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Abstract 

Methods of linear regression analysis are 
applied to fuzzy cognitive map construction 
according to history data from the 
standpoint of quantitative human sciences. 
When the linearized version of history data 
is also used, this construction may be 
reduced to ordinary linear regression 
analysis. This linearization applies the 
inverted transformation functions of the 
fuzzy cognitive maps. Our approach will 
avoid subjective reasoning and 
interpretation on these model outcomes by 
relying on the objective and well-justified 
statistical theories instead. 

Keywords: Fuzzy cognitive maps, History 
data, Linear regression analysis, 
Quantitative human sciences. 

 

1     Introduction 
Fuzzy cognitive maps (FCM) seem applicable to 
complex system modelling. They comprise a set of 
concepts and their interrelationships and we may 
examine how these concepts will vary in a given time 
interval. These trends may be collected into the data 
matrix known as the history data [2, 3, 10, 18-22].  

Conversely, if only the history data is available, our 
aim is to construct such FCM that will yield this data 
as well as possible. This approach will thus apply 
optimization methods when the appropriate FCM 
parameters are specified. Below we will examine this 
problem-setting and focus on the numeric FCMs from 
the standpoint of the quantitative human sciences [11, 
12].  

The prevailing FCM construction methods often seem 
to apply techniques that are analogous to those of the 
neural networks, and this approach will arouse two 
principal problems. First, these FCMs are not 
necessarily stable systems with respect to their 

parameters because when repeating the parameter 
optimization many times, we may obtain distinct 
parameter values in each run [7, 8, 17]. 

Second, we will lack a sound theoretical basis when 
we make the interpretations on our parameter values 
and thus we often perform subjective reasoning 
instead.    

The Author has studied FCMs from the statistical 
standpoint for providing a less subjective and still a 
consistent basis on the FCM interpretation, and this 
approach is central in the quantitative human sciences 
[5, 6, 14-16]. Hence, below we will suggest 
resolutions to the foregoing problems by applying 
certain statistical methods, in particular the linear 
regression analysis.  In this manner, we should obtain 
stable parameter values and provide a sound 
theoretical basis for our FCM construction and 
interpretation.  

Section 2 presents the basic ideas for constructing an 
FCM. Section 3 introduces our resolutions at a 
general level. Section 4 provides a concrete example. 
Section 5 concludes our examination. 

2     Fuzzy Cognitive Maps 
The prevailing FCM constructions stem from the 
neural networks [3, 7, 10]. Consider a set of n 
concepts,  

Ci, 0 < Ci < 1, i = 1,2, … ,n, 

and their n×n connection matrix, M, with the weights  

 Wij, -1 < Wij < 1, i, j = 1,2, … ,n. 

These weights will denote the intensities of the 
interconnections or interrelationships of the concepts 
Ci. The driver and target concepts are the row and 
column concepts in M, respectively (Table 2.1.). 
Hence, in fact, we operate with directed graphs. 

In the FCM simulation we will first assign the initial 
values to the concepts Ci in a state vector 
V0=(C1,…,Cn). Then we may calculate their updated 
values in a given time interval, t=1, 2, …, m-1, by 
using the weights in the matrix M,  
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Vt+1 = F(Vt*M), t = 0,1, 2, … ,m-1 (2.1.) 

in which Vt*M denotes the matrix product of Vt and 
M and F is a transformation function [10]. 

Since the values in vector Ut=Vt*M should usually 
range from 0 to 1, in each iteration we should use 
such nonlinear transformation function as  

F(Ut) = 1 / (1 + exp(-lambda · Ut)),  
lambda > 1, t = 0, 1, …,m-1 (2.2.) 

in which exp is the exponential function should also 
be applied (Fig. 2.1.) [3, 10, 13, 18-22]. 

If these values may range from -1 to 1, we may define 

F(Ut)=tanh(lambda·Ut)=  
(exp(lambda·Ut) - exp(-lambda·Ut)) / 
(exp(lambda·Ut) + exp(-lambda·Ut)),  
lambda > 0.    (2.3.) 

Below we will apply (2.2.). In statistics, this approach 
is analogous to the logistic, multinomial logistic and 
Cox’s regression models [11, 12, 14, 15]. 

Hence, by iterating the foregoing procedure m-1 
times to each target concept, we will obtain a time 
series of concept values known as the m×n history 
data matrix in which the first row contains the initial 
concept values. We may thus examine the trends of 
our concepts in a given time interval.  

If, on the contrary, only history data are available and 
we should construct the corresponding FCM, our task 
is to create the appropriate connection matrix and 
lambda value. This will be our principal aim below. 

 C1 C2 … Cn 

C1 W11 W12 … W1n 

C2 W21 W22 … W2n 

… … … … … 

Cn Wn1 Wn2 … Wnn 

Table 2.1: Connection Matrix Used in Fuzzy 
Cognitive Map (drivers in rows, targets in columns). 

 
Figure 2.1: Examples on Transformation Functions 
for FCM with (2.2.). 

The prevailing methods usually optimize both the 
weights of the connection matrix and the lambda 
value according to the history data, and the obtained 
FCM should yield the trends similar to this data. This 
method is analogous to those applied to the neural 
networks [3, 7, 8, 10, 17].  

However, this approach seems problematic from the 
standpoint of model stability because we will have 
too much dispersion in our optimized parameters. 
Hence, when repeating this optimization many times 
with our history data, in each calculation we may 
obtain distinct parameter values for the connection 
matrix and lambda. In the models of the human 
sciences we nevertheless aim at unique parameter 
values.  

Within the prevailing approaches, the interpretation 
and significance estimation of the connection weights 
are also problematic because they often base on 
subjective reasoning. This problem leads to ad hoc or 
even arbitrary conclusions in FCM examination and 
thus to the undesirable outcomes within the 
quantitative human sciences. 

We will aim at resolving these problems. Our 
alternative method will principally apply linear 
regression analysis when assigning the weights to the 
connection matrix, and this approach will be 
considered below. 

3     The Inverse Function Approach 
When constructing an FCM according to the history 
data, we will aim at creating its connection matrix in 
such a way that this matrix will reveal the 
interconnections between our concepts in a unique, 
objective and theoretically well-justified manner. 

Hence, below we will suggest a method that reduces 
the connection matrix examination to the ordinary 
linear regression analysis, LRA. We may thus utilize 
the theoretical outcomes of this analysis. Bearing in 
mind that in the prevailing FCM simulations we will 
first apply the linear functions with (2.1.) and then the 
nonlinear transformation function (2.2.), in our case, 
in turn, the linear modelling of (2.1.) is essentially 
applied.  

As a preliminary work, in the human-scientific 
approach we may regard our FCM concepts as being 
the normally distributed random variables and thus 
we may estimate their central tendencies and 
measures of dispersion, among others. Our 
connection weights, in turn, may usually be treated as 
uniformly distributed variables. When applying 
(2.1.), their weighted sums will approach normal 
distributions according to the central limit theorem 
[11, 12, 16].   
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Hence, if our original history data are not ranging 
from 0 to 1, we may usually apply an appropriate 
transformation for them. The prevailing FCM 
methods seem to apply the formula 

0 < |x – min| / |max – min| < 1, 

when x is the original observation. However, the 
sample minima and maxima are usually quite 
unstable values. 

In the human sciences a widely-used method is to 
calculate first the standard scores of the data, zs, and 
then the scores |zs|>3 are excluded as the outliers [11, 
12]. Finally, we may apply such modification as 
(zs+3)/6 for having our data ranging from 0 to 1. This 
method seems more plausible because the sample 
means and standard deviations are expected to be 
more stable values [11, 12]. 

Our FCM approach, in turn, will construct an LRA 
model without a constant term for each target concept 
according to the given m×n history data matrix, H, 
with the initial concept values and their m-1 
consecutive values. Unlike in the ordinary FCM 
construction, in which case we are using directly this 
data in the parameter optimization, we, in turn, will 
also use the corresponding linearized data. Hence, we 
will also formulate the inverse images of our data for 
obtaining the corresponding linear data.  

Hence, we will apply the inverse functions of (2.2.) or 
(2.3.) for obtaining the corresponding linear values of 
our history data into matrix HL, 

F-1(y) = ln(y / (1-y)) / lambda, 0 < y <1, 
lambda > 1,    (3.1.) 

in which y = H(i,j), i=2, 3, …,m, j=1, 2, …,n and ln is 
the natural logarithm. Since in (3.1.)  

0 < y < 1 and -n < F-1(y) < n,  

we will establish that  

F-1(0) = -n and F-1(1) = n  

when n denotes the number of drivers. Then, we may 
also operate with the original history data values 0 
and 1 (Fig. 3.1). 

Alternatively, for (2.3.) we may apply 

F-1(y) = tanh-1(y) / lambda = 0.5 · ln((1+y) / 
(1-y)) / lambda,  -1 < y < 1.  (3.2.) 

We will only focus on (3.1.) below and this is not 
applied to our initial values, H(1,•) in our original 
history data. Hence, HL(1,•)=H(1,•). Since the lambda 
value is now unknown to us, it should be optimized 
or estimated when constructing an appropriate FCM.  

Thanks for (3.1.), we will also obtain the 
corresponding linearized m×n history data matrix, 
HL, and that is used for our target concepts.  Bearing 

also in mind, that the updated concept values will 
base on the concept values in the preceding iteration 
step, we should use a reorganized history data for our 
LRA.  

Hence, if the concept Ck is our response variable 
(target concept), its data will only include the rows 2 
to m in the column k in HL. For its predictors 
(drivers), C1 to Cn, we will use the rows 1 to m-1 in 
the columns 1 to n in the original history data matrix, 
H. If the connection matrix has zeros in its diagonal, 
i.e., no self-loops are used, the predictor concept Ck in 
the column k in H may be excluded (Table 3.1.).  

When using our reorganized history data matrix with 
an appropriate lambda value for the LRA model 
construction without the constant term, its estimated 
regression coefficients will be the weights in the 
FCM connection matrix, M, and we may also utilize 
such LRA outputs as their confidence intervals, 
standardized beta values, statistical significances with 
the t-tests and possible multicollinearity measures. 
This simple linear method will also yield unique 
weights, and thus this type of stability of our FCM 
weights is attained. Naturally, we may also examine 
such general LRA goodness criteria as the Rsquares 
and F-tests.  

 
Figure 3.1: Examples on Inverse Transformation 
Functions of (2.2.). 

 C1 C2 … Ck … Cn 

1    Not used   
2       
3       
…       

m-1       
m Not used Not used Not used  Not used Not used 

Table 3.1: The History Data Used for an LRA Model 
when Ck Is the Response Variable and the Other 
Concepts Are Predictors (white cells: from original 
history data matrix for the predictors, grey cells: from 
linearized history data matrix for the response). 
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This method is applied one by one to each target 
concept. Finally, we may create our FCM simulation 
outputs with our new connection matrix by applying 
(2.1.) and (2.2), and these data are expected to be 
identical to those of the original history data, H. 
Below we will provide a concrete example. 

4     Application Example 
Our concrete application example is based on the 
studies on Parkinson’s disease in [1]. Their medical 
FCM model included these eight concepts, 

C1: Body bradykinesia (slowness of movement) 

C2: Rigidity (stiffness of muscles) 

C3: Posture 

C4: Movement of upper limbs 

C5: Gait 

C6: Tremor 

C7: Self-care 

C8: Stage of Parkinson’s disease (their principal 
target) 

Their interconnections, that also included self-loops, 
are presented in Fig. 4.1. and Table 4.1. In this FCM 
concept C8 is the principal target concept.  

If we apply their FCM with lambda=1 and initial 
concept values with nine iterations, we will obtain 
their history data presented in Table 4.2. and Fig. 4.2. 
[1]. These data will be used in our analysis at the 
outset, and we should be able to construct their FCM.  

 
Figure 4.1: The Graph Depicting Parkinson’s Disease 
Model. 

 

 

 

 

 C1 C2 C3 C4 C5 C6 C7 C8 

C1 1 0.8 0 -0.4 0.8 0 0.7 0.7 

C2 0.8 1 0 -0.6 0.3 0 0.3 0.3 

C3 0.3 0 1 -0.2 0.7 0 0.3 0.2 

C4 0.8 0.8 0.8 1 0.9 0 0.3 0.3 

C5 0.8 0.7 0.3 0.8 1 -0.8 0.8 0 

C6 0.2 0 0 0 0.8 1 0.8 0.8 

C7 0.8 0.9 0.8 0 0.8 0 1 0.8 

C8 0 0 0 0 0 0 0 1 

Table 4.1: The Connection Matrix Used in  
Parkinson’s Disease FCM. 

For the sake of comparison, the prevailing method for 
specifying the connection matrix and lambda with the 
data in Table 4.2. was first carried out by using 
Matlab’sTM Genetic Algorithm Toolbox and then 
fine-tuning these outputs with Levenberg-Marquardt 
optimization (Table 4.3., lambda=1.79). However, 
when repeating this procedure, alternative weights 
will be obtained and thus the instability problem is 
encountered. In addition, the interpretations of these 
weights are essentially based on subjective reasoning. 

Our inverse method, in turn, is also using the 
corresponding linearized history data matrix for our 
target concepts by applying (3.1.) (Table 4.4.). 
Hence, for example, if we will construct the LRA 
model with Parkinson’s disease (concept C8) as the 
response variable, the concepts C1-C8 will be its 
tentative predictors. Here C8 is also used as the 
predictor because the foregoing FCM contains self-
loops.  

 C1 C2 C3 C4 C5 C6 C7 C8 

1 0.75 0.75 0.50 0.50 0.75 1.00 0.50 1.00 

2 0.95 0.94 0.82 0.56 0.97 0.61 0.94 0.96 

3 0.98 0.97 0.91 0.56 0.99 0.47 0.97 0.97 

4 0.98 0.98 0.92 0.55 0.99 0.43 0.97 0.96 

5 0.98 0.98 0.92 0.55 0.99 0.42 0.97 0.96 

6 0.98 0.98 0.92 0.55 0.98 0.42 0.96 0.96 

7 0.98 0.98 0.92 0.55 0.98 0.42 0.96 0.96 

8 0.98 0.98 0.92 0.55 0.98 0.42 0.96 0.96 

9 0.98 0.98 0.92 0.55 0.98 0.42 0.96 0.96 

10 0.98 0.98 0.92 0.55 0.98 0.42 0.96 0.96 

Table 4.2: The Original History Data Based on 
Connection Matrix in Table 4.1. when Lambda=1 
(the initial values in the first row). 
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Figure 4.2.: Trends of Concepts in Parkinson’s 
Disease FCM. 

 
C1 C2 C3 C4 C5 C6 C7 C8 

C1 0.74 -0.21 0.97 -0.77 -0.51 0.24 -0.6 -0.5 

C2 0.71 0.21 -0.14 -0.01 0.63 0.25 0.5 0.4 

C3 -0.05 -0.14 0.31 0.47 0.55 -0.34 0.78 0.47 

C4 -0.43 0.76 -0.75 -0.53 -0.5 -0.72 -0.46 0.28 

C5 -0.19 0.91 0.7 -0.01 0.41 -0.64 -0.21 -0.71 

C6 0.12 -0.06 -0.26 0.03 0.32 0.33 0.71 0.86 

C7 0.81 0.75 -0.22 0.08 0.66 0.01 0.98 0.88 

C8 0.47 0.2 0.3 0.69 0.85 0.56 0.46 0.83 

Table 4.3:  An Example of Connection Matrix when 
the Prevailing Optimization Approach Is Adopted. 

 
C1 C2 C3 C4 C5 C6 C7 C8 

1 0.75 0.75 0.5 0.5 0.75 1 0.5 1 

2 3.03 2.68 1.52 0.26 3.44 0.44 2.79 3.11 

3 3.97 3.61 2.29 0.25 4.2 -0.12 3.37 3.32 

4 4.05 3.7 2.4 0.21 4.22 -0.27 3.35 3.28 

5 4.04 3.7 2.4 0.2 4.19 -0.31 3.32 3.24 

6 4.04 3.69 2.4 0.19 4.18 -0.31 3.31 3.23 

7 4.04 3.69 2.4 0.19 4.18 -0.32 3.31 3.23 

8 4.03 3.69 2.4 0.19 4.18 -0.32 3.3 3.23 

9 4.03 3.69 2.4 0.19 4.18 -0.32 3.3 3.23 

10 4.03 3.69 2.4 0.19 4.18 -0.32 3.3 3.23 

Table 4.4: The Inverted (Linearized) History Data of 
Table 4.2. for Response Variables when (3.1.) and 
Lambda=1 Are Used (then the initial values in the 
first row are not inverted and are also irrelevant). 

When creating our reorganized history data matrix for 
the LRA model by combining Table 4.2. with Table 
4.4., we will apply the method in (2.1.) to this new 
history data, i.e., given the two consecutive rows in 
the history data matrix, the concept values in the 
former row will yield their updated values in the 
latter row. After this procedure, we may apply LRA. 

In our example, we will thus use the history data 
matrix rows 1 to 9 in Table 4.2 for the predictors C1-
C8 in our example LRA model. For the response 
concept data of C8, in turn, we will use the rows 2 to 
10 in the linearized (inverted) history data matrix in 
Table 4.4. Hence, we are not completely using the 
original history data (Table 4.5).  

When applying LRA with Matlab without the 
constant term, i.e., when in practice resolving X in 
the matrix  equation A*X=B in which A includes the 
predictor and B the response values in Table 4.5., we 
will obtain (as expected) such estimated regression 
coefficients, X, for concept C8 that are virtually 
identical to the weights of C8 in Table 4.1. However, 
contrary to the subjective reasoning, in principle, our 
method also enables us to examine the statistical 
significances of its predictors and the confidence 
intervals of our weights in an objective and a well-
justified manner.  

However, since our predictor variables caused much 
multicollinearity due to their high intercorrelations, 
their t-tests, for example, are now more or less 
unreliable. The original history data also converged to 
the fixed-point values, and that will restrict the use of 
representative data [4, 9]. Still another problem was 
that only a small history data set was available. 

The similar procedure was also carried out with the 
other response concepts C1 to C7 and then we also 
obtained the coefficients identical to those weights in 
Table 4.1. Hence, the total of eight LRA models were 
constructed. Thanks for our approach, these 
regression coefficients will remain unaltered even 
though the LRA will be repeated.  

Since our history data concepts may have distinct 
ranges in their LRA models, we may also construct 
alternative LRA models by replacing our data 
matrices with their standard scores. Hence, their 
corresponding standardized regression coefficients, 
the Beta values, will provide even better comparable 
grounds for evaluating the effects of the predictors on 
their response variables. This method is widely used 
in LRA. However, in this case, our coefficients are 
not necessarily ranging from -1 to 1 [11, 12]. 

When applying this procedure to our example, i.e., 
when using the corresponding standard scores of  
Table 4.5., the concepts C1, C6 and C7 seem the most 
important predictors for C8 due to their high absolute 
Beta values. This type of interpretation may also be 
applied to the other target concepts (Table 4.6.). 
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C1 C2 C3 C4 C5 C6 C7 C8 C8r 

1 0.75 0.75 0.5 0.5 0.75 1 0.5 1 3.11 

2 0.95 0.94 0.82 0.56 0.97 0.61 0.94 0.96 3.32 

3 0.98 0.97 0.91 0.56 0.99 0.47 0.97 0.97 3.28 

4 0.98 0.98 0.92 0.55 0.99 0.43 0.97 0.96 3.24 

5 0.98 0.98 0.92 0.55 0.99 0.42 0.97 0.96 3.23 

6 0.98 0.98 0.92 0.55 0.98 0.42 0.96 0.96 3.23 

7 0.98 0.98 0.92 0.55 0.98 0.42 0.96 0.96 3.23 

8 0.98 0.98 0.92 0.55 0.98 0.42 0.96 0.96 3.23 

9 0.98 0.98 0.92 0.55 0.98 0.42 0.96 0.96 3.23 

Table 4.5: The Data Used in Our LRA Model 
Example (predictors use original but response 
linearized values, the last column is response 
variable). 

 
C1 C2 C3 C4 C5 C6 C7 C8 

C1 0.23 0.18 0 -1.24 0.23 0 0.29 0.9 

C2 0.18 0.22 0 -1.66 0.07 0 0.11 0.33 

C3 0.1 0 0.47 -0.9 0.37 0 0.2 0.41 

C4 0.04 0.04 0.05 0.71 0.06 0 0.03 0.08 

C5 0.17 0.16 0.09 2.36 0.31 -0.23 0.33 0 

C6 0.11 0 0 0 0.58 0.77 0.86 2.78 

C7 0.38 0.4 0.4 0 0.51 0 0.87 2.02 

C8 0 0 0 0 0 0 0 0.22 

Table 4.6: Standardized LRA Coefficients (Beta 
coefficients) as Connection Weights for Parkinson’s 
Disease FCM. 

If we aim at simplifying our FCM, we may apply 
stepwise LRA, among others, in which case only the 
statistically significant predictors are included in our 
models. In this manner, our connection matrix will 
contain less nonzero weights [11, 12]. 

In our example we knew the “true” connection matrix 
in advance, and this approach was adopted 
deliberatively for comparing better our outcomes to 
those of presented in [1]. However, as generally in 
the FCM construction, if the history data is only 
available and the lambda value is unknown, our task 
may be more challenging. More studies should thus 
be carried out within this problem area. 

Hence, thanks for the general LRA theory, our 
approach to FCM analysis and interpretation will not 
rely on inordinate subjective reasoning but rather is 
more objective and theoretically well-justified by 
nature. Lack of space precludes additional examples. 

5     Conclusions 
FCM construction according to the history data was 
considered from the standpoint of the quantitative 
human sciences. In this context, the prevailing 
approaches seem to apply the methods of the neural 
networks when optimizing the FCM parameter 
values. Hence, two principal problems may arise.  

First, we may obtain distinct parameter values if this 
optimization is repeated, this state of affairs leading 
to the instability problems in the FCM constructions.  
Second, they seem to lack an objective and a well-
justified theoretical basis concerning the 
interpretations on their outcomes.  

Our approach reduced the FCM construction to linear 
regression analysis by also using the linearized 
transformations of the original history data. Thanks 
for this approach, we will always obtain unique 
parameter values and we may also utilize the 
corresponding statistical theories in our conclusions. 
Hence, we may avoid better unstable models and ad 
hoc or subjective reasoning. 

The FCM construction was considered first in the 
light of the prevailing methods. Then, our method 
was introduced.  A concrete example was also 
provided with the Parkinson’s disease model. As was 
presupposed, we noticed that our LRA outcomes 
were similar to those in the original Parkinson’s 
model.  

If, unlike above, we do not know the correct 
outcomes in advance, our task may be more 
challenging. Hence, our approach seems promising in 
this type of model construction, but still further 
studies are expected.  
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