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In a quickest detection problem, the objective is to detect abrupt changes in a stochastic sequence
as quickly as possible, while limiting rate of false alarms. The development of algorithms that after
each observation decide to either stop and declare a change as having happened, or to continue the
monitoring process has been an active line of research in mathematical statistics. The algorithms
seek to optimally balance the inherent trade-off between the average detection delay in declaring a
change and the likelihood of declaring a change prematurely. Change-point detection methods have
applications in numerous domains, including monitoring the environment or the radio spectrum,
target detection, financial markets, and others.

Classical quickest detection theory focuses settings where only a single data stream is observed.
In modern day applications facilitated by development of sensing technology, one may be tasked
with monitoring multiple streams of data for changes simultaneously. Wireless sensor networks or
mobile phones are examples of technology where devices can sense their local environment and
transmit data in a sequential manner to some common fusion center (FC) or cloud for inference.
When performing quickest detection tasks on multiple data streams in parallel, classical tools
of quickest detection theory focusing on false alarm probability control may become insufficient.
Instead, controlling the false discovery rate (FDR) has recently been proposed as a more useful
and scalable error criterion. The FDR is the expected proportion of false discoveries (false alarms)
among all discoveries.

In this thesis, novel methods and theory related to quickest detection in multiple parallel data
streams are presented. The methods aim to minimize detection delay while controlling the FDR. In
addition, scenarios where not all of the devices communicating with the FC can remain operational
and transmitting to the FC at all times are considered. The FC must choose which subset of data
streams it wants to receive observations from at a given time instant. Intelligently choosing which
devices to turn on and off may extend the devices’ battery life, which can be important in real-life
applications, while affecting the detection performance only slightly. The performance of the
proposed methods is demonstrated in numerical simulations to be superior to existing approaches.

Additionally, the topic of multiple hypothesis testing in spatial domains is briefly addressed. In
a multiple hypothesis testing problem, one tests multiple null hypotheses at once while trying to
control a suitable error criterion, such as the FDR. In a spatial multiple hypothesis problem each
tested hypothesis corresponds to e.g. a geographical location, and the non-null hypotheses may
appear in spatially localized clusters. It is demonstrated that implementing a Bayesian approach that
accounts for the spatial dependency between the hypotheses can greatly improve testing accuracy.
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Chapter 1

Introduction

Sequential inference and the detection of abrupt changes in time series data is a widely
investigated topic in statistical literature. Its origins lie in the field of quality control [46],
where a sudden change in some statistical property in a produced product might be an
indication of e.g. a faulty machine that requires investigation. The time of this change is
commonly called a change-point. Since its introduction, change-point detection problems
have garnered interest in numerous fields, including intrusion detection in computer net-
works [73], radar [37], wireless communications [33, 45], financial markets [61], detection
of signals in seismology [41] and many others.

The field of change-point detection can broadly be divided into two distinct categories
depending on whether the data is processed online or offline. In offline change-point de-
tection, the observer has the whole data sequence at hand, and the task is to estimate
the time of change in an optimal manner and identify the pre- and post-change statistical
models. In online change-point detection problems the statistician receives observations
sequentially, and the objective is to identify the change in the stochastic process in real
time with minimal delay, while avoiding false alarms, i.e. announcing a change pre-
maturely. For example, in environmental monitoring it is of interest to detect possible
hazards rapidly in order to take action and minimize damages. Real time decisions are
also required in the monitoring of daily disease counts [65] or radio spectrum [7, 30], and
navigation systems [20], to name a few. Online change-point detection is often also re-
ferred to as sequential or quickest change detection in the literature, and it is the focus
of this thesis. Two comprehensive general references for theory and methods of quickest
change detection, along with more extensive listings of application domains are [50] and
[71].

In a classical quickest change detection task, the focus is on a single stream of data.
On the other hand, in modern day challenges facilitated by quick development of sensing
technology and a growing number of data sources, it is possible to track multiple data
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streams for change-points in parallel. Wireless sensor networks (WSN) are a prime exam-
ple of such technology, with cheap, energy-efficient sensors that can be deployed for various
monitoring purposes. Smart phones of a large number of users equipped with a variety of
sensors could be another source of multiple data streams. The sensors observe their local
environment, and send data to a common Fusion Center (FC) or cloud for further analy-
sis. Monitoring critical infrastructure such as bridges, power grid and oil networks, as well
as remote environments in industrial or security applications are common tasks for which
these networks are employed. In these scenarios the change-point would represent some
abrupt change, anomaly or adversarial event in the underlying stochastic process of the
monitored area, resulting from e.g. a leak in an oil pipe or a crack in the bridge structure.
Internet of Things (IoT) systems are also central recent applications of such networks.
An example of a quickest detection problem in IoT systems is radio spectrum occupancy
monitoring, in which unlicensed secondary users wish to use the radio frequency spectrum
for transmission in an opportunistic manner when it is idle. The secondary users have
to detect the appearance of licensed, primary users and vacate the corresponding fre-
quency bands as quickly as possible [33, 29]. If executed succesfully, effective utilization
of available frequency bands would help in satisfying the demand for high-quality and
high-data-rate wireless products in the future [7]. Depending on the scenario the change
can be observed by all of the sensors simultaneously or only by a subset, if the real life
phenomenon affects only a portion of the monitored area. For example, the state of the
radio spectrum, air quality, and the weather are dynamic phenomena that vary locally.
Alternatively, if the sensors are observing separate processes, their data streams acquired
by the FC could be considered practically independent.

Another recently active sub-field of statistics that has been spurred by the increase of
data sources is that of large-scale inference. In particular, large scale hypothesis testing
has been an active area of study [16]. Classical frequentist testing theory of Fisher, Ney-
man and Pearson is in many ways constructed around the idea of Type I error rate control.
When one is testing hundreds, if not thousands, of hypotheses simultaneously, the classical
inference methods quickly become insufficient. The problem of multiple comparisons has
been studied since the work by Tukey [74] in the 50’s, but it was the introduction of the
concept of false discovery rate (FDR) by Benjamini and Hochberg in their seminal 1995
paper [6] that really sparked interest in multiple testing research. The application that
has arguably most motivated the research is analysis of DNA microarrays for identifica-
tion of differentially expressed genes. At the same time, applications that require the use
of wireless sensor networks often come in contact with large-scale hypothesis testing. For
example, if the network is used for monitoring the presence of some physical world phe-
nomenon, each sensor can be thought of as conducting a hypothesis test for the presence
of the phenomenon at its location.

In this thesis, some novel methods and theory related change-point detection and
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multiple hypothesis testing in sensor networks are presented. The author of this thesis has
conducted research and authored and published peer reviewed papers [27, 28, 42, 43] as a
member of a research group at the Department of Signal Processing, Aalto University. In
these publications, methods for change-point detection in multiple data streams in parallel
that aim to minimize detection delay while controlling the FDR have been proposed.
Additionally, scenarios where not all of the devices communicating with the FC can be
operational and communicating with the FC at all times have been considered. Instead,
the FC must choose which subset of data streams it wants to receive observations from at
a given time instant. This is important in practice, since in many applications the sensors
may be battery operated with limited computational and communication capabilities
and need to remain operational over long time periods. Intelligently controlling the on-
off status of the observing device can greatly extend its life span while having only a
minor impact on the performance of the inference task at hand. In addition to change-
point detection, the problem of multiple hypothesis testing in a spatial domain is briefly
addressed. The sensors acquiring the data are in distinct locations. Hence the non-null
hypotheses (here representing sensors that are located inside a region of "signal") appear
in spatially localized clusters. This work is still more in progress, but preliminary results
are presented.

1.1 Contributions
The main contributions of the work presented in this thesis are summarized here. In
conference paper [28], and its subsequent extension to a journal publication [42], novel
methods for change-point detection in multiple data streams in parallel are presented. The
methods handle communication limitations by at each time step monitoring the subset
of sensors with the highest posterior probabilities of change-points having occurred. It
is shown that the procedures control the FDR under a specified tolerated level, and that
they are scalable in the sense that the detection delay and average number of data points
used do not increase asymptotically with the number of sensors. Numerical simulations
are conducted for validating the derived results, and for demonstrating that the suggested
policy for choosing which sensors to monitor at a given time results in better detection
performance than that of simpler alternatives. The author of this thesis contributed to the
development of the proposed methods in approximately equal extent with the first author
of [42]. Additionally, the author is responsible for deriving the proof of FDR control for
the methods. The result also applies to previous work by other authors in the topic area,
showing that the method presented [13] achieves non-asymptotic FDR control. This is a
stronger result than the claim of asymptotic control that was shown in the original paper
[13].
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In conference publication [27], an approach for multiple hypothesis testing under spa-
tial dependency is presented. The method is a product two popular paradigms of their
own fields, the empirical Bayesian two-groups model of multiple testing, and latent Gaus-
sian random fields of spatial statistics. The resulting approach is a flexible Bayesian
framework in which the user can encode their own prior knowledge about the properties
of the dependency in to the detection model. The Bayesian approach provides a simple
way for the user to summarize their posterior beliefs in a way that is consistent with FDR
control in light of the inferences. While this topic still requires further research, in numer-
ical simulations it is illustrated that the taking the spatial dependency into account can
significantly improve detection power. The author is primarily responsible for all of the
contents of the publication, including designing the approach, conducting the simulations
and the writing.

1.2 Structure of the thesis
To introduce the reader to the general topic area, we start from the basic definitions and
foundations of change-point detection and large-scale testing, and work our way gradually
toward the content in the mentioned publications. The rest of this thesis is structured as
follows.

In Chapter 2, fundamental concepts and methods of change-point detection under
both Bayesian and non-Bayesian frameworks are introduced. Additionally, a brief review
of the important asymptotic results and the literature regarding data-efficient change-
point detection is provided.

In Chapter 3, another building block of the subsequent content, multiple hypothesis
testing, is introduced. After presenting the basic ideas, the connection of the purely fre-
quentist and Bayesian interpretations of the concept of false discovery rate is discussed.
Section 3.3 is devoted to the conference paper [27], where an approach for multiple hy-
pothesis testing in spatial domains is presented. Chapter 3 is concluded by introducing the
connection of change-point detection in sensor networks and multiple hypothesis testing.

Chapter 4 contains the contents of [28] and [42], where new methods for data-efficient
change-point detection of multiple parallel data streams are developed and analyzed.

Chapter 5 concludes the thesis.



Chapter 2

Background on change-point detection

2.1 Fundamentals of change-point detection
The methods for change-point detection in multiple parallel data streams studied later in
this thesis are founded on the theory of change-point detection in a single data stream.
Hence, in this section, the conventional problem of sequential change-detection for a single
stream of data is formulated. We observe a sequence of independent random variables
X1, X2, ... := {Xn} that follow a distribution f0, until a change occurs at an unknown
time t ∈ {0, 1, 2, ...}. After the change, the observations Xt, Xt+1, ... are still independent,
but follow a different distribution f1. That is, conditional on t, {Xn} is an independent
sequence where X1, ..., Xt−1 =: X(t−1) are i.i.d. with distribution f0, and Xt, Xt+1, ... i.i.d.
with distribution f1. An illustration of such data appears in Figure 2.1. The goal is to
detect the change in distribution as soon as possible by observing the sequence, while
avoiding false alarms.

First we introduce some important definitions. We consider the sequence {Xn} to be
defined on a probability space (Ω,F ,P), where Ω is the sample space, F a σ-algebra and
P a probability measure.

Definition 1 (Filtration). A filtration {Fn}∞n=0 on (Ω,F) is an increasing sequence of
sub-σ-algebras of F . That is

Fn ⊆ Fm, when n < m.

A particularly useful object is the filtration {FXn } created by {Xn}, that is,

FXn = σ(X1, ..., Xn),

where σ(X1, ..., Xn) denotes the smallest σ-algebra with respect to which all of the random
variables (X1, ..., Xn) are measurable. This filtration is sometimes referred to as the

8
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Figure 2.1: An example of sequence {Xn} where the observations prior to the unobserved change-
point at time 100 follow N (0, 1), and N (1, 1) afterwards.

natural filtration of F with respect to {Xn}. An informal interpretation for the nth
element of the natural filtration FXn is that it contains any information that could be
asked and answered for the considered random process at time n. For the rest of this
section {Fn} is used when referring to {FXn }.

The task of observing a sequence {Xn} and "stopping" to declare that a change has
occurred is achieved by means of a stopping time on the natural filtration {Fn}.

Definition 2 (Stopping time). A random variable T defined on (Ω,F ,P) taking values
in {0, 1, 2, ...} ∪∞ is a stopping time with respect to a filtration {Fn} if

{T = n} ∈ Fn, for all n ≥ 0.

Intuitively, the condition in the definition tells that the decision of whether to "stop"
(and declare a change) at time n must be based only on information available at time n.
An important class of stopping times are ones generated by threshold based rules

T ′ = inf{n : Yn > s},

where {Yn} is any sequence such that Yk is Fk-measurable1 for all k and s ∈ R is a
constant. That is, Yn is any deterministic function of X(n). To see that T ′ is a stopping
time, observe that

{T ′ = n} = {Y1 ≤ s, Y2 ≤ s, ..., Yn > s} ∈ Fn.
1In probability jargon, the sequence {Yn} is adapted to {Fn}



2.1. FUNDAMENTALS OF CHANGE-POINT DETECTION 10

A central quantity in constructing effective stopping times will be the (log-)likelihood
ratio of f1 and f0 for an observation X,

`(X) := logL(X) := log
f1(X)

f0(X)
.

The useful property of the likelihood ratio for sequential change-detection will become
apparent after introducing the Kullback-Leibler (KL) divergence for distributions f1 and
f0.

Definition 3 (KL Divergence). The KL divergence between two densities f1 and f0 is
defined as

D(f1||f0) :=

∫
log

f1(x)

f0(x)
f1(x)dx = Ef1`(X).

A well known property of KL divergence is that D(f1||f0) ≥ 0 with equality only
if f1 = f0 almost surely. Since the detection problem becomes degenerate if f1 = f0

almost surely, we assume f0 and f1 to be such that D(f1||f0) > 0. Hence, for n ≥ t we
have E[`(Xn)] = Ef1`(X) = D(f1||f0) > 0. On the other hand, for n < t, E`(Xn) =
−Ef0 [log(f0(X)/f1(X))] = −D(f0||f1) < 0. That is, the sign of the expected value of the
log-likelihood ratio is different for pre- and post-change observations.

The objective of the observer is to design a stopping rule such that {T = n} claims that
the change-point t has occurred within the first n observations, when T is the stopping
time defined by the stopping rule. If, however, T < n, it is said that a false alarm has been
raised. A good detection procedure should have small delay T−t between the change-point
and the time of its detection, and produce false alarms rarely. While the precise criteria
for the detection speed and the rate of false alarms depend on additional assumptions,
there is in general a trade-off between the two performance criteria. A procedure that is
greedy in declaring the occurrence of a change can be prone to false alarms, and a very
conservative detection strategy can be slow in detecting the change-point.

One can take either a frequentist or a Bayesian approach to change-point detection
and consider t either as a deterministic but unknown quantity or a random variable,
respectively. Both formulations are investigated in this thesis, beginning with the Bayesian
viewpoint.

2.1.1 Bayesian quickest change detection

The case of Bayesian quickest change detection was first formulated by Shiryaev in [60].
In the Bayesian formulation, a prior distribution {pn}∞n=0 is specified for t, so that

pn := P(t = n), n = 0, 1, 2, ...
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represents the a priori knowledge regarding the change-point. Since T and t are both
random variables in the Bayesian approach, the detection delay of a stopping time T can
be measured with the average detection delay (ADD), defined as

ADD(T ) = E
[
(T − t)+] ,

where x+ = max(x, 0). To measure the rate of false alarms, it is reasonable to use the
probability of false alarm (PFA)

PFA(T ) = P(T < t).

Given these definitions, the Bayesian quickest detection problem was formulated by
Shiryaev as follows.

Definition 4 (Shiryaev’s problem). For a given α > 0, find a stopping time T that
minimizes ADD(T ) subject to PFA(T ) ≤ α.

The problem can be solved by considering the Lagrangian relaxation,

inf
T∈T
{PFA(T ) + c · ADD(T )} , (2.1)

where T is the set of all stopping times on {Fn}. In (2.1), the constant c is the Lagrangian
multiplier.

To proceed, we assume for convenience that the distribution of t is geometric with
parameter ρ, i.e.

pn = ρ(1− ρ)n−1, n = 1, 2, ...

The geometric distribution is the conventional assumption in Bayesian sequential change-
point detection due to its memorylessness property2 [1, 70]. That is, conditional on the
change not having occurred within n, the probability of it occurring at n+ 1 is constant
for all n.

An important quantity in the detection process will be the posterior probability of the
change having happened at or prior to n, conditional on the observations up to n,

πn := P(t ≤ n|Fn). (2.2)

Under the assumed Bayesian model, a convenient recursive update for πn follows from
Bayes rule as follows [60]:

πn =
dP(X(n)|t ≤ n)P(t ≤ n)

dP(X(n−1))
=
dP(Xn|t ≤ n,X(n−1))dP(X(n−1)|t ≤ n)P(t ≤ n)

dP(X(n))

=
f1(Xn) [(1− πn−1)P(t = n|t ≥ n) + πn−1]

f1(Xn) [(1− πn−1)P(t = n|t ≥ n) + πn−1] + f0(Xn)(1− πn−1)(1− P(t = n|t ≥ n))
.

2A discrete random variable t is said to be memoryless if P(t > n+ k|t ≥ n) = P (t > k) for all k and
n
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Noting that as t is geometric, P(t = n|t ≥ n) = ρ for all n, this expression simplifies to

πn =
L(Xn)φn

L(Xn)φn + 1− φn
, (2.3)

where φn := πn−1+(1−πn−1)ρ contains the components of the update that are independent
of the observation Xn, and π0 = 0.

The importance of the quantity πn is apparent from the following result, originally de-
rived in [60, Thm. 1]. The result establishes that the optimal stopping time for Shiryaev’s
problem is given by a threshold rule on the sequence {πn}.

Theorem 1. Assume t is geometrically distributed. Then, for an appropriately chosen
threshold A∗ ∈ [0, 1], the stopping time

TA∗ = inf{n ≥ 0|πn ≥ A∗} (2.4)

is Bayes optimal. That is, it solves (2.1).

Proof. See [60, Thm. 1] for the original proof. Alternatively, a proof via a convenient
dynamic programming argument is given in [75].

The stopping time in (2.4), often referred to as the Shiryaev stopping time, is easy to
implement for practical purposes, as the decision statistic is one-dimensional and admits a
recursive form. However, observe that Theorem 1 does not provide the optimal threshold
A∗ for a given false alarm probability constraint α, it only tells that the optimal stopping
rule is of this form for some threshold A∗. For practical use, a useful threshold is obtained
from the following proposition [60]

Proposition 1. Let T1−α be a Shiryaev time from (2.4) with stopping threshold 1 − α.
Then,

PFA(T1−α) ≤ α.

Proof. The proof follows from the law of total expectation and the definition of T1−α

P(T1−α < t) = E[P(T1−α < t|FT1−α)] = E[1− πT1−α ] = 1− πT1−α ≤ α.

Note that Proposition 1 is valid for any prior distribution, not just geometric. Whether
1 − α is a good approximation for the optimal threshold depends on the amount the
statistic πn "overshoots" the threshold 1 − α at the detection time n = T1−α. For i.i.d.
observations and a geometric prior, accurate estimates of the overshoot are provided in
[70]. Nonetheless for small values of ρ and D(f1||f0) the overshoot can be neglected,
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since the sequence {πn} evolves with small increments and large overshoots are unlikely
to take place. Additionally, in Section 2.1.3 it is justified why this approximation error is
negligible in the asymptotic limit PFA→ 0.

The Shiryaev algorithm is illustrated in Figure 2.2. The lines correspond to two differ-
ent realizations of the the detection procedure T , generated by two different observation
sequences {Xn}. Though t is random, in the illustration the same t = 100 applies for both
realizations for brevity. The gray posterior probability trajectory results in a false alarm,
as the detection threshold 1 − A is exceeded prior to t. The dark trajectory produces a
correct detection, with detection delay T − t.
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1− A
Detection threshold

T

Detection point (false alarm)

t T

Detection point
(correct detection)

Detection delay T − t

Change-point

Figure 2.2: The Shiryaev algorithm declares a change-point the first time posterior probability
surpasses the detection threshold. There are two possible outcomes: a false alarm (gray) or a
correct detection (black).

2.1.2 Non-Bayesian sequential change-point detection

In the previous section, a convenient optimal procedure was found under the Bayesian
formulation. The key assumption was that the change-point follows a geometric distri-
bution. In this section no such assumption is made, and the change-point is treated as
a deterministic quantity. In applications such as surveillance or inspection systems it is
sometimes hard to define a prior distribution that would be logical and justified or to for-
mulate the prior knowledge in a form of a probability distribution, making the frequentist
approach necessary. While it requires slightly more complicated formulations and doesn’t
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admit any uniformly optimal procedures like the Shiryaev algorithm, several useful fre-
quentist change-point detection formulations and solutions have been found. The most
notable ones are due to Lorden [34] and Pollak [48]. A brief overview of these methods is
provided in this subsection.

When the change-point t is considered to be a deterministic but unknown quantity,
the probability P(T < t) can only be defined in the form of conditional probabilities
P(T < t|t = k). The shorthand Pk(·) will be used to denote the conditional measure
P(·|t = k), and Ek to denote the expectation with respect to Pk. Additionally, P∞ and
E∞ are the probability measure and the corresponding expectation in the case when a
change does not occur at all. To control the false alarm probability for all possible times
of change, one would need to control supk Pk(T < k). We will see later that this is a
rather severe constraint for practical purposes. Instead, the rate of false alarms is usually
measured by the average run length to false alarm (ARL), defined as ARL(T ) = E∞T [50].
In essence, ARL quantifies how long a particular stopping time can on average receive
observations from the pre-change distribution without triggering a false alarm.

In the Bayesian formulation it was observed in eq. (2.3) that the data sequence {Xn}
influences the test statistic only through the likelihood ratios L(Xn) = f1(Xn)/f0(Xn).
The importance of the likelihood ratio in the frequentist approach is evident from the
earlier observation that E∞`(X1) < 0 and E1`(X1) > 0. That is, prior to the change-
point the log likelihood ratio has negative expectation, and positive afterwards. Since
the observations are assumed i.i.d. conditional on the change-point, one possibility for
detecting the change-point is to monitor the process generated by the sum of log likelihood
ratios

Sn :=
n∑
k=1

`(Xk)

for a change from negative to positive drift.
The Cumulative Sum (CuSum) algorithm, first introduced by Page in 1950’s [46], is

based around this concept. An intuitive idea is to keep track of the distance between the
current value of Sn and the current smallest value of Sk for k ≤ n. If the random walk
has evolved far from its lowest point, it is considered as evidence of the process having
positive drift in this interval, and thus of a change having taken place. Concretely, we
define the statistic

Wn := Sn − min
1≤k≤n

Sk,

and the associated stopping time

Definition 5 (CuSum algorithm [46]).

τc := inf{n ≥ 0|Wn > b}, b ∈ R+. (2.5)
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Observe that Sn − min1≤k≤n Sk = max1≤k≤n+1

∑n
j=k `(Xj). From this a convenient

recursion for Wn can be derived in the form of

Wn = max{0,Wn−1 + `(Xn)}, W0 = 0. (2.6)
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0.0
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25 75
Time −→
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τct

Detection delay
τc − t

{Sn}

{Wn}

b

Figure 2.3: The CuSum statistic {Wn} and the cumulative likelihood ratio sum {Sn} computed
for the data in Figure 2.1.

The CuSum algorithm, as well as the relationship betweenWn and Sn, is illustrated in
Figure 2.3. While the algorithm was initially developed using purely heuristics described
above, it was later shown to have useful optimality properties. In [34], Lorden defined a
quantity known as the worst case average detection delay (WADD) as3

WADD(τ) := sup
k≥1

ess supEk
(
(τ − k)+|Fk−1

)
. (2.7)

The "worst case" in WADD refers to the fact that the expectation in (2.7) is taken
with respect to the worst possible (in terms of ensuing detection delay) pre-change-point
observations Fk−1. The problem considered by Lorden is the following

Definition 6 (Lorden’s problem). For a given γ > 0, find a stopping time τ that mini-
mizes WADD(τ) subject to ARL(τ) ≥ γ.

3ess sup refers to the essential supremum, which is the least upper bound of the set of constants that
bound the random variable with probability 1.
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Lorden’s initial result was that the CuSum algorithm is asymptotically optimal4 for
the problem in the limit γ →∞.

Later it was shown in [39] that τc is in fact exactly (not just asymptotically) optimal
for Lorden’s problem. Since WADD contains suprema with respect to both the change
time and the pre-change observations, it is a rather pessimistic criterion for the detection
delay. The other prominent criterion in the literature is the conditional average detection
delay (CADD) [48]

CADD(τ) = sup
k≥1

Ek(τ − k|τ ≥ k).

To see that CADD is less pessimistic than WADD, observe that if τ is a stopping time
on {Fn}, then {τ ≥ k} ∈ Fk−1. Therefore for all k,

WADD(τ) ≥ sup
k≥1

Ek((τ − k)+|τ ≥ k) = sup
k≥1

Ek(τ − k|τ ≥ k) = CADD(τ).

It is shown in [48], that the optimal procedure for minimizing CADD while maintaining
the ARL above a prespecified threshold is given by an algorithm based around a special
case of the Shiryaev statistic of the Bayesian subsection. The statistic is known as the
Shiryaev-Roberts statistic, given by

Rn =
n∑
k=1

n∏
j=k

L(Xj).

With some algebraic manipulation, one can see that the recursionRn = (1+Rn−1)L(Xn), R0 =
0 applies. Since then, the Shiryaev-Roberts algorithm and its generalization the Shiryaev-
Roberts-Pollak algorithm have been to shown to have multiple even stronger optimality
properties in terms of CADD [72, 49].

Both of the non-Bayesian algorithms introduced impose a lower bound on the expected
time to a false alarm E∞(T ). If we instead wanted to control the probability of false alarm
similar to the Bayesian setup, we would need that Pk(T < k) ≤ α for all k. Since T is a
stopping time, {T < k} ∈ Fk−1 and hence

Pk(T < k) = Pk+1(T < k) = . . . = P∞(T < k).

Thus controlling Pk(T < k) for all k is equivalent to controlling P∞(T < ∞). It is easy
to see that P∞(τc <∞) = 1, when τc is the CuSum stopping time of (2.5) with any finite

4In this context, a stopping time τ said to be asymptotically optimal (in terms of a delay criterion D)
if

lim
γ→∞

D(τ)

D(τ∗)
≤ 1,

for all stopping times τ∗ s.t. ARL(τ∗) ≥ γ.
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detection threshold b. The intuitive explanation is that under P∞ the sequence {Xn} is
i.i.d. with density f0, making the CuSum statistic in (2.6) a random walk that resets to
0 if it exits the interval (0, b) through 0. After every reset, there is a constant non-zero
probability that next exit of the random walk from the interval (0, b) is through b, which
would trigger the stopping time. Since there can be infinitely many resets, τc will almost
surely trigger a false alarm under P∞. Similar reasoning applies for the Shiryaev-Roberts
and the Shiryaev-Roberts-Pollak algorithms.

The problem of controlling P∞(T < ∞) in the non-Bayesian context was studied
in detail in [8]. It was shown, that the CuSum and Shiryaev-Roberts algorithms with
thresholds that increase in time are asymptotically optimal for minimizing Ek(T−k|T ≥ k)
as k → ∞ while controlling the false alarm probability. That is, instead comparing the
CuSum statistic to a constant threshold b, the stopping rule needs to be of the form

τc,∞ = inf{n ≥ 0 : Wn > b(n)},

where b(n) is a sufficiently rapidly increasing function of n.

2.1.3 Asymptotic properties

So far the change-point detection algorithms introduced work by first constraining the
some measure of the rate of false alarm alarms, and then minimizing the detection delay.
Thus we obtain an upper bound for the rate of false alarms, but no estimates regarding
the magnitude of delay have been given. Obtaining exact estimates is difficult, but ana-
lytical approximations for detection delay are available in the asymptotic domain as the
rate of false alarms tends to zero. In the Bayesian problem formulation, important results
are derived in [69]. The following theorem [69, Th. 4] shows, that for conditionally i.i.d.
observations, the asymptotic detection delay of the Shiryaev stopping time depends essen-
tially on two quantities, the KL divergence D(f1||f0) and the geometric prior distribution
parameter ρ. From hereafter we use notation Aα ' Bα to mean

lim
α→0

Aα
Bα

= 1.

Theorem 2 ([69]). Let the observations X1, X2, ... be i.i.d. conditional on the change-
point and the change-point t have a geometric distribution with parameter ρ. If T1−α is
the Shiryaev stopping time of (2.4) with threshold 1− α and D(f1||f0) <∞, then

ADD(T1−α) = E(T1−α − t)+ ' | logα|
D(f1||f0) + | log(1− ρ)|

, as α→ 0. (2.8)
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In this thesis, a geometric prior is often assumed for simplicity. However, it is insightful
to note that a result similar to Theorem 2 exists also for a general prior distribution [69,
Th. 3]. Let us define

d := − lim
n→∞

logP(t > n)

n
.

The parameter d is sometimes referred to as the exponential index of a random variable.
In our case it describes the tail behavior of distribution of the true change-point. For
so-called heavy-tailed distributions d = 0, and for distributions with light tails d > 0 [21,
pp. 8]. If t is geometric, a simple calculation shows d = | log(1 − ρ)|. Now, if the other
conditions of Theorem 2 apply, but t obeys a general distribution with exponential index
d and additionally Ef1 [`(X)]2 <∞, Theorem 3 of [69] gives

E(TAα − t)+ ' | logα|
D(f1||f0) + d

, as α→ 0. (2.9)

The results (2.8) and (2.9) imply that the detection delay decreases as KL divergence
between f1 and f0 increases. This is not surprising, as a large KL divergence indicates
that it is easier to distinguish between the pre- and post-change distribution. Additionally,
from (2.8) we may observe that an inverse relationship exists between ρ and the expected
delay. When ρ is large, the prior distribution is heavily concentrated on the small positive
integers, providing a lot of information regarding the location of the change-point. This
speeds up the detection process. As ρ decreases, the prior distribution becomes flatter
and hence less informative. When the distribution decays slowly enough to belong in the
heavy-tailed class (d = 0), it is seen from (2.9) that it has no influence on the asymptotic
delay.

In the deterministic setting, asymptotic approximations are available in the regime
ARL → ∞. There is a vast literature regarding these approximations, starting from
Lorden showing in [34] that for the CuSum algorithm

WADD(τc) '
log b

D(f1||f0)
, as b→∞. (2.10)

Note the apparent similarity between (2.9) and (2.10): in the asymptotic limit, the differ-
ence in delay between the optimal Bayesian and non-Bayesian procedures depends only
on the tail behavior d of the prior distribution.

The asymptotic results shown in this section only characterize rate of growth of ADD
as a function α. In particular, for the Bayesian case, we see from (2.8) that the delay
grows linearly in | logα|, with slope determined by the KL divergence and the prior. For
i.i.d. data, more accurate second and third-order asymptotic approximations have been
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derived in e.g. [70], [72]. In this context a second order approximation is such that the
true delay is within a constant of the approximation, and for a third order approximation
this constant vanishes as α→ 0. These results, however, will not be used in this thesis.

2.2 Data-efficient change-point detection
Having introduced the fundamental concepts and algorithms in sequential change-point
detection, we now focus on a branch of the quickest detection literature that has been
actively investigated in recent years. The problem of data-efficient sequential change de-
tection is addressed. As mentioned in the introduction, surveillance and monitoring are
key applications of sequential change-point detection theory. In many such cases, surveil-
lance is only possible using inexpensive, long lifespan, battery powered, remote sensors
with limited computation and communication capabilities, and no human intervention.
Some examples are the Internet of Things, monitoring of the power grid, and environmen-
tal monitoring, e.g. the use of sensor networks for habitat monitoring of certain sea-birds
[36]. These sea-birds choose a remote habitat precisely to avoid contact with humans
and predators, making some kind of wireless sensor network the only feasible monitoring
option.

In these applications, the sensors may need to remain operational for long periods of
time. Thus it can be of interest to sometimes switch a sensor to a sleep mode or constrain
its communication in order to save battery. This degrades the surveillance quality by
increasing detection delay to some extent, since during these times no information is
received from the sensor. However, designing a system that intelligently switches between
the on and off modes based on the observed data can be valuable in managing the trade-
off between the quality of statistical inference and energy efficiency. In this section, two
central works in the data-efficient change-point detection literature are briefly reviewed.
First, we consider a case with just one sensor introduced in [1], and in Section 2.2.1 a
generalization to a network with more than one sensor, discussed in [52].

Mathematically, the problem of energy-efficient change-point detection was formulated
in [1] as follows. Recall the classic Bayesian change-point detection formulation of Section
2.1, where we have sequence of random variables {Xn} i.i.d. with density f0 before the
change-point t and i.i.d. with density f1 after t. The change-point t is a geometric random
variable with parameter ρ. In order to minimize sensor usage, at each time instant, a
decision is made on whether to have the sensor turned on or off in the next time step,
based on all available data at the current time instant. If a sensor is turned off for time
step n, it means that no observation Xn is received. Formally, [1] introduces a control
variable Sn ∈ {0, 1}, where Sn = 1 if the sensor is turned on at time n, so that Xn is
available for decision making, and Sn = 0 otherwise. As Sn is determined by the user as
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a function of the obtained information, we write

Sn = µ(In−1),

for some control function µ, with In = σ
(
{Xj, Sj}nj=1

)
being the σ-algebra generated by

the pairs (Xj, Sj). It is understood that if Sj = 0, then the value of Xj does not exist in
In.

For a stopping time T , detection delay and accuracy in this setting are still quantified
by ADD and PFA respectively, as defined in Section 2.1. Additionally, data-efficiency is
measured by the average number of observations (ANO) taken before the change-point,
i.e.

ANO(T, µ) := E

t∧(T−1)∑
n=1

Sn

 .
Note that observations taken after the true change-point has occurred are not counted
towards ANO. This is because a sampling policy should sample as frequently possible
after the change to minimize delay. It is unnecessary observations taken before t that are
to be avoided.

With these definitions, it is of interest to find a stopping time T ∗ and a sampling policy
µ∗ that solve the following optimization problem:

minimize
T,µ

ADD(T, µ)

subject to PFA(T, µ) ≤ α and ANO(T, µ) ≤ β.
(2.11)

In (2.11) α is the false alarm probability constraint, and β is a constraint on the expected
number of samples used in the process. Note that if β =∞, the optimal sampling policy
is trivial, and the classic Shiryaev problem of Definition 4 is recovered as a special case.

The optimal solution to (2.11) is derived in [1] via a dynamic programming argument.
The optimal stopping time T ∗ is a Shiryaev type time T ∗ = inf{n : πn ≥ A}, where πn is
again the posterior probability of change having occurred up to n, introduced in (3.12).
The optimal sampling policy µ∗ has more complex structure, and does not admit a simple
representation. However, it is shown that for some B < A, a simple sampling policy µ′ of
the form

Sn+1 = µ′(In) := 1{πn≥B},

where 1{E} is the indicator function of event E, coincides with the optimal policy for
most practical configurations of the system parameters f0, f1, ρ, α and β. The thresholds
A and B of the policy (T ∗, µ′) are chosen so that the PFA and ANO constraints are met.
In words, the sampling policy µ′ turns the sensor on only if the posterior probability of
change is above a fixed threshold B. If πn < B, the sensor is turned off. Note that



2.2. DATA-EFFICIENT CHANGE-POINT DETECTION 21

even when the sensor is turned off, the posterior probability πn can still be updated. In
particular, a simple computation shows that

πn+1 = πn + (1− πn)ρ > πn

when Xn+1 is not received. This can be seen by setting L(X) = 1 in (2.3). Thus, when
the sensor is turned off the sequence {πn} is monotonically increasing until it reaches B,
and a new observation is taken. Once the posterior probability surpasses A, a change is
declared.

It is shown in [1] that that the policy (T ∗, µ′) is asymptotically optimal in the limit
α → 0. For moderate values of α and Gaussian observations, the ADD of the policy
(T ∗, µ′) is within 10% of the classic Shiryaev procedure, while the number of observations
used is reduced by more than 50%. In particular, it is shown that this data dependent
sampling scheme is clearly superior to a naive system where the times the sensor is turned
on and off are determined beforehand. This notion of choosing to activate a sensor only
when πn is sufficiently large will appear again in Chapter 4.

This problem formulation has been extended to non-Bayesian settings in [2], and to
handle composite post-change distributions5 in [3].

2.2.1 Data-efficient change-point detection in Sensor Networks

So far in this thesis change-point detection theory has been considered only from the
perspective of observing only a single data stream {Xn}. We now turn to a more general
scenario, where K data streams {X(1)

n }, {X(2)
n }, ..., {X(K)

n } are observed simultaneously.
Each data stream can be thought of as corresponding to one sensor acquiring the data.
The network structure is displayed in Figure 2.4. Thus, at each time instance we receive
a vector Xn := (X

(1)
n , X

(2)
n , ..., X

(K)
n ) of observations. We assume that the data streams

are mutually independent with pre- and post-change distributions f0 and f1. The change-
point t is again a geometric random variable with parameter ρ. In this subsection, we
assume that the change affects all sensors simultaneously, that is

X(k)
n ∼

{
f0, when n < t

f1, when n ≥ t
for all k = 1, 2, ..., K.

The ordinary Shiryaev’s problem of Section 2.1.1 and its solution are essentially trivial
to extend for multivariate independent observations. For independent streams, likelihood
ratio between pre-change and post-change distributions takes the product form

L(Xn) =

∏K
k=1 f1(X

(k)
n )∏K

k=1 f0(X
(k)
n )

.

5A composite post-change distribution means that f1 is only known up to some parameters.
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Figure 2.4: An illustration of the sensor network configuration considered in this section. Sensors
send their observations to the FC. The FC sends a signal to the sensors it wants to receive an
observation from in the next time step.

The rest of the treatment in Section 2.1.1 applies directly for independent multivariate
observations by replacing Xn with Xn.

Data-efficient change-point detection, on the other hand, does receive an additional
degree of freedom in the multivariate case compared to the univariate. In the univariate
case, the only options were to either have the single sensor on or off. When there are
multiple sensors, it is possible to choose any number between 0 and K of the sensors to
be active in a given time instance. Thus, at each time slot n, a vector of observations
X

(Mn)
n = (X

(1)
n , X

(2)
n , ..., X

(Mn)
n ) is received, whereMn is the number of observations chosen.

Note that as the sensors are exchangeable due to independence, it makes no difference
which particular size Mk subset of the sensors is chosen. Write again In = σ({X(Mj)

j }nj=1)
to represent all available information to the observer at time instance n. Since Mn is
determined by the user, it is again of the form

Mn = µ(In−1),

where µ is a control function, similar to the previous section. The only difference is that
µ is now a map from the information set to the non-negative integers, rather than a
binary function as in the previous section. The rest of the formulation is identical to the
previous section. That is, we again want to find a stopping time T and a sampling policy
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µ such that ADD is minimized given constraints on PFA and ANO. In this case, ANO is
naturally defined as

ANO := E

t∧(T−1)∑
n=1

Mn

 .
A solution to this problem was studied in [52]. Similar to the single sensor case,

the optimal stopping rule T ∗ is again a Shiryaev time T ∗ = inf{n : πn ≥ A} for some
A. The optimal sampling policy, however, is more complex than eariler and not easily
expressed in closed form. Nonetheless, in experiments the authors find that a numerically
approximated optimal sampling policy chooses more sensors for time-step n+ 1 when πn
is near 0.5, compared to when πn is near 0 or 1. The intuitive interpretation offered by
the authors is that when the posterior probability of change πn is around 0.5, there is the
most uncertainty about whether a change has taken place or not. In these circumstances
it is worth putting a lot of resources to the sensing, in order to resolve the uncertainty
quickly one way or another. On the other hand, when πn is for example very small, we
have a strong indication of whether the change has taken place or not, and thus there is
not as much need to use additional data.

Other than these two, several other works have considered discrete time single change-
point detection in which only a part of the observations is available. Perhaps the most
relevant to this section and the following chapters are [25] and [24], where quickest change
detection problems with sampling right constraints were considered in the deterministic
and the Bayesian frameworks, respectively. Quickest deterministic change-point detection
over multiple data streams was considered in [26], where the observer can only observe
one data stream at each time slot. Another way to reduce communication load between
the sensors and the FC is via a censoring approach [35, 38], where a sensor sends its data
to the FC only if it deems the observation to be informative. Therefore, instead of the FC
choosing beforehand which sensors it wants to communicate with in a given timestep, the
decision on whether to communicate is made by the individual sensors. The observation is
sent if the likelihood ratio corresponding to the observation falls outside a predetermined
"no-send region". This region is chosen such that required communication constraints are
met.



Chapter 3

Multiple hypothesis testing

3.1 Fundamentals of multiple hypothesis testing
The problem of multiple hypothesis testing has been a popular topic in the statistical
literature dating back to Tukey [74] in the 50’s. More recently, It considers settings where
a statistician is tasked with testing a large number of hypotheses simultaneously. In
general, the hypotheses can be independent or dependent, and tested using data from
a single or multiple data sets. In ordinary testing of a single hypothesis, the standard
approach is to constrain the probability of a Type I error1 below a certain threshold.
However, when performing multiple tests at once, constraining the individual Type I
errors independently may not lead to a desirable overall accuracy.

The following simple example illustrates the point. Suppose we have N hypotheses,
for all of which the null hypothesis holds. If the Type I error probability is bounded by
α > 0 for each individual hypothesis, the probability of making at least one Type I error
in the set is 1 − (1 − α)N , which approaches 1 quickly for a constant α as N increases.
As an example, for the canonical α = 0.05, already N = 50 results in the probability of
making at least one false rejection being greater than 90%. This probability of making
at least one false rejection is known in the literature as family-wise error rate (FWER),
which can be controlled using the Bonferroni correction [16, pp. 35]. The Bonferroni
procedure tests each hypothesis at level α/N , which bounds the FWER below α. The
drawback is that already for a moderate N the level α/N becomes very small, leading to
minimal detection power2.

Thus, when testing a large number of hypotheses, trying to avoid all false discoveries
(false positives) may not be feasible, as it comes with a substantial cost on the detection

1Type I error: rejecting a null hypothesis when the null hypothesis is true.
2Detection power is the probability of rejecting a null hypothesis when the null hypothesis false.

24
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Accepted Rejected Total
True null hypotheses N0 − V V N0

False null hypotheses N −N0 − S S N −N0

N −R R N

Table 3.1: A decision rule I has rejected a total of R out of N hypotheses, of which
V were incorrect rejections and S correct rejections. The false discovery proportion is
V/(V + S) = V/R.

power. Instead, we could allow for some false alarms as long as the proportion of false
discoveries among all discoveries remains tolerable. Making a few incorrect rejections
is tolerable if they come among dozens of correct rejections. This intuitive notion was
introduced and formalized by Benjamini and Hochberg in 1995 [6] as false discovery rate
(FDR). Note that in the example of the previous paragraph, all discoveries were false
discoveries.

It is necessary to introduce some notation in order to describe the FDR concept. Let
H1,H2, ...,HN be the set of hypotheses tested. With a slight abuse of notation, Hi = 0 is
used to denote that the ith null hypothesis is true, and Hi = 1 that it is false. Of the N
null hypotheses, a total of N0 :=

∑N
i=1 1−Hi are true. We have data Y = (Y1, Y2, ..., YN)

such that Yk ∈ R is the data (often a test statistic) related to the kth hypothesis. A
multiple testing rule I : RN 7→ 2N is a mapping of the data to a binary sequence of length
N so that I(Y)k = 1 if the kth hypothesis is rejected, and zero otherwise.

In terms of this notation, the number of false rejections produced by the rule I is

V (I) :=
∑

k:Hk=0

I(Y)k

and the total number of rejections is

R(I) :=
N∑
k=1

I(Y)k.

The dependence on I is dropped from the notation when the rule in question is obvious.
The notation is summarized in Table 3.1.

The false discovery proportion (FDP) is then defined as FDP(I) = V/R, with the
natural definition of FDP = 0 when R = 0, i.e. when no rejections are made. Observe
that FDP is a random variable, since the output of I(Y ) is a random variable. The FDR
is given as the expectation of FDP, that is
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Definition 7 (False discovery rate).

FDR(I) = E
[
V (I)

R(I)

]
.

Some key properties of the FDR follow immediately from the definition. Note that if
all the null hypotheses are true, i.e. N0 = N , any discovery is a false discovery. Thus if
V = 0 then FDP = 0, and if V > 0, then FDP = 1. Hence in this case FDR = P(V > 0).
That is, when all hypotheses are true, FDR(I) is equivalent to FWER(I), as P(V > 0)
is the definition of FWER.

If N0 < N , the FDR is upper bounded by the FWER. This follows from observing
that if V > 0 then V/R ≤ 1, so that V/R ≤ 1{V >0}. Taking expectations from both sides
yields FDR(I) ≤ FWER(I). Thus a procedure that controls the FWER also controls the
FDR, but not vice versa. Heuristically, when the the number of false null hypotheses is
large, there are more opportunities for correct rejections S, which inflate the denominator
R = V + S in the definition of FDR. Since FWER is independent of S, the difference
between FDR and FWER is larger the more false null hypotheses there are.

In addition to the definition of FDR introduced here, other closely related variants
variants have been introduced in the literature. Examples include pFDR := E(V/R|R >
0) and mFDR := EV/ER, see [66] for discussion of connections and interpretations these
criteria.

3.2 Controlling the false discovery rate
Since the introduction of the FDR criterion to the statistical literature in 1995, numer-
ous approaches have been developed for controlling the FDR in different circumstances.
Still, to this day, arguably the most common procedure for controlling the FDR is the
Benjamini-Hochberg (BH) procedure, introduced in the original paper [6]. In the paper it
was assumed that the data Y are p-values3 corresponding to the hypotheses. Moreover,
the p-values generated by null hypotheses were assumed to independent. The algorithm
in [6] is first presented in a general form, only assuming that the statistics follow a known
cumulative distribution function F0 independently when the null hypothesis is in place,
and that small values of the data are critical for the null hypothesis. The most well known
version of the BH-algorithm for conditionally independent p-values is then obtained from
the general definition.

Since nothing else is known about the hypotheses, it is natural to consider a threshold
based rule that rejects the kth hypothesis if Yk ≤ t(Y), where t(Y) is a data dependent

3p-value: probability of observing data at least as extreme as what was observed, conditional on the
null hypothesis being correct.
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threshold to control the FDR. Hence for the BH-algorithm IBH , the decision rule regarding
the kth hypothesis is of the form,

IBH(Y)k = 1{Yk≤t(Y )}. (3.1)

Since a higher threshold results in more rejections, in order to maximize detection
power, we would like to choose the highest threshold t(Y) that still controls the FDR
below a user specified tolerable FDR level α. For the BH-procedure this threshold is
given by

t(Y) = max{t ∈ Y1, ..., YN : F̂DP(t) ≤ α}, (3.2)

where F̂DP(t) is an estimator of FDP if threshold t were to be used. The estimator is
given by

F̂DP(t) =
F0(t)

1
N

∑N
i=1 1{Yi≤t}

. (3.3)

The numerator of this estimator corresponds to the theoretical proportion of statistics
generated under the null hypothesis that do not exceed the value t. The denominator is the
empirical proportion of the observed data that does not t. Intuitively, if the denominator
is large compared to the numerator, it implies that the data contains more extreme values
than would be expected if all of the observations were generated under the null hypothesis.
Thus we can expect some of these small values to correspond to false null hypotheses.

In the special case that Y contains independent p-values, F0(m) = m, for m ∈ [0, 1],
since p-values are uniformly distributed under the null hypothesis (see Remark 1 below).
Let Y(1) ≤ Y(2) ≤ ... ≤ Y(N) be a rank-ordering of Y. Then by definition

1

N

N∑
k=1

1{Y(k)≤Y(m)} ≥ m/N,

and hence
F̂DPp-values(Y(m)) ≤

N

m
Y(m). (3.4)

Then the correct threshold is found from (3.2) as

t(Y) = max{Y(k) ∈ Y : Y(k) ≤
k

N
α}. (3.5)

Remark 1. In general, p-values might not be exactly uniformly distributed in [0, 1]. This
is the case when, for example, the test statistic is discrete valued. For general experiments,
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it is typically assumed (see e.g. [54]) that p-values are stochastically lower bounded by a
uniform distribution on [0, 1] under the null hypothesis, viz.

P(Yk ≤ m) ≤ m, 0 ≤ m ≤ 1, when Hk = 0.

Note that the upper bound of (3.4) still applies under the more general condition.

For completeness, the FDR control property of the BH-algorithm is stated in a separate
theorem. A rigorous proof of the FDR control of the BH-procedure is found in [6].

Theorem 3 (Benjamini-Hochberg). Let Y(1), Y(2), ..., Y(N) be p-values that under the null
hypothesis are independent and stochastically lower bounded by a uniform distribution.
For the BH-decision rule IBH in (3.1) with threshold (3.5) it holds that

FDR(IBH) ≤ N0

N
α.

In light of the approach and limitations of classical Fisherian null hypothesis testing,
the implications of Theorem 3 are arguably quite striking. Under minimal assumptions,
the result provides an upper bound for the expected value of the proportion of true null
hypotheses among the set of rejected hypotheses. That is, something that could be loosely
interpreted as resembling of an estimate of the probability that a rejected hypothesis is
actually true. Conflating significance levels and p-values with probabilities that the null
hypothesis is true is of course not recommended to any statistics practitioner, but the FDR
bound seems to be a step in the direction of giving an estimate for such a probability. Still,
having an algorithm that maintains FDR control at level α only means that the random
variable defined as the ratio of false rejections to all rejections has expected value at most
α, where the expectation is over the possible data generated by the true conditions. This
is helpful, but perhaps still not quite as intuitive as one might hope for. Can anything be
said about the probabilities that the given rejected hypotheses are true? Turns out, that
taking a Bayesian viewpoint allows for such an interpretation.

3.2.1 A Bayesian perspective

The foundations of the concept false discovery rate are purely frequentist. Whether hy-
pothesis Hk is true or not is an unknown deterministic quantity, and expectations in the
definition of FDR are taken with respect to the data only. At the same time, multiple
testing has a convenient interpretation in the Bayesian context. The so called two-groups
model popularized by Efron [19] considers the data to be generated from the following
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structure:

Yk|(Hk = 0) ∼ f0

Yk|(Hk = 1) ∼ f1

P(Hk = 0) = λ0 = 1− P(Hk = 1).

That is, the hypotheses are now random variables with some common prior probability
λ0 of being null. The marginal density f(y) of a single observation y is then a mixture

f(y) = λ0f0(y) + (1− λ0)f1(y).

Suppose we now observe Yk = yk, and want to do inference regarding Hk. Right away
Bayes rule gives

P(Hk = 0|Yk = yk) =
λ0f0(yk)

f(yk)
,

a direct estimate for the posterior probability that hypothesis Hk is null. Suppose then
that the data are again p-values, and that F0 and F represent the cumulative distribution
functions of f0 and f , respectively. Then for all hypotheses Hk with p-values in [0, t], we
get

P(H(m) = 0|Y(m) ∈ [0, t]) =
λ0F0(t)

F (t)
.

According to the assumptions of Theorem 3, we can assume F0 to be known, but λ0 and
F are unknown. However, an upper bound for λ0 is 1, and F can be estimated by the
empirical cumulative distribution function. Then, a conservative estimate of the Bayes
probability that a hypothesis with a p-value in [0, t] is true reduces to [16, pp. 20]

F0(t)
1
N

∑N
i=1 1{Yi≤t}

,

which is the same as the F̂DP estimator of (3.3) used in the BH-procedure. Thus an
alternative interpretation for the hypotheses rejected by the BH-procedure is that for
them the estimated Bayes probability of the null hypothesis being true is less than α.

A Bayesian approach to multiple testing provides more insight than just explaining
the frequentist methods, of course. The next section presents one approach to multiple
hypothesis testing utilizing the two-groups model in settings where there exists correlation
between the observations. It is co-authored by the author of this thesis, and published in
[27]. In particular, a case where the data points Y are received from sensors in distinct
spatial locations that may or may not observe a spatially varying phenomenon of interest
is investigated.
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3.3 Multiple hypothesis testing in Sensor Networks
This section is a condensed version of a recent conference paper by the author of this
thesis [27]. It presents an approach to multiple testing using data from different locations
acquired by the a sensor network. The focus is in performing multiple hypothesis testing
in a spatial domain instead of change-point detection like in other parts of this thesis.

As already highlighted in this thesis, large-scale sensor networks are an important
new tool for monitoring spatially varying phenomena and fields. Prime examples of such
phenomena include radio spectrum, seismic activity, pollution or emission levels, and
monitoring of agricultural fields, smart buildings, security and surveillance applications
or other inaccessible or hazardous environments. Massively connected and spatially dis-
tributed large-scale sensor systems are also a key technology in the Internet of Things.
An important application of sensor networks is locating locally homogeneous regions that
that are interesting or different in the field and would correspond to anomalies [44]. In
this section, a scenario where one needs to make binary decisions about the prevalence of
some phenomenon at different spatial locations is considered.

In distributed detection applications sensors generally have only limited computa-
tional and communications capabilities, as they need to remain operational over long
time periods. Thus, the decision making and majority of the computation takes place
in a Fusion Center or a cloud that receives information from all sensors and has suffi-
cient computational resources. Furthermore, the limited bandwidth restricts the sensors
to communicate condensed information to the FC about their observations, such as a
p-value, z-score, likelihood ratio or some other sufficient statistic corresponding to the
hypothesis tested locally. There are multiple ways in which these statistics can be gener-
ated by sensors and the sensors may have local computational capabilities, but these are
not considered further here. The only assumption will be that the statistics follow some
(often known) distribution under the null distribution, and some other (often unknown)
distribution under the alternative. Thus, while in most of the examples the statistics are
considered to be p-values, p-values are not in anyway fundamental to this problem. They
merely represent a common example of a decision statistic with approximately the above
mentioned theoretical properties. An example of a sensor network observing spatially
varying phenomena is illustrated in Figure 3.1.

After receiving the test statistics, the FC is tasked with a multiple hypothesis testing
problem. Hypotheses H1, ...,Hn associated with n sensors are tested simultaneously. For
each i the null hypothesis is associated with noise-only case, i.e. that no signal is present
at the location of sensor i. For each hypothesis Hi a corresponding test statistic yi is
received, and the task is to decide whether yi was caused by signal (Hi = 1) or noise
(Hi = 0). In contrast to the rest of the thesis, in this section it is assumed that data only
exists from one "snapshot" in time, that is, a collection of observations acquired at the
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Figure 3.1: Illustration of the assumed system configuration. Circles represent sensors at known
locations S = s1, ..., sn. Each sensor si sends a local test statistic yi to the FC. Green areas
represent hypothetically interesting or different areas of the observed field where signal is present,
i.e. the alternative hypotheses are in place. The FC is tasked with determining which of the
sensors are located in these regions using only S and y = y1, ..., yn as information.

same time instance, and all inference is made using this one set of observations only.
The standard multiple hypothesis testing approaches like the Bonferroni and Benjamini-

Hochberg methods do not utilize location information related to the test statistics, and
can thus have very low power in spatial inference applications. Here we take an approach
for multiple hypothesis testing that exploits the underlying spatial structure of the field
and sensor location information in order to improve detection power. Spatial fields such as
received signal power in radio spectrum or pollution levels in the ambient air tend to vary
locally and smoothly. This will cause the significant hypotheses to appear in spatially
localized clusters. A latent Gaussian process [55] is employed to locate these areas and in
effect "relax the significance threshold" there, while making it more strict in areas where
the test statistics seem to be mostly produced by noise. A flexible Bayesian framework
is adopted by extending the prevalent two-groups model [18] introduced in Section 3.2.1
to account for spatial dependency. The approach is fundamentally non-parametric, but
allows for principled inclusion of prior knowledge about the monitored phenomena.

There is recent research activity on the topic of spatial multiple hypothesis testing, for
example, in [32], [4] and [5], under the assumption that the hypotheses are divided into
groups a priori based on external information. In [14] and [63] discoveries are divided
into disjoint clusters, and the focus of the inference is on the rate of falsely discovered



3.3. MULTIPLE HYPOTHESIS TESTING IN SENSOR NETWORKS 32

clusters. Other notable related works include [67] and [47], but in them more restricting
assumptions about the type of field and hypotheses are made. The approach proposed in
this thesis has the most in common with [68], [77] and [62] since they perform multiple
hypothesis testing based only on a set of test statistics and locations information. How-
ever, none of these methods are designed for arbitrarily located sensors in a Euclidian
space.

3.3.1 System model

We consider a set of test statistics y = y1, ..., yn obtained by the fusion center from n
spatially distributed sensors at known, distinct locations S = s1, ..., sn, where si are d-
dimensional coordinate vectors (s1

i , ..., s
d
i ), d ≤ 3. A natural model for the test statistics

is a mixture distribution,

p(yi|λ0) = λ0 · f1(yi) + (1− λ0) · f0(yi), (3.6)

where f0 and f1 denote the densities of the test statistics under null (Hi = 0) and alter-
native (Hi = 1) hypotheses respectively, and λ0 ∈ [0, 1] is the latent mixing proportion
of null and alternate distributions. This formulation is the famous two-groups model for
multiple testing, where λ0 has an additional interpretation as the a priori probability of
signal, discussed at length in e.g. [17].

In some cases f0 can be taken to be the theoretical null distribution of the test statistic,
most commonly uniform for p-values and standard Gaussian for z-scores. However, as
demonstrated in [15], there are scenarios when the theoretical null model might not be
accurate. In those cases the empirical null density can be estimated by fixing a parametric
form and estimating the parameters [15]. Once the null density is established, there exist
methods for inferring the alternative mixture component. Examples include the beta-
uniform mixture model [51] for p-values and non-parametric recursion [40] for general
finite mixture models. For sensor networks there might also be additional information
or local training data available on the densities based on previous history. Much more
discussion the estimation of mixture components can be found in [19]. Once f0 and f1 are
estimated, we consider them as fixed. An illustration of the estimates using the approach
in [51] appears in Figure 3.2.

The main quantities of interest are the posterior probabilities of signal w = w1, ..., wn,
which, conditional on the modelM in (3.6) can be computed as

wi = P(Hi = 1|y,M) =
λ0 · f1(yi)

λ0 · f1(yi) + (1− λ0) · f0(yi)
. (3.7)

A convenient property of these probabilities is that if we choose a subset of the test
statistics y1 ⊂ y such that
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Figure 3.2: An example of how λ0 and f1 can be estimated empirically using the beta-uniform
mixture model of [51]. The histogram contains the observed test statistics (here p-values), and
under the assumption that the null statistics follow a uniform distribution it is possible to de-
compose the joint distribution to uniform and beta components. The height of the uniform
component λ0 serves also as an estimate for the overall proportion of null and non-null statistics.

{ n∑
i=1

1{yi∈y1}

}−1 ∑
i:yi∈y1

(1− wi) ≤ α, (3.8)

and reject the corresponding hypotheses, we obtain

E
[
V

R

∣∣y,M] ≤ α, (3.9)

where V and R are the number of false rejections and all rejections, respectively. This
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follows from

E
[
V

R

∣∣y,M] =

{ n∑
i=1

1{yi∈y1}

}−1

E[V |y,M]

=

{ n∑
i=1

1{yi∈y1}

}−1 ∑
i:yi∈y1

E[1{Hi=0}|y,M]

=

{ n∑
i=1

1{yi∈y1}

}−1 ∑
i:yi∈y1

(1− wi) ≤ α,

where the first equality stems from the fact that after y1 is chosen R is a known constant,
the second equality from the definition of V and the linearity of expectation, third from
the definition of wi in (3.7) and the inequality from (3.8). Observe that the quantity in
(3.9) resembles the traditional FDR, but includes conditioning on the model M. This
conditioning on the model is explicitly emphasized due to the fact that whether the
probabilities wi and the resulting bound (3.9) are useful depend critically on the validity
of the model we employ.

The basic empirical Bayes approach in the two-groups model is to estimate a common
c = c̄ for all sites over the whole data set, and do inference without taking advantage
of the location information [16]. We incorporate this information by letting the latent
mixture proportion c vary over the field. Each sensor location may have its own mixture
proportions which are denoted by c = (c1, ..., cN). As can be seen from (3.7), a small ci
will require f1(yi) to be very large compared to f0(yi) in order for wi to be large. That
is, ci controls the degree of extremity required from the decision statistic yi to declare
hypothesis Hi significant.

In the following we will find ci by using its logit transformation βi := φ(ci) :=
log(ci/(1 − ci)), which transforms βi from [0, 1] to the whole real line. The choice of
a suitable β := (βi, ..., βn) is essentially a non-parametric smoothing problem: we want
the latent mixture proportions to fit to the observed data, and at the same time not vary
too much between nearby locations. We take a Bayesian approach and assign a multi-
variate Gaussian prior distribution on β with a covariance matrix defined by the squared
exponential covariance function. The squared exponential kernel is a popular choice for
modeling smooth functions. Of course, other covariance kernels might certainly also be
applicable. In general the covariance function should be chosen according to the charac-
teristics of the exact application, but this issue is not investigated further here. Formally
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[27],

p(β|σ, l) = N (φ(c̄),Σ) (3.10)

Σ[i,j] = σ2 exp

(
− ‖si − sj‖2

2l2

)
, (3.11)

where σ2 is the marginal variance and l specifies the length-scale of the spatial depen-
dency. As the constant prior mean of β we use the logit transform of the average mixture
proportion over the whole data set (see Figure 3.2). The selection of hyperparameters σ
and l and their distribution p(l, σ) will be addressed in the next subsection.

Combining the likelihood function (3.6) and the priors allows us to form the posterior
distribution of β,

p(β|y) ∝ p(y|π(β))p(β|l, σ)p(l, σ), (3.12)

where π(β) = exp(β)/(1 + exp(β)) = c.
Unfortunately as the likelihood is in general not Gaussian, the distribution in (3.12) is

analytically intractable. However, it is still possible to sample from it using Markov Chain
Monte Carlo methods [9]. It is worth noting that constructing the covariance matrix with
(3.11) is of complexity O(N3), which can become an issue for very large scale networks
[64]. In these cases approximate methods can be used, e.g. [58]. For the purposes of this
work, we assume the monitored phenomena to be localized, meaning that even large scale
problems can be solved by ignoring correlations between sufficiently far away sensors.
This is the case for many physical phenomena such as the radio spectrum or air quality.

Once we have obtained an approximation for the posterior distribution of β, we can
collect the posterior signal probabilities w by integrating over the posterior,

wi = P(Hi = 1|y,M) =

∫
βi

P(Hi = 1|y, βi)p(βi|y)dβi

=

∫
βi

π(βi) · f1(yi)

π(βi) · f1(yi) + (1− π(βi)) · f0(yi)
p(βi|y)dβi.

Finally w can be plugged into (3.8) to search for the largest subset y1 such that the con-
dition is fulfilled. As indicated earlier, it is not sensible to claim that that the conditional
bound (3.9) that follows from (3.8) is equivalent to strong FDR control in the sense of
the Benjamini-Hochberg algorithm, for example. While in the approach proposed in this
thesis the decision rule is a simple function of the posterior probabilities, the posterior
probabilities themselves are an extremely complicated function of all of the data, locations,
covariance functions and prior distributions. Obtaining any useful analytic guarantees for
such complex functions under the general conditions considered here is difficult, if not
impossible. Still, the bound in (3.9) is not without merit. If the assumed model that
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generated the posterior probabilities is valid for the problem, (3.8) and (3.9) show that
the posterior probabilities can be used to form a decision rule that provides FDR control
under this model.

3.3.2 Choosing the hyperparameters

The choice of the hyperparameters l and σ for the latent process in (3.10) is vital for the
validity of the posterior inference. Short length scales l and large marginal variances σ2

allowing for too much variation in the proportions between nearby locations will overfit
to the data and deteriorate the error rate control. On the other hand, a very rigidly
varying latent process induced by long length scales and small variances does not exploit
the local spatial information sufficiently, resulting in a loss of detection power. Notably,
choosing l = ∞ and σ = 0 reduces to the ordinary two groups model with a constant
mixing proportion.

It is well established in spatial statistics literature that without prior information on
l and σ, only the ratio l/σ is identifiable from the data, and the individual parameters
are not [78]. Intuitively this means that we can not distinguish between a process with
long length scale and high variance and a process with short length scale and low variance
using just the data. Consequently, at least a weakly informative prior should be specified
on one of the parameters. Defining such a prior can be difficult if the user has little
knowledge about the process. In this particular application, we want to protect ourselves
from overfitting, as it could invalidate the FDR control. Hence, we employ the Penalized
Complexity (PC) prior derived in [22]. The PC prior penalizes deviance from a nominal
baseline model, in this case the constant latent process corresponding to the ordinary two
groups model. The magnitude of deviance is captured by the Kullback-Leibler divergence
between the base model and the more flexible model where the latent variable is allowed
to vary. This is a good foundation for FDR control, as the constant base model is a well
studied model for multiple inference, and we will deviate from it only if the data strongly
indicates so.

For a squared exponential kernel in d dimensions the PC prior is defined as [22],

p(l, σ) =
d

2
λ̃1λ̃2l

−d/2−1 exp(−λ̃1l
−d/2 − λ̃2σ),

λ̃1 = − log(α1)l
d/2
0 and λ̃2 = − log(α2)

σ0

,

where α1, α2, σ0 and l0 are user defined constants implying tail prior probabilities P(l <
l0) = α1 and P(σ > σ0) = α2. These allow the user to input their prior knowledge about
the expected size of the monitored phenomena, with sensors 2l apart treated as practically
independent.
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3.3.3 Simulation examples
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(c) Oracle prior
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(e) Underfitting PC prior
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(b) Received p−values
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(d) Flexible PC prior
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(f) Bejamini−Hochberg

Figure 3.3: (a) True field level in the example. (b) Received p-values. (c-e) Posterior mean of c
for different prior choices. Locations marked by squares are declared as significant for γ = 0.2.
The smooth latent variable causes the discoveries to appear in clusters. The oracle prior and
the flexibly chosen PC prior adapt to the field and identify the signal regions very reliably. The
overly conservative PC prior does adjust the latent variable in approximately right areas, but not
very accurately. (f) The standard Benjamini-Hochberg procedure applied to the pure p-values.
Red squares denote sensors declared as significant for γ = 0.2. Lack of spatial information makes
the BH procedure clearly the least proficient method.

In this subsection, a numerical experiment is conducted to demonstrate the advantage
of taking the spatial dependency into account [27]. We consider a two dimensional field,
where two signal sources cause changes in the field level monitored by the sensor network
(Fig. 3.3(a)). Each of randomly placed n = 300 sensors in locations S acquire a noisy
observation xi = µi + N (0, 1), where µi is the true field level at site si. p-values yi are
computed and sent to the FC by performing a one-sided Z-test against the null hypothesis
that µi = 0. That is, yi = 1−Φ(xi), where Φ is the CDF of the standard Gaussian. Fig.
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3.3(b) illustrates these p-values in one exemplary simulation iteration. We estimate f1

and c̄ from the data using the beta-uniform mixture model proposed in [51]. The MCMC
sampling is done using Stan software [10].

The model is tested with three different choices for the hyperparameters. First is
an oracle setup, where we fix l and σ to near optimal values (l = 5, σ = 10) using our
knowledge of the true field. The oracle model is compared with two different PC priors,
one with extremely conservative constants causing underfitting (σ0 = 3, l0 = 25) and one
that still promotes long length scales, but allows for more flexibility (σ0 = 10, l0 = 10). For
the PC priors, α1 and α2 are set to .05. For reference, the standard Benjamini-Hochberg
procedure is applied to the p-values. The capability of the methods to control the FDR
at the tolerated level γ and the detection power in discovering true alternative hypotheses
are considered. True positive rate (TPR), which is the proportion of true alternative
hypotheses discovered, is used as a measure of detection power.

Figure 3.3(c)-(e) highlights the properties of different prior choices. The colors in the
figures correspond to the posterior mean of c, and the square shapes denote the hypotheses
declared discoveries when α = 0.2. The models with the oracle prior and the Flexible
PC prior accurately discover the likely regions of signal. Notably, the Flexible PC model
adapts to the data well despite conservative prior information. The underfitting PC prior
does find some spatial structure, but the obtained structure is quite fuzzy. Consequently,
as can be seen in Table I, the well chosen prior distributions are more powerful in locating
true alternative hypotheses. However, even the badly misspecified conservative PC prior
still controls the FDR below the limit.

Table 3.2: Simulation results averaged over 60 Monte Carlo trials. All models limit the
false discovery rate below the specified limit of α = 0.2. The models that adjust to
the data accurately provide the best results. The Flexible PC model produces almost
comparable power to the Oracle prior. The standard Benjamini-Hochberg method leads
to a very low detection power, as expected.

Method FDR TPR
Oracle .19 .74

Flexible PC .17 .65
Underfitting PC .17 .32

Benjamini-Hochberg .19 .15

3.3.4 Discussion

The purpose of the work presented in this section and in the publication [27] was to study
multiple hypothesis testing with false discovery rate control in spatial domains. Gaussian
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processes are a workhorse of modeling in spatial statistics, and the two-groups model is
a popular empirical Bayes approach for multiple testing, so a combination of these two
approaches as outlined in this section is a natural starting point for the problem at hand,
and to the best of my knowledge, had not explicitly been studied before, at least as of the
publicatio of [27]. Spatial modeling using Gaussian processes and the two-groups model
are products of two significant, disjoint lines of research, and the approach of this section
presents some preliminary work in combining the two. At the same time, I think that
this intersection could be worth studying, and that especially the Penalized Complexity
approach for prior selection lends itself well to be combined with the two-groups model
and the goal of FDR control.

Two of the more important things that require further investigation are the study of
robustness for model misspecification and the choice of covariance functions and priors.
For practical use, since the specific choice of these is dictated almost entirely by the
application, the most relevant next step might be to focus on a specific application with
an underlying physical phenomenon (e.g. radio spectrum occupancy monitoring), and
construct and analyze methods with that specific application in mind. Further, combining
the spatial focus of this section with the temporal focus of the rest of the thesis in order
to perform spatio-temporal change-point detection could be an interesting direction.

3.4 Multiple hypothesis testing and change-point de-
tection

In this subsection, the multiple hypothesis testing approach is combined with change-
point detection. As an outcome, novel multiple change-point methods for multi-stream
data that control the FDR are introduced in the chapter. Let us consider a setup where
K independent data streams {X(k)

n } are observed simultaneously. In each data stream,
a distinct change-point t(k) occurs. Therefore, a stopping rule T (k) must be defined for
all k ∈ [K], where we use [K] := {1, 2, ..., K}. In practical applications, the detection
procedure must be stopped within some finite time interval. Thus we assume that there
exists a deadline Nmax, such that if a change-point in the kth data stream has not been
declared before time Nmax, we declare that there is no change-point in the kth data
stream, and set T (k) =∞. Using the terminology of this chapter, a discovery occurs when
a change-point is declared, i.e. on the event {T (k) <∞}. The total number of discoveries
among the K detection tasks is then

R =
K∑
k=1

1{T (k)<∞}. (3.13)
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Naturally, a false discovery occurs on the event {T (k) < t(k)}, and the total number of
false discoveries is

V =
K∑
k=1

1{T (k)<t(k)}. (3.14)

To control the FDR, we then need to construct a set of stopping rules {T (k)}Kk=1 such
that E[V/R] ≤ α for some user-specified α. This problem was recently first studied by
Chen, Zhang and Poor in a set of papers [11, 12, 13] in both Bayesian and non-Bayesian
change-point formulations. Their method for the Bayesian case, called MD-FDR, will be
introduced as a special case of one of the method propose in the next chapter. In [13],
it is shown that MD-FDR achieves control asymptotically as the number of data streams
grows, meaning that FDR ≤ α+oK(1) where oK(1)→ 0 as K →∞ as long as Nmax scales
with K sufficiently fast. In Chapter 4, among other things, it is shown that MD-FDR in
fact achieves FDR control for any fixed K and Nmax.



Chapter 4

Multiple change-point detection under
communication and FDR constraints

In this chapter, data-efficient Bayesian methods for change-point detection in multiple
parallel data streams are derived an analyzed. This chapter is a condensed version of the
publication [42] co-authored by the author of this thesis. Preliminary ideas and results
were presented in [28]. The proposed methods are based on the fundamentals of Bayesian
change-point detection and ideas of data-efficient change detection from Chapter 2, and
the concept of false discovery rate from Chapter 3.

The problem of rapidly detecting change-points in multiple data streams is considered.
In particular, a fusion center (FC) receives independent data streams from multiple sensors
in a large-scale sensor network. We assume that the sensors acquire observations from
their environment all the time. However, each sensor communicates its observation to
the FC only if the FC decides to actively monitor and receive an observation from this
sensor. This can be implemented, for example, by sending a control signal from the FC to
the sensor. Due to energy considerations similar to those discussed in Section 2.2 and a
potentially massive number of sensors in the network, at a given time slot the FC monitors
only a subset of the active data streams. A data stream is called active, if no change-point
has yet been declared in it. The size of this subset is selected to be a fixed proportion of
the number of active data streams. The FC performs computations based on the received
data and chooses which particular sensors monitor at each time slot. Each data stream
may or may not have a change-point.

The main contributions of this work are:

1. A Bayesian sequential procedure, named the sequential maximum a-posteriori prob-
ability (S-MAP) procedure, is proposed. This procedure detects the change-points in
all of the data streams, while controlling the FDR. The proposed procedure is based
on sequentially updating the sensors’ posterior probabilities of change-points having

41
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occurred. Then, at each time slot we choose to monitor a subset of the sensors with
the highest posterior probabilities within the allowed proportion. This approach
aims to minimize the time between change-point occurrence and its declaration by
monitoring the sensors for which change-point occurrence is most probable given the
data. The S-MAP procedure satisfies the same Type I error constraints as in [13]
and extends this work to communication constrained scenarios. The FDR control
of the S-MAP procedure is established using analytical tools.

2. We develop an improved S-MAP (IS-MAP) procedure that outperforms the S-MAP
procedure in the sense that it has lower ADD and required average number of
observations (ANO). The decrease of the ADD and ANO is obtained by reducing
the detection threshold values of the IS-MAP procedure compared to the S-MAP
procedure. The IS-MAP procedure has higher FDR than the S-MAP procedure.
However, it is proved analytically that the FDR of the IS-MAP procedure is still
controlled under the desired level despite its lower detection threshold values.

3. The asymptotic ADD behavior of the S-MAP and the IS-MAP procedures is estab-
lished analytically for a geometric prior distribution of the change-points. It is shown
that for any proportion value, both detection procedures are scalable in the sense
that their asymptotic ADD does not increase with the number of data streams. In
addition, the asymptotic ADD improvement that is obtained by using the IS-MAP
procedure in comparison to the S-MAP procedure is characterized quantitatively.

4. Deeper asymptotic analysis of the IS-MAP procedure is performed in terms of ADD
and ANO. This analysis characterizes the tradeoff between reducing the ADD and
reducing the ANO communicated until change-points are declared. The proposed
ADD-ANO tradeoff analysis can be useful for developing distributed statistical in-
ference procedures using large-scale sensor networks in limited communication ca-
pability scenarios.

5. We conduct simulations in order to evaluate the performance and to verify the
established theoretical properties of the S-MAP and the IS-MAP procedures.

Next, the detection problem at hand is formulated.

4.1 Problem formulation
An FC can monitor K ≥ 2 discrete time data streams denoted by {X(k)

n }∞n=1, k ∈ [K]. For
the kth data stream there is a change-point, t(k) ≥ 1, ∀k ∈ [K]. A data stream is called
active if a change-point has not been declared for this data stream. After a change-point
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is declared, the corresponding data stream is stopped and is no longer monitored by the
FC.

Let (Ω,F) denote a measurable space with sample space, Ω, and σ-algebra, F . For
this measurable space there exists a family of probability measures, {µ(k), k ∈ [K]}.
Expectation and probability with respect to {µ(k), k ∈ [K]} are denoted by Eµ[·] and
Pµ(·), respectively. In the kth data stream under µk, the change-point, t(k), is a random
variable with a known prior distribution. We allow the case in which a data stream may
not have a change-point so t(k) = ∞ occurs with a known probability that may not be
equal to zero. The prior distributions of the different change-points are not necessarily the
same. Given t(k), we assume that {X(k)

n }t
(k)−1
n=1 are independent and identically distributed

(i.i.d.) with known probability density f (k)
0 and {X(k)

n }∞n=t(k) are i.i.d. with another known
probability density f (k)

1 and statistically independent of {X(k)
n }t

(k)−1
n=1 . We assume that the

data streams are mutually statistically independent. This assumption holds, for example,
when data streams are communicated by sensors with large displacements. Moreover, the
sensors experience statistically independent observation noises.In some applications, the
data streams independence assumption may not be fully valid. However, this assumption
allows for analytic derivation of performance guarantees for multiple change-point detec-
tion procedures that can be used as benchmarks for more complex dependence structures
among the data streams.

Due to communication limitations, at a given time slot we choose a subset of data
streams to observe among the active data streams. Let Kn ∈ N denote the number of
active sensors at time slot n. We set a fixed proportion value q ∈ [0, 1] and observe
dqKne ∈ N of the active data streams, where d·e is the ceiling operator. The actual data
vectors that are sequentially observed by the FC are denoted by {Yn}∞n=1. The subset of
sensor indices that are monitored at each time slot is denoted by sn ⊂ [K], n = 1, 2, . . ..
The FC is able to choose sn according to some sampling strategy and based on all the avail-
abl data up to the current time slot. The filtration at time slot n, Fn := σ({Ym, sm}nm=1),
is the σ-algebra generated by the pairs {Y1, s1}, . . . , {Yn, sn}. In addition, we define the
filtration of all the data as F∞ := σ({Ym, sm}∞m=1).

Recall from Section 2.1.1 that the posterior probability of the change-point having oc-
curred is a central quantity in Bayesian change-point detection. The posterior probability
of the event {t(k) ≤ n} using the data up to time slot n is defined as

π(k)
n := Pµ(t(k) ≤ n|Fn), n = 1, 2, . . . ,

Under the assumed Bayesian model, by using Bayes’ rule we can recursively compute
π

(k)
n as follows:

π(k)
n =


L(f

(k)
1 ,f

(k)
0 ,X

(k)
n )φ

(k)
n

L(f
(k)
1 ,f

(k)
0 ,X

(k)
n )φ

(k)
n +1−φ(k)

n

, k ∈ sn
φ

(k)
n , k /∈ sn

, (4.1)
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where L(f
(k)
1 , f

(k)
0 , X

(k)
n ) := f1(X)/f0(X), and φ

(k)
n := π

(k)
n−1 + ρ

(k)
n (1 − π

(k)
n−1) in which

ρ
(k)
n := Pµ(t(k) = n|t(k) ≥ n) depends on the prior distribution of the kth change-point.

In case k ∈ sn, then at time slot n an observation is received from sensor k and π
(k)
n

is computed using the observations received before time slot n, the prior distribution of
t(k), and the new observation, X(k)

n . The posterior update in (4.1) for the case k /∈ sn
corresponds to the case in which at time slot n we do not receive an observation from
sensor k. In this case, π(k)

n is computed using only the observations received before time
slot n and the prior distribution of t(k).

In the considered problem, we have to define multiple stopping rules T (k), k ∈ [K],
where the event {T (k) ≤ n} is measurable w.r.t. Fn. In practice, the detection procedure
must be stopped at within some finite time interval. Thus, we allow the existence of a
deadline Nmax for the change-points detection. If a change-point in the kth data stream
has not been declared before time slot Nmax, we declare that there is no change-point in
the kth data stream and set T (k) =∞. The FDR criterion is defined as follows

FDR := Eµ
[

V

R ∨ 1

]
, (4.2)

where V and R are as in (3.14) and (3.13).
The detection delay ADD for the kth data stream is defined as

ADDk := Eµ[0 ∨ (T (k) − t(k))], (4.3)

where ∞−∞ := 0. We define the overall ADD as

ADD :=
1

K

K∑
k=1

ADDk. (4.4)

Assume that at time slot n, we have Kn active data streams. Then, we observe dqKne of
them. We define the average number of observations (ANO)

ANO := Eµ
[

1

K

(Nmax−1)∧T (k,sup)∑
n=1

dqKne
]
, (4.5)

where and T (k,sup) := sup
k∈[K]

T (k). The ANO definition is related the ANO definitions appear-

ing in Section 2.2. However, as opposed to the works [1] and [52], no explicit constraint
on the ANO is assumed.

One would be interested in minimizing the ADD under upper bound constraints on
the FDR and the ANO. However, to the best of our knowledge no tractable solution to
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such an optimization problem has been found yet. In fact, there is currently no tractable
solution for minimization of only the ADD under upper bound constraint on the FDR [13].
Therefore, suboptimal procedures that satisfy the communication constraints, control
the FDR, and attain low ADD and ANO are developed. In the following section, a
procedure called S-MAP (sequential maximum a posteriori) is introduced. S-MAP is a
Bayesian multiple change-point detection procedure that controls the FDR and satisfies
the limitation on the proportion of sensors communicating their data streams to the FC.

4.2 S-MAP detection procedure
In this section, a Bayesian detection procedure that is tasked to eventually discover all
the random change-points that occur in the monitored environment is derived. At a given
time slot, each sensor is considered individually and its posterior probability from (4.1)
is evaluated using the recursive formula from (4.1). At time slot n, there are Kn active
data streams of which we observe only a subset of size dqKne ∈ N. The developed S-MAP
procedure extends the MD-FDR method from [13] by proposing a rule for choosing the
subset of dqKne data streams to observe. Hence, the method allows for saving energy
and makes the inference scalable for a large number of sensors or data streams. In the
S-MAP procedure, we use the posterior probability from (4.1) as a test statistic, rather
than a transformation of the posterior probability used in [13]. However, the methods are
equivalent for q = 1 where all the active data streams are monitored in parallel.

Under the communication limitations, among the Kn active data streams, we choose
to observe the dqKne data streams with the highest posterior probabilities of a change-
point having occurred. The motivation for the S-MAP approach is that we are interested in
minimizing the time between the occurrence of a change-point and its declaration using the
sequentially updated posterior probabilities. Another reason for sampling the active data
streams with highest posterior probabilities is that we often have the most uncertainty
regarding the change-points in these data streams and sampling them is essential in order
to get more information. This intuition stems from the sampling policies discussed in
Section 2.2. In the following, we describe the proposed S-MAP procedure.

We construct a descending set of K thresholds Qr, r ∈ [K],

Qr = 1− rα

K
, r ∈ [K]. (4.6)

The different thresholds are chosen using a similar approach as the p-values thresholds
from [6] to obtain FDR control. In particular, the thresholds from (4.6) guarantee that
the detection on the kth data stream that samples until π(k)

n ≥ Qr has a Type I error
probability that is smaller than or equal to rα

K
, where α ∈ (0, 1) is the predefined FDR
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tolerance level. Formally,

Pµ(∃n < t(k) s.t. π(k)
n ≥ Qr) ≤

r

K
α. (4.7)

The requirements in (4.7) are used in [13, Theorem 1] to show the FDR control of the
MD-FDR procedure. It will be shown in Section 4.3 that (4.7) may be too conservative.

The proposed S-MAP detection procedure is divided into sampling stages. Each sam-
pling stage may take several time slots. In the beginning of a sampling stage, we gather
all the active data streams and obtain observations from a subset of them, according to
the S-MAP approach. This process is repeated at each time slot sequentially until the
deadline is reached or in case at least one active data stream posterior probability exceeds
its corresponding threshold. If the latter happens, then changes are declared for some of
the active data streams, which are then eliminated from the active data streams set.

Let Ij denote the set of indices of active data streams with cardinality |Ij| at the
beginning of the jth sampling stage and let nj denote the time slot at the end of the jth
sampling stage. Note that I1 = [K] and n0 = 0. The jth stage of sampling is described
as follows:

1. Sample the dq|Ij|e data streams with the currently highest posterior probabilities.

2. Update the posterior probabilities of the sensors with active data streams using
(4.1).

3. Sort the updated posterior probabilities in ascending order as π(i(n,l))
n , where i(n, l)

denotes the index of the lth ordered posterior probability at time slot n.

4. Repeat this process until time slot nj in which at least one of the posterior proba-
bilities is higher than its corresponding threshold or in case the deadline, Nmax, is
reached, i.e. nj = Nmax ∧min{n > nj−1 : ∃l ∈ [|Ij|], π(i(n,l))

n ≥ QK−l+1}.

(a) If nj < Nmax: Declare change-points for the data streams i(nj, lj), i(nj, lj +

1), . . . , i(nj, |Ij|), where lj = min{l ∈ [|Ij|] : π
(i(nj ,l))
nj ≥ QK−l+1} and remove

these data streams from the set of active data streams. Update Ij+1 to be
the set of indices of the remaining active data streams. Stop the procedure if
|Ij+1| = 0.

(b) Otherwise nj = Nmax: Declare that all the active data streams have no change-
points and stop the procedure.

In the following theorem, it is shown that the FDR of the S-MAP procedure is controlled
to remain under the prespecified upper bound.
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Theorem 4. For upper bound constraint α ∈ (0, 1) and deadline Nmax, the S-MAP pro-
cedure satisfies

FDR ≤ α.

Proof. The number of change-points declared, R, is known given the filtration of all the
data up to the deadline, FNmax . Thus, using the law of total expectation, we can rewrite
the FDR from (4.2) as

FDR = Eµ
[
Eµ[V |FNmax ]

R ∨ 1

]
. (4.8)

Recall that V is the number of false discoveries, i.e. the size of the subset of [K] s.t.
T (k) < t(k) and T (k) < Nmax. Thus, V can be written as

V =
K∑
k=1

1{T (k)<t(k)}∩{T (k)<Nmax}

=
K∑
k=1

1{T (k)<t(k)}1{T (k)<Nmax}

=
∑

k:T (k)<Nmax

1{T (k)<t(k)},

(4.9)

By substituting the last row of (4.9) in the term Eµ[V |FNmax ] and using the linearity of
the expectation operator and the definitions of V and R, we obtain

Eµ[V |FNmax ] =
∑

k:T (k)<Nmax

Eµ(1T (k)<t(k)|FNmax)

=
∑

k:T (k)<Nmax

Pµ(T (k) < t(k)|FT (k))

=
∑

k:T (k)<Nmax

(1− π(k)

T (k)) ≤ R(1−QK) = Rα.

(4.10)

The second equality is due to the fact that the stopping times, {T (k)}k∈[K], are known
given FNmax , since we stop sampling the data stream k at T (k), and since the change-points
are statistically independent. The inequality in (4.10) is obtained using the definition of
R and since at time slot T (k), satisfying T (k) < Nmax, the event {π(k)

T (k) ≥ QK = 1 − α}
occurs. This is because QK is the smallest threshold from (4.6). By substituting the last
term in (4.10) into (4.8), one obtains

FDR ≤ Eµ
[
Rα

R ∨ 1

]
≤ α. (4.11)
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It should be noted that Theorem 4 is valid for Nmax = ∞ and also for any sampling
strategy and not just for the maximum a-posteriori probability (MAP) sampling. For
q = 1, the proof of Theorem 4 can be viewed as an alternative method to show the
FDR control of the MD-FDR procedure from [13, Theorem 1]. Moreover, Theorem 4
extends the result from [13, Theorem 1] since it is shown that for Nmax < ∞ the FDR
is controlled under level α without the addition of an asymptotically vanishing term. It
can be observed from (4.10)-(4.11) that the thresholds from (4.6) may be too restrictive
(too high) and lower thresholds are sufficient to guarantee FDR control. In the following
section, we propose an alternative detection procedure that is less restrictive than the
S-MAP procedure in terms of FDR control.

4.3 Improved S-MAP procedure
In this section, the Improved S-MAP (IS-MAP) detection procedure is proposed. It is
similar to the S-MAP procedure except that its threshold values are uniformly lower than
the thresholds of the S-MAP procedure. Since the IS-MAP procedure uses lower threshold
values, then for a fixed proportion, q, the ADD and ANO will decrease compared to the
S-MAP procedure, i.e. the ADD and ANO performance will improve. Moreover, using
the lower thresholds, we prove that we can still control the FDR under the desired level,
α. In the IS-MAP procedure, we choose a single threshold,

Q = 1− α, (4.12)

for all the data streams and follow the same steps as the S-MAP procedure. This setup
is different than detecting each change-point separately, as it will be shown that the
FDR is controlled and not just the individual false alarm probability for each change-
point detection. Since the thresholds of the IS-MAP procedure are all equal to Q, its jth
sampling stage can be written in a more compact form than the corresponding sampling
stage of the S-MAP procedure. Recall that Ij stands for the set of indices of active data
streams at the beginning of the jth sampling stage and nj stands for the time slot at the
end of the jth sampling stage. The jth stage of sampling in the IS-MAP procedure is
described as follows:

1. Sample the dq|Ij|e data streams with highest posterior probabilities.

2. Update the posterior probabilities of the sensors with active data streams using
(4.1).

3. Repeat this process until time slot nj in which at least one of the posterior proba-
bilities is higher than the threshold Q or in case the deadline, Nmax, is reached, i.e.
nj = Nmax ∧min{n > nj−1 : ∃k ∈ Ij, π(k)

n ≥ Q}.
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(a) If nj < Nmax: Declare change-points for all the data streams with indices in Ij
whose posterior probabilities are higher than or equal to Q and remove these
data streams from the set of active data streams. Update Ij+1 to be the set of
indices of the remaining active data streams. Stop the procedure if |Ij+1| = 0.

(b) Otherwise nj = Nmax: Declare that all the still active data streams have no
change-points and stop the procedure.

In the following theorem, it is shown that the FDR of the IS-MAP procedure satisfies the
desired upper bound constraint.

Theorem 5. For upper bound constraint α ∈ (0, 1) and deadline, Nmax, the IS-MAP
procedure satisfies

FDR ≤ α.

Proof. The proof is similar to the proof of Theorem 4 except that the thresholds from
(4.6) are replaced by the single threshold from (4.12).

Theorem 5 is valid for Nmax = ∞ and also for any sampling strategy, similarly to
Theorem 4. In the following section, we analyze the ADD and ANO of the S-MAP and
the IS-MAP procedures in the asymptotic regime.

4.4 Performance of the S-MAP and the IS-MAP pro-
cedures

In this section, asymptotic lower and upper bounds on the ADD of the S-MAP and the
IS-MAP procedures are derived as α→ 0 for a fixed number of data streams K. Then, we
characterize the behavior of these bounds as K →∞. Furthermore, the asymptotic ANO
behavior of the procedures is studied. Since the analysis is asymptotic, we remove the
deadline assumption in the S-MAP and the IS-MAP procedures. However, the results are
informative and useful also for sufficiently high value of the deadline Nmax for deciding
about the changes, as will be demonstrated in the simulations. For simplicity of the
analysis and in order to gain more insights, it is assumed that the change-points are
i.i.d. and that the data streams have the same pre-change and post-change probability
densities, f0 and f1, respectively. In addition, it is assumed that the prior distribution
of each change-point obeys a geometric distribution with common parameter ρ ∈ (0, 1).
The results can be extended to non-identical change-point distributions and different
pre/post-change distributions of the data streams.
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4.4.1 ADD analysis of the S-MAP and the IS-MAP procedures

Under communication limitations, the FC observes a subsequence of the complete ob-
servation sequence from each sensor. According to the MAP approach, the time slots
during which a data stream is sampled are stochastic. Whether a given sensor is sampled
is determined online based on the sampling proportion, q, and the posterior probability
values of the active sensors at each time slot. Therefore, it is difficult to characterize
the subsequence of observations acquired from each sensor, especially when the number
of data streams is large. Without such characterization it is not feasible to accurately
analyze the ADD of the S-MAP and the IS-MAP procedures. However, asymptotic bounds
on the ADD of these procedures can be derived. For the derivations, single change-point
detection with a geometric prior as described in Section 2.1.1 is considered first. Thus, we
consider an observation sequence {Xn}∞n=1 with geometrically distributed change-point t
and stopping rule of the form

T = inf{n ∈ N : πn ≥ 1− η}, η ∈ (0, 1). (4.13)

It is assumed that only a subsequence of the complete observation sequence is obtained.
It is shown in [24] that for any subsequence of observations, the ADD of the stopping rule
in the form of (4.13) as η → 0 satisfies

ADD ≥ | log η|
D(f1||f0) + | log(1− ρ)|

(1 + oη(1)) (4.14)

and
ADD ≤ | log η|

| log(1− ρ)|
(1 + oη(1)). (4.15)

The asymptotic ADD lower bound from (4.14) is the same as the one in (2.8), and is
attained when the complete observation sequence is available. The asymptotic ADD
upper bound from (4.15) is attained when we do not take observations at all, and the
stopping rule is based only on the prior.

In the following theorem, using (4.14) and (4.15) we derive asymptotic lower and upper
bounds on the ADDs of the S-MAP and the IS-MAP procedures as α → 0. These ADD
bounds do not require any assumptions on the subsequence of observations obtained from
each sensor.

Theorem 6. For α→ 0 and any proportion of observed sensors, q, the following bounds
are obtained

ADDS-MAP ≥
| logα|

D(f1||f0) + | log(1− ρ)|
(1 + oα(1)), (4.16)
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ADDS-MAP ≤
logK − 1

K
logK! + | logα|

| log(1− ρ)|
(1 + oα(1)), (4.17)

ADDIS-MAP ≥
| logα|

D(f1||f0) + | log(1− ρ)|
(1 + oα(1)), (4.18)

and
ADDIS-MAP ≤

| logα|
| log(1− ρ)|

(1 + oα(1)). (4.19)

Proof. The proof is given in Appendix A.

For any fixed proportion, q, of observed data streams and for sufficiently small α 6= 0
the bounds from (4.16)-(4.19) hold. The behavior of these bounds as K increases towards
∞ is characterized in order to investigate the scalability of the S-MAP and the IS-MAP
procedures, as the number of data streams increases. Let

ADDLB :=
| logα|

D(f1||f0) + | log(1− ρ)|

denote the asymptotic ADD lower bound (LB) for both the S-MAP and the IS-MAP
procedures. It can be seen that this lower bound is a finite constant w.r.t. K.

The asymptotic ADD upper bound (UB) for the S-MAP procedure is denoted by

ADDS-MAP,UB :=
logK − 1

K
logK! + | logα|

| log(1− ρ)|
. (4.20)

Consider the sequence {logK − 1
K

logK!}∞K=1. Using [59, Eq. (5)] and Stirling’s approx-
imation (see e.g. [59, 56]) and applying some algebraic manipulations, it can be verified
that this sequence is monotonically increasing and converges to 1. Thus, it is obtained
that ADDS-MAP,UB is monotonically increasing with K and converges to a finite constant,
i.e.

lim
K→∞

ADDS-MAP,UB =
1 + | logα|
| log(1− ρ)|

. (4.21)

In a similar manner to (4.20), the asymptotic upper bound for IS-MAP is defined as

ADDIS-MAP,UB :=
| logα|

| log(1− ρ)|
(4.22)

The upper bound in (4.22) is a finite constant w.r.t. K.
The sequence {logK − 1

K
logK!}∞K=1 is nonnegative and thus,

ADDIS-MAP,UB ≤ ADDS-MAP,UB. (4.23)
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In addition, by comparing (4.22) to (4.20) and using (4.21), it is obtained that

lim
K→∞

ADDIS-MAP,UB

ADDS-MAP,UB
=
| logα|

1 + | logα|
< 1. (4.24)

The results in (4.23) and (4.24) demonstrate the asymptotic ADD improvement obtained
by using the IS-MAP procedure instead of the S-MAP procedure.

4.4.2 Detailed ADD analysis of the IS-MAP procedure

In this subsection, the focus is on the IS-MAP procedure in order to obtain a deeper
asymptotic analysis of its ADD. Similar results for the S-MAP procedure can be derived
in the same way. First, a single stopping rule, T , from (4.13) is considered. For the ADD
of T , a tighter upper bound than (4.15) can be derived under some assumptions on the
subsequence of observations obtained for the detection. Let us denote by {XVn}∞n=1 the
subsequence of the complete observation sequence, where V0 := 0 and V1, V2, . . . are the
discrete time slots in which observations are acquired for the detection of the single change-
point, t, using the stopping rule, T . Equivalently, the complete observation sequence is
sampled with intervals

ζn := Vn − Vn−1 ≥ 1, n ∈ N. (4.25)

In addition, we define

ζ(N) :=
1

N

N∑
n=1

ζn =
VN
N
, (4.26)

which is the average length of intervals in which we sample N observations from the
observation sequence, the stopping rule,

Γ := inf{n ∈ N : πVn ≥ 1− η}, (4.27)

and the random change-point,

γ := inf{n ∈ N : Vn ≥ t}. (4.28)

The stopping rule and change-point from (4.27) and (4.28), respectively, represent the
case in which we only count time slots where observations are obtained. In this analysis,
the time slots V1, V2, ... are considered to be deterministic. For the derivation of a tighter
asymptotic upper bound on the ADD of the stopping rule, T , the only assumptions made
are that the intervals are bounded, i.e. there exists 1 ≤ B <∞ s.t.

ζn ≤ B, ∀n ∈ N, (4.29)
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there exists ζ ∈ [1,B] s.t.
lim
N→∞

ζ(N) = ζ, (4.30)

and
Eµ[ζ(Γ)(0 ∨ (Γ− γ))] = ζEµ[0 ∨ (Γ− γ)](1 + oη(1)). (4.31)

From (4.25)-(4.26), ζ(Γ) = VΓ

Γ
, ζ(γ) = Vγ

γ
, ζγ = Vγ − Vγ−1. The specific value of ζ may be

unknown. The assumption in (4.31) essentially requires that Γ → ∞ as η → 0. In the
following proposition, we derive an asymptotic ADD upper bound for the stopping rule,
T , which is tighter than (4.15).

Proposition 2. Assume that (4.29)-(4.31) are satisfied. Then, as η → 0 the ADD of the
stopping rule T from (4.13) satisfies

ADD ≤ | log η|
1
ζ
D(f1||f0) + | log(1− ρ)|

(1 + oη(1)). (4.32)

Proof. The proof is given in Appendix B.

It should be noted that a special case of (4.32) with ζn = ζ < ∞, n ∈ N, was proved in
[24].

Assume that q > 0 and that each stopping rule in the IS-MAP procedure satisfies the
ADD upper bound in (4.32) with ζ = gk <∞, i.e.

ADDIS-MAP,k ≤
| logα|

1
gk
D(f1||f0) + | log(1− ρ)|

(1 + oα(1)), (4.33)

∀k ∈ [K]. The term gk is the limiting average of time intervals between each sample of
the kth data stream. In addition, assume that

sup
k∈[K]

gk <∞. (4.34)

The assumptions in (4.33)-(4.34) are reasonable, because according to the MAP approach
the subset of active data streams with highest posterior probabilities is sampled. For any
α > 0, as long as a data stream is not sampled its posterior probability is monotonically
increasing in accordance with the recursive posterior update (4.1). Thus, after a finite
number of time slots this data stream will have a sufficiently high posterior probability
s.t. it will be sampled, i.e. this posterior probability will be among the highest posterior
probabilities within the allowed proportion. Alternatively, this data stream posterior
probability will cross the threshold Q = 1−α and a change-point will be declared. Thus,
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in a similar manner to the derivation of the upper bound in (4.19), a tighter asymptotic
ADD upper bound is obtained for the IS-MAP procedure, given by

ADDIS-MAP ≤
| logα|

1
sup
k∈[K]

gk
D(f1||f0) + | log(1− ρ)|

(1 + oα(1)).

In order to shed some light on the IS-MAP ADD dependence on the proportion q, a
simple multiple change-point detection procedure that will be used as a benchmark is
considered. In the following, it is assumed for simplicity that 1

q
, Kq ∈ N. In the simple

procedure, the set of data streams is divided into 1
q
subsets. The mth subset includes

Kq data streams with indices (m − 1)Kq + 1, (m − 1)Kq + 2, . . . ,mKq and these data
streams are sampled periodically at time slots m,m + 1

q
,m + 2

q
, . . ., as long as they are

active, for each m = 1, . . . , 1
q
. For each data stream the stopping rule is in the posterior

probability threshold form of (4.13) with threshold Q = 1 − α as in (4.12). Before any
change-points are declared, or equivalently as α → 0, the simple procedure satisfies the
same communication constraint as the IS-MAP procedure. According to Proposition 2
and the ADD definition from (4.4), it is obtained that as α → 0, the ADD of the simple
procedure satisfies

ADDsimple ≤
| logα|

qD(f1||f0) + | log(1− ρ)|
(1 + oα(1)). (4.35)

It can be seen that as q increases the ADD upper bound from (4.35) decreases.
For a fixed proportion of the active sensors sampled at each time slot q, it is expected

that the IS-MAP procedure will outperform the simple procedure in terms of ADD. The
reason is described as follows. In order to detect changes quickly, it is only important
for the procedure to monitor a particular data stream after a change has occurred in it.
How frequently a data stream is sampled pre-change has no influence on the detection
delay, since the change cannot be observed from the pre-change observations. Therefore,
an "oracle" procedure with access to unobservable information should always sample
the active sensors for which the change-point has already occurred but has not yet been
detected (or at least as many of such streams that fit under the communication constraint).
Since we of course don’t know whether a change has taken place in a given sensor or not, in
IS-MAP the posterior probabilities are used as a proxy for that information. By choosing
to monitor the sensors with the highest posterior probabilities, IS-MAP aims to reduce
the times that a data stream in pre-change state is monitored in favor of a stream in
post-change state. In contrast, the simple procedure that uses a predetermined sampling
schedule makes no effort in trying to sample the data streams that are in post-change
state. In Section 4.5, it is demonstrated in simulations that the IS-MAP procedure has
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lower ADD than the simple procedure. Moreover, the ADD of the IS-MAP procedure
is compared to the asymptotic upper bound in (4.35). It will be shown that this upper
bound holds and is useful in describing the performance of the IS-MAP procedure.

4.4.3 ANO analysis of the IS-MAP procedure

A low proportion q of active sensors monitored by the FC may result in high ADD.
However, an advantage of monitoring only a small subset of sensors is that the ANO,
or equivalently the communication burden, for the detection task may decrease. In the
following, the asymptotic ANO behavior of the IS-MAP procedure is studied. Since the
imposed deadline for decision making was removed, the ANO from (4.5) can be rewritten
as

ANO =
1

K
Eµ
[ T (k,inf)∑

n=1

dqKne
]

+
1

K
Eµ
[ T (k,sup)∑
n=T (k,inf)+1

dqKne
]

= qEµ[T (k,inf)] +
1

K
Eµ
[ T (k,sup)∑
n=T (k,inf)+1

dqKne
]
,

(4.36)

where T (k,inf) := inf
k∈[K]

T (k). The second equality in (4.36) is obtained since up to T (k,inf) the

number of active data streams satisfies Kn = K and under the assumption that Kq ∈ N.
It is assumed that

1

K
Eµ
[ T (k,sup)∑
n=T (k,inf)+1

dqKne
]

= oα(| logα|). (4.37)

This assumption essentially requires that as α → 0 the difference between the smallest
and largest stopping times of the IS-MAP procedure will remain finite or increase slower
than | logα|. In the following proposition, bounds on the asymptotic ANO of the IS-MAP
procedure are derived.

Proposition 3. Assume that Kq ∈ N and (4.37) are satisfied. Then, as α→ 0 the ANO
of the IS-MAP procedure satisfies

ANOIS-MAP ≥
q| logα|

D(f1||f0) + | log(1− ρ)|
(1 + oα(1)) (4.38)

and
ANOIS-MAP ≤

q| logα|
| log(1− ρ)|

(1 + oα(1)). (4.39)
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Proof. By Theorem 6, as α→ 0 and for any proportion, q, the ADD of the kth stopping
rule of the IS-MAP procedure satisfies

ADDIS-MAP,k ≥
| logα|

D(f1||f0) + | log(1− ρ)|
(1 + oα(1)) (4.40)

and
ADDIS-MAP,k ≤

| logα|
| log(1− ρ)|

(1 + oα(1)), (4.41)

∀k ∈ [K]. Using (4.3), it can be verified that

Eµ[T
(k)
IS-MAP] = ADDIS-MAP,k(1 + oα(1)), ∀k ∈ [K]. (4.42)

By substituting (4.42) in (4.40) and (4.41), one obtains

Eµ[T
(k)
IS-MAP] ≥ | logα|

D(f1||f0) + | log(1− ρ)|
(1 + oα(1)) (4.43)

and
Eµ[T

(k)
IS-MAP] ≤ | logα|

| log(1− ρ)|
(1 + oα(1)), (4.44)

respectively for all k ∈ [K]. Since (4.43)-(4.44) hold for all k ∈ [K], one obtains

Eµ[T
(k,inf)
IS-MAP] ≥ | logα|

D(f1||f0) + | log(1− ρ)|
(1 + oα(1)) (4.45)

and
Eµ[T

(k,inf)
IS-MAP] ≤ | logα|

| log(1− ρ)|
(1 + oα(1)). (4.46)

From (4.36), (4.37), and (4.45), one obtains (4.38). Similarly, from (4.36), (4.37), and
(4.46), one obtains (4.39).

It can be seen from (4.38)-(4.39) that the asymptotic lower and upper bounds on the
ANO of the IS-MAP procedure are linearly increasing with q. Thus, from (4.35) and
(4.38)-(4.39) it can be seen that there is a tradeoff between the ADD and the ANO that
depends on the chosen proportion, q. The ADD-ANO tradeoff will be investigated in
more detail in Section 4.5. Finally, it can be seen that the asymptotic ANO bounds from
(4.38)-(4.39) are independent of the number of data streams, K. Therefore, the IS-MAP
procedure is scalable in the sense that its asymptotic ANO does not increase without
bound with the number of data streams. The ANO of the S-MAP procedure is higher
than the ANO of the IS-MAP procedure. However, similarly to Proposition 3, it can be
shown that the S-MAP procedure is also scalable in terms of ANO as K increases.
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4.5 Performance evaluation via simulations
In this section, the performance of the proposed S-MAP and IS-MAP procedures is evalu-
ated in terms of FDR, ADD, and ANO. In addition, the analytical results from Sections
4.2-4.4 are verified in the simulations. The simulation results are based on 1,000 Monte
Carlo runs. The deadline for the detection procedures is Nmax =10,000. In all of the
following simulations, all the finite change-points were eventually detected and there were
no missed detections, where missed detection happens if a stopping time is set to be ∞,
while the change-point is finite.

For comparison purposes, the fully parallel procedure from [12], named D-FDR, that
observes all the data streams all the time is implemented. The FDR control of the D-FDR
procedure is established in [12]. In this procedure, the following test statistic is used

G(k)
n =

∞∑
m=1

Pµ(t(k) = m)
n∏

i=m

f
(k)
1 (X

(k)
i )

f
(k)
0 (X

(k)
i )

, n ∈ N, (4.47)

where G(k)
0 := 1. This test statistic is the average likelihood ratio (ALR) between the

hypotheses that the change occurs at t(k) = m < ∞ and that no change takes place,
t(k) = ∞. A recursive method for computing the ALR from (4.47) can be found in [12].
For q = 1, the D-FDR procedure is similar to the S-MAP procedure except that it uses
the ALR test statistic, rather than the posterior probability test statistic. The thresholds
are set to

Qr =
K

rα
, r ∈ [K],

in order to guarantee the same false positive constraints as in (4.7). Assume that for the
kth data stream, the corresponding threshold is Qrk = K

rkα
, rk ∈ [K]. It is shown in [69]

that in this case, using the ALR test statistic with the threshold Qrk is equivalent to using
the posterior probability test statistic with the threshold

Q∗rk = 1− p(t(k) ≥ n+ 1)
rkα

K
. (4.48)

Thus, from (4.6), (4.12), and (4.48), the posterior probability thresholds of the D-FDR
procedure are higher than the posterior probability thresholds of the S-MAP and the IS-
MAP procedures. Consequently for q = 1, the ADD and ANO of the S-MAP and the
IS-MAP procedures will be lower than those obtained by the D-FDR procedure.

In addition to D-FDR, three other procedures for are implemented and evaluated
for comparison purposes. The procedures control the FDR under the tolerated level in
accordance with the proof of Theorem 5, which is valid for any sampling strategy. The
first procedure is the "simple procedure" described in Subsection 4.4.2. In this procedure,
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given the proportion q the data streams are sampled periodically with a fixed period 1
q
.

The second procedure is a "random sampling procedure". This procedure is an alternative
for the IS-MAP procedure from Section 4.3, where the method of choosing the subset of
sensors to monitor is different. In the random sampling procedure, at each time slot
a subset of sensors to monitor is chosen randomly with uniform probability within the
allowed proportion. The third procedure is a hybrid of the IS-MAP and the random
sampling procedures. In the hybrid procedure, the subset of active data streams sampled
is chosen according to the MAP sampling or according to the random sampling with
equal probability 0.5 at each time. The random sampling and hybrid procedures are
implemented in order to verify that the MAP approach for choosing the subset of sensors
to monitor, as used in the IS-MAP procedure, improves the ADD performance compared
to randomly choosing this subset.

4.5.1 Gaussian distribution scenario

Gaussian pre- and post-change distributions with a change in the mean are considered, so
that f0 = N (0, 1) and f1 = N (1, 1). The true change-points are generated independently
for each sensor from a geometric distribution with parameter ρ = 0.01 and it is assumed
that this parameter is known when applying the procedure. The FDR upper bound is set
at α = 0.1. For K = 50, 100, 200, 400, 800, the FDR control of the proposed S-MAP and
IS-MAP procedures is investigated with sampling proportions q = 0.5, 1. The proportion
q = 1 corresponds to the parallel versions of the S-MAP and the IS-MAP procedures that
observe all of the active data streams at each time slot. The resulting maximum observed
average FDP values (over different K) for each procedure are .031 for S-MAP q = 1 and
q = 0.5, and .060 for IS-MAP q = 0.5 and q = 1. Consequently, the considered procedures
control the FDR under the upper bound α = 0.1, corroborating the analytical results. The
S-MAP FDR values are lower than the IS-MAP FDR values, since the S-MAP procedure
is more conservative and uses higher thresholds than the IS-MAP procedure. For both
the S-MAP and the IS-MAP procedures there is still a gap between the FDR values and
the upper bound α = 0.1. This result follows from the choices of thresholds in (4.6) and
(4.12) for the S-MAP and the IS-MAP procedures, respectively, that neglect the overshoot
in the stopping rule, mentioned on page 12.

In the left panel of Fig. 4.1, the ADD for the D-FDR, S-MAP, simple, random sam-
pling, hybrid, and IS-MAP procedures are evaluated with with different values of q as
a function of K. It can be seen that the S-MAP and IS-MAP procedures have an ap-
proximately constant ADD as K increases, which verifies the analytical results in Section
4.4. The parallel version of the IS-MAP procedure, i.e. for q = 1, has the lowest ADD.
Moreover, it can be seen that the IS-MAP procedure with q = 0.5 outperforms the parallel
version of the S-MAP procedure and the D-FDR procedure. These results demonstrate
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Figure 4.1: Left panel: ADD evaluated as a function of the number of sensors K for different
methods. For S-MAP and IS-MAP, the delay is approximately constant as a function of K.
IS-MAP achieves smallest ADD compared to alternatives. Right panel: ANO for the different
methods as a function of K. For all approaches, the ANO is approximately constant in K, but
depends heavily on q.

the advantage of using the IS-MAP procedure instead of the S-MAP or the D-FDR proce-
dures in terms of ADD. The simple and random sampling procedures with q = 0.5 have
the highest ADDs implying that the MAP approach provides better performance than
periodic sampling or random sampling of the subset of active data streams. The hybrid
procedure with q = 0.5 has higher ADD than IS-MAP procedure with q = 0.5. This
result shows that combining the MAP sampling with random sampling does not reduce
the detection delay.

In the right panel of Fig. 4.1, the ANO versus K for the same procedures is evaluated.
It can be seen that the IS-MAP procedure with q = 0.5 has the lowest and the D-FDR
has the highest ANO. In addition, it can be seen that for all the considered procedures,
the ANO is approximately a constant w.r.t. K. However, the ANOs of parallel proce-
dures that monitor all the active data streams are significantly higher than the ANOs of
communication-limited procedures with q = 0.5.

In the left panel of Fig. 4.2, the ADDs of the S-MAP, hybrid, and IS-MAP procedures
for K = 300 are plotted versus the proportion value q. It can be seen that for any
of the considered proportions, the IS-MAP procedure achieves the lowest ADD. For all
the procedures the ADD monotonically decreases as the proportion, q, increases. As
q → 1, the mixed procedure ADD approaches the ADD of the IS-MAP procedures since
for q = 1 the procedures coincide. However, for q < 1 the IS-MAP procedure outperforms
the mixed procedure, which demonstrates the advantage of MAP sampling compared to
random sampling. In the right panel, the ANOs of the procedures are plotted against
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Figure 4.2: Left panel: ADD evaluated as a function of q for IS-MAP, S-MAP and the hybrid
procedures. IS-MAP provides the smallest detection delay for all q. Right panel: ANO evaluated
as a function of K for the same procdures. ANO increases linearly in q, as was analyzed in
Subsection 4.4.3.

q. The IS-MAP procedure achieves the lowest ANO. For all the procedures the ANO
increases approximately linearly as the proportion, q, increases. This result validates the
ANO analysis in Subsection 4.4.3 for the IS-MAP procedure.

In the left panel of Fig. 4.3, the asymptotic ADD of the IS-MAP is examined by
plotting it against small values of α. The ADD of the IS-MAP procedure is compared to
the asymptotic LB and asymptotic UB from (4.18) and (4.19), respectively, for different
q. In addition, the approximate upper bound on the ADD of the IS-MAP procedure from
(4.35) is evaluated. The bound depends on the proportion parameter q and decreases as q
increases. It is seen that the ADD of the IS-MAP procedure increases as | logα| increases,
which shows the tradeoff between achieving low ADD and requiring strict upper bound on
the FDR. The asymptotic ADD bounds from (4.18)-(4.19) hold for any of the considered
values of | logα| and q. The approximate ADD UB from (4.35) holds for q = 0.25, 0.5
and for any of the considered values of | logα|. For sufficiently high value of | logα| the
approximate UB for q = 0.75 holds as well. This figure shows that for sufficiently low
values of α the asymptotic ADD bounds from (4.18)-(4.19) and the approximate ADD UB
from (4.35) are informative for performance analysis of the IS-MAP procedure. In the right
panel, we examine the ANO of the IS-MAP procedure versus | logα| for small values of the
FDR upper bound α. The ANO of the IS-MAP procedure is compared to the asymptotic
LB and asymptotic UB from (4.38) and (4.39), respectively, for q = 0.25, 0.5, 0.75. It
can be seen that these asymptotic bounds hold for any of the considered values of | logα|
and q. The ANO of the IS-MAP procedure increases as | logα| increases, which shows
that requiring a strict upper bound on the FDR implies higher ANO for the multiple
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Figure 4.3: Left panel: ADD of the IS-MAP for different q as a function of | logα|. The dashed
lines denote the ADD upper bounds derived in 4.4.2. For all q, and α sufficiently small, the
observed ADD falls below the corresponding upper bound, confirming the results. Right panel:
ANO for different q as a function of | logα. The observed ANO lies between the asymptotic ANO
bounds of eqs. (4.38) and (4.39) for all q.

change-point detection task.
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Figure 4.4: Upper: ADD of the IS-MAP for K = 300, 600, when the the prior distributions of the
change-points and the post-change distributions vary from sensor to sensor. The ADD decreases
in q, and for these system and is not affected by the number of sensors in the network K. Lower:
ANO of the IS-MAP as a function of q in this setup. ANO increases approximately linearly in q.
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Finally, we consider a scenario with different prior distributions of the change-points
and different post-change distributions of the data streams. In the kth data stream, there
is no change-point with probability p∞ and with probability 1− p∞ the kth change-point
prior distribution is geometric with parameter ρk. All the data streams are assumed to
obey f0 = N (0, 1) distribution before the change and f (k)

1 = N (µk, 1) distribution after
the change, where µk is the mean of the kth data stream after the change. In this case, the
posterior probability of each data stream is calculated according to the standard recursive
update (4.1), where

ρ(k)
n = Pµ(t(k) = n|t(k) ≥ n) = ρk

(1− p∞)(1− ρk)n−1

p∞ + (1− p∞)(1− ρk)n−1
, k ∈ [K], n ∈ N.

We set p∞ = 0.01 and for the K data streams we set ρk = 0.01, bk = 2 for k = 1, . . . , K
2

and ρk = 0.05, bk = 1 for k = K
2

+ 1, . . . , K. Under the FDR upper bound constraint,
α = 0.1, the FDR of the IS-MAP procedure for K = 300 and K = 600 versus the
proportion values {q = 0.05m}20

m=1 is evaluated. The resulting minimum and maximum
estimated FDR values are .045 and 0.047, respectively. Thus, the IS-MAP procedure
controls the FDR under the tolerated level in accordance with Theorem 5 in Section
4.3. In the left plot of Fig. 4.4, the ADD of the IS-MAP procedure for K = 300 and
K = 600 versus the sampling proportion q is shown. It can be seen that the ADD of
the IS-MAP procedure decreases as q increases and that for these system parameters the
ADD does not change significantly between K = 300 and K = 600. In the right plot
of Fig. 4.4, the ANO of the IS-MAP procedure for K = 300 and K = 600 versus the
sampling proportion q is displayed. It can be seen that the ANO of the IS-MAP procedure
increases as q increases. The increase is approximately linear and there is no significant
difference between the ANOs for K = 300 and K = 600. The results in Fig. 4.4 show that
the ADD and ANO behavior of the IS-MAP procedure validate the analysis in Section
4.4 despite the different prior distributions of the change-points and different post-change
distributions of the data streams.

4.6 Conclusion
In this chapter, which follows the publication [42] co-authored by the author of this thesis,
methods for Bayesian multiple change-point detection in a sensor network with commu-
nication constraints are developed. The S-MAP detection procedure was proposed. In
S-MAP, sensors with the highest posterior probabilities of change-points having occurred
are chosen for sampling at each time step. In addition, an improved procedure named IS-
MAP was proposed. IS-MAP requires lower stopping thresholds than the S-MAP procedure
and hence attains lower ADD and ANO. It was proven that both proposed procedures
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control the FDR at a predefined level and achieve ADD and ANO that asymptotically
remain constant as the number of sensors in the network increases. The dependence of
the IS-MAP procedure ADD and ANO on the chosen proportion of sensors monitored was
characterized in the asymptotic regime.

In the simulations, Gaussian distributed observations with known mean and variance.
The change was associated with a rapid change in the mean. We compared the proposed
S-MAP and IS-MAP procedures to procedures that use random and periodic sampling of
the active data streams. In all the simulations, the IS-MAP procedure achieved the best
performance in terms of ADD and ANO. These results show the advantage of using low
detection thresholds together with the MAP sampling approach in multiple change-point
detection.

Topics for future research include, among other things, the derivation of novel pro-
cedures with FDR control capabilities for multiple change-point detection under non-
parametric models [31], in case spatial information is available [76, 53], and in case each
data stream can have multiple change-points [23, 57].



Chapter 5

Conclusion

In this thesis, theory and methods for sequential and multiple statistical inference and de-
tection were studied. The fundamentals of sequential change-point detection were covered
in Chapter 2. Both the Bayesian and minimax formulations were introduced. Addition-
ally, some methods for data-efficient change-point detection were presented. Chapter
3 introduced the fundamentals of multiple hypothesis testing. Moreover, a Bayesian
method for multiple testing in spatial domains was presented. In Chapter 4 the ideas of
data-efficient change-point detection and multiple hypothesis testing were fused. A novel
method that performs data-efficient sequential change-point detection in multiple parallel
data streams was presented and analyzed. The method guarantees FDR control, scales
well as the number of data streams increases, and provides competitive detection delay.
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Appendix A

Proof of Theorem 6

In this appendix, asymptotic lower and upper bounds on the ADD of the S-MAP and the
IS-MAP procedures are derived. For any data stream, the lowest possible threshold of the
S-MAP procedure from (4.6) is QK = 1− α, i.e. change-point cannot be declared before
the posterior probability is higher than or equal to 1− α. Thus, from (4.14)

ADDS-MAP,k ≥
| logα|

D(f1||f0) + | log(1− ρ)|
(1 + oα(1)), (A.1)

∀k ∈ [K]. It can be seen that the asymptotic lower bound in (A.1) is independent of k.
Thus, by substituting (A.1) in (4.4), we obtain (4.16).

According to the S-MAP procedure we can find a threshold for the kth data stream,
Qrk = 1− rkα

K
, rk ∈ [K], which is different from the thresholds of the other data streams.

For this threshold, the change of the kth data stream is declared at the first time slot in
which this threshold is exceeded or even before this threshold is exceeded. Thus, from
(4.15),

ADDS-MAP,k ≤
log K

rkα

| log(1− ρ)|
(1 + oα(1)),∀k ∈ [K]. (A.2)

By substituting (A.2) in (4.4), we obtain

ADDS-MAP ≤

(
1

K

K∑
k=1

log K
rkα

| log(1− ρ)|

)
(1 + oα(1)). (A.3)

Since the thresholds are different, we obtain

K∑
k=1

log rk =
K∑
k=1

log k = logK!. (A.4)
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By substituting (A.4) into (A.3) and reordering, (4.17) is obtained.
In the IS-MAP procedure, for any data stream the threshold is Q = 1−α from (4.12).

Thus, using (4.14) and (4.15), one obtains

ADDIS-MAP,k ≥
| logα|

D(f1||f0) + | log(1− ρ)|
(1 + oα(1)) (A.5)

and
ADDIS-MAP,k ≤

| logα|
| log(1− ρ)|

(1 + oα(1)), (A.6)

respectively, ∀k ∈ [K]. The asymptotic lower and upper bounds in (A.5) and (A.6),
respectively, are independent of k and thus, by substituting (A.5) and (A.6) in (4.4), we
obtain (4.18) and (4.19), respectively.



Appendix B

Proof of Proposition 2

In this appendix, the asymptotic ADD upper bound from (4.32) on page 53 is derived
under the assumption that (4.29)-(4.31) are satisfied. Using the definition of γ from (4.28),
it can be seen that the prior distribution of γ ∈ N is

Pµ(γ = m) = Pµ(Vm−1 < t ≤ Vm)

= Pµ(t ≤ Vm)− Pµ(t ≤ Vm−1).
(B.1)

Under the geometric prior assumption on t we obtain

Pµ(t ≤ m) = 1− (1− ρ)m,m ∈ N. (B.2)

By substituting (B.2) in (B.1), one obtains

Pµ(γ = m) = (1− ρ)Vm−1 − (1− ρ)Vm . (B.3)

Using (B.3), we obtain

lim
m→∞

− logPµ(γ ≥ m+ 1)

m
= lim

m→∞

− log((1− ρ)Vm)

m

=

(
lim
m→∞

Vm
m

)
| log(1− ρ)|

= ζ| log(1− ρ)|,

(B.4)

where the third equality is obtained by substituting (4.26) and (4.30) into the second
equality. Using the definition of γ from (4.28), we obtain that on {γ = n}

lim
N→∞

1

N

n+N−1∑
i=n

logL(XVi) = D(f1||f0) (B.5)
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almost surely. From the definitions of the stopping rule, Γ, and the change-point, γ, in
(4.27) and (4.28), respectively, and from (B.4) and (B.5), it can be seen that the detec-
tion of γ using Γ based on the sequence {XVn}∞n=1 is a Bayesian change-point detection
procedure that satisfies the conditions of Theorem 3 in [70]. Thus, using this theorem, we
obtain the following asymptotic upper bound on the ADD of Γ:

Eµ[0 ∨ (Γ− γ)] ≤ | log η|
D(f1||f0) + ζ| log(1− ρ)|

(1 + oη(1)). (B.6)

Next, the stopping rule

T ∗ = inf{Vn, n ∈ N : πVn ≥ 1− η} = VΓ. (B.7)

is considered. In a similar manner to T , the stopping rule T ∗ uses the same posterior
update, but can only take values from the subsequence {Vn}∞n=1 rather than N. Therefore,
T ≤ T ∗ and consequently

T − t ≤ T ∗ − t = VΓ − Vγ + Vγ − t, (B.8)

where the equality follows from (B.7). From (4.25) and (4.28) we obtain that

Vγ − t ≤ ζγ − 1. (B.9)

In addition, using (4.26) we can write

VΓ = Γζ(Γ) and Vγ = γζ(γ). (B.10)

By substituting (B.9)-(B.10) into the right hand side of (B.8), one obtains

T − t ≤ ζ(Γ)(Γ− γ) + γ(ζ(Γ) − ζ(γ)) + ζγ − 1

≤ ζ(Γ)(Γ− γ) + |γ(ζ(Γ) − ζ(γ)) + ζγ − 1|.
(B.11)

Using (4.25) and (4.29), we obtain

1 ≤ ζ(N) ≤ B, ∀N ∈ N. (B.12)

Substituting (4.29) and (B.12) in (B.11), one obtains

T − t ≤ ζ(Γ)(Γ− γ) + γ(B − 1) + B − 1. (B.13)

From (B.3), it can be verified that

Eµ[γ] ≤ 1

ρ
. (B.14)

By using (4.31), (B.6), (B.13) and (B.14), we obtain that the ADD of T satisfies

ADD ≤ ζ| log η|
D(f1||f0) + ζ| log(1− ρ)|

(1 + oη(1))

and consequently (4.32) is obtained.
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