korreloivatko nämä mitatut lehtien 

ominaisuudet kasvien alkuperäisen keräyspaikan ilmasto-olojen kanssa. Käytimme näiden 

kysymysten tutkimiseen tekniikoita, jotka mahdollistivat laajan (UV-säteilystä lyhyeen 

infrapunasäteilyyn) auringon säteilyspektrin mittauksen samanaikaisesti. Lehtien 

flavonoidipitoisuuden mittaamiseen käytimme optista laitetta (Dualex Scientific+), joka 

mahdollisti toistuvan seurannan kasvia vahingoittamatta. Havaitsimme, että auringon 

säteilyspektriin metsien kenttäkerroksessa vaikuttivat eniten varjostuksen määrä (umbra, 

penumbra, valolaikku) sekä laskevassa järjestyksessä metsikkö (eroavat puulajit, tiheys) ja 

ajankohta kevään aikana. Kasvien flavonoidi-indeksissä havaittiin plastisuutta ja muutoksia 

vallitsevien ympäristömuuttujien mukaisesti. Lisäksi kasvien lehtistrategiat, sekä uusien 

lehtien tuotanto vaikuttivat kasvien lehtien flavonoidi-indeksiin. Vuoristossa kasvavien lajien 

lehtien ominaisuuksien mahdollisia rajoitteita tutkittiin testaamalla niiden fylogeneettinen 

signaali (Pagel's λ), sekä korrelaatio kasvien alkuperäisen ympäristön ilmastomuuttujien ja 

lehtien ominaisuuksien välillä. Emme havainneet korrelaatiota kasvien alkuperäisten ilmasto-

olojen sekä flavonoidi-indeksin välillä, mikä viittaa kasvien akklimaatioon niiden nykyiseen 

ympäristöönsä. Lisäksi havaitsimme, että lehtien ominaisuuksien (flavonoidi- ja antosyaani-

indeksi) fylogeneettinen signaali oli heikko mutta merkitsevä, ja pienemmästä lajiryhmästä, 

mitkä kasvoivat Kumpulan kasvitieteellisessä puutarhassa (Etelä-Suomi) ainoastaan klorofylli-

indeksi antoi merkitsevän tuloksen. Lähemmässä tarkastelussa (local Moran's I) erotimme 

sukuja, joiden lajit osoittivat samankaltaisuutta (paikallinen positiivinen autokorrelaatio) 

lehtien ominaisuuksissa, pääasiassa joko korkeita tai alhaisia indeksiarvoja. Tämä viittaa 

siihen, että näissä suvuissa flavonoidien kerääntyminen voi olla evolutiivisten 

sukulaisuussuhteiden mukaisesti rajoittunutta. Tämä voi mahdollisesti vaikeuttaa joidenkin 

lajien kohdalla migraatiota vuoristossa -varsinkin suvuissa, joissa havaitsimme pääasiassa 
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matalia flavonoidi-indeksin arvoja. Emme kuitenkaan löytäneet selkeää merkkiä rajoitteista 

vuoristoissa kasvavien lajien lehtien flavonoidien akkumuloitumisessa, joten todisteita korkean 

UV-säteilyn haitoista niiden nykyisessä ympäristössä ei ollut. Kaiken kaikkiaan tuloksemme 

osoittavat, että optisesti mitatut lehtien ominaisuudet, liittyen lehtien flavonoidien kertymiseen, 

ovat joustavia ja akklimoituvat paikallisiin ympäristön muutoksiin, mukaan lukien 

kasvukauden aikaiset muutokset. 
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1. INTRODUCTION 

1.1. Dynamic solar radiation in the forest understorey 

1.1.1. How understorey spectral irradiance relates to solar elevation angle and atmospheric 

properties 

Solar elevation angle changes seasonally, diurnally and with latitude affecting both the amount 

and spectral composition of solar radiation at the Earth’s surface. Any individual photon may 

interact with particles or molecules within the atmosphere and the longer the pathlength 

travelled -increasing with decreasing solar elevations above the horizon-, the more likely 

absorption and other physical interactions (scattering) are to occur (Monteith and Unsworth, 

2013) (Figure 1). Global radiation consists of two components: direct and diffuse radiation 

(Monteith and Unsworth, 2013). Diffuse radiation is typically scattered multiple times within 

the atmosphere before reaching Earth’s surface and therefore has changed its original direction 

of propagation (Blumthaler, 2012). The size of molecules or particles influence their scattering 

properties (Monteith and Unsworth, 2013). Rayleigh scattering efficiency of molecules is 

proportional to the inverse fourth power of the wavelength, λ-4 (illustrated in Lindfors and 

Ylianttila, 2016), while the dependency between scattering efficiency and wavelength is 

usually weaker for larger particles (Mie scattering) (Ångström, 1964). As a result of these 

complex interactions, UV-B radiation is proportionally more diffuse compared to longer 

wavelengths (such as PAR), although the proportion of diffuse radiation increases with 

decreasing solar elevation angle and with the amount of scattering molecules and particles in 

the atmosphere (Grant, 1997, Seckmeyer et al., 2008). Furthermore, diffuse UV-B radiance 

(directional) is more homogenously distributed across the sky hemisphere than UV-A or PAR, 

although not isotropic (Blumthaler et al., 1996, Grant et al., 1997), while relative variation in 

UV-B irradiance seasonally and diurnally is more pronounced than in UV-A irradiance, with 

more pronounced UV-B irradiance maxima around midsummer and noon (Seckmeyer et al., 

2008). Although the main proportion of incident UV radiation at the ground level is UV-A 

radiation, the higher energy of photons within the UV-B region may produce particular effects 

in plants (Robson et al., 2015b, Jenkins, 2017). 

 Absorption of specific wavelengths of radiation by elements, mainly in the outer layers 

of the sun, create typical valleys in the spectrum of extra-terrestrial solar radiation called 

Fraunhofer lines (for the extra-terrestrial solar spectrum see Wehrli, 1985). In addition, 

absorption by constituents of the Earth's atmosphere (e.g., H2O and O2) creates characteristic 

drops in the terrestrial solar spectrum (Gueymard, 2004). Photochemical reactions in the 

stratosphere result in the attenuation of all UV-C radiation and most of the UV-B radiation 

from terrestrial radiation (WMO, 2018). Changes in stratospheric ozone concentration 

seasonally, with latitude, or historically due to emissions of ozone depleting substances 

(chlorofluorocarbons and similar compounds) affect terrestrial UV-B radiation (WMO, 2018). 

Especially in polar regions, cold temperatures in the polar vortex are among a combination of 

factors that promote photochemical reactions, which may result in the formation of 

stratospheric ozone holes (WMO, 2018). In general, weather conditions may significantly alter 

the spectrum of radiation at ground level and in this context clouds are particularly important 

(Bais et al., 2019). Effects of clouds on terrestrial radiation are variable yet in general clouds 

reduce irradiance and increase the proportion of diffuse to direct radiation (Bais et al., 2019). 

However, under a partially clouded sky, radiation reaching ground level can sometimes 

increase beyond that received under a clear-sky conditions, both in the PAR and UV regions, 
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because of additional light scattered from clouds adding to unattenuated direct radiation 

(McKenzie et al., 2017, Bais et al., 2019). This enhancement effect is higher for the UV-A and 

PAR regions than for the UV-B region, and typically results in a less than 20 % increase in 

radiation compared to clear-sky conditions for UV-B radiation, while for the PAR region an 

increase of up to 50 % may occur (McKenzie et al., 2017, Bais et al., 2019). 

 

 
Figure 1. Summarising general environmental factors affecting terrestrial solar spectral 

radiation, especially UV radiation, and respective plant responses in contrasting mountain and 

forest understorey plant communities relevant to this study. 

 

1.1.2. How understorey spectral irradiance relates to forest stand architecture and canopy 

foliage 

Radiation within forest understoreys is typically enriched in far-red and NIR that are less 

efficiently absorbed across plant canopies than blue, red and UV regions of solar radiation 

(Grant, 1997). Correspondingly, individual leaves reflect and transmit more of the green, far-

red and NIR regions relative to other spectral regions (Grant, 1997, Qi et al., 2010). 

Additionally, woody material increasingly reflects radiation at longer wavelengths towards the 

NIR (e.g., Rautiainen et al., 2018 and references therein), which can influence the composition 

of spectral irradiance measured in forest understoreys. Trees optimise their light use efficiency 

by adjusting their leaf traits to suit the light conditions they experience at various levels within 

the canopy (Niinemets, 2012, Raabe et al., 2015). The regulation of traits, such as those related 

to leaf morphology and anatomy, foliage distribution and leaf inclination angle may serve to 

improve intra-canopy light interception (reviewed by Niinemets, 2010). Interestingly, previous 

studies -although concerning a crop species- imply that differences in leaf inclination angles 

affect the received UV-B doses incident on the leaf (Grant, 1999), even though the UV-B 

region has higher diffuse component compared to PAR, and it should hence be less dependent 

on the direction. However, it may be that plants more commonly use their capacity to adjust 

leaf inclination angles to optimise their light interception rather than to avoid excess sunlight 

(Robson et al., 2015b). 
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 The consequences of differences among tree species in their architecture and foliage 

are perhaps most strikingly demonstrated by comparison of evergreen and deciduous forests 

(Federer and Tanner, 1966; evergreen: Coombe, 1957, Dengel et al., 2015; deciduous: 

Baldocchi et al., 1984, Grant et al., 2005). For instance, changes in light penetration through a 

canopy of conical evergreen species is greatly affected by solar elevation angle, whereas the 

most apparent changes in deciduous stands follow phenological phases of leaf-out and leaf fall 

(Leuchner et al., 2011). Diffuse radiation, particularly blue, which penetrates deeper within the 

canopy (Dengel et al., 2015), partially contributes to a reported increase in net ecosystem 

exchange under cloudy conditions (Urban et al., 2007). Similarly, due to greater scattering 

within the UV region in the atmosphere, the UV-B:PAR ratio is often reported to be higher in 

the shaded portion of the understorey than in sunflecks or sunlit portions of gaps (Brown, 1994, 

Flint and Caldwell, 1998). In summary, forest density and canopy architecture are important 

features defining the understorey light conditions.  

 

1.1.3. Dynamic changes in spectral irradiance in the forest understorey 

In nature, plants grow under dynamic and fluctuating environmental conditions rather than 

under the static light and stable environment often used in controlled-environment experiments. 

Although these experiments have proven to be extremely valuable in revealing the 

physiological and molecular mechanisms that regulate plant processes, more research is needed 

under realistic light conditions to better understand the ecophysiology of plants in their habitat. 

Under closed forest canopies, solar radiation may pass through gaps in the crown, creating 

typically brief sunflecks on the forest floor (Smith and Berry, 2013). Depending on the height 

of the trees and the size of the canopy gap, a sunfleck may consist of a penumbral ring typically 

surrounding the direct beam, or it may be entirely penumbral (Smith et al., 1989). Although 

definitions vary, the most frequent sunflecks are typically short, lasting only few seconds and 

of relatively low irradiance, while on rare occasions values can reach close to the irradiance at 

the top of the canopy (Pearcy, 1990, Chazdon and Pearcy, 1991, Way and Pearcy, 2012, Smith 

and Berry, 2013). This short duration of sunflecks contrasts with the definition of sun-patches, 

which is used sometimes to describe larger patches that last at least 8 minutes (Smith and Berry, 

2013). Sunflecks often represent a large portion of the daily radiation received by plants in the 

forest understorey (Chazdon and Pearcy, 1991, Way and Pearcy, 2012). 

 

1.1.4. Quantifying spectral irradiance in the forest understorey 

In the past and currently, quantifying PAR has been of great interest because of its significance 

for photosynthesis and thus in estimating e.g., potential carbon assimilation under and within 

forest canopies (Baldocchi et al., 1984, Grant, 1997, Leuchner and Werner, 2007). Several 

different measuring techniques have been used depending on the information sought. These 

often involve using broadband instruments that integrate irradiance over a wavelength region, 

such as PAR (Aphalo et al., 2012, Akitsu et al., 2017). Alternatively, scanning 

spectroradiometers can be used to capture spectral irradiance: they can have high performance 

(allow double monochromator arrangement), but are typically large and difficult to move 

(Aphalo, 2016). Although these two approaches are well suited for many purposes, they fail to 

describe dynamic changes in spectral irradiance in the understorey with the spectral or temporal 

resolution desired for our research. The broadband instruments lack the spectral resolution to 

capture subtle changes in the spectral composition of radiation, whereas scanning 

spectroradiometers are too slow to capture the fast dynamic changes between sunflecks and 
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shade that occur under forest canopies. Both these types of changes are meaningful for plant 

photobiology, and hence finding a way to obtain this information is potentially of value to 

researchers. An advantage of a portable array spectroradiometer with a wide spectral range is 

its ability to measure multiple spectral regions simultaneously and promptly, providing 

information on dynamic changes in spectral irradiance (Aphalo et al., 2012, Aphalo, 2016). 

However, measuring UV radiation and especially UV-B radiation is technically challenging, 

mainly because UV-B radiation represents a very small faction of the terrestrial solar radiation. 

Thus, in the UV-B region, the signal-to-noise ratio of measurements can be low, making it vital 

that stray light, slit function and signal noise are accounted for (Aphalo et al., 2016) to avoid 

obtaining erroneous and potentially misleading results (Flint et al., 2008). This entails regular 

calibration and proper operation of the spectroradiometer using a tailored protocol to obtain 

acceptable accuracy and precision for the UV-B region as well as the PAR (Ylianttila et al., 

2005, Aphalo et al., 2012). Spectral data are complex to analyse, and commonly solar 

irradiance data are summarised as integrals of photon or energy irradiance over wavelength 

regions, such as photon irradiance over the UV-B region. However, using this simple approach 

some important information contained in high resolution (~1 nm) spectral data is ignored. In 

contrast, spectral analysis can extract this additional information about the structure of spectral 

irradiance. Statistical approaches can be used to look for differences in spectral irradiance and 

to identify spectral features by comparing entire spectra simultaneously, such as functional data 

analysis (Ramsay and Silverman, 2005) and wavelet transformation (Jach, 2015). A simpler 

approach to identify differences between spectra is the application of thick pen transform (TPT) 

and thick pen measure of association (TPMA) (Fryzlewicz and Oh, 2011). This technique has 

the additional advantage that it can be applied to analyse non-equispaced spectra, as are 

obtained when there is high spectral resolution. Other benefits of this method are its relative 

simplicity and its visual interpretability. 

 

1.2. Solar radiation and climate in high-elevation environments 

Mountain environments are typically characterised by high maximum integrated biologically 

effective UV-B irradiance (mW m-2), and in general unweighted, but particularly biologically 

effective UV-B irradiance increases with lower latitudes and with increasing elevation 

(Caldwell et al., 1980). In the Alps for instance, a rise of 1000 m in altitude (altitude effect of 

annual total global radiation, UV-B measured as sunburn units, SUy-1) may cause a 11-19 % 

increase in biologically effective UV radiation when compared to UV radiation at 577 m a.s.l 

(Blumthaler et al., 1992). Hence, mountain environments and the species adapted to live in 

them have been of interest to researchers in the context of plants' tolerance of high UV-B 

radiation (e.g., Robberecht et al., 1980), even before concerns about the effects of ozone 

depletion (Caldwell, 1968). This remains of importance today, particularly in regions where 

climate change and ozone depletion interact to further increase the severity of the environment, 

e.g., in the high Andes (reviewed by Bornman et al., 2019). However, the rate of increase in 

UV irradiance with increasing elevation is not universal in practice, as this rate may vary among 

geographical and climatic regions (Blumthaler, 2012). Furthermore, high albedo, particularly 

found with snow cover, may increase the downward UV radiation which is backscattered by 

the atmosphere, including clouds, to the ground (Caldwell et al., 1980, Gröbner et al., 2000). 

 In addition to the described climatic conditions in mountains, high-elevation 

environments typically have short growing seasons, late snowmelt and frequent temperatures 

below 0 °C (Körner et al., 2019). They harbour plant species which have adapted physiological 
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and morphological features allowing them to live under these conditions (Körner et al., 2019). 

However, environmental changes driven by climate change have already led to observed range 

shifts within different mountain regions in some species, and this trend is also expected to 

continue into the future (Rumpf et al., 2018, He et al, 2019). Similarly, range shifts are 

predicted for plants species from high latitudes and boreal regions (Chen et al., 2011, 

Wróblewska and Mirski, 2018). 

 

1.3. Common plant responses to changes in received solar radiation 

Early studies using particularly high doses of UV-B radiation have led to a realisation that the 

background PAR and UV-A radiation may play an important part in UV-B induced responses 

(Caldwell et al., 1994, Jansen et al., 1998, Krizek, 2004). For instance, plants grown under low 

PAR may have increased sensitivity to UV-B radiation (Teramura, 1986) and UV-B-induced 

DNA damage may be alleviated by photolyase activated with UV-A radiation and blue light 

(Sancar, 1994, Jansen et al., 1998, algae: Pescheck, 2019). In recent years, the research 

emphasis has shifted from damage to consider UV-B radiation as a trigger of regulatory 

responses (reviewed by Björn, 2015). Furthermore, the concept of eustress has been proposed 

with respect to UV-B radiation, whereby low UV-B irradiance may provide cross-tolerance to 

high irradiance (Klem et al., 2015) and for drought (partial amelioration of water stress by UV: 

Robson et al., 2015a). Studying understorey species adapted to environments with generally 

low solar radiation but occasional rapid increases, may provide further answers to questions 

about the role of solar radiation in provoking cross-tolerance. 

 The photoreceptor UV RESISTANCE LOCUS 8 (UVR8) mediates the perception of 

UV-B radiation (and UV-A radiation up to 350 nm) in plants (Brown et al., 2005, Rizzini et 

al., 2011, Morales et al., 2013, Rai et al., 2020). UVR8 mediates acclimation and 

photomorphogenesis in response to UV, as well as gene expression participating in, e.g., 

flavonoid biosynthesis (Morales et al., 2013, Robson et al., 2015b, Jenkins, 2017, Rai et al, 

2018, Rai et al., 2020). Furthermore, signalling downstream of UVR8 shares components with 

signalling downstream of phytochromes, and UVR8 plays a role in the moderation of the shade-

avoidance response by sunflecks (Moriconi et al., 2018). There is also evidence of multiple 

antagonistic interactions between signalling pathways downstream of UVR8 and 

cryptochromes in response to UV radiation (Rai et al., 2018 & 2020). Phenotypic changes that 

are characteristic of photomorphogenesis induced by UV-B radiation often include thicker 

leaves with short petioles, short stems and increased axillary branching (Robson et al., 2015b). 

Additionally, cryptochromes and phototropins can absorb within the UV-A region, leading 

UV-A radiation to affect, for example, plant biomass accumulation and morphology (reviewed 

by Casal, 2013 and Verdaguer et al., 2017). Interestingly, UV-A radiation can result in an 

increase in photosynthesis when combined with reduced leaf phenolics and the lack of a cuticle 

in the sub-alpine shrub Pimenea ligustrina Labill. (Turnbull et al., 2013). There are 

contradictory findings on the effect of UV-A radiation on leaf flavonoid induction and 

accumulation, and this response appears to be species-specific (reviewed by Verdaguer et al., 

2017). Often, it is only possible to identify this effect by considering compositional changes in 

the flavonoid profile or isolated individual compounds, not necessarily from the total pool 

(reviewed by Verdaguer et al., 2017). Plant responses to the lowered R:FR ratio perceived 

through phytochromes in shade have been well studied (Ballaré and Pierik, 2017). Plants utilise 

this spectral cue as a signal of impending neighbourhood competition, to initiate the shade 

avoidance syndrome (SAS) (Mazza and Ballare, 2015). However, this response is often lacking 
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in the shade-tolerant species commonly found in forest understoreys, that are adapted to live in 

unavoidable shaded conditions (Gommers et al., 2013).  

 Summarising, changes to the spectral composition of solar radiation may be perceived 

and utilised differently by plants. A plethora of other interesting light-induced plant responses 

beyond those mentioned here have been identified, especially many related to photosynthetic 

adjustments and carbon gain in fluctuating light conditions (e.g., Way and Pearcy, 2012, 

Yamori, 2016). UV radiation is interesting as it is the shortest spectral region perceived by 

plant photoreceptors, and it is important in eliciting various plant responses that vary according 

to complex interactions among spectral regions and with other environmental stimuli, causing 

interactions between signalling pathways. Gaining knowledge of these responses in realistic 

spectral irradiances that plants experience in nature is crucial. 

 

1.4. The multiple roles of flavonoids in plants 

Flavonoids are a large group of secondary metabolites produced by plants and consequently 

they are widely distributed in the plant kingdom (Grotewold, 2006). The vast diversity of 

flavonoid compounds with a carbon skeleton stems mainly from the modification mechanisms 

e.g., glycosylation and hydroxylation (Grotewold, 2006). In turn, the structure of flavonoids 

affects how strongly they absorb light at a particular wavelength (Cockell and Knowland, 

1999). Flavonoids absorb radiation mainly within the UV region, with absorption maxima of 

major groups such as flavonols and flavones at the UV-A region (Agati et al., 2013: Figure 1 

for flavonoid glycosides, Cerovic et al., 2002: Table 1 for aglycones). Flavonoids are found in 

vacuoles of epidermal and of adjacent mesophyll cells, but also in epidermal cell walls, 

trichomes and chloroplasts (Agati et al., 2007, Tattini et al., 2007, Agati et al., 2009). 

Flavonoids have multiple roles in plants, and they are involved in e.g. photoprotection, insect 

pollination, plant-pathogen interactions and auxin transport (Winkel-Shirley, 2001, Jansen, 

2002, Grotewold, 2006, Agati et al., 2013, Brunetti et al., 2018). Studies with high or 

supplemental UV-B irradiance have commonly found plants to produce flavonoids and related 

phenolic compounds in response to UV-B radiation (meta-analysis: Searles et al., 2001). 

However, when effects of ambient solar UV-B radiation on leaf flavonoid responses are studied 

in plants, a weak relationship between the accumulation of flavonoids and received UV 

irradiance is often produced (Liakoura et al., 2001, Coffey et al., 2017). The accumulation of 

flavonoids may occur in absence of UV radiation, under only PAR (Agati et al., 2009, Barnes 

et al., 2013), or at low temperatures (Bilger et al., 2007). In leaves the accumulation and 

biosynthesis of flavonoids in response to UV-B radiation is mediated via UVR8 (Brown et al., 

2005). Studies have reported induced synthesis of dihydroxy B-ring-substituted flavonoids 

upon increased irradiance, and an increase in their ratio compared to monohydroxy B-ring-

substituted flavonoids (e.g., Majer et al., 2014, reviewed by Agati et al., 2010). Dihydroxy B-

ring-substituted flavonoids are thought to have a better potential to scavenge reactive oxygen 

species (ROS) (Agati et al., 2010). However, there are still open questions related to potential 

flavonoid antioxidant functions in planta (Hernández et al., 2009, Agati et al., 2020). 

 In the past, flavonoids and related phenolic compounds have often been studied in 

context of UV protection, particularly in mountains with high UV-B radiation. These studies 

revealed that the transmittance of the leaf epidermis, particularly in the UV-B region, is 

typically relatively low i.e., < 2 % (Robberecht et al., 1980). However, over large 

environmental gradients the received UV-B radiation has only occasionally been reported to 

affect leaf flavonoid contents: with simple leaf extracts quantifying UV-absorbing compound 
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content over elevation with positive relationship (Rozema et al., 1997) or the opposite, with 

positive relationship over latitude in flavones, applying more sophisticated methods (Tripp et 

al., 2018). While environmental conditions, such as light and temperature, are typically found 

to affect leaf flavonoid synthesis and accumulation, in some species only small changes has 

been detected (Barnes et al., 1987, Ziska et al., 1992, Nybakken et al., 2004, Barnes et al., 

2017). Furthermore, recent studies suggest there may be short-term transgenerational effects 

of UV radiation (Yan et al., 2020, Jiang et al., 2021, Zhang et al., 2021) or long-term effects 

whereby e.g., a characteristic association of leaf flavonoids with specific Pinus sylvestris L. 

populations remained after almost a century (Oleszek et al., 2002).  

 There are still many unknowns about the roles of flavonoids in plants, and their 

synthesis and accumulation according to environmental stimuli. In this doctoral dissertation, 

trends in leaf flavonoids were investigated, mainly through optical in planta measurements 

with a leaf-clip instrument, from large set of taxa varying in their growing and original 

environment, their ecology and relatedness. These results were interpreted based on spectral 

irradiance measurements done to characterise the growing environments. 

 

1.5. Research questions 

The research questions of this PhD study were: 

1. How does spectral irradiance change during spring phenology in different forest stands of 

varying canopy tree species composition (I); 

2. How do leaf flavonoids and the optically measured index based on absorbance, change 

during the growing season in understorey plant communities and individual species (II); 

3. Are changes in spectral irradiance, especially those within UV region, important in defining 

changes in leaf flavonol/flavone accumulation of plant taxa from open high-elevation 

environments (III) and shaded forest environments (II); 

4. Do patterns in optically measured leaf traits from a large set of taxa, mostly adapted to high 

UV environments, follow the phylogenetic relatedness of the taxa (III); 

5. Is there a relationship between the leaf traits of plants growing in a botanical garden and 

the climate at their original collection site (III); 

6. How applicable is the optical leaf-clip method for quantifying leaf flavonoids across 

different plant taxa (II, III)? 

 

2. MATERIALS AND METHODS 

2.1. Study sites and experimental designs 

2.1.1. Forest stands in Finland 

Forest stands at Lammi Biological Station (61°3’14.6” N, 25°2’13.8” E) were chosen for this 

study according to their various canopy species, age and structure, as well as the richness of 

their understorey plant communities (I, II). Three different-aged deciduous Betula sp. L. -

dominated stands (henceforth: Betula old, young and mixed with other canopy species), one 

deciduous Quercus robur L. stand and one evergreen Picea abies (L.) H. Karst. stand were 

chosen. All stands could be considered typical of Finnish forests and their respective 

understorey communities, apart from the Q. robur stand, an atypical canopy species in Finland 

which was planted in the 1950’s. In each stand, four measurement points (radius of 3 m) were 

established approximately equidistance between the nearest trees, while minimising the 
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potential mixing effects from e.g. abundant high-grown tree seedlings. Prior testing of the 

spatial heterogeneity in spectral irradiance led us to consider four locations to be the minimum 

number of replicate patches required to describe stand-level variation in irradiance (Hartikainen 

et al., 2018: I) and in the plant communities, albeit enabling measurements close to solar noon. 

 The study commenced over spring and summer of 2015 with 4-5 repeated 

measurements during this time to capture the periods when irradiance in the forest understorey 

was subject to the greatest changes. A time course of spectroradiometer measurements was 

taken on day of the year (DOY) 115, 142/144, 156 and 202, and corresponding optical leaf trait 

measurements were taken on DOY 114, 142-144, 156/157, 202/206, and additionally on DOY 

125 when due to partly cloudy weather no irradiance measurements were recorded. Since the 

fibre-optic cable to the diffuser broke during the measurements on DOY 202, no data from the 

P. abies stand or three measurement points from the Betula young stand were obtained on this 

day. The study continued in 2016, allowing a further dataset consisting of optical leaf trait 

measurements, from DOY 120 extending further into autumn on DOY 292, to be collected for 

six selected understorey species from the same stands. These understorey species were among 

the most abundant and were selected based on their contrasting leaf retention strategies and 

phenological timing. Plants measured for this dataset were growing within the stand, outside 

the established measurement points. Additionally, records of daily temperature (max, min, 

mean) and snowpack depth were obtained from Lammi Biological Station’s weather station 

managed by the Finnish Meteorological Institute. 

 

2.1.2. Botanical gardens in the French Alps and in Helsinki, Finland 

Our other study site at the Lautaret Pass in the French Alps (2100 m a.s.l.; 45°2’9” N, 6°23’59” 

E) was chosen to study species mostly adapted to high UV radiation environments, and for its 

high diversity of taxa originating from around the world (III). The plants established in the 

Joseph Fourier Alpine Station's alpine botanical garden (Université Grenoble Alpes, France) 

originate from seeds collected either directly from their original high-elevation habitat, or from 

the collections of other botanical gardens. Before they are planted in the garden, their seeds are 

germinated in the university facility in Grenoble and acclimated at the outdoor seed nursery of 

the alpine botanical garden. Nevertheless, most species measured were planted in the garden 

several years prior to our sampling so could be considered well established and acclimated to 

their growing environment. Sampling in the alpine botanical garden was made over two 

consecutive summers (19.6.-1.7.2014 and 21.6.-6.7.2015). Temperature (mean, max, min) and 

daily maximum photosynthetically active radiation data were obtained from e-METSYS/JFAS 

weather station (Vantage Pro 2 Plus, Davis Instruments, Hayward, CA, USA) located at the 

study site. 

 Additional measurements were made of plants growing in the botanical garden at 

Kumpula, Helsinki in southern Finland during June of 2015 (LUOMUS, University of 

Helsinki, Finland) (III). There, 27 of the same species and in total of 86 taxa from the same 

genera or families as in the alpine botanical garden were sampled, in order to compare plants 

growing at high elevation with those growing in a different environment at high latitude but 

low elevation. These measurements were made to assess the flexibility of optically measured 

leaf traits. The species in Kumpula Botanical Garden originate from the Northern Hemisphere 

and from environmental conditions resembling those found in Finland. Temperature (max, min, 

mean) and solar radiation (direct, diffuse, global) data were obtained from a nearby weather 

station (within ~ 500 m) in Kumpula maintained by the Finnish Meteorological Institute. 
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Coordinate data of the plants' original collection sites were provided by the courtesy of Rolland 

Douzet from the alpine botanical garden, and from LUOMUS database for Kumpula Botanical 

Garden. Those species lacking coordinate data but including specific information of their 

original location and elevation, were given approximate coordinates according to the expected 

maximum exposure, usually southern slope, at their original collection sites. 

 

2.2. Methods for depicting and analysing spectral irradiance in forest understoreys 

To accurately quantify solar spectral irradiance reaching the forest understorey, from the UV 

to near-infrared regions in rapidly changing conditions, we used a portable CCD array 

spectroradiometer Maya 2000 pro (Ocean Optics, Dunedin, FL, USA) with a spectral range of 

200-1100 nm attached to a D7-H-SMA cosine diffuser (Bentham Instruments Ltd., Reading, 

UK) with a fibre-optic cable (I, II). To ensure that we made accurate outdoor measurements of 

solar radiation, especially within UV-B region, the device was calibrated annually by Finnish 

Radiation and Nuclear Safety Authority (Ylianttila et al., 2005, Aphalo et al., 2016, Aphalo, 

2017). Further technical details on the spectral irradiance analysis may be found in Aphalo et 

al. (2016 and 2017).  

 Each measurement set (finished within c 20 sec) contained up to 100 consecutive 

irradiance spectra, i.e., ideally 40 spectra in the darkest environments with the longest 

integration times and 100 spectra in the brightest environments with the shortest integration 

times. Integration time was set manually to maximise signal-to-noise ratio while avoiding 

saturating the array. Directly after each set of measurements, control measurements without 

any UV (blocked with a polycarbonate filter) and without any UV radiation or visible light (by 

entirely obscuring the diffuser) were made. The first control measurement corrects for stray 

visible light on the array recorded incorrectly as UV radiation, and the latter obtains a baseline 

of temperature-dependent dark noise and identifies any bad pixels (further details in Aphalo et 

al., 2016 and Aphalo, 2017). A spirit level on a tripod was used to ensure the horizontal 

alignment of the diffusor in the field at a standard 40-cm height from the ground. In addition, 

the spectroradiometer was covered with a white cloth to minimise heating/cooling of the 

equipment. Field measurements were timed around solar noon (within max. 3 hours) and made 

under as close to clear-sky conditions as weather in the field allowed, to capture the maximum 

solar irradiance. At each measurement point, three sets of measurements were made to record 

the variation in understorey irradiance: 1) in a sunfleck with mostly direct radiation (Smith and 

Berry, 2013), 2) within the umbra (shade) of a tree trunk capturing diffuse radiation, and 3) at 

a point in the understorey where radiation penetrated through the leaves in the upper canopy 

creating penumbra (henceforth understorey position leaf). All details related to the post-

processing protocol of the solar irradiance data may be found in Hartikainen et al. (2018) (I).  

 Using a similar protocol, measurements from 29 locations within the alpine botanical 

garden were made in 2015 to compare the relationship between solar spectral irradiance in the 

microhabitats of measured plants and their mean flavonol/flavone index (Iflav) (III). 

Additionally, one measurement from near to Kumpula Botanical Garden, from an open 

environment (Viikki campus, University of Helsinki) was used to include data from Finland to 

the analysis. Spectral irradiance measurements were combined with mean Iflav of the adjacent 

plants according to their categorised light exposure. 

 Spectral analyses of Lammi forest understorey irradiance data was done by first 

applying TPT, utilising upper and lower boundaries of areas obtained from differing 

thicknesses of “pens” (I). Subsequently, TPMA for spectra normalized according to maximum 
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values was used to make bivariate and multivariate comparisons between spectra from differing 

stands, understorey positions and dates. TPMA quantifies cross-dependence between spectra, 

whereby the overlap or lack of overlap of the intervals (of normalized TPT) results in either 

positive (0 to 1) values revealing the ratio of the intersection to the union, or negative (-1 to 0) 

values indicating the ratio of the gap to the shortest interval containing union respectively. All 

further details related to our spectral analysis may be found in Hartikainen et al. (2018) (I). 

 

2.3. Climate data from the original collection sites of plants 

To study whether there was a significant relationship between climate at the original collection 

site of the plants growing in two botanical gardens and their measured Iflav, we obtained 

common climate variables for these locations from databases (III). Temperature and 

precipitation (annual mean temperature and precipitation, and their seasonality, min and max 

temperature of the coldest and warmest months) and solar radiation variables (annual mean 

solar radiation, its seasonality, highest and lowest weekly solar radiation, solar radiation of the 

wettest, driest, warmest and coldest quarters) were obtained from 59 original collection sites 

of the plants from WorldClim (Bio 1-15, Fick and Hijmans, 2017) and CliMond (Bio 20-27, 

Hutchinson et al., 2009, Kriticos et al., 2014) databases. Mean monthly solar radiation was 

acquired from WorldClim (Fick and Hijmans, 2017). WorldClim data are based on 

observations from years 1970-2000 with resolution of 30 arc seconds, and CliMond from years 

1961-1990 with resolution of 10 arc minutes. A global UV-B radiation climatology based on 

observations over 2004-2013 with resolution of 15 arc minutes (Beckmann et al., 2014) was 

used to obtain the UV-B radiation (products 1-6 and mean monthly UV-B radiation) from the 

plants' original collection sites. 

 

2.4. Quantifying leaf flavonoids and optically measured leaf traits in plant taxa from 

different habitats 

2.4.1. Optically measured leaf traits 

Optical leaf trait measurements were made by using leaf-clip Dualex Scientific+ which 

compares chlorophyll fluorescence (measured between 710-900 nm) stimulated by light beams 

of differing wavelengths (375 nm for flavonols/flavones, Iflav, 515 nm for anthocyanins, Iant) 

and that of a reference beam at 635 nm to give an index value (Goulas et al., 2004, Cerovic et 

al., 2012). The beam wavelength of 375 nm is chosen to gain a strong signal (Goulas et al., 

2004), and the major absorbers at 375 nm are suggested to be flavonols in dicotyledons and 

flavones in monocotyledons (Cerovic et al., 2002 & 2012). These compounds are commonly 

found among flowering plants (Tripp et al., 2018 and references therein). The chlorophyll index 

(Ichl) is acquired by comparing the transmittance at 710 nm and at reference wavelength of 850 

nm (Cerovic et al., 2012) where chlorophyll does not absorb. 

 From Lammi forest stands, at least four individual plants of each species present at each 

measurement point were measured (II). While we intended to always compare four different 

plants, we cannot exclude the possibility that sometimes measurements were unwittingly made 

from clonal plants which were not distinguishable in the forest understorey. In many of the 

understorey species we measured, vegetative propagation is common (e.g., Stehlik and 

Holderegger, 2000, Berg, 2002, Vandepitte et al., 2010). As a standard procedure the first 

mature, uncovered and typically the 3rd or 4th distal leaf (adaxial side) was measured to exclude 

major differences in leaf age. For this reason, typically only one leaf was measured per plant. 
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Additional comparisons of younger and older leaves were made for a set of species: Fragaria 

vesca L., Hepatica nobilis Schreb., Oxalis acetosella L., Vaccinium vitis-idaea L. (species with 

overwintering leaves) and Campanula persicifolia L., Convallaria majalis L. (summer green 

species). In 2016, we further extended the standard leaf measurements and measured both leaf 

sides (adaxial and abaxial) to gain knowledge on the functionality of the optical method. To 

minimise the effect of potential diurnal changes in leaf flavonoids (Barnes et al., 2016) and 

chloroplast movement (Williams et al., 2003) on optical measurements, we timed the sampling 

as close to solar noon as possible (± 3 hours). Visibly healthy leaves were selected for 

measurements to avoid herbivory or other damage that can stimulate secondary metabolism 

from influencing the results. 

 A similar protocol for optical leaf trait measurements to this was used in the alpine 

botanical garden and Kumpula Botanical Garden with the difference that no measurement 

points were established (III). Instead, all those taxa growing in the alpine botanical garden that 

were feasible to measure with Dualex were sampled (plants from 680 taxa and developmental 

stages), with a minimum of four individuals (or ramets) per taxa (10 266 measurements). From 

Kumpula Botanical Garden, 27 of the same species were sampled as those from the alpine 

botanical garden, and in total of 86 taxa (504 measurements) representing same genera or 

families as those measured in the French Alps. In addition, plants from the alpine botanical 

garden were categorised according to their phenology (scale of 1-10; not fully opened leaves = 

1, senescent = 10), and approximate leaf inclination angle (the angle between the horizon and 

leaf blade, scale of 1-9; for erect = 1, downward leaves = 9). Locations within both botanical 

gardens were categorised according to their solar radiation exposure (scale of 1-4; mostly 

shaded during the day by other plants = 1, exposed to full sunlight throughout the day = 4) to 

give an indication of their micro-environment.  

 

2.4.2. Whole leaf extracts 

Quantifying total or individual flavonoids present in leaves can be done by using a variety of 

techniques (Julkunen-Tiitto et al., 2015), and crude leaf extracts in acidified methanol are the 

simplest. Leaf extracts were made from leaves sampled from selected taxa at both sites (5 

species from Lammi forest stands and 50 taxa from the alpine botanical garden). The 

absorbance of these extracts was compared with optically measured Iflav. The selection of taxa 

for these comparisons was based on previous year’s optical leaf trait surveys. 

 In Lammi, five common understorey species were chosen for sampling on 5-6 

occasions (n = 15 for each species and sampling time) during the spring and summer from two 

forest stands with contrasting tree canopies (Q. robur and P. abies) (II). Anemone nemorosa L. 

from both stands, Aegopodium podagraria L. and Convallaria majalis from the Q. robur stand, 

and Hepatica nobilis and Oxalis acetosella from the P. abies stand. The same leaves were first 

measured with Dualex from the middle section of the lamina avoiding major veins, and 

subsequently two leaf-disks (2 × 0.28 cm2 area) from the same part of each leaf were punched 

directly into 3 ml of acidified methanol (99.9 % MeOH acidified with HCl 1:200). Extracts 

were then directly placed into a cool box on ice and in darkness, where they were kept for the 

whole daily sampling period, until subsequent transfer into +6 ° C overnight in a fridge. Leaf 

extracts were analysed with a spectrophotometer (Shimadzu UV-2501 PC UV-VIS, Kyoto, 

Japan) using a quartz cuvette and obtaining absorption spectra from 190-900 nm. Samples were 

diluted with methanol where necessary to keep absorbance values  2. Leaf extract absorbance 

at 375 nm, mean absorbance integrated over the UV-B region, UV-A region and the whole UV 
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(UV-B plus UV-A) region were used to compare the relationship between leaf extracts and 

optically measured Iflav. Extra leaf disks were collected from the same or adjacent plants to 

obtain fresh and dry weights. Fresh weight was measured shortly after field sampling and dry 

weight after drying at +50 ° C for > 24 hours. 

 Leaf extracts from plants growing in the alpine botanical garden were made from 50 

selected taxa during summer, 2015 (III). Leaves from four individuals (or potentially ramets) 

from each taxon were collected in sealed plastic bags placed in the cold and dark for subsequent 

sampling within approximately 1 hour. Dualex and leaf disk sampling, and preparation of leaf 

extracts, were done as described previously. Leaf extract absorbance was measured at 305 and 

375 nm with spectrophotometer (Beckman DU series 64 UV-VIS, Brea, USA) using a quartz 

cuvette, and sample volume was diluted to keep the absorbance values ≤ 2.7. Two extra leaf-

disks were taken for fresh and dry weight: fresh weight was measured immediately, and dry 

weight after drying the samples for 48 hours at +60 °C. Due to malfunction of the 

spectrophotometer, dried samples were analysed in Finland to obtain absorption spectra for the 

samples. The dried leaf samples were diluted after a week to 3 ml of acidified methanol, and 

after 24 hours leaf extracts were analysed same way as those from Lammi forest stands. The 

relationship between optically measured Iflav and leaf extracts was assessed by using sample 

absorbance at 305 and 375 nm measured from in situ leaf extracts, and mean absorbance over 

each UV region from dried sample extracts, as described above. The absorbances of all leaf 

extracts from both sites were normalized for sample volume and leaf fresh weight. We also 

used TPT and TPMA analysis to investigate the UV absorbance spectra of the leaf extracts 

(SM A3 from III). 

 

2.5. Using digital hemispherical photos to estimate plant area index 

To better understand the changes in spectral irradiance during canopy leaf-out, a quantitative 

characterisation of canopy (leaf) coverage is needed. We chose to do this by using digital 

hemispherical photography to calculate the plant area index, PAI (m2 m-2) (I, II). Pictures were 

taken in tandem with spectral irradiance measurement during spring and summer 2015 from 

all measurement points from Lammi forest stands. To achieve this, we used a Sigma 4.5 mm 

f2.8 EX DC HSM circular fisheye lens (Sigma Corporation of America, USA) combined with 

Nikon D7100 (Nikon corporation, Japan) camera body, which has a 24.1 MP CMOS sensor. 

Three to five pictures in RAW format aligned to the north were taken from the exact position 

of each measurement point each time, during overcast weather to maximise homogeneity of 

the sky, and contrast between the sky and canopy. For these three to five pictures, same settings 

with aperture f 20/22 and ISO 200 were used. However, to capture the correct range of PAI, 

exposure time was manually set to obtain potential variation in PAI stemming from different 

exposure times. The longest exposure time was used to maximise small gaps especially in the 

periphery, while the shortest exposure time was used to exclude overexposure of the top 

canopy. Shorter exposure times compared to automated exposure settings were deliberately 

used throughout. 

 To reduce the variation related to different exposure times or inconsistent results with 

the automated binarization algorithm (Nobis and Hunziker 2005); 1) pre-processing was done 

according to Macfarlane et al. (2014) and, 2) two additional binarization methods were used: 

Floyd-Steinberg dithering option (IrfanView, version 4.44, Irfan Skiljan, Wiener Neustadt, 

Austria) and the standard binarization algorithm in IrfanView. These three versions of each 

photo (one grey-scale image obtained with Macfarlane procedure, and two using the two 
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different binarization algorithms) were then analysed with Hemisfer 2.16 (Patric Schleppi, 

Swiss Federal Institute for Forest, Snow and Landscape Research WSL). For grey-scale 

images, an automatic threshold algorithm by Nobis and Hunziker (2005) was used. The PAI 

estimates were initially calculated using all methods provided in the software, but Miller et al. 

(1967) method was chosen for final comparisons. Potential issues with foliage clumping were 

addressed by using Chen and Cihlar (1995) correction. In addition to PAI, sunfleck duration in 

minutes on each measurement day was calculated with Gap Light Analyser (GLA, version 2.0, 

Simon Fraser University, BC, Canada) using the same thresholds determined during image 

processing with Hemisfer. Finally, mean PAI and sunfleck duration were calculated for each 

measurement point and date from photos with differing exposure times. 

 

2.6. Chlorophyll fluorescence measurements from the alpine botanical garden 

Based on the results of the survey of optically measured leaf traits done for 680 plant taxa and 

developmental stages during previous year (2014) in the alpine botanical garden, 88 taxa 

representing a diversity of leaf traits and taxa were chosen for sampling in the following year, 

2015 (III). Measurements of the operating efficiency of PSII photochemistry (henceforth ФPS 

II) from light-adapted leaves, and maximum quantum efficiency of PSII photochemistry 

(henceforth Fv/Fm) from dark-adapted leaves were measured with a PAM fluorometer (mini-

PAM, Heinz-Walz GmbH, Effeltrich, Germany). To catch any diurnal fluctuations in ФPS II 

functioning, measurements were taken at mid-morning (between 2-4 h after the beginning of 

daybreak) and during maximum solar irradiance at midday (± 1 h around solar noon). Likewise 

to capture any diurnal trends, Fv/Fm was measured pre-dawn (1-3 h before local sunrise), and 

from 30 minutes dark-adapted leaves at midday (approximately ± 3 h from solar noon). 

Fluorescence parameter, non-photochemical quenching (NPQ), was calculated according to 

Murchie and Lawson (2013) as (Fm-Fm')/Fm'. Furthermore, parameters Y(NO) and Y(NPQ) 

were calculated whereby the first parameter describes the fraction of energy passively 

dissipated in form of heat and fluorescence, and the latter describes the fraction of energy 

dissipated in form of heat through the regulated photoprotective NPQ mechanism 

(Klughammer and Schreiber, 2008). The means of these parameters among plants of the same 

species were used to avoid any potential calculation errors arising from measuring different 

individual plants or leaves. All measurements were made by following same protocol i.e. leaves 

were selected by applying the same criteria used with optically measured leaf traits. 

 

2.7. Forest inventories for stand characteristics and understorey plant communities 

The phenology of three to four trees adjacent to each measurement point in forest stands was 

recorded using a categorical scale between 1-7, where the first category is unswollen closed 

buds and the last category is for fully opened expanded leaves (I, II). Surveys were done in 

tandem with spectral irradiance measurements in Lammi forest stands during spring and 

summer, 2015. The phenology of individual trees was surveyed from the lowest branches, 

middle and upper canopy. From each tree, the circumference at breast height was measured 

and respective diameter (DBH) was calculated. All trees and tree seedlings were inventoried 

in the area around (radius 3.99 m) each measurement point to obtain the density. The basal area 

of trees around each measurement point was surveyed using a relascope. 

 The abundance of all understorey species present at each measurement point, and their 

phenology (i.e. timing of emergence, leaf opening, flowering, seed production and senescence) 

at the stand level were estimated (II). The relative abundance data was multiplied by the Iflav 
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value to obtain the community weighted means (CWM) for Iflav, for each measurement point 

on each DOY of measurement. 

 

2.8. Main data analysis 

Differences in Iflav trends were compared between years, stands, species, and between adaxial 

and abaxial leaf sides, by inspecting if any overlap occurred between 95 % confidence intervals 

(CI) of loess-based fits (R function loess) (II). A similar approach was used to compare 

differences between trends in spectral irradiance from forest stands. Pearson’s correlation was 

used to compare the relationship between spectral irradiance or temperature and mean Iflav 

obtained from each measurement point. Students t-test, or equivalent non-parametric Wilcoxon 

rank sum test, was used to compare differences between adaxial and abaxial Iflav, and between 

Iflav of newly produced and mature leaves. Separate models were made explaining changes in 

mean Iflav for each integral of spectral irradiance (UV-B, UV-A, PAR), and likewise for 

effective dose calculated according to biological spectral weighting functions (BSWFs: 

GEN(G), FLAV, PG) from different understorey positions. Comparisons of the AIC, R2-values 

and visual inspection of the fit were used to select the best models. A similar approach was 

used for comparing changes in Iflav and whole leaf extracts (absorbance at 375 nm, mean 

absorbance within UV-B, UV-A or UV regions) of each understorey species. 

 Kohonen self-organising maps (SOM; Kohonen, 1982, Wehrens and Kruisselbrink, 

2018) were used to segregate groups of taxa from the alpine botanical garden based on optically 

measured leaf traits and categorised light condition, approximate leaf inclination angle and 

phenology of the plant, and chlorophyll fluorescence and quenching parameters (III). To 

investigate whether optically measured leaf traits followed patterns of phylogenetic relatedness 

among plant taxa, we used a previously published updated mega-tree (GBOTB.extended.tre, 

Jin and Qian, 2019) which is based on phylogenies from Smith and Brown (2018, GBOTB), 

and clade of pteridophytes from Zanne's et al. (2014) phylogeny. A V.PhyloMaker tool for 

generating phylogenetic trees utilising this mega-tree as a backbone (Jin and Qian, 2019) was 

then used for our set of taxa measured at high elevation (France, 629 taxa) and at high latitude 

(Finland, 86 taxa). We then calculated a phylogenetic signal for optically measured leaf traits 

by using Pagel's lambda (λ) test (Pagel, 1999, phytools R package; Revell, 2012 & 2013) for 

both datasets. In this test, the phylogeny is transformed according to the optimized λ value 

(from 0 to 1) moving internal nodes more basal, whereby the distance to most recent common 

ancestor of sister lineages increases (Pagel, 1999). The selected λ value best explains the trait 

values at the tips under a Brownian motion model of trait evolution (Pagel, 1999). A likelihood 

ratio test is used to test this transformation against a transformation with λ = 0 (a star 

phylogeny) (e.g., Revell, 2012 & 2013). A local indicator of phylogenetic association (local 

Moran's I: Anselin, 1995; R function lipaMoran from R package phylosignal: Keck et al., 2016) 

was used to distinguish local patterns in leaf traits and particularly interesting taxa. Spearman's 

rank correlation was used to estimate the relationship between mean Iflav of plants and climatic 

conditions at their original collection site. Most plants used in this analysis were growing in 

the Kumpula Botanical Garden and fifty of the sites had mean leaf trait value from single 

species, while mean traits from 2-6 species were calculated for the rest of the sites of origin.  

 The differences between predawn and midday Fv/Fm were compared using Student’s or 

Welch t-test, or non-parametric Wilcoxon rank sum test (III). All further details of data analysis 

may be found from the publications and their supplementary materials (referred in the text as 

SM A#). 
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3. MAIN RESULTS AND DISCUSSION 

3.1. Spectral irradiance in the understorey 

By applying TPT and TPMA to compare the shape of irradiance spectra from understoreys, we 

found that understorey position (i.e., understorey shade, leaf semi-shade or sunfleck) was the 

most important determinant of the shape similarity of spectra (I, Figure 2). When spectra from 

all understorey positions (per stand and date) were combined, this resulted in low mean TPMA 

with a maximum of 0.5 and which decreased with date i.e., these spectra from different 

understorey positions differed in their shape and became less similar over the course of the 

spring (I). In early spring, similarities among the spectra from different understorey positions 

mainly stemmed from high cross-dependence at wavelengths < 500 nm, while by June there 

was a particularly low cross-dependence in these comparisons between wavelengths 400-650 

nm in all stands, indicating major differences over spring within PAR region in these spectra 

(I).This likely stems from the canopy closure which produced seasonal differences in shade 

spectra (compare to low similarity in early spring of spectra from P. abies, Figure 2) with 

marked differences in PAR absorbed by the canopy, and larger relative differences in PAR than 

in UV region due to higher direct proportion. In contrast with the extent of differences due to 

understorey position, differences in the shape of the spectra were smaller 1) when spectra from 

all stands with different canopies were compared (per position and date), and smaller still 2) 

when spectra from all measurement dates over spring were compared (per position and stand) 

(I). This finding seemed to stem from similarities among sunfleck spectra (across stands and 

dates), that tended to increase the overall similarity of the spectra among these comparisons. 

We also found that on average the degree of cross-dependence increased with increment in pen 

thickness (capturing more coarse features of the spectrum), although this did not always result 

in positive mean TPMA values (I). Some of the intricate differences between spectra identified 

using TPMA may have been difficult to detect by other approaches. For example, differences 

in spectral irradiance from the leaf semi-shade of Betula stands that likely stemmed from earlier 

phenology or more closed canopy structure in Betula mixed compared to other Betula stands 

(Figure 4 in article I). When measuring direct beam sunflecks, we found that the shape of the 

spectra was quite consistent (i.e., high cross-dependence) among sunflecks across all stands, 

dates, and in comparison with open control measurements (I). This finding is supported by 

earlier studies where the spectral composition of sunflecks has been found to resemble that 

above the canopy (Dengel et al., 2015 and references therein). We found that by using TPT and 

TPMA we could extract informative multivariate comparisons from our dataset, and we see the 

potential for this approach to be equally informative if applied for other spectral datasets. Our 

results further underlined the importance of considering both the spatial and temporal dynamics 

when quantifying understorey spectral irradiance. These dynamic patterns in irradiance have 

often been overlooked or have proven difficult to capture technically. For instance, in the past 

many interesting studies were made when these complex interactions between fluctuating light 

caused by sunflecks in forest understoreys were initially described along with the 

corresponding photosynthetic responses of plants (reviewed by Pearcy and Way, 2012) 

Studying plant responses to more realistic heterogenous light conditions (such as those found 

in dynamic understoreys) has gained more interest recently (e.g., Kono et al., 2020, review by 

Tanaka et al., 2019), partially because new lighting technologies have enabled easier 

manipulation of the solar spectrum (e.g. in Vialet-Chabrand et al., 2017). For example, low 
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UV-A and blue irradiance, similar to that found in forest understoreys did not induce effective 

protection in Arabidopsis mutants against stress imposed by acute high light exposure 

(Brelsford et al., 2019). However in the same experiment, functional cryptochromes were 

found to mediate responses that partially ameliorate this stress improving plants photosynthetic 

performance compared with mutants lacking this photoreceptor (Brelsford et al., 2019). Results 

of these studies, underline the importance of knowing the realistic spectral irradiance 

experienced by plants in nature to investigate complex plant responses.  

 In our comparisons between integrals of understorey irradiance over spectral regions, 

we found that the trends in spectral irradiance measured from understorey shade during spring, 

differed (non-overlapping 95 % CIs) between evergreen (P. abies) and deciduous (Betula, Q. 

robur) stands (II). For different evergreen stands with fairly consistent PAI, seasonal 

differences in understorey solar irradiance usually follow changes in solar elevation angle (e.g., 

Leuchner et al., 2011). This is consistent with the trend for increasing irradiance measured from 

sunflecks towards the summer solstice found in our data from the P. abies stand (II). In general, 

we found that the range of spectral irradiance values integrated over wavelength regions was 

larger in sunflecks compared to irradiance in the shade or leaf positions, which likely stemmed 

from differences in sunfleck size (II). We also found that later timing of the canopy leaf-out 

within the Q. robur stand in comparison to the Betula stands might contribute to the increase 

in UV irradiance on DOY 142/144. However, this difference in trends between the stands was 

not detected for PAR region (II). As boreal and temperate tree phenology is often driven by air 

temperatures after meeting the chilling requirement (Hänninen, 2016, Zohner et al., 2016), 

while especially early understorey spring species are affected by soil temperature (Augspurger 

and Salk, 2017), a potential mismatch has been sometimes proposed between tree canopy and 

understorey phenology due to their differing responses under future climate change scenarios 

(Augspurger and Salk, 2017, Heberling et al., 2019b). This could potentially result in a 

reduction in the annual, and particularly the spring carbon budget of some understorey species 

(Heberling et al., 2019a, b). Furthermore, open questions remains whether climate change will 

increase the occurrence of asynchronies among trophic levels (Renner and Zohner, 2018). For 

instance, phenological mismatch between pollinators and early ephemeral forest species may 

occur, with a potential negative impact on seed production (Kudo and Cooper, 2019). Although 

species' responses and interactions may be region-specific (Zohner et al., 2016, Renner and 

Zohner, 2018), earlier canopy closure would mean that maximum solar elevation angle is lower 

and day-length shorter at the time of canopy leaf-out. The findings of these studies allow us to 

speculate that solar radiation available to understorey species could conceivably be reduced by 

climate change, and this reduction would be canopy species-specific. 
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Figure 2. The image on the left shows, the set up for spectroradiometer measurements with 

plotted solar spectra (across UV to NIR regions, and expressed as spectral photon irradiance) 

during dynamic light conditions (over measurement of 100 spectra). On the right, Thick Pen 

Measure of Association (TPMA, negative values indicate dissimilarity and positive values 

similarity among spectra) where normalized spectra from differing understorey positions are 

pooled and compared per different stand and date during spring. The effect of using differing 

thicknesses of "pens" is shown as different shades of grey. The figure shows a decrease in 

similarity of the spectra over time, and the lowest cross-dependence between spectra from 

differing understorey positions in the evergreen Picea abies stand during early spring in 

comparison to other deciduous stands. Detailed in article I, TPMA figure from article I. 

 

3.2. Seasonal, stand- and species-specific trends in the Iflav of understorey species 

All results in this section concern findings in article II, which are discussed in the context of 

my research questions. We found similar seasonal trends in the Iflav of understorey plants from 

two consecutive years, although these trends deviated from each other during spring (with non-

overlapping 95% CI) and Iflav values were slightly higher in 2015 than 2016 (Figure 3). Trends 

in Iflav from understorey plants growing in different forest stands differed, whereby the Iflav 

from the P. abies stand was lowest, but seasonal trends in Iflav from the three Betula stands 

were indistinguishable (overlapping 95% CI). These trends in Iflav were similar between the two 

years studied, but the differences were slightly less distinct for 2016. Furthermore, the Iflav trend 

of plants in the deciduous Q. robur stand declined more gradually after the spring peak Iflav 

values (from DOY 142-144 onwards) compared to Iflav trends from all the other stands. 

However, when considered as averages across measurements points, as community weighted 

means and using 2016 measurements, the Iflav from the Q. robur stand was no longer 

distinguishable from the Betula stands. There are no published time-series of changes in the 

Iflav or flavonoid content of understorey plants for comparison with our results, but previous 

studies reporting seasonal patterns in leaf flavonoids and related phenolics in trees, bear some 

resemblance to the patterns found from our data (Kotilainen et al., 2010). Differing seasonal 

patterns in various Mediterranean species have been associated with species-specific ontogenic 

changes in leaf surface features, whereby, for instance, young leaves dense in trichomes had 

high concentration of UV-absorbing compounds (Liakoura et al., 2001). Furthermore, there is 

some experimental evidence that differences in the interception of UV-B radiation among 

leaves within an individual plant may be connected with differences in the total flavonoid 
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content of leaves of kale (Brassica oleracea L. var. Acephala) (Yoon et al., 2021). Some of our 

sampled species have peculiar leaf features (e.g., the convex epidermal cells of Oxalis 

acetosella: Myers et al., 1994, and the hairy winter leaves of Fragaria vesca: Åström et al., 

2015) which could potentially affect their seasonal patterns in optically measured Iflav. 

However, the quite consistent seasonal patterns that we recorded from various species 

displaying differing leaf anatomical features and leaf retention strategies suggests that leaf 

morphological divergence and features, such as those mentioned above did not determine the 

seasonal Iflav trends. 

 For two of the species with overwintering leaves (F. vesca and O. acetosella), the 

spring-time stand-related differences in Iflav were no longer evident during summer in mid-July 

when Iflav reached its seasonally lowest values, whilst in autumn significant differences in Iflav 

were once again found. These temporal patterns were consistent with the results from 

comparing species-specific trends in adaxial and abaxial Iflav, whereby the adaxial Iflav was 

typically higher but where we found no differences in Iflav values between leaf sides for F. 

vesca and one other species, H. nobilis, at the time of their seasonal minimal values. We also 

found that leaf adaxial and abaxial Iflav changed in a species-specific manner over growing 

season. Furthermore, the Iflav of understorey species differed in leaves according to their age in 

two summer green species, C. persicifolia and C. majalis, and the timing of the new leaf 

production contributed to differences in the Iflav of leaves in four species with overwintering 

leaves (F. vesca, H. nobilis, O. acetosella and V. vitis-idaea). In these species, new leaves 

produced after the start of the growing season had lower Iflav values compared to mature leaves 

at the same DOY. A higher investment in stress-tolerance among shade-tolerant species 

(reviewed by Valladares and Niinemets, 2008), as well as investment in protection from 

photodamage in long-lasting leaves, has sometimes been proposed particularly in tree species 

(Close and McArthur, 2002). Furthermore, there is some indication that leaf flavonoids can 

differ between sun and shade species of Brassicaceae growing under similar light treatments 

(Reifenrath and Müller, 2007). We found that patterns of investment in leaf flavonoids were 

complex, with stand- and species-specific differences in understorey species. For instance, in 

those species with long-lasting leaves (e.g., Hepatica nobilis) there were often detectable 

seasonal changes, or potentially even down-regulation of leaf flavonoids during spring and 

summer, among leaves produced in early spring. However, our understorey setup lacks an Iflav 

reference against real open-habitat species and conditions, and hence we are unable to make a 

direct comparison between the responses of species with shade-tolerant and shade-intolerant 

strategies. For tree species, general phenotypic plasticity of leaf traits from shade-tolerant 

species is suggested to be lower compared to shade-intolerant species (Portsmuth and 

Niinemets, 2007, Valladares and Niinemets, 2008). On the contrary, a combination of traits, 

including Iflav, in 12 shade-tolerant understorey forb species were more plastic than 11 shade-

intolerant species traits in response to changes in various spectral regions in an experimental 

study using filters to attenuate solar radiation (Wang et al., 2020). We found plasticity in 

optically measured Iflav from mostly herbaceous understorey species, however this should be 

considered as a finding specific to this leaf trait, not scalable to other leaf traits of understorey 

species, commonly measured in plants. 
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Figure 3. Seasonal trends in leaf adaxial Iflav from two consecutive years (2015 & 2016) 

measured from understorey plants growing in five forest stands. Trendlines are given by loess 

fit to the cloud of points annually with grey 95 % CI. Vertical dashed lines marking the 

approximate beginning of summer (mean daily air temperatures continuously above +10°C) 

and autumn (subsequent mean daily air temperatures continuously below +10°C). The average 

development of mean (± SE) plant area index (PAI, m2 m-2) of all deciduous stands during 

spring is shown as grey points with dashed line (y-axis on the right). Above, is a time-course 

of hemispherical photographs for two example stands (Betula old & Quercus robur). Below, 

grey shaded areas represent the time course of spring phenology of three common understorey 

species. Here, each category starts from the time of its first observation (phenology surveyed 

five-six times during spring). Figure modified from the original in article II. 

 

3.3. Comparing the trends in spectral irradiance in the understorey with the Iflav of 

understorey species 

We found a strong positive relationship among integrals of spectral irradiance measured in 

understorey shade and the mean Iflav of understorey plants (II). However, this relationship was 

often compounded by the stand-specificity. For the tested integrals of spectral irradiance, and 

effective UV doses calculated according to BSWFs (FLAV, PG and GEN(G) action spectra), 

we found the model using PG and unweighted UV-A irradiance measured from shade gave the 

best fit for explaining the changes in mean Iflav of understorey plants (SM A2 in II). However, 

these results fail to fully explain the higher Iflav in early spring in the evergreen stand, especially 

for sunfleck irradiance where there was a negative relationship between mean Iflav and spectral 

irradiance throughout the spring and summer season. It is noteworthy that we tested these co-

linear variables separately and these results should hence be treated with some caution. 
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Nevertheless, previous research has found similar seasonal trends to ours in leaf flavonoids 

from the leaves of Betula trees in an open field (Kotilainen et al., 2010), whereby high early 

season values could not be explained by UV radiation alone. Seasonal trends in the 

accumulation of UV-absorbing pigments in Arabidopsis were also present under attenuated 

solar UV radiation following short-term monthly exposure outdoors (Coffey et al., 2017). 

Recent studies further suggest that perception of differing wavelengths of solar UV radiation 

(below and above 350 nm) and blue light is mediated through different photoreceptors with 

interactions in their signalling pathways (Rai et al., 2018 & 2020). This suggests that there may 

be important differences e.g., in phenolic accumulation in response to UV below and above 

350 nm or a combination of these wavelengths. 

 Our models using daily minimum temperature as the explanatory variable managed to 

only poorly explain the changes in adaxial or abaxial mean Iflav of understorey plants (SM A2 

in II), but we recognise that many studies have found strong evidence for low temperature 

induced flavonoid accumulation (e.g., Bilger et al., 2007) and that temperature likely played 

some role in the trends in Iflav that we recorded. Overall, past studies of seasonal trends in leaf 

phenolics (e.g., Kotilainen et al., 2010, Nenadis et al., 2015, Coffey and Jansen, 2019) in 

combination with ours suggest that other environmental factors and developmental processes, 

that often change seasonally in addition to UV radiation, are also likely to contribute to the 

trends we report in the Iflav of understorey species. 

 

3.4. Comparison of optically measured leaf Iflav and leaf extracts 

We compared the relationship between Iflav and leaf extracts from five understorey species in 

Lammi forest stands throughout spring and summer, and from 50 taxa from the alpine botanical 

garden. The strength of this relationship was tested across several spectral regions: mean 

absorbance within the UV-B, UV-A, and UV regions, plus at 375 nm wavelength 

corresponding to that used by the Dualex for Iflav (Cerovic et al., 2012). Of these comparisons, 

the absorbance of leaf extracts at 375 nm produced the weakest relationship with mean Iflav of 

understorey plants (II, SM A2 of II, Figure 4). On the contrary, for plants from the alpine 

botanical garden absorbance at 375 nm was found to have the strongest relationship with Iflav 

among all the tested wavelength regions (those above and additionally at 305 nm) (SM A3 of 

III, Figure 4). Regardless of the ostensibly differing results from the two locations, at both 

study sites the relationship between Iflav and absorbance of leaf extracts at 375 nm was similar 

(Lammi r = 0.36, p ≤ 0.0001, 95 % CI: 0.28-0.44, n = 495; alpine botanical garden r = 0.41, p 

≤ 0.0001, 95 % CI: 0.28-0.52, n = 204 for fresh leaf samples). 

 For the changes in the Iflav of understorey species over the spring and summer, the best 

model fit was obtained using mean absorbance of leaf extracts integrated over the UV-B region 

as the explanatory variable for three species (A. podagraria, C. majalis, O. acetosella), while 

mean absorbance integrated over the UV-A region gave the best fit for two species (A. 

nemorosa, H. nobilis) (II, SM A2 of II). Hence, the seasonal relationship between Iflav and 

absorbance of leaf extracts differed in species-specific manner, with respect to which spectral 

region gave the best relationship, and in some cases no region produced a strong relationship 

e.g., in C. majalis (II). Low Iflav values which expressed little seasonal variation may have 

contributed to this result for C. majalis. Our results further indicated that there might have been 

seasonal differences in the relationship of Iflav with the absorbance of leaf extracts, whereby 

high values of Iflav during spring were not apparent as clear increase in the absorbance in leaf 

extracts in all cases (II, Figure 4: Aegopodium podagraria). We can speculate that a there could 
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be a differing contribution of compounds measured by Dualex, possibly changing seasonally, 

to the whole leaf phenolics pool. Some studies have found that compounds measured with 

Dualex may contribute only a small portion of the whole leaf flavonoid content, e.g., when 

monitoring diurnal changes in Vitis vinifera leaves (Csepregi et al., 2019), while in some other 

cases epidermal flavonoids, estimated via optical measurement, have been suggested to 

constitute a large proportion of all leaf UV-absorbing compounds in leaf extracts (e.g., Bilger 

et al., 2007). One commonly reported qualitative change is an increase in ratio of quercetin to 

kaempferol glycosides when solar irradiance increases, and this may reflect as an increase in 

the absorbance of leaf extracts within the UV-A region relative to the UV-B region (Agati et 

al., 2010, Majer et al., 2014). These types of qualitative changes might partly explain the 

differences in the relationship between Iflav and leaf extracts that we found. Results from the 

alpine botanical garden showed there were differences between monocotyledon and 

dicotyledon taxa in the relationship between their Iflav and absorbance of leaf extracts at 375 

nm, whereby this relationship was significant only for dicotyledon taxa (SM A3 of III). 

Particularly, two Lilium species with the highest Iflav, yet low absorbance of leaf extracts may 

have been partially responsible for the lack of a significant relationship (Figure 4, SM A3 of 

III). However, we did not find a difference in this relationship among groups of taxa with 

maximum UV absorbance around 290 nm or around 330 nm, distinguished according to the 

maximum of normalized UV spectra (SM A3 of III). This may imply that in terms of optical 

leaf-clip method, qualitative differences between groups of taxa (those with maximum 

~290/~330 nm) were less important than those between mono- vs dicotyledon taxa. 

Normalization of the UV spectra distinguished four groups in total: maximum UV absorbance 

~290 nm, ~330 nm, ~350 nm and ~360 nm (Figure 4, SM A3 of III). However, our further 

inspection of the UV absorbance spectra using TPT and TPMA found that there was mostly 

high dissimilarity in the shape of the UV spectra (low TPMA) among these groups, apart from 

two Allium species (maximum ~350 nm) (SM A3 of III). Although TPMA indicated 

dissimilarity of the spectra among species from same genus in most cases, they often displayed 

a clear visual resemblance (SM A3 of III). We also tested for a phylogenetic signal (Pagel's λ) 

from these data to investigate how absorbance of leaf extracts in different wavelength regions 

compares to optically measured leaf traits along the phylogeny (Figure 4, SM A3 of III). We 

found slightly higher significant λ values (λ = 0.65-0.70, p ≤0.0001 mean abs. 305 nm & UV-

B region; λ = 0.68, p <0.05 mean abs. at 375 nm; λ = 0.72, p ≤0.0001 max. UV wavelength) 

compared to our larger optically measured dataset from the alpine botanical garden (presented 

in the sections to follow), and insignificant results for all optically measured leaf traits among 

these 49 taxa (Figure 4, SM A3 of III). This suggests that the phylogenetic relatedness of these 

taxa may more clearly explain their UV absorbance of leaf extracts than their optically 

measured Iflav. This may be down to taxonomic divergence in the composition of the leaf 

phenolics, expressed in the shape of the absorbance spectra. Although some caution should be 

exercised when using Iflav across species to estimate leaf flavonols/flavones, the leaf-clip 

method is beneficial in allowing repetitive in vivo estimates of leaf UV-A absorbance. 

 Multispectral- and hyperspectral methods have potential as future non-destructive 

methods for screening and studying leaf traits in ecosystems (e.g., Asner et al., 2011 and 2012, 

Schweiger et al., 2018) and under experimental setups (e.g., Pandey et al., 2017, Behmann et 

al., 2018). At the leaf level, some studies suggest that application of previously used 

reflectance-based phenolic indices, such as R460/R410 and FLAVI700,760, may be inadequate to 

describe a change in flavonoids particularly from medium to high concentrations in comparison 
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to chlorophyll fluorescence-based methods (Sytar et al., 2020). Hence, there may still be a need 

for a variety of in vivo and in vitro approaches, which can be combined to describe functional 

and quantitative changes in UV-absorbing compounds under differing research scenarios. 

 

 
Figure 4. On the left, the phylogeny used for the 49 taxa studied (one genus level measurement 

was omitted) from the alpine botanical garden (Col du Lautaret, French Alps) based on a 

published mega-tree (GBOTB.extended.tre) and methodology (Scenario 1) from Jin and Qian 

(2019). It is plotted with a colour scale based on mean leaf trait values (Iflav, Arbitrary Unit) by 

using R package phytools (Revell, 2012 & 2013). Colour bar length is a scale for branch lengths 

(million years). Grouping is based on the maximum absorbance values within UV region (290-

400 nm) of the leaf extracts, indicated as a coloured circle at the tip of each branch. The plotting 

method estimates ancestral trait values, but the estimate of uncertainty is not shown - these 

ancestral values are displayed largely to aid visual clarity. Infraspecific taxa (i.e., subspecies 

and variety) were included in the phylogeny by combining them with their parental species. 

The panels on the right show scatterplots with Spearman's rank correlation and respective 

significance level (* <0.05, **≤0.01, ***≤0.001, ****≤0.0001) for absorbance of leaf extracts 

from forest understoreys (Lammi, Finland = FI, 2016, 5 species through spring and summer) 

and the alpine botanical garden (French Alps = FR, 2015, 50 taxa during summer). Panel (A) 

absorbance at 375 nm, (B) mean absorbance within UV-B region & (C) UV-A region, and (D) 

whole UV region respectively with the linear trend lines plotted to the cloud of points with 

95% CI (grey band). The 95 % CI for Spearman's rank correlation (in parenthesis) were 

computed by bootstrapping (R function spearman.ci from R package RVAideMemoire). The 

highest Iflav values from Lammi (black dots on x-axis, seen clearly in B-D) which have low 

absorbance of leaf extracts, represent those from early spring A. podagraria. Figure of the 

phylogeny from article III. 

 

3.5. General patterns in optically measured leaf traits from a large diversity of plants 

All results in this section concern findings in article III, which are discussed in the context of 

my research questions. We found generally high Iflav to be common in our survey of optically 
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measured leaf traits (Iflav, Ichl and Iant) from 680 sampled taxa (and developmental stages) 

growing in the alpine botanical garden (Figure 5). The Kohonen SOM, used to segregate these 

taxa based on their measured traits, produced six nodes with the highest loadings (in total of 

249 taxa) with relatively high Iflav, while other leaf trait values varied among these nodes. Only 

3.8 % of taxa measured from the alpine botanical garden had a mean Iflav < 1.0 AU, while low 

Iflav among 86 taxa growing in high latitude was more common (French Alps: mean ± SE Iflav 

= 1.53 ± 0.003, Finland: mean ± SE Iflav = 1.38 ± 0.017). At both sites, Iflav was lower in plants 

categorised as experiencing extended shading over the day compared to the mean Iflav of all 

plants. Furthermore, mean Iflav of plants showed a weak positive relationship with UV 

irradiance (UV-B & UV-A: r = 0.45-0.47, p ≤ 0.042) and biologically effective UV doses 

calculated according to various BSWFs (e.g., FLAV: r = 0.46, p = 0.042). Despite its 

acknowledged role as a driver of flavonoid accumulation (Jenkins, 2017), received UV 

radiation failed to explain all detected differences among taxa. We found some species (e.g., 

Sanguisorba dodecandra Moretti) sampled from both botanical gardens, in which leaf Iflav did 

not differ between the two sites and maintained a narrow range of values. This might suggest 

that these species may have less flexibility in Iflav according to their environment. Earlier 

studies have also reported that some species are relatively unresponsive to changes in their 

environment regarding leaf flavonoids or epidermal UV-transmittance (Nybakken et al., 2004). 

 We also found significant interannual differences in Iflav, although the correlation (r = 

0.58 and p < 0.001) between the values from two consecutive years indicated prevailing 

similarities in responses of the taxa from year to year. A weak negative relationship was found 

between Iflav range (max-min) and mean Iflav of plants, suggesting that taxa with high mean Iflav 

generally expressed slightly less flexibility in their Iflav or alternatively accumulated 

flavonols/flavones relatively readily to a ceiling level beyond which they did not further 

increase. Some studies suggest that species may differ in the flexibility of their epidermal UV-

A transmittance, whereby less flexibility along an elevational gradient was found from the 

native mountain species Vaccinium reticulatum compared to the invasive species Verbascum 

thapsus L. (Barnes et al., 2017). Furthermore, two Vicia faba L. accessions, one originating 

from a northern latitude with low UV radiation (Sweden) and the other from the Andean 

mountains with high UV radiation (Ecuador), under experimental setup had differing flavonoid 

profiles in response to blue and UV-radiation when grown together in a filter experiment in 

Helsinki (Yan et al., 2019). These types of compound-specific differences may be important 

for leaf flavonoid responses of plants of differing origin and were potentially present in our 

setup, albeit they were not the focus in our study. 

 Of the other optically measured traits monitored, contrary to Iflav, only a minority of 

taxa from alpine botanical garden had relatively high Ichl or Iant in Kohonen SOM. Plants with 

a relatively high Iant also had the highest NPQ, although relatively high Iant was consistent 

interannually only in e.g., some Penstemon species. In flowers, petal colours containing 

anthocyanins have been associated with concentration of flavones suggested to stem from 

enzyme sharing in flavonoid pathway (Tripp et al., 2018). We did not find general common 

patterns between leaf Iflav and Iant except for two Penstemon species identified with both high 

Iflav and Iant, suggesting that this was not a common strategy among taxa we sampled. Most of 

the sampled 88 taxa did not show significant drop from predawn to midday in Fv/Fm, and mean 

predawn Fv/Fm was 0.80 ± 0.003. However, among 38 taxa one or more predawn Fv/Fm value 

was below 0.78 compared to the optimal 0.83. Previous studies have reported depressed Fv/Fm 

values in mountain species (Fernández-Marín et al., 2020, Fernández-Marín et al., 2021), 
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which may explain some of these finding. Finally, the NPQ was generally high (mean ± SE at 

midday 3.74 ± 0.12) among the studied taxa. Most plants did not show indication of long-term 

photoinhibition potentially leading to photodamage, apart from a group of taxa with relatively 

low predawn Fv/Fm, relatively high Y(NO) and interestingly, without evident accumulation of 

Iflav. As mountain plant species are often found to use specific array of photoprotection 

mechanisms (Streb and Cornic, 2012, Fernández-Marín et al., 2021), the lack of accumulation 

of leaf flavonols/flavones among this group of taxa could either point to their employment of 

other protective mechanisms, or that photodamage was partially due to a lack of leaf 

flavonols/flavones. In conclusion, it seems that most studied taxa accumulated relatively high 

concentrations of leaf flavonols/flavones, employed high NPQ, and did not suffer from long-

term photoinhibition, suggesting that these taxa were in general well adapted to their current 

environment. 

 

 
Figure 5. Relative differences in leaf traits from 680 taxa in the alpine botanical garden (Col 

du Lautaret, France) in 2014 shown in a hexagonally arranged Kohonen self-organising map 

(SOM) with 25 nodes. The Kohonen SOM produces a simple low-dimensional visualisation of 

patterns found in high-dimensional data using unsupervised learning (Kohonen, 1982, Wehrens 

and Kruisselbrink, 2018). Panel A shows codebook vectors associated to each unit. The relative 

differences according to the radius of each wedge in the three leaf traits in the upper half circle 

(Iflav: dark blue, above right wedge, Iant: turquoise, above left wedge, Ichl: blue, above middle 

wedge). The lower half circle contains relative differences in categorised light condition of the 

plants, categorised phenological advancement, and categorised leaf inclination angle. Panel B 

shows loadings of the nodes i.e., the number of taxa grouped in the node as points, and 

neighbour distance (the sum of distances to all immediate neighbours) as a colour scale with 

red for the greatest distance. These analyses allowed those species sampled at different 

developmental stages to be distinguished when their trait values differed. Figure from 

manuscript III. 

 

3.6. Comparing optically measured leaf traits and climatic conditions at plants' origin 

All results in this section concern findings in article III, which are discussed in the context of 

my research questions. We did not find a significant relationship between the tested climatic 

conditions at plant origin and mean Iflav of plants, while for Ichl many relationships were 
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significant, and for Iant the sole relationship was with elevation (r = -0.35, p = 0.0086). The 

weak positive relationship of Ichl with elevation (r = 0.47, p = 0.00031) and the weak negative 

relationship of Ichl with latitude (r = -0.35, p = 0.0084) may have contributed to significant 

relationships found between Ichl and the other climatic variables that vary along these gradients. 

However, previous studies have found long-lasting associations between leaf flavonoids and 

population origin, pointing to their local adaptation in Pinus sylvestris (Oleszek et al., 2002). 

In general, trends in phenolic compounds over elevational gradients have been reported 

specifically in tree species (positive relationship with latitude in Juniperus, Martz et al., 2009, 

positive relationship with latitude in quercetin derivatives and negative relationship with 

latitude in apigenin in Betula pubescens, Stark et al., 2008). It may be that, given the long 

generation time of trees, effects of past climate could be more important and more easily 

detected in trees than in herb species. For instance, studies show that the epidermis of conifer 

needles often transmit less UV-B radiation compared with leaf epidermis of herb species (Day 

et al., 1992). Beyond long-term associations, other transgenerational effects in response to UV 

radiation have also been reported lately (Jiang et al., 2021, Zhang et al., 2021), and for instance 

a northern-latitude accession of Vicia faba had a higher induction of quercetin under UV-B 

radiation in the generation following parental exposure to UV radiation below 350 nm (Yan et 

al., 2020). Although these long- and short-term effects reported by previous studies may be 

explained by different underlying mechanisms, it remains possible that these associations could 

potentially condition the environmental responses of plants (such as accumulation of leaf 

flavonoids), and hence when present, potentially constraining or facilitating species future 

success and migration in mountains.  

 The lack of relationship between Iflav and climatic conditions at the plant original 

collection site may relate to too few observations (n = 59), or the resolution of the climate data 

may have failed to correctly represent the conditions plants experience. For instance, variation 

in temperature micro-environments is known to occur even within short distances in mountains 

(Scherrer and Körner, 2010) and micro-environmental temperatures may differ from 

temperatures at the adjacent weather stations (Körner and Hiltbrunner, 2018). Overall, the lack 

of a relationship between climatic conditions at original collection site of plants and their mean 

Iflav, and the relationship found between mean Iflav and UV irradiance at the microhabitats of 

plants, suggests that most taxa adjusted their Iflav according to the prevailing conditions where 

they were growing. 

 

3.7. Comparing optically measured leaf traits and relatedness of taxa from a large 

diversity of plants 

All results in this section concern findings in article III, which are discussed in the context of 

my research questions. Our tests considering the patterns in optically measured leaf traits across 

the whole phylogeny, i.e., phylogenetic signal and correlograms both gave significant results, 

yet respectively low fitted λ values (0 < λ <1) and low autocorrelation. However, we were able 

to identify local patterns (local Moran's I) within the phylogeny, where significant positive 

local autocorrelation revealed taxa with mainly high leaf trait values (high mean Iflav: 

Alchemilla, Penstemon and Rhaponticum) and taxa with mainly low leaf trait values (low mean 

Iflav: Cerastium, Hieracium, some Sedum and many Poaceae species) (Figure 6). These patterns 

in closely related taxa were in line with the findings from phylogenetic correlograms used to 

assess the signal depth, where positive autocorrelations were found for relatively short lags of 

distance in Iflav. Identified taxa with local positive autocorrelations, could imply lower variation 
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in their leaf flavonol/flavone accumulation. If so, particularly those taxa with mainly low mean 

Iflav could be constrained, potentially hindering their migration to habitats with increased UV 

radiation, unless other photoprotection mechanisms compensate for the low Iflav. On the 

contrary, taxa with high mean Iflav may better tolerate an increase in UV radiation. While UV-

B is rarely considered to cause damage and stress to plants in nature (Paul and Gwynn-Jones, 

2003), acute exposure to high irradiances of UV-B can induce non-specific stress signalling 

pathways, besides those specific regulatory responses to UV-B radiation (Jenkins, 2017). It is 

speculated that fluctuations in UV-B radiation could activate non-specific signalling pathways, 

especially if plants acclimated to lower levels of radiation are subjected to markedly higher 

levels of UV-B (Jenkins, 2017). Hence, these effects of acute high solar irradiances enriched 

in UV-B radiation might still be worth studying in context of future range shifts (e.g., invasive 

species: Watermann et al., 2020).  

 The higher occurrence of positive autocorrelations (Iflav: 79.7 %, Ichl: 77.1 %, Iant: 86.2 

%), indicated that closely related taxa mostly had similar patterns in Iflav values, rather than 

differing ones (Figure 6). Similar local analysis performed for flavones in numerous species 

from one genus Ruellia was able to reveal high flavone content among lineages from xeric 

habitats which are also known for their phylogenetic niche conservatism (Tripp et al., 2018). 

Similarly, our analysis may have revealed more detailed patterns if it had been possible for us 

to include more species and infraspecific taxa per genus. Genera with mainly high and low 

mean Ichl and Iant were also identified (high Ichl: Allium, Narcissus, Iris; high Iant: Penstemon, 

Lonicera, Ribes, Vaccinium, low Ichl: Lonicera, Ribes, Heuchera; low Iant: Allium, Iris). The 

local analysis (Moran's I) did not identify any of the same taxa as in the alpine botanical garden 

for their Iflav when same analysis was done for the smaller phylogeny using plants from 

Kumpula Botanical Garden, although they had 27 common species. This may be because taxa 

from genera producing the clearest result in local analysis (Moran's I) from the alpine botanical 

garden, were not present in Kumpula Botanical Garden. 

  As mentioned above, in our tests for a phylogenetic signal we found that the fitted λ 

value was intermediate, but gave significant results for Iflav and Iant (λ = 0.53 & 0.48 

respectively, p ≤0.0001) from the phylogeny using plants growing in the alpine botanical 

garden. For the smaller set of taxa growing at high latitude, Pagel's λ test produced significant 

results only for Ichl (λ = 0.51, p ≤0.0001) but not for the other two indices. Intermediate (0 < λ 

< 1) λ values indicate that the observed trait values resembled each other less than expected for 

this phylogeny under a Brownian motion model of trait evolution (i.e., random walk along the 

branch length). These significant results, yet low λ values, may partly be explained by testing 

the λ transformation against a phylogeny with λ = 0, in which relatedness explains none of the 

similarities in trait values (Revell, 2012, Swenson, 2014). This could imply that some of the 

patterns we identified by local analysis may have been strong enough to drive significant 

differences in the phylogenetic signal test. While there were many polytomies present in the 

phylogeny we used, Pagel's λ should be robust against potential issues stemming from the use 

of incompletely resolved phylogenies, and phylogenies with suboptimal branch-length 

information (Molina-Venegas and Rodríguez, 2017). Results from Pagel's λ were mainly 

similar to Blomberg's K and the autocorrelation-based approach, Moran's I. As the relationship 

between phylogenetic signals and evolutionary processes is complex (Losos, 2008, Revell et 

al., 2008, Münkemuller et al., 2012), it is not possible to make definitive conclusions about the 

underlying mechanisms responsible for the observed trait patterns among the taxa without 

further experiments. 
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 Overall, our results suggest that the observed patterns in Iflav among a large diversity of 

taxa, seemed to be associated with phylogenetic relatedness in some taxa, while in others 

different drivers appeared to be more important in explaining the patterns in these trait values. 

Those relatively closely related taxa which we identified for their mainly similar Iflav, may be 

interesting to consider for future studies on potential constraints in their responses to 

environmental changes.  

 

 
 

Figure 6. Phylogeny used for the 629 taxa studied from the alpine botanical garden (Col du 

Lautaret, French Alps) based on a previously published mega-tree (GBOTB.extended.tre) and 

methodology (scenario 1) from Jin and Qian (2019). Taxa are plotted with mean leaf trait values 

(panel A, Iflav, arbitrary units) as colours using R package phytools (Revell, 2012 & 2013). 

Infraspecific taxa (i.e., subspecies and variety) were included in the phylogeny by combining 

them with their parental species. Colour bar length gives a scale for branch lengths (million 

years). The plotting method estimates ancestral trait values, but the estimate of uncertainty is 

not shown, and ancestral values are mainly shown for visual clarity. The panel B shows the 

results (NS: black, p-value < 0.05: red) of testing the local indicator of phylogenetic association 

(local Moran's I) for Iflav, identifying local phylogenetic patterns plotted on the same tree. The 

local Moran's I identifies negative autocorrelations (differing trait values) and positive 

autocorrelations (similar trait values) in trait values among close relatives. Figure modified 

from manuscript III. 

 

4. CONCLUSIONS AND FUTURE PERSPECTIVES 

In conclusion, our spectral analyses allowed us to identify intricate differences in the shape of 

the spectra in forest understoreys, and found that the tested main effects responsible for these 

differences could be organised hierarchically. The major differences stemmed from 

understorey position, namely spectral irradiance in shade, leaf semi-shade or sunflecks, while 

differences stemming from stand composition and date over spring were on average smaller 

(I). We also found the amount of solar spectral irradiance to differ in stands producing stand-

specific trends in spring, but this difference was no longer apparent in summer (II). We 
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designed a repeatable field protocol, combining pre-existing methodologies, as a practical 

solution to estimate plant area index, allowing a meaningful comparison of time series of 

hemispherical photographs (II). These results, revealing intricate differences, are important for 

characterising realistic plant light conditions, and may be utilised in experiments to advance 

understanding of plant responses under solar spectrum (Research Question 1). 

We revealed seasonal stand- and species-specific patterns in optically measured Iflav, typically 

with a seasonal low reached in summer. These trends may be partly explained by forest stand-

specific changes in the amount of irradiance in shade, particularly in the UV region. We were 

also able to point out understorey species-specific trends related to plants' leaf retention 

strategies and new leaf production, all important in understanding how these leaf traits are 

regulated producing a particular response to understorey environment (II, Research Questions 

2 & 3). 

Our study with a diversity of mountain taxa, revealed that generally plants did not express long-

term photodamage and exhibited flexibility in their leaf traits according to their current 

environment, particularly the UV irradiance. We did not find a relationship between mean Iflav 

and climatic conditions at the plants' original collections site, hence no indication that the leaf 

Iflav was constrained as a legacy of climatic conditions at plants' original collection site. We 

found the phylogenetic signal to be weak for Iflav, suggesting that for most species the 

distribution of optically measured leaf traits did not seem to be confined by their phylogenetic 

relatedness. However, we were able to identify some genera containing species with mainly 

similar trait values, indicating similar response amongst species within (III, Research 

Questions 3-5). 

We found that the general relationship between optically measured leaf Iflav and absorbance of 

leaf extracts at 375 nm was in most cases consistent across our datasets covering both alpine 

and forest understorey species (II, III). However, due to differences in leaf flavonoid 

composition, there are likely to be species-specific cases where caution should be used when 

interpreting leaf UV-A absorbance across different species. Consequently, we recommend 

calibration using crude leaf extracts, or preferably superior methods of analytical quantification 

(e.g. metabolomics) to establish this relationship when comparing species. The benefits of the 

optical trait approach are however demonstrated by our studies: we were able to assemble a 

reference database of optically measured indices of mean leaf traits covering wide range of 

taxa. These data provide estimates of adaxial leaf flavonols/flavones and anthocyanins, and of 

chlorophyll content measured from plants representing over 600 taxa growing in a high-

elevation environment, and in forest understoreys (II, III, Research Question 6). 

 

Considering future perspectives, the expected and observed advance in timing of spring 

phenology (e.g., Fitter and Fitter, 2002, reviewed by Parmesan and Hanley, 2015) may extend 

the period of closed canopy in deciduous forest canopies, and potentially affect the carbon gain 

of some understorey species (Heberling et al., 2019a, b). Furthermore, the probability of frost 

damage may increase with reduced snow cover during winter and spring (e.g., Inouye, 2008, 

Blume-Werry et al., 2016). Reduced snow cover, especially in polar regions is also expected 

to decrease the surface reflectivity, potentially decreasing back-scattered UV radiation (EEAP, 

2019), but increasing the UV irradiance received by exposed plants no longer insulated by 

snow cover (Robson and Aphalo, 2019). Based on our results, we can speculate that under 

warmer future conditions with earlier canopy phenology and less snow at high latitudes in 
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Finland, there may be opposing responses in allocation towards leaf secondary metabolites 

among understorey species, according to their leaf retention strategy (II). Hence, acute cold 

temperatures and large temperature fluctuations would cause increased allocation to flavonoids 

in overwintering leaves, whilst summer green species would reduce their allocation, if not able 

to coordinate their phenology with the earlier forest canopy closure in deciduous forests (II). 

 Concerning mountain environments, range shifts of plant species have already been 

recorded, and this migration is expected to continue in the future for some species (reviewed 

by Parmesan and Hanley, 2015). Additionally, changes in cloud formation, surface reflectivity 

and aerosol abundance may affect the terrestrial UV radiation received by plants (reviewed by 

EEAP, 2019). For instance, cloud pattern changes on large-scales are expected to decrease 

cloud cover at mid-latitudes and to increase it at high latitudes, hence potentially increasing 

and decreasing UV radiation respectively (EEAP, 2019). All these effects considered, the 

capacity of plants to respond to and survive under new conditions can be regarded as critical 

knowledge. Among these responses it is important that plants can maintain photosynthetic 

capacity in their leaves, hence leaf traits that express photoprotection and the maintenance of 

physiological function can be used as an indicator of sufficiency. In this thesis work, flexibility 

in the optically measured leaf traits was found among most taxa studied, even across very 

different environments (II, III). The next step in this research would be to better assess the 

extent of this variation and the functional advantages it confers. Our results further suggests 

that some mountain plant taxa, but not all, with similar trait values, may reach the limitations 

of their leaf flavone/flavonol accumulation responses (III). This would have the potential to 

limit their future success if conditions deteriorate or they are required to migrate to a harsher 

environments in terms of solar radiation because of climate warming (III). In general across 

the three studies, these results provide evidence that optically measured leaf traits related to 

flavonoid accumulation are largely flexible and acclimate to local changes in the environment, 

as well as adjusting over the growing season.



44 
 

REFERENCES 

Agati, G., Matteini, P., Goti, A., & Tattini, M. (2007). Chloroplast‐located flavonoids can scavenge 

singlet oxygen. New Phytologist, 174(1), 77–89. https://doi.org/10.1111/j.1469-

8137.2007.01986.x 

Agati, G., Stefano, G., Biricolti, S., & Tattini, M. (2009). Mesophyll distribution of ‘antioxidant’ 

flavonoid glycosides in Ligustrum vulgare leaves under contrasting sunlight irradiance. Annals of 

Botany, 104(5), 853–861. https://doi.org/10.1093/aob/mcp177 

Agati, G., & Tattini, M. (2010). Multiple functional roles of flavonoids in photoprotection. New 

Phytologist, 186(4), 786–793. https://doi.org/10.1111/j.1469-8137.2010.03269.x 

Agati, G., Brunetti, C., Di Ferdinando, M., Ferrini, F., Pollastri, S., & Tattini, M. (2013). Functional 

roles of flavonoids in photoprotection: New evidence, lessons from the past. Plant Physiology and 

Biochemistry, 72, 35–45. https://doi.org/10.1016/j.plaphy.2013.03.014 

Agati, G., Brunetti, C., Fini, A., Gori, A., Guidi, L., Landi, M., Sebastiani, F., & Tattini, M. (2020). Are 

Flavonoids Effective Antioxidants in Plants? Twenty Years of Our Investigation. Antioxidants, 

9(11), 1098. https://doi.org/10.3390/antiox9111098 

Akitsu, T., Nasahara, K. N., Hirose, Y., Ijima, O., & Kume, A. (2017). Quantum sensors for accurate 

and stable long-term photosynthetically active radiation observations. Agricultural and Forest 

Meteorology, 237–238, 171–183. https://doi.org/10.1016/j.agrformet.2017.01.011 

Ångström, A. (1964). The parameters of atmospheric turbidity. Tellus, 16(1), 64–75. 

https://doi.org/10.1111/j.2153-3490.1964.tb00144.x 

Anselin, L. (1995). Local Indicators of Spatial Association-LISA. Geographical Analysis, 27(2), 93–

115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x 

Aphalo, P. J., Albert, A., Björn, L. O., McLeod, A. R., Robson, T. M., & Rosenqvist, E. (Eds.). (2012). 

Beyond the Visible: A handbook of best practice in plant UV photobiology. University of Helsinki, 

Department of Biosciences. https://doi.org/10.31885/9789521083631 

Aphalo, P. J. (2016). Measuring solar UV-B: Why is it so difficult? UV4Plants Bulletin, 2016(1), 21–

27. https://doi.org/10.19232/uv4pb.2016.1.14 

Aphalo, P. J., Robson, T. M., and Piiparinen, J. (2016). How to check an array spectrometer [Online]. 

Available: http://uv4plants.org/methods/how-to-checkan-array-spectrometer/. 

Asner, G. P., Martin, R. E., Knapp, D. E., Tupayachi, R., Anderson, C., Carranza, L., Martinez, P., 

Houcheime, M., Sinca, F., & Weiss, P. (2011). Spectroscopy of canopy chemicals in humid 

tropical forests. Remote Sensing of Environment, 115(12), 3587–3598. 

https://doi.org/10.1016/j.rse.2011.08.020 

Asner, G. P., Knapp, D. E., Boardman, J., Green, R. O., Kennedy-Bowdoin, T., Eastwood, M., Martin, 

R. E., Anderson, C., & Field, C. B. (2012). Carnegie Airborne Observatory-2: Increasing science 

data dimensionality via high-fidelity multi-sensor fusion. Remote Sensing of Environment, 124, 

454–465. https://doi.org/10.1016/j.rse.2012.06.012 

Åström, H., Metsovuori, E., Saarinen, T., Lundell, R., & Hänninen, H. (2015). Morphological 

characteristics and photosynthetic capacity of Fragaria vesca L. winter and summer leaves. Flora 

- Morphology, Distribution, Functional Ecology of Plants, 215, 33–39. 

https://doi.org/10.1016/j.flora.2015.07.001 

https://doi.org/10.1111/j.1469-8137.2007.01986.x
https://doi.org/10.1111/j.1469-8137.2007.01986.x
https://doi.org/10.1093/aob/mcp177
https://doi.org/10.1111/j.1469-8137.2010.03269.x
https://doi.org/10.1016/j.plaphy.2013.03.014
https://doi.org/10.3390/antiox9111098
https://doi.org/10.1016/j.agrformet.2017.01.011
https://doi.org/10.1111/j.2153-3490.1964.tb00144.x
https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
https://doi.org/10.31885/9789521083631
https://doi.org/10.19232/uv4pb.2016.1.14
https://doi.org/10.1016/j.rse.2011.08.020
https://doi.org/10.1016/j.rse.2012.06.012
https://doi.org/10.1016/j.flora.2015.07.001


45 
 

Augspurger, C. K., & Salk, C. F. (2017). Constraints of cold and shade on the phenology of spring 

ephemeral herb species. Journal of Ecology, 105(1), 246–254. https://doi.org/10.1111/1365-

2745.12651 

Bais, A. F., Bernhard, G., McKenzie, R. L., Aucamp, P. J., Young, P. J., Ilyas, M., Jöckel, P., & Deushi, 

M. (2019). Ozone–climate interactions and effects on solar ultraviolet radiation. Photochemical 

& Photobiological Sciences, 18(3), 602–640. https://doi.org/10.1039/C8PP90059K 

Baldocchi, D., Hutchison, B., Matt, D., & McMillen, R. (1984). Seasonal variations in the radiation 

regime within an oak-hickory forest. Agricultural and Forest Meteorology, 33(2–3), 177–191. 

https://doi.org/10.1016/0168-1923(84)90069-8 

Ballaré, C. L., & Pierik, R. (2017). The shade-avoidance syndrome: Multiple signals and ecological 

consequences. Plant, Cell & Environment, 40(11), 2530–2543. https://doi.org/10.1111/pce.12914 

Barnes, P. W., Flint, S. D., & Caldwell, M. M. (1987). Photosynthesis Damage and Protective Pigments 

in Plants from a Latitudinal Arctic/Alpine Gradient Exposed to Supplemental UV-B Radiation in 

the Field. Arctic and Alpine Research, 19(1), 21. https://doi.org/10.2307/1550996 

Barnes, P. W., Kersting, A. R., Flint, S. D., Beyschlag, W., & Ryel, R. J. (2013). Adjustments in 

epidermal UV-transmittance of leaves in sun-shade transitions. Physiologia Plantarum, 149(2), 

200–213. https://doi.org/10.1111/ppl.12025 

Barnes, P. W., Tobler, M. A., Keefover-Ring, K., Flint, S. D., Barkley, A. E., Ryel, R. J., & Lindroth, 

R. L. (2016). Rapid modulation of ultraviolet shielding in plants is influenced by solar ultraviolet 

radiation and linked to alterations in flavonoids: Rapid modulation of UV sunscreen protection. 

Plant, Cell & Environment, 39(1), 222–230. https://doi.org/10.1111/pce.12609 

Barnes, P. W., Ryel, R. J., & Flint, S. D. (2017). UV Screening in Native and Non-native Plant Species 

in the Tropical Alpine: Implications for Climate Change-Driven Migration of Species to Higher 

Elevations. Frontiers in Plant Science, 8, 1451. https://doi.org/10.3389/fpls.2017.01451 

Beckmann, M., Václavík, T., Manceur, A. M., Šprtová, L., von Wehrden, H., Welk, E., & Cord, A. F. 

(2014). glUV: A global UV-B radiation data set for macroecological studies. Methods in Ecology 

and Evolution, 5(4), 372–383. https://doi.org/10.1111/2041-210X.12168 

Behmann, J., Acebron, K., Emin, D., Bennertz, S., Matsubara, S., Thomas, S., Bohnenkamp, D., Kuska, 

M., Jussila, J., Salo, H., Mahlein, A.-K., & Rascher, U. (2018). Specim IQ: Evaluation of a New, 

Miniaturized Handheld Hyperspectral Camera and Its Application for Plant Phenotyping and 

Disease Detection. Sensors, 18(2), 441. https://doi.org/10.3390/s18020441 

Berg, H. (2002). Population dynamics in Oxalis acetosella: The significance of sexual reproduction in 

a clonal, cleistogamous forest herb. Ecography, 25(2), 233–243. https://doi.org/10.1034/j.1600-

0587.2002.250211.x 

Bilger, W., Rolland, M., & Nybakken, L. (2007). UV screening in higher plants induced by low 

temperature in the absence of UV-B radiation. Photochemical & Photobiological Sciences, 6(2), 

190. https://doi.org/10.1039/b609820g 

Björn, L. O. (2015). On the history of phyto-photo UV science (not to be left in skoto toto and silence). 

Plant Physiology and Biochemistry, 93, 3–8. https://doi.org/10.1016/j.plaphy.2014.09.015 

Blume‐Werry, G., Kreyling, J., Laudon, H., & Milbau, A. (2016). Short‐term climate change 

manipulation effects do not scale up to long‐term legacies: Effects of an absent snow cover on 

boreal forest plants. Journal of Ecology, 104(6), 1638–1648. https://doi.org/10.1111/1365-

2745.12636 

https://doi.org/10.1111/1365-2745.12651
https://doi.org/10.1111/1365-2745.12651
https://doi.org/10.1039/C8PP90059K
https://doi.org/10.1016/0168-1923(84)90069-8
https://doi.org/10.1111/pce.12914
https://doi.org/10.2307/1550996
https://doi.org/10.1111/ppl.12025
https://doi.org/10.1111/pce.12609
https://doi.org/10.3389/fpls.2017.01451
https://doi.org/10.1111/2041-210X.12168
https://doi.org/10.3390/s18020441
https://doi.org/10.1034/j.1600-0587.2002.250211.x
https://doi.org/10.1034/j.1600-0587.2002.250211.x
https://doi.org/10.1039/b609820g
https://doi.org/10.1016/j.plaphy.2014.09.015
https://doi.org/10.1111/1365-2745.12636
https://doi.org/10.1111/1365-2745.12636


46 
 

Blumthaler, M., Ambach, W., & Rehwald, W. (1992). Solar UV-A and UV-B radiation fluxes at two 

Alpine stations at different altitudes. Theoretical and Applied Climatology, 46(1), 39–44. 

https://doi.org/10.1007/BF00866446 

Blumthaler, M., Gröbner, J., Huber, M., & Ambach, W. (1996). Measuring spectral and spatial 

variations of UVA and UVB sky radiance. Geophysical Research Letters, 23(5), 547–550. 

https://doi.org/10.1029/96GL00248 

Blumthaler, M. (2012). Solar Radiation of the High Alps. In Lütz, C. (Ed.), Plants in Alpine Regions. 

Springer Vienna. https://doi.org/10.1007/978-3-7091-0136-0 

Bornman, J. F., Barnes, P. W., Robson, T. M., Robinson, S. A., Jansen, M. A. K., Ballaré, C. L., & 

Flint, S. D. (2019). Linkages between stratospheric ozone, UV radiation and climate change and 

their implications for terrestrial ecosystems. Photochemical & Photobiological Sciences, 18(3), 

681–716. https://doi.org/10.1039/C8PP90061B 

Brelsford, C. C., Morales, L. O., Nezval, J., Kotilainen, T. K., Hartikainen, S. M., Aphalo, P. J., & 

Robson, T. M. (2019). Do UV-A radiation and blue light during growth prime leaves to cope with 

acute high light in photoreceptor mutants of Arabidopsis thaliana ? Physiologia Plantarum, 

165(3), 537–554. https://doi.org/10.1111/ppl.12749 

Brown, B. A., Cloix, C., Jiang, G. H., Kaiserli, E., Herzyk, P., Kliebenstein, D. J., & Jenkins, G. I. 

(2005). A UV-B-specific signaling component orchestrates plant UV protection. Proceedings of 

the National Academy of Sciences, 102(50), 18225–18230. 

https://doi.org/10.1073/pnas.0507187102 

Brown, M. J., Parker, G. G., & Posner, N. E. (1994). A Survey of Ultraviolet-B Radiation in Forests. 

The Journal of Ecology, 82(4), 843. https://doi.org/10.2307/2261448 

Brunetti, C., Fini, A., Sebastiani, F., Gori, A., & Tattini, M. (2018). Modulation of Phytohormone 

Signaling: A Primary Function of Flavonoids in Plant–Environment Interactions. Frontiers in 

Plant Science, 9, 1042. https://doi.org/10.3389/fpls.2018.01042 

Caldwell, M. M. (1968). Solar Ultraviolet Radiation as an Ecological Factor for Alpine Plants. 

Ecological Monographs, 38(3), 243–268. https://doi.org/10.2307/1942430 

Caldwell, M. M. (1971). Solar UV irradiation and the growth and development of higher plants. In 

Photophysiology (pp. 131–177). Elsevier. https://doi.org/10.1016/B978-0-12-282606-1.50010-6 

Caldwell, Martyn M., Robberecht, R., & Billings, W. D. (1980). A Steep Latitudinal Gradient of Solar 

Ultraviolet-B Radiation in the Arctic-Alpine Life Zone. Ecology, 61(3), 600–611. 

https://doi.org/10.2307/1937426 

Caldwell, M. M., Flint, S. D., & Searles, P. S. (1994). Spectral balance and UV-B sensitivity of soybean: 

A field experiment. Plant, Cell and Environment, 17(3), 267–276. https://doi.org/10.1111/j.1365-

3040.1994.tb00292.x 

Casal, J. J. (2013). Photoreceptor Signaling Networks in Plant Responses to Shade. Annual Review of 

Plant Biology, 64(1), 403–427. https://doi.org/10.1146/annurev-arplant-050312-120221 

Cerovic, Z. G., Ounis, A., Cartelat, A., Latouche, G., Goulas, Y., Meyer, S., & Moya, I. (2002). The 

use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of 

UV-absorbing compounds in leaves: UV-absorption spectra estimated from fluorescence. Plant, 

Cell & Environment, 25(12), 1663–1676. https://doi.org/10.1046/j.1365-3040.2002.00942.x 

https://doi.org/10.1007/BF00866446
https://doi.org/10.1029/96GL00248
https://doi.org/10.1007/978-3-7091-0136-0
https://doi.org/10.1039/C8PP90061B
https://doi.org/10.1111/ppl.12749
https://doi.org/10.1073/pnas.0507187102
https://doi.org/10.2307/2261448
https://doi.org/10.3389/fpls.2018.01042
https://doi.org/10.2307/1942430
https://doi.org/10.1016/B978-0-12-282606-1.50010-6
https://doi.org/10.2307/1937426
https://doi.org/10.1111/j.1365-3040.1994.tb00292.x
https://doi.org/10.1111/j.1365-3040.1994.tb00292.x
https://doi.org/10.1146/annurev-arplant-050312-120221
https://doi.org/10.1046/j.1365-3040.2002.00942.x


47 
 

Cerovic, Zoran G., Masdoumier, G., Ghozlen, N. B., & Latouche, G. (2012). A new optical leaf‐clip 

meter for simultaneous non‐destructive assessment of leaf chlorophyll and epidermal flavonoids. 

Physiologia Plantarum, 146(3), 251–260. https://doi.org/10.1111/j.1399-3054.2012.01639.x 

Chazdon, R. L., & Pearcy, R. W. (1991). The Importance of Sunflecks for Forest Understory Plants. 

BioScience, 41(11), 760–766. https://doi.org/10.2307/1311725 

Chen, I.-C., Hill, J. K., Ohlemuller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid Range Shifts of 

Species Associated with High Levels of Climate Warming. Science, 333(6045), 1024–1026. 

https://doi.org/10.1126/science.1206432 

Chen, J. M., & Cihlar, J. (1995). Plant canopy gap-size analysis theory for improving optical 

measurements of leaf-area index. Applied Optics, 34(27), 6211. 

https://doi.org/10.1364/AO.34.006211 

Close, D. C., & McArthur, C. (2002). Rethinking the role of many plant phenolics—Protection from 

photodamage not herbivores? Oikos, 99(1), 166–172. https://doi.org/10.1034/j.1600-

0706.2002.990117.x 

Cockell, C. S., & Knowland, J. (1999). Ultraviolet radiation screening compounds. Biological Reviews, 

74(3), 311–345. https://doi.org/10.1111/j.1469-185X.1999.tb00189.x 

Coffey, A., Prinsen, E., Jansen, M. A. K., & Conway, J. (2017). The UVB photoreceptor UVR8 

mediates accumulation of UV-absorbing pigments, but not changes in plant morphology, under 

outdoor conditions: Plant responses to seasonal variation in solar UV. Plant, Cell & Environment, 

40(10), 2250–2260. https://doi.org/10.1111/pce.13025 

Coffey, A., & Jansen, M. A. K. (2019). Effects of natural solar UV-B radiation on three Arabidopsis 

accessions are strongly affected by seasonal weather conditions. Plant Physiology and 

Biochemistry, 134, 64–72. https://doi.org/10.1016/j.plaphy.2018.06.016 

Coombe, D. E. (1957). The Spectral Composition of Shade Light in Woodlands. The Journal of 

Ecology, 45(3), 823. https://doi.org/10.2307/2256959 

Csepregi, K., Teszlák, P., Kőrösi, L., & Hideg, É. (2019). Changes in grapevine leaf phenolic profiles 

during the day are temperature rather than irradiance driven. Plant Physiology and Biochemistry, 

137, 169–178. https://doi.org/10.1016/j.plaphy.2019.02.012 

Day, T. A., Vogelmann, T. C., & DeLucia, E. H. (1992). Are Some Plant Life Forms More Effective 

than Others in Screening out Ultraviolet-B Radiation? Oecologia, 92(4), 513–519. 

Dengel, S., Grace, J., & MacArthur, A. (2015). Transmissivity of solar radiation within a &lt;i&gt;Picea 

sitchensis&lt;/i&gt; stand under various sky conditions. Biogeosciences, 12(14), 4195–4207. 

https://doi.org/10.5194/bg-12-4195-2015 

EEAP (2019). Environmental Effects and Interactions of Stratospheric Ozone Depletion, UV Radiation, 

and Climate Change. 2018 Assessment Report. Nairobi: Environmental Effects Assessment Panel, 

United Nations Environment Programme (UNEP). 

https://ozone.unep.org/science/assessment/eeap 

Federer, C. A., & Tanner, C. B. (1966). Spectral Distribution of Light in the Forest. Ecology, 47(4), 

555–560. https://doi.org/10.2307/1933932 

Fernández‐Marín, B., Nadal, M., Gago, J., Fernie, A. R., López‐Pozo, M., Artetxe, U., García‐Plazaola, 

J. I., & Verhoeven, A. (2020). Born to revive: Molecular and physiological mechanisms of double 

https://doi.org/10.1111/j.1399-3054.2012.01639.x
https://doi.org/10.2307/1311725
https://doi.org/10.1126/science.1206432
https://doi.org/10.1364/AO.34.006211
https://doi.org/10.1034/j.1600-0706.2002.990117.x
https://doi.org/10.1034/j.1600-0706.2002.990117.x
https://doi.org/10.1111/j.1469-185X.1999.tb00189.x
https://doi.org/10.1111/pce.13025
https://doi.org/10.1016/j.plaphy.2018.06.016
https://doi.org/10.2307/2256959
https://doi.org/10.1016/j.plaphy.2019.02.012
https://doi.org/10.5194/bg-12-4195-2015
https://doi.org/10.2307/1933932


48 
 

tolerance in a paleotropical and resurrection plant. New Phytologist, 226(3), 741–759. 

https://doi.org/10.1111/nph.16464 

Fernández‐Marín, B., Sáenz‐Ceniceros, A., Solanki, T., Robson, T. M., & García‐Plazaola, J. I. (2021). 

Alpine forbs rely on different photoprotective strategies during spring snowmelt. Physiologia 

Plantarum, ppl.13342. https://doi.org/10.1111/ppl.13342 

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1‐km spatial resolution climate surfaces for 

global land areas. International Journal of Climatology, 37(12), 4302–4315. 

https://doi.org/10.1002/joc.5086 

Fitter, A. H. (2002). Rapid Changes in Flowering Time in British Plants. Science, 296(5573), 1689–

1691. https://doi.org/10.1126/science.1071617 

Flint, S. D., and Caldwell, M. M. (1998). Solar UV-B and visible radiation in tropical forest gaps: 

measurements partitioning direct and diffuse radiation. Global Change Biol. 4, 863–870. 

https://doi.org/10.1046/j.1365-2486.1998.00191.x 

Flint, S. D., & Caldwell, M. M. (2003). A biological spectral weighting function for ozone depletion 

research with higher plants. Physiologia Plantarum, 117(1), 137–144. 

https://doi.org/10.1034/j.1399-3054.2003.1170117.x 

Flint, S. D., Ballaré, C. L., Caldwell, M. M., & McKenzie, R. L. (2008). Comment on “Extreme 

environments in the forests of Ushuaia, Argentina” by Hector D’Antoni et al. Geophysical 

Research Letters, 35(13). https://doi.org/10.1029/2008GL033570 

Fryzlewicz, P., & Oh, H.-S. (2011). Thick pen transformation for time series: Thick Pen 

Transformation. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 

73(4), 499–529. https://doi.org/10.1111/j.1467-9868.2011.00773.x 

Gommers, C. M. M., Visser, E. J. W., Onge, K. R. S., Voesenek, L. A. C. J., & Pierik, R. (2013). Shade 

tolerance: When growing tall is not an option. Trends in Plant Science, 18(2), 65–71. 

https://doi.org/10.1016/j.tplants.2012.09.008 

Goulas, Y., Cerovic, Z. G., Cartelat, A., & Moya, I. (2004). Dualex: A new instrument for field 

measurements of epidermal ultraviolet absorbance by chlorophyll fluorescence. Applied Optics, 

43(23), 4488. https://doi.org/10.1364/AO.43.004488 

Grant, R. H. (1997). Partitioning of biologically active radiation in plant canopies. International Journal 

of Biometeorology, 40, 26–40 https://doi.org/10.1007/BF02439408 

Grant, R. H., Heisler, G. M., & Gao, W. (1997). Clear sky radiance distributions in ultraviolet 

wavelength bands. Theoretical and Applied Climatology, 56(3–4), 123–135. 

https://doi.org/10.1007/BF00866422 

Grant, Richard H. (1999). Potential Effect of Soybean Heliotropism on Ultraviolet‐B Irradiance and 

Dose. Agronomy Journal, 91(6), 1017–1023. https://doi.org/10.2134/agronj1999.9161017x 

Grant, Richard H., Apostol, K., & Gao, W. (2005). Biologically effective UV-B exposures of an oak-

hickory forest understory during leaf-out. Agricultural and Forest Meteorology, 132(1–2), 28–43. 

https://doi.org/10.1016/j.agrformet.2005.06.008 

Green, A. E. S., Sawada, T., & Shettle, E. P. (1974). The middle ultraviolet reaching the ground. 

Photochemistry and Photobiology, 19(4), 251–259. https://doi.org/10.1111/j.1751-

1097.1974.tb06508.x 

https://doi.org/10.1111/nph.16464
https://doi.org/10.1111/ppl.13342
https://doi.org/10.1002/joc.5086
https://doi.org/10.1126/science.1071617
https://doi.org/10.1034/j.1399-3054.2003.1170117.x
https://doi.org/10.1029/2008GL033570
https://doi.org/10.1111/j.1467-9868.2011.00773.x
https://doi.org/10.1016/j.tplants.2012.09.008
https://doi.org/10.1364/AO.43.004488
https://doi.org/10.1007/BF02439408
https://doi.org/10.1007/BF00866422
https://doi.org/10.2134/agronj1999.9161017x
https://doi.org/10.1016/j.agrformet.2005.06.008
https://doi.org/10.1111/j.1751-1097.1974.tb06508.x
https://doi.org/10.1111/j.1751-1097.1974.tb06508.x


49 
 

Gröbner, J., Albold, A., Blumthaler, M., Cabot, T., De la Casiniere, A., Lenoble, J., Martin, T., 

Masserot, D., Müller, M., Philipona, R., Pichler, T., Pougatch, E., Rengarajan, G., Schmucki, D., 

Seckmeyer, G., Sergent, C., Touré, M. L., & Weihs, P. (2000). Variability of spectral solar 

ultraviolet irradiance in an Alpine environment. Journal of Geophysical Research: Atmospheres, 

105(D22), 26991–27003. https://doi.org/10.1029/2000JD900395 

Grotewold, E. (Ed.). (2006). The science of flavonoids. Springer. 

Gueymard, C. A. (2004). The sun’s total and spectral irradiance for solar energy applications and solar 

radiation models. Solar Energy, 76(4), 423–453. https://doi.org/10.1016/j.solener.2003.08.039 

Hänninen, H. (2016). Boreal and Temperate Trees in a Changing Climate. Springer Netherlands. 

https://doi.org/10.1007/978-94-017-7549-6 

Hartikainen, S. M., Jach, A., Grané, A., & Robson, T. M. (2018). Assessing scale-wise similarity of 

curves with a thick pen: As illustrated through comparisons of spectral irradiance. Ecology and 

Evolution, 8(20), 10206–10218. https://doi.org/10.1002/ece3.4496 

He, X., Burgess, K. S., Yang, X., Ahrends, A., Gao, L., & Li, D. (2019). Upward elevation and 

northwest range shifts for alpine Meconopsis species in the Himalaya–Hengduan Mountains 

region. Ecology and Evolution, 9(7), 4055–4064. https://doi.org/10.1002/ece3.5034 

Heberling, J. M., Cassidy, S. T., Fridley, J. D., & Kalisz, S. (2019a). Carbon gain phenologies of spring‐

flowering perennials in a deciduous forest indicate a novel niche for a widespread invader. New 

Phytologist, 221(2), 778–788. https://doi.org/10.1111/nph.15404 

Heberling, J. M., McDonough MacKenzie, C., Fridley, J. D., Kalisz, S., & Primack, R. B. (2019b). 

Phenological mismatch with trees reduces wildflower carbon budgets. Ecology Letters, 22(4), 

616–623. https://doi.org/10.1111/ele.13224 

Hernández, I., Alegre, L., Van Breusegem, F., & Munné-Bosch, S. (2009). How relevant are flavonoids 

as antioxidants in plants? Trends in Plant Science, 14(3), 125–132. 

https://doi.org/10.1016/j.tplants.2008.12.003 

Hutchinson, M., Xu, T., Houlder, D., Nix, H., & McMahon, J. (2009). ANUCLIM 6.0 User’s Guide. 

Australian National University, Fenner School of Environment and Society. 

Ibdah, M., Krins, A., Seidlitz, H. K., Heller, W., Strack, D., & Vogt, T. (2002). Spectral dependence of 

flavonol and betacyanin accumulation in Mesembryanthemum crystallinum under enhanced 

ultraviolet radiation. Plant, Cell & Environment, 25(9), 1145–1154. 

https://doi.org/10.1046/j.1365-3040.2002.00895.x 

Inouye, D. W. (2008). Effects of climate change on phenology, frost damage, and floral abundance of 

montane wildflowers. Ecology, 89(2), 353–362. https://doi.org/10.1890/06-2128.1 

Jach, A. (2015). Solar spectrum through the wavelet lens. UV4Plants Bulletin, 2016(2), 33–36. 

https://doi.org/10.19232/uv4pb.2016.2.14 

Jansen, M. A. K., Gaba, V., & Greenberg, B. M. (1998). Higher plants and UV-B radiation: Balancing 

damage, repair and acclimation. Trends in Plant Science, 3(4), 131–135. 

https://doi.org/10.1016/S1360-1385(98)01215-1 

Jansen, M. A. K. (2002). Ultraviolet-B radiation effects on plants: Induction of morphogenic responses. 

Physiologia Plantarum, 116(3), 423–429. https://doi.org/10.1034/j.1399-3054.2002.1160319.x 

Jenkins, G. I. (2017). Photomorphogenic responses to ultraviolet-B light: Responses to UV-B. Plant, 

Cell & Environment, 40(11), 2544–2557. https://doi.org/10.1111/pce.12934 

https://doi.org/10.1029/2000JD900395
https://doi.org/10.1016/j.solener.2003.08.039
https://doi.org/10.1007/978-94-017-7549-6
https://doi.org/10.1002/ece3.4496
https://doi.org/10.1002/ece3.5034
https://doi.org/10.1111/nph.15404
https://doi.org/10.1111/ele.13224
https://doi.org/10.1016/j.tplants.2008.12.003
https://doi.org/10.1046/j.1365-3040.2002.00895.x
https://doi.org/10.1890/06-2128.1
https://doi.org/10.19232/uv4pb.2016.2.14
https://doi.org/10.1016/S1360-1385(98)01215-1
https://doi.org/10.1034/j.1399-3054.2002.1160319.x
https://doi.org/10.1111/pce.12934


50 
 

Jiang, J., Liu, J., Sanders, D., Qian, S., Ren, W., Song, J., Liu, F., & Zhong, X. (2021). UVR8 interacts 

with de novo DNA methyltransferase and suppresses DNA methylation in Arabidopsis. Nature 

Plants, 7(2), 184–197. https://doi.org/10.1038/s41477-020-00843-4 

Jin, Y., & Qian, H. (2019). V.PhyloMaker: An R package that can generate very large phylogenies for 

vascular plants. Ecography, 42(8), 1353–1359. https://doi.org/10.1111/ecog.04434 

Julkunen-Tiitto, R., Nenadis, N., Neugart, S., Robson, M., Agati, G., Vepsäläinen, J., Zipoli, G., 

Nybakken, L., Winkler, B., & Jansen, M. A. K. (2015). Assessing the response of plant flavonoids 

to UV radiation: An overview of appropriate techniques. Phytochemistry Reviews, 14(2), 273–

297. https://doi.org/10.1007/s11101-014-9362-4 

Keck, F., Rimet, F., Bouchez, A., & Franc, A. (2016). phylosignal: An R package to measure, test, and 

explore the phylogenetic signal. Ecology and Evolution, 6(9), 2774–2780. 

https://doi.org/10.1002/ece3.2051 

Klem, K., Holub, P., Štroch, M., Nezval, J., Špunda, V., Tříska, J., Jansen, M. A. K., Robson, T. M., & 

Urban, O. (2015). Ultraviolet and photosynthetically active radiation can both induce 

photoprotective capacity allowing barley to overcome high radiation stress. Plant Physiology and 

Biochemistry, 93, 74–83. https://doi.org/10.1016/j.plaphy.2015.01.001 

Klughammer, C., & Schreiber, U. (2008). Complementary PS II quantum yields calculated from simple 

fluorescence parameters measured by PAM fluorometry and the Saturation Pulse method. PAM 

Application Notes, 1, 27–35. 

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological 

Cybernetics, 43(1), 59–69. https://doi.org/10.1007/BF00337288 

Kono, M., Kawaguchi, H., Mizusawa, N., Yamori, W., Suzuki, Y., & Terashima, I. (2020). Far-Red 

Light Accelerates Photosynthesis in the Low-Light Phases of Fluctuating Light. Plant and Cell 

Physiology, 61(1), 192–202. https://doi.org/10.1093/pcp/pcz191 

Körner, C., & Hiltbrunner, E. (2018). The 90 ways to describe plant temperature. Perspectives in Plant 

Ecology, Evolution and Systematics, 30, 16–21. https://doi.org/10.1016/j.ppees.2017.04.004 

Körner, C., Riedl, S., Keplinger, T., Richter, A., Wiesenbauer, J., Schweingruber, F., & Hiltbrunner, E. 

(2019). Life at 0 °C: The biology of the alpine snowbed plant Soldanella pusilla. Alpine Botany, 

129(2), 63–80. https://doi.org/10.1007/s00035-019-00220-8 

Kotilainen, T., Tegelberg, R., Julkunen-Tiitto, R., Lindfors, A., O’Hara, R. B., & Aphalo, P. J. (2010). 

Seasonal fluctuations in leaf phenolic composition under UV manipulations reflect contrasting 

strategies of alder and birch trees. Physiologia Plantarum, no-no. https://doi.org/10.1111/j.1399-

3054.2010.01398.x 

Kriticos, D. J., Jarošik, V., & Ota, N. (2014). Extending the suite of BIOCLIM variables: A proposed 

registry system and case study using principal components analysis. Methods in Ecology and 

Evolution, 5(9), 956–960. https://doi.org/10.1111/2041-210X.12244 

Krizek, D. T. (2004). Influence of PAR and UV-A in Determining Plant Sensitivity and 

Photomorphogenic Responses to UV-B Radiation. Photochemistry and Photobiology, 79(4), 307–

315. https://doi.org/10.1111/j.1751-1097.2004.tb00013.x 

Kudo, G., & Cooper, E. J. (2019). When spring ephemerals fail to meet pollinators: Mechanism of 

phenological mismatch and its impact on plant reproduction. Proceedings of the Royal Society B: 

Biological Sciences, 286(1904), 20190573. https://doi.org/10.1098/rspb.2019.0573 

https://doi.org/10.1038/s41477-020-00843-4
https://doi.org/10.1111/ecog.04434
https://doi.org/10.1007/s11101-014-9362-4
https://doi.org/10.1002/ece3.2051
https://doi.org/10.1016/j.plaphy.2015.01.001
https://doi.org/10.1007/BF00337288
https://doi.org/10.1093/pcp/pcz191
https://doi.org/10.1016/j.ppees.2017.04.004
https://doi.org/10.1007/s00035-019-00220-8
https://doi.org/10.1111/j.1399-3054.2010.01398.x
https://doi.org/10.1111/j.1399-3054.2010.01398.x
https://doi.org/10.1111/2041-210X.12244
https://doi.org/10.1111/j.1751-1097.2004.tb00013.x
https://doi.org/10.1098/rspb.2019.0573


51 
 

Leuchner, M., Menzel, A., & Werner, H. (2007). Quantifying the relationship between light quality and 

light availability at different phenological stages within a mature mixed forest. Agricultural and 

Forest Meteorology, 142(1), 35–44. https://doi.org/10.1016/j.agrformet.2006.10.014 

Leuchner, M., Hertel, C., & Menzel, A. (2011). Spatial variability of photosynthetically active radiation 

in European beech and Norway spruce. Agricultural and Forest Meteorology, 151(9), 1226–1232. 

https://doi.org/10.1016/j.agrformet.2011.04.014 

Liakoura, V., Manetas, Y., & Karabourniotis, G. (2001). Seasonal fluctuations in the concentration of 

UV-absorbing compounds in the leaves of some Mediterranean plants under field conditions. 

Physiologia Plantarum, 111(4), 491–500. https://doi.org/10.1034/j.1399-3054.2001.1110409.x 

Lindfors, A. V., & Ylianttila, L. (2016). Visualizing Rayleigh Scattering through UV Photography. 

Bulletin of the American Meteorological Society, 97(9), 1561–1564. 

https://doi.org/10.1175/BAMS-D-14-00260.1 

Losos, J. B. (2008). Phylogenetic niche conservatism, phylogenetic signal and the relationship between 

phylogenetic relatedness and ecological similarity among species. Ecology Letters, 11(10), 995–

1003. https://doi.org/10.1111/j.1461-0248.2008.01229.x 

Macfarlane, C., Ryu, Y., Ogden, G. N., & Sonnentag, O. (2014). Digital canopy photography: Exposed 

and in the raw. Agricultural and Forest Meteorology, 197, 244–253. 

https://doi.org/10.1016/j.agrformet.2014.05.014 

Majer, P., Neugart, S., Krumbein, A., Schreiner, M., & Hideg, É. (2014). Singlet oxygen scavenging 

by leaf flavonoids contributes to sunlight acclimation in Tilia platyphyllos. Environmental and 

Experimental Botany, 100, 1–9. https://doi.org/10.1016/j.envexpbot.2013.12.001 

Martz, F., Peltola, R., Fontanay, S., Duval, R. E., Julkunen-Tiitto, R., & Stark, S. (2009). Effect of 

Latitude and Altitude on the Terpenoid and Soluble Phenolic Composition of Juniper (Juniperus 

communis) Needles and Evaluation of Their Antibacterial Activity in the Boreal Zone. Journal of 

Agricultural and Food Chemistry, 57(20), 9575–9584. https://doi.org/10.1021/jf902423k 

Mazza, C. A., & Ballaré, C. L. (2015). Photoreceptors UVR 8 and phytochrome B cooperate to optimize 

plant growth and defense in patchy canopies. New Phytologist, 207(1), 4–9. 

https://doi.org/10.1111/nph.13332 

McKenzie, R., Liley, B., Kotkamp, M., & Disterhoft, P. (2017). Peak UV: Spectral contributions from 

cloud enhancements. AIP Conference Proceedings, 1810, 110008. 

https://doi.org/10.1063/1.4975570 

Miller, J. (1967). A formula for average foliage density. Australian Journal of Botany, 15(1), 141. 

https://doi.org/10.1071/BT9670141 

Molina-Venegas, R., & Rodríguez, M. Á. (2017). Revisiting phylogenetic signal; strong or negligible 

impacts of polytomies and branch length information? BMC Evolutionary Biology, 17(1), 53. 

https://doi.org/10.1186/s12862-017-0898-y 

Monteith, J. L., & Unsworth, M. H. (2013). Principles of environmental physics: Plants, animals, and 

the atmosphere (4th ed). Elsevier/Academic Press. 

Morales, L. O., Brosché, M., Vainonen, J., Jenkins, G. I., Wargent, J. J., Sipari, N., Strid, Å., Lindfors, 

A. V., Tegelberg, R., & Aphalo, P. J. (2013). Multiple Roles for UV RESISTANCE LOCUS8 in 

Regulating Gene Expression and Metabolite Accumulation in Arabidopsis under Solar Ultraviolet 

Radiation. Plant Physiology, 161(2), 744–759. https://doi.org/10.1104/pp.112.211375 

https://doi.org/10.1016/j.agrformet.2006.10.014
https://doi.org/10.1016/j.agrformet.2011.04.014
https://doi.org/10.1034/j.1399-3054.2001.1110409.x
https://doi.org/10.1175/BAMS-D-14-00260.1
https://doi.org/10.1111/j.1461-0248.2008.01229.x
https://doi.org/10.1016/j.agrformet.2014.05.014
https://doi.org/10.1016/j.envexpbot.2013.12.001
https://doi.org/10.1021/jf902423k
https://doi.org/10.1111/nph.13332
https://doi.org/10.1063/1.4975570
https://doi.org/10.1071/BT9670141
https://doi.org/10.1186/s12862-017-0898-y
https://doi.org/10.1104/pp.112.211375


52 
 

Moriconi, V., Binkert, M., Costigliolo, C., Sellaro, R., Ulm, R., & Casal, J. J. (2018). Perception of 

Sunflecks by the UV-B Photoreceptor UV RESISTANCE LOCUS8. Plant Physiology, 177(1), 

75–81. https://doi.org/10.1104/pp.18.00048 

Münkemüller, T., Lavergne, S., Bzeznik, B., Dray, S., Jombart, T., Schiffers, K., & Thuiller, W. (2012). 

How to measure and test phylogenetic signal. Methods in Ecology and Evolution, 3(4), 743–756. 

https://doi.org/10.1111/j.2041-210X.2012.00196.x 

Murchie, E. H., & Lawson, T. (2013). Chlorophyll fluorescence analysis: A guide to good practice and 

understanding some new applications. Journal of Experimental Botany, 64(13), 3983–3998. 

https://doi.org/10.1093/jxb/ert208 

Myers, D. A., Vogelmann, T. C., & Bornman, J. F. (1994). Epidermal focussing and effects on light 

utilization in Oxalis acetosella. Physiologia Plantarum, 91(4), 651–656. 

https://doi.org/10.1111/j.1399-3054.1994.tb03001.x 

Nenadis, N., Llorens, L., Koufogianni, A., Díaz, L., Font, J., Gonzalez, J. A., & Verdaguer, D. (2015). 

Interactive effects of UV radiation and reduced precipitation on the seasonal leaf phenolic 

content/composition and the antioxidant activity of naturally growing Arbutus unedo plants. 

Journal of Photochemistry and Photobiology B: Biology, 153, 435–444. 

https://doi.org/10.1016/j.jphotobiol.2015.10.016 

Niinemets, Ü. (2010). A review of light interception in plant stands from leaf to canopy in different 

plant functional types and in species with varying shade tolerance. Ecological Research, 25(4), 

693–714. https://doi.org/10.1007/s11284-010-0712-4 

Niinemets, Ü. (2012). Optimization of foliage photosynthetic capacity in tree canopies: Towards 

identifying missing constraints. Tree Physiology, 32(5), 505–509. 

https://doi.org/10.1093/treephys/tps045 

Nobis, M., & Hunziker, U. (2005). Automatic thresholding for hemispherical canopy-photographs 

based on edge detection. Agricultural and Forest Meteorology, 128(3–4), 243–250. 

https://doi.org/10.1016/j.agrformet.2004.10.002 

Nybakken, L., Aubert, S., & Bilger, W. (2004). Epidermal UV-screening of arctic and alpine plants 

along a latitudinal gradient in Europe. Polar Biology, 27(7), 391–398. 

https://doi.org/10.1007/s00300-004-0601-9 

Oleszek, W., Stochmal, A., Karolewski, P., Simonet, A. M., Macias, F. A., & Tava, A. (2002). 

Flavonoids from Pinus sylvestris needles and their variation in trees of different origin grown for 

nearly a century at the same area. Biochemical Systematics and Ecology, 30(11), 1011–1022. 

https://doi.org/10.1016/S0305-1978(02)00060-1 

Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401(6756), 877–884. 

https://doi.org/10.1038/44766 

Pandey, P., Ge, Y., Stoerger, V., & Schnable, J. C. (2017). High Throughput In vivo Analysis of Plant 

Leaf Chemical Properties Using Hyperspectral Imaging. Frontiers in Plant Science, 8, 1348. 

https://doi.org/10.3389/fpls.2017.01348 

Parmesan, C., & Hanley, M. E. (2015). Plants and climate change: Complexities and surprises. Annals 

of Botany, 116(6), 849–864. https://doi.org/10.1093/aob/mcv169 

Paul, N. D., & Gwynn-Jones, D. (2003). Ecological roles of solar UV radiation: Towards an integrated 

approach. Trends in Ecology & Evolution, 18(1), 48–55. https://doi.org/10.1016/S0169-

5347(02)00014-9 

https://doi.org/10.1104/pp.18.00048
https://doi.org/10.1111/j.2041-210X.2012.00196.x
https://doi.org/10.1093/jxb/ert208
https://doi.org/10.1111/j.1399-3054.1994.tb03001.x
https://doi.org/10.1016/j.jphotobiol.2015.10.016
https://doi.org/10.1007/s11284-010-0712-4
https://doi.org/10.1093/treephys/tps045
https://doi.org/10.1016/j.agrformet.2004.10.002
https://doi.org/10.1007/s00300-004-0601-9
https://doi.org/10.1016/S0305-1978(02)00060-1
https://doi.org/10.1038/44766
https://doi.org/10.3389/fpls.2017.01348
https://doi.org/10.1093/aob/mcv169
https://doi.org/10.1016/S0169-5347(02)00014-9
https://doi.org/10.1016/S0169-5347(02)00014-9


53 
 

Pearcy, R. W. (1990). Sunflecks and Photosynthesis in Plant Canopies. Annual Review of Plant 

Physiology and Plant Molecular Biology, 41, 421–453. 

Pearcy, R. W., & Way, D. A. (2012). Two decades of sunfleck research: Looking back to move forward. 

Tree Physiology, 32(9), 1059–1061. https://doi.org/10.1093/treephys/tps084 

Pescheck, F. (2019). UV-A screening in Cladophora sp. Lowers internal UV-A availability and 

photoreactivation as compared to non-UV screening in Ulva intestinalis. Photochemical & 

Photobiological Sciences, 18(2), 413–423. https://doi.org/10.1039/C8PP00432C 

Portsmuth, A., & Niinemets, Ü. (2007). Structural and physiological plasticity in response to light and 

nutrients in five temperate deciduous woody species of contrasting shade tolerance. Functional 

Ecology, 21(1). https://doi.org/10.1111/j.1365-2435.2006.01208.x 

Qi, Y., Heisler, G. M., Gao, W., Vogelmann, T. C., and Bai, S. (2010). Characteristics of UV-B 

Radiation Tolerance in Broadleaf Trees in Southern USA. In Gao, W., Schmoldt, D. L., & Slusser, 

J. R. (Eds.), UV Radiation in Global Climate Change. Measurements. Modeling and Effects on 

Ecosystems. Springer-Verlag. https://doi.org/10.1007/978-3-642-03313-1_18 

Raabe, K., Pisek, J., Sonnentag, O., & Annuk, K. (2015). Variations of leaf inclination angle distribution 

with height over the growing season and light exposure for eight broadleaf tree species. 

Agricultural and Forest Meteorology, 214–215, 2–11. 

https://doi.org/10.1016/j.agrformet.2015.07.008 

Rai, N., Neugart, S., Yan, Y., Wang, F., Siipola, S. M., Lindfors, A. V., Winkler, J. B., Albert, A., 

Brosché, M., Lehto, T., Morales, L. O., & Aphalo, P. J. (2019). How do cryptochromes and UVR8 

interact in natural and simulated sunlight? Journal of Experimental Botany, 70(18), 4975–4990. 

https://doi.org/10.1093/jxb/erz236 

Rai, N., O’Hara, A., Farkas, D., Safronov, O., Ratanasopa, K., Wang, F., Lindfors, A. V., Jenkins, G. 

I., Lehto, T., Salojärvi, J., Brosché, M., Strid, Å., Aphalo, P. J., & Morales, L. O. (2020). The 

photoreceptor UVR8 mediates the perception of both UV‐B and UV‐A wavelengths up to 350 nm 

of sunlight with responsivity moderated by cryptochromes. Plant, Cell & Environment, 43(6), 

1513–1527. https://doi.org/10.1111/pce.13752 

Ramsay, J., & Silverman, B. (2005). Functional data analysis. Springer. 

https://doi.org/10.1002/0470013192 

Rautiainen, M., Lukeš, P., Homolová, L., Hovi, A., Pisek, J., & Mõttus, M. (2018). Spectral Properties 

of Coniferous Forests: A Review of In Situ and Laboratory Measurements. Remote Sensing, 10(2), 

207. https://doi.org/10.3390/rs10020207 

Reifenrath, K., & Müller, C. (2007). Species-specific and leaf-age dependent effects of ultraviolet 

radiation on two Brassicaceae. Phytochemistry, 68(6), 875–885. 

https://doi.org/10.1016/j.phytochem.2006.12.008 

Renner, S. S., & Zohner, C. M. (2018). Climate Change and Phenological Mismatch in Trophic 

Interactions Among Plants, Insects, and Vertebrates. Annual Review of Ecology, Evolution, and 

Systematics, 49(1), 165–182. https://doi.org/10.1146/annurev-ecolsys-110617-062535 

Revell, L. J., Harmon, L. J., & Collar, D. C. (2008). Phylogenetic Signal, Evolutionary Process, and 

Rate. Systematic Biology, 57(4), 591–601. https://doi.org/10.1080/10635150802302427 

Revell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other things): 

phytools: R package. Methods in Ecology and Evolution, 3(2), 217–223. 

https://doi.org/10.1111/j.2041-210X.2011.00169.x 

https://doi.org/10.1093/treephys/tps084
https://doi.org/10.1039/C8PP00432C
https://doi.org/10.1111/j.1365-2435.2006.01208.x
https://doi.org/10.1016/j.agrformet.2015.07.008
https://doi.org/10.1093/jxb/erz236
https://doi.org/10.1111/pce.13752
https://doi.org/10.3390/rs10020207
https://doi.org/10.1016/j.phytochem.2006.12.008
https://doi.org/10.1146/annurev-ecolsys-110617-062535
https://doi.org/10.1080/10635150802302427
https://doi.org/10.1111/j.2041-210X.2011.00169.x


54 
 

Revell, L. J. (2013). Two new graphical methods for mapping trait evolution on phylogenies. Methods 

in Ecology and Evolution, 4(8), 754–759. https://doi.org/10.1111/2041-210X.12066 

Rizzini, L., Favory, J.-J., Cloix, C., Faggionato, D., O’Hara, A., Kaiserli, E., Baumeister, R., Schafer, 

E., Nagy, F., Jenkins, G. I., & Ulm, R. (2011). Perception of UV-B by the Arabidopsis UVR8 

Protein. Science, 332(6025), 103–106. https://doi.org/10.1126/science.1200660 

Robberecht, R., Caldwell, M. M., & Billings, W. D. (1980). Leaf Ultraviolet Optical Properties Along 

a Latitudinal Gradient in the Arctic-Alpine Life Zone. Ecology, 61(3), 612–619. 

https://doi.org/10.2307/1937427 

Robson, T. M., Hartikainen, S. M., & Aphalo, P. J. (2015a). How does solar ultraviolet-B radiation 

improve drought tolerance of silver birch (Betula pendula Roth.) seedlings?: How does UV-B 

improve drought tolerance? Plant, Cell & Environment, 38(5), 953–967. 

https://doi.org/10.1111/pce.12405 

Robson, T. M., Klem, K., Urban, O., & Jansen, M. A. K. (2015b). Re-interpreting plant morphological 

responses to UV-B radiation: Plant morphological responses to UV-B. Plant, Cell & Environment, 

38(5), 856–866. https://doi.org/10.1111/pce.12374 

Robson, T. M., & Aphalo, P. J. (2019). Transmission of ultraviolet, visible and near-infrared solar 

radiation to plants within a seasonal snow pack. Photochemical & Photobiological Sciences, 

18(8), 1963–1971. https://doi.org/10.1039/C9PP00197B 

Rozema, J., Chardonnens, A., Tosserams, M., Hafkenscheid, R., & Bruijnzeel, S. (1997). Leaf thickness 

and UV-B absorbing pigments of plants in relation to an elevational gradient along the Blue 

Mountains, Jamaica. In J. Rozema, W. W. C. Gieskes, S. C. Van De Geijn, C. Nolan, & H. De 

Boois (Eds.), UV-B and Biosphere (pp. 150–159). Springer Netherlands. 

https://doi.org/10.1007/978-94-011-5718-6_14 

Rumpf, S. B., Hülber, K., Klonner, G., Moser, D., Schütz, M., Wessely, J., Willner, W., Zimmermann, 

N. E., & Dullinger, S. (2018). Range dynamics of mountain plants decrease with elevation. 

Proceedings of the National Academy of Sciences, 115(8), 1848–1853. 

https://doi.org/10.1073/pnas.1713936115 

Sancar, A. (1994). Structure and function of DNA photolyase. Biochemistry, 33(1), 2–9. 

https://doi.org/10.1021/bi00167a001 

Scherrer, D., & Körner, C. (2009). Infra-red thermometry of alpine landscapes challenges climatic 

warming projections: THERMOMETRY OF ALPINE LANDSCAPES. Global Change Biology, 

no-no. https://doi.org/10.1111/j.1365-2486.2009.02122.x 

Schweiger, A. K., Cavender-Bares, J., Townsend, P. A., Hobbie, S. E., Madritch, M. D., Wang, R., 

Tilman, D., & Gamon, J. A. (2018). Plant spectral diversity integrates functional and phylogenetic 

components of biodiversity and predicts ecosystem function. Nature Ecology & Evolution, 2(6), 

976–982. https://doi.org/10.1038/s41559-018-0551-1 

Searles, P. S., Flint, S. D., & Caldwell, M. M. (2001). A Meta-Analysis of Plant Field Studies 

Simulating Stratospheric Ozone Depletion. Oecologia, 127(1), 1–10. 

Seckmeyer, G., Pissulla, D., Glandorf, M., Henriques, D., Johnsen, B., Webb, A., Siani, A.-M., Bais, 

A., Kjeldstad, B., Brogniez, C., Lenoble, J., Gardiner, B., Kirsch, P., Koskela, T., Kaurola, J., 

Uhlmann, B., Slaper, H., den Outer, P., Janouch, M., … Carvalho, F. (2007). Variability of UV 

Irradiance in Europe. Photochemistry and Photobiology, 84, 172–179. 

https://doi.org/10.1111/j.1751-1097.2007.00216.x 

https://doi.org/10.1111/2041-210X.12066
https://doi.org/10.1126/science.1200660
https://doi.org/10.2307/1937427
https://doi.org/10.1111/pce.12405
https://doi.org/10.1111/pce.12374
https://doi.org/10.1039/C9PP00197B
https://doi.org/10.1007/978-94-011-5718-6_14
https://doi.org/10.1073/pnas.1713936115
https://doi.org/10.1021/bi00167a001
https://doi.org/10.1111/j.1365-2486.2009.02122.x
https://doi.org/10.1038/s41559-018-0551-1
https://doi.org/10.1111/j.1751-1097.2007.00216.x


55 
 

Setlow, R. B. (1974). The Wavelengths in Sunlight Effective in Producing Skin Cancer: A Theoretical 

Analysis. Proceedings of the National Academy of Sciences, 71(9), 3363–3366. 

https://doi.org/10.1073/pnas.71.9.3363 

Smith, S. A., & Brown, J. W. (2018). Constructing a broadly inclusive seed plant phylogeny. American 

Journal of Botany, 105(3), 302–314. https://doi.org/10.1002/ajb2.1019 

Smith, W. K., Knapp, A. K., & Reiners, W. A. (1989). Penumbral Effects on Sunlight Penetration in 

Plant Communities. Ecology, 70(6), 1603–1609. https://doi.org/10.2307/1938093 

Smith, W. K., & Berry, Z. C. (2013). Sunflecks? Tree Physiology, 33(3), 233–237. 

https://doi.org/10.1093/treephys/tpt005 

Stark, S., Julkunen-Tiitto, R., Holappa, E., Mikkola, K., & Nikula, A. (2008). Concentrations of Foliar 

Quercetin in Natural Populations of White Birch (Betula pubescens) Increase with Latitude. 

Journal of Chemical Ecology, 34(11), 1382–1391. https://doi.org/10.1007/s10886-008-9554-8 

Stehlik, I., & Holderegger, R. (2000). Spatial genetic structure and clonal diversity of Anemone 

nemorosa in late successional deciduous woodlands of Central Europe. Journal of Ecology, 88(3), 

424–435. https://doi.org/10.1046/j.1365-2745.2000.00458.x 

Streb, P., & Cornic, G. (2012). Photosynthesis and Antioxidative Protection in Alpine Herbs. In Lütz, 

C. (Ed.), Plants in Alpine Regions. Springer Vienna. https://doi.org/10.1007/978-3-7091-0136-0 

Swenson, N. G. (2014). Functional and Phylogenetic Ecology in R. Springer New York. 

https://doi.org/10.1007/978-1-4614-9542-0 

Sytar, O., Zivcak, M., Neugart, S., & Brestic, M. (2020). Assessment of hyperspectral indicators related 

to the content of phenolic compounds and multispectral fluorescence records in chicory leaves 

exposed to various light environments. Plant Physiology and Biochemistry, 154, 429–438. 

https://doi.org/10.1016/j.plaphy.2020.06.027 

Tanaka, Y., Adachi, S., & Yamori, W. (2019). Natural genetic variation of the photosynthetic induction 

response to fluctuating light environment. Current Opinion in Plant Biology, 49, 52–59. 

https://doi.org/10.1016/j.pbi.2019.04.010 

Tattini, M., Matteini, P., Saracini, E., Traversi, M. L., Giordano, C., & Agati, G. (2007). Morphology 

and Biochemistry of Non-Glandular Trichomes in Cistus salvifolius L. Leaves Growing in 

Extreme Habitats of the Mediterranean Basin. Plant Biology, 9(3), 411–419. 

https://doi.org/10.1055/s-2006-924662 

Teramura, A.H. (1986) Interaction Between UV-B Radiation and Other Stresses in Plants. In Worrest 

R.C., Caldwell M.M. (Eds.) Stratospheric Ozone Reduction, Solar Ultraviolet Radiation and 

Plant Life. NATO ASI Series (Series G: Ecological Sciences), 8. Springer. 

https://doi.org/10.1007/978-3-642-70090-3_25 

Thimijan, R. W., Carns, H. R., & Campbell, L. E. (1978). Final Report (EPA-IAG-D6-0168): Radiation 

sources and related environmental control for biological and climatic effects UV research 

(BACER). Tech. rep. Washington, DC: Environmental Protection Agency. 

Tripp, E. A., Zhuang, Y., Schreiber, M., Stone, H., & Berardi, A. E. (2018). Evolutionary and ecological 

drivers of plant flavonoids across a large latitudinal gradient. Molecular Phylogenetics and 

Evolution, 128, 147–161. https://doi.org/10.1016/j.ympev.2018.07.004 

https://doi.org/10.1073/pnas.71.9.3363
https://doi.org/10.1002/ajb2.1019
https://doi.org/10.2307/1938093
https://doi.org/10.1093/treephys/tpt005
https://doi.org/10.1007/s10886-008-9554-8
https://doi.org/10.1046/j.1365-2745.2000.00458.x
https://doi.org/10.1007/978-3-7091-0136-0
https://doi.org/10.1007/978-1-4614-9542-0
https://doi.org/10.1016/j.plaphy.2020.06.027
https://doi.org/10.1016/j.pbi.2019.04.010
https://doi.org/10.1055/s-2006-924662
https://doi.org/10.1016/j.ympev.2018.07.004


56 
 

Turnbull, T. L., Barlow, A. M., & Adams, M. A. (2013). Photosynthetic benefits of ultraviolet-A to 

Pimelea ligustrina, a woody shrub of sub-alpine Australia. Oecologia, 173(2), 375–385. 

https://doi.org/10.1007/s00442-013-2640-9 

Urban, O., Janouš, D., Acosta, M., Czerný, R., Marková, I., Navrátil, M., Pavelka, M., Pokorný, R., 

Šprtová, M., Zhang, R., Špunda, V., Grace, J., & Marek, M. V. (2007). Ecophysiological controls 

over the net ecosystem exchange of mountain spruce stand. Comparison of the response in direct 

vs. Diffuse solar radiation. Global Change Biology, 13(1), 157–168. 

https://doi.org/10.1111/j.1365-2486.2006.01265.x 

Valladares, F., & Niinemets, Ü. (2008). Shade Tolerance, a Key Plant Feature of Complex Nature and 

Consequences. Annual Review of Ecology, Evolution, and Systematics, 39(1), 237–257. 

https://doi.org/10.1146/annurev.ecolsys.39.110707.173506 

Vandepitte, K., Roldán-Ruiz, I., Jacquemyn, H., & Honnay, O. (2010). Extremely low genotypic 

diversity and sexual reproduction in isolated populations of the self-incompatible lily-of-the-

valley (Convallaria majalis) and the role of the local forest environment. Annals of Botany, 105(5), 

769–776. https://doi.org/10.1093/aob/mcq042 

Verdaguer, D., Jansen, M. A. K., Llorens, L., Morales, L. O., & Neugart, S. (2017). UV-A radiation 

effects on higher plants: Exploring the known unknown. Plant Science, 255, 72–81. 

https://doi.org/10.1016/j.plantsci.2016.11.014 

Vialet-Chabrand, S., Matthews, J. S. A., Simkin, A. J., Raines, C. A., & Lawson, T. (2017). Importance 

of Fluctuations in Light on Plant Photosynthetic Acclimation. Plant Physiology, 173(4), 2163–

2179. https://doi.org/10.1104/pp.16.01767 

Wang, Q., Robson, T. M., Pieristè, M., Oguro, M., Oguchi, R., Murai, Y., & Kurokawa, H. (2020). 

Testing trait plasticity over the range of spectral composition of sunlight in forb species differing 

in shade tolerance. Journal of Ecology, 108(5), 1923–1940. https://doi.org/10.1111/1365-

2745.13384 

Watermann, L. Y., Hock, M., Blake, C., & Erfmeier, A. (2020). Plant invasion into high elevations 

implies adaptation to high UV-B environments: A multi-species experiment. Biological Invasions, 

22(3), 1203–1218. https://doi.org/10.1007/s10530-019-02173-9 

Way, D. A., & Pearcy, R. W. (2012). Sunflecks in trees and forests: From photosynthetic physiology to 

global change biology. Tree Physiology, 32(9), 1066–1081. 

https://doi.org/10.1093/treephys/tps064 

Wehrens, R., & Kruisselbrink, J. (2018). Flexible Self-Organizing Maps in kohonen 3.0. Journal of 

Statistical Software, 87(7). https://doi.org/10.18637/jss.v087.i07 

Wehrli, C. (1985). Extraterrestrial Solar Spectrum. Physikalisch-Meteorologisches Observatorium + 

World Radiation Center, Davos Dorf, Switzerland, Publication no. 615, July 1985. 

Williams, W. E., Gorton, H. L., & Witiak, S. M. (2003). Chloroplast movements in the field: 

Chloroplast movements in the field. Plant, Cell & Environment, 26(12), 2005–2014. 

https://doi.org/10.1046/j.0016-8025.2003.01117.x 

Winkel-Shirley, B. (2001). Flavonoid Biosynthesis. A Colorful Model for Genetics, Biochemistry, Cell 

Biology, and Biotechnology. Plant Physiology, 126(2), 485–493. 

https://doi.org/10.1104/pp.126.2.485 

https://doi.org/10.1007/s00442-013-2640-9
https://doi.org/10.1111/j.1365-2486.2006.01265.x
https://doi.org/10.1146/annurev.ecolsys.39.110707.173506
https://doi.org/10.1093/aob/mcq042
https://doi.org/10.1016/j.plantsci.2016.11.014
https://doi.org/10.1104/pp.16.01767
https://doi.org/10.1111/1365-2745.13384
https://doi.org/10.1111/1365-2745.13384
https://doi.org/10.1007/s10530-019-02173-9
https://doi.org/10.1093/treephys/tps064
https://doi.org/10.18637/jss.v087.i07
https://doi.org/10.1046/j.0016-8025.2003.01117.x
https://doi.org/10.1104/pp.126.2.485


57 
 

WMO (World Meteorological Organization). (2018). Scientific Assessment of Ozone Depletion: 2018, 

Global Ozone Research and Monitoring Project–Report No. 58, 588 pp., Geneva, Switzerland, 

2018. 

Wróblewska, A., & Mirski, P. (2018). From past to future: Impact of climate change on range shifts 

and genetic diversity patterns of circumboreal plants. Regional Environmental Change, 18(2), 

409–424. https://doi.org/10.1007/s10113-017-1208-3 

Yamori, W. (2016). Photosynthetic response to fluctuating environments and photoprotective strategies 

under abiotic stress. Journal of Plant Research, 129(3), 379–395. https://doi.org/10.1007/s10265-

016-0816-1 

Yan, Y., Stoddard, F. L., Neugart, S., Sadras, V. O., Lindfors, A., Morales, L. O., & Aphalo, P. J. 

(2019). Responses of flavonoid profile and associated gene expression to solar blue and UV 

radiation in two accessions of Vicia faba L. from contrasting UV environments. Photochemical & 

Photobiological Sciences, 18(2), 434–447. https://doi.org/10.1039/C8PP00567B 

Yan, Y., Stoddard, F. L., Neugart, S., Oravec, M., Urban, O., Sadras, V. O., & Aphalo, P. J. (2020). 

The transgenerational effects of solar short-UV radiation differed in two accessions of Vicia faba 

L. from contrasting UV environments. Journal of Plant Physiology, 248, 153145. 

https://doi.org/10.1016/j.jplph.2020.153145 

Ylianttila, L., Visuri, R., Huurto, L., & Jokela, K. (2005). Evaluation of a Single-monochromator Diode 

Array Spectroradiometer for Sunbed UV-radiation Measurements. Photochemistry and 

Photobiology, 81(2), 333–341. https://doi.org/10.1111/j.1751-1097.2005.tb00192.x 

Yoon, H. I., Kim, H. Y., Kim, J., Oh, M.-M., & Son, J. E. (2021). Quantitative Analysis of UV-B 

Radiation Interception in 3D Plant Structures and Intraindividual Distribution of Phenolic 

Contents. International Journal of Molecular Sciences, 22(5), 2701. 

https://doi.org/10.3390/ijms22052701 

Zanne, A. E., Tank, D. C., Cornwell, W. K., Eastman, J. M., Smith, S. A., FitzJohn, R. G., McGlinn, 

D. J., O’Meara, B. C., Moles, A. T., Reich, P. B., Royer, D. L., Soltis, D. E., Stevens, P. F., 

Westoby, M., Wright, I. J., Aarssen, L., Bertin, R. I., Calaminus, A., Govaerts, R., … Beaulieu, J. 

M. (2014). Three keys to the radiation of angiosperms into freezing environments. Nature, 

506(7486), 89–92. https://doi.org/10.1038/nature12872 

Zhang, X., Li, C., Tie, D., Quan, J., Yue, M., & Liu, X. (2021). Epigenetic memory and growth 

responses of the clonal plant Glechoma longituba to parental recurrent UV-B stress. Functional 

Plant Biology. https://doi.org/10.1071/FP20303 

Ziska, L. H., Teramura, A. H., and Sullivan, J. H. (1992). Physiological sensitivity of plants along an 

elevational gradient to UV-B radiation. American Journal of Botany, 79(8), 863–871. 

https://doi.org/10.1002/j.1537-2197.1992.tb13667.x 

Zohner, C. M., Benito, B. M., Svenning, J.-C., & Renner, S. S. (2016). Day length unlikely to constrain 

climate-driven shifts in leaf-out times of northern woody plants. Nature Climate Change, 6(12), 

1120–1123. https://doi.org/10.1038/nclimate3138 

https://doi.org/10.1007/s10113-017-1208-3
https://doi.org/10.1007/s10265-016-0816-1
https://doi.org/10.1007/s10265-016-0816-1
https://doi.org/10.1039/C8PP00567B
https://doi.org/10.1016/j.jplph.2020.153145
https://doi.org/10.1111/j.1751-1097.2005.tb00192.x
https://doi.org/10.3390/ijms22052701
https://doi.org/10.1038/nature12872
https://doi.org/10.1071/FP20303

