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Chapter 1

Introduction

When studying differential equations, it is sometimes impossible to find solutions to the
problem. A particular function with otherwise promising features might for example be
discontinuous on the boundary or non-differentiable at interior points, in which case it
can’t be a solution to the problem. However, weak solutions to differential equations
offer a way to find information about the problem even in these cases. Even though
weak solutions aren’t always solutions to the original problem, they can tell a lot about
the nature of the differential equation. Additionally, they are often physically relevant as
they can for example represent electromagnetic fields in irregular media or fields generated
by irregular sources such as point sources.

Maxwell’s equations are a set of important equations in physics which describe how
electromagnetic radiation behaves in a medium or in a vacuum. In this thesis we will
go through the theory of Sobolev spaces and other relevant topics of functional analysis.
Utilising this knowledge, we will present boundary value problems related to Maxwell’s
equations and examine their weak solutions.

We will start by going through the theory of Hilbert spaces, weak derivatives and
Sobolev spaces. For the study of this particular problem, we will need to study curl
and divergence and how they behave in different Sobolev spaces. We also need to study
corresponding trace theorems. After going through the background theory, we will first
study static boundary value problems related to Maxwell’s equations. Afterwards we will
also examine non-static cases using some elements of spectral theory. As a primary source
for information, we follow Mathematical Analysis and Numerical Methods for Science and
Technology series by Robert Dautray and Jacques-Louis Lions, but often filling details
and presenting additional information to suit our needs.



Chapter 2

Background and useful concepts

2.1 Functional analysis

In this section we will recall some of the most important definitions and notations. In
particular many concepts from functional analysis are central to understanding weak
solutions to Maxwell’s equations. These topics include Hilbert and Sobolev’s spaces,
weak derivatives and weak solutions to differential equations.

2.1.1 Hilbert spaces

The euclidean spaces R™ have many useful properties and thankfully many results can be
generalized to other spaces too. As an example we introduce Hilbert spaces which share
many useful geometric and analytic properties of R™ and C™ with n, m € N.

We will start by defining inner product spaces for the scalar field C.

Definition 2.1. (Inner product space)
Let E be a vector space with the scalar field C. We say that a function f: Ex E — C
is an inner product if

)
y,z) = f(z,y) for all x,y € E where f(z,y) is the conjugate of the f(z,y) € C.
)

We then denote the inner product with (x,y) = f(x,y) and call the space E endowed
with the inner product () an inner product space (F, ()).

3



Note that the definition can be generalised for other scalar fields K as long as they are
endowed with an involution or a conjugate. If K = R, the condition (iii) is instead of the
form f(y,z) = f(x,y) for all x,y € E. [9]

As a special case of inner products, we denote the dot or scalar product of elements
x € R" and y € R" with the usual notation x - y. We can easily define the inner product
in C" in a similar manner as in R". For x = (z1,...,2,) € C" and y = (y1,...,yn) We
define (z,y) as

(C(],y) = Zx]gj
=1

It’s also worth pointing out that the notation (x,y) should not be confused with the
notation (x,y) which we use to denote the duality between = and y.
Let (E,(:)) be an inner product space. Inner products induce a norm defined by

|lz|| = /(z,2), v € E.

Definition 2.2. (Hilbert space)

Let (E,(-)) be an inner product space. Then we say that (E, (-)) is a Hilbert space if
E' is also a Banach space, that is, it is complete with respect to the norm induced by the
inner product.

For example, we know that in a domain 2 C R"™ the vector space consisting of
equivalency classes of square integrable functions, denoted by L?*(Q2), is a Hilbert space in
terms of its corresponding inner product

(f.9)= [ fg do

for all real functions f, g € L?(Q). For complex valued functions f, g € L?(Q2) on the other
hand, the inner product is

(f.9)= [ f3 dr.

Other important examples of Hilbert spaces include Sobolev spaces introduced later.

2.1.2 Weak derivatives

We start the study of weak derivatives by defining a set of test functions. There are
multiple sets of test functions that we could use, but for convenience we fix them as
follows.



Definition 2.3. Let 2 C R" be an open subset. Then we define
2(Q)=Cx () = {w € C*(R") | supp(v)) C Q is compact}.

A function belonging to Z() is called a test function.

Recall that the support of a function v is defined as supp(¢)) = {x eER|Y(x) # O},
that is, a closure of the set of all those elements x € R such that the ¢(x) # 0. We
often use shorter notation Z(Q)" for (2(Q2))" consisting of elements (¢1,...,1,) with
Y1, .., € D(Q).

The next part is based on corresponding section in Partial Differential Equations by

Lawrence Evans [1]. Let there be a function u € C*'(Q) and a test function ¢ € 2(Q).
By using integration by parts we get

/ugpxi dr = —/ Uy, dx
Q Q

for every ¢+ = 1,...,n. Because ¢ has a compact support in €2, there are no boundary
terms and thus it vanishes near 0f).

In the previous formula u is assumed to be differentiable. If u & C*, then the expression
Uy, is not defined at all. However, even if u is not differentiable, we can define a concept
that has similar properties as a derivative. We define weak derivatives to solve this issue.

Definition 2.4. Let Q be an open subset of R" and f € L}, (). A function g € L},.(Q)
is the weak derivative of a function f with respect to x; if

/gwdxz—/fsoxidm
Q Q

with all test functions ¢ € Z(Q).

We can also extend the definition to higher order derivatives. We use the multi-index
notation for derivatives. If a = (ay, ag, ..., ) then we denote

o 9 g

D = .
Y 00 9157 T Bz ”

The order of « is denoted by |a| = a3 + ag + -+ + «,. Then the definition of weak
derivatives can be represented as follows.



Definition 2.5. Let u,v € Lj,., that is, let u and v be locally integrable functions. We
say that v is the ath weak partial derivative of u if

/ uD%p dx = (—1)‘“'/ v dx
Q Q
for all test functions ¢ € Z(2). We then denote D*u = v.

Weak derivatives are especially useful because they agree uniquely with the ordinary
derivative if the ordinary derivatives exist. In addition, weak derivative is determined.

Theorem 2.6. Let f € L} (Q) where Q is an open subset of R™. If g, € L} .(Q) and
go € L} () satisfy

(—1)|a|/glg0 dx = / fD% dx = (—1)‘“'/ g2t dx
Q Q Q
with all p € P(Q), then g1 = g2 almost everywhere.

Recall that almost everywhere means the same as up to a set of measure zero. Before
proving this theorem, let’s prove the following lemma.

Lemma 2.7. If f € L},.(Q) satisfies the condition [, fo dz =0 for all o € 2(Q), then
f =0 almost everywhere on €.

Proof. Let G be any compact subset of 2. Let’s take ¢ € 2(Q2) such that ¢y = 1 on the
set G. Now we define the function f, as

)0 when x ¢ Q
Jole) = {f(x)¢(x) when z € (.

The function fy extends f to the whole R™ and also f, € L*(R™). Now, let ¢ € Z()
be a mollifier. We can for example use the standard mollifier ¢ € C*(R") defined in
Partial Differential Equations by Lawrence Evans [1].

Ce(lflé—l) if || <1
0if x| > 1.

with a constant C' > 0 such that o dr = 1. This is a function which has a compact
support. .

In that case we know that the convolution ¢, x f satisfies p. * f — f in L}, .(R") as
e — 0, where . is defined by ¢.(x) = e "p(x/¢).
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Now

pe * fy(r) = /R f)(y)es(z —y) dy.

We notice that the mapping g(y) = ¥ (y)p(r — y) € Z(Q) for any fixed x, and thus
@ * fy = 0 by assumption. As e — 0, the convolution satisfies . * f, — fy in L} .(R™)
as mentioned before, pointwise almost everywhere. Thus it follows that f, = 0 almost
everywhere on 2, and specifically f = 0 almost everywhere on G. Because G is any
arbitrary compact subset of {2, we have that f = 0 almost everywhere on (2. This proves
the claim. O

Now we are ready to prove Theorem 2.6.

Proof. Assume that gy, g, € L}, .(Q) satisfy

(—1)‘“'/ g1 dx :/ fDY dx = (—1)|al/g2<p dx
Q Q Q
for all ¢ € 2(€2). Then it holds that

/Q(gl - 92)%0 dr =0

for all p € 2(Q) = CX(Q).
From the Lemma 2.7 it follows that g; — go = 0 almost everywhere on 2. This proves
that g, = g» almost everywhere on (). ]

Finally, let’s prove that the weak derivative agrees with the ordinary derivative if the
ordinary derivative exists.

Theorem 2.8. Let Q C R" and g € L},.(Q) be the x;th weak derivative of a function
[ € LL.). If f is differentiable, f € C*(Q), then for the derivative f,, it holds that
Joi =9

Proof. Since f € C*(2), the derivatives f,, exists for all i = 1,...,n in the usual sense.
Let ¢ € 2(22). Now by integration by parts,

/f%pa:i dx:_/fxiSO dx.
Q Q

However, this is exactly the definition of a weak derivative, and thus g = f,.



2.1.3 Sobolev spaces

Sobolev spaces are subspaces of L? spaces consisting of functions having weak derivatives
up to a given order in the corresponding LP space.

Definition 2.9. Let 2 be an open subset of R™. The set consisting of locally integrable
functions u € LP(2) such that for each multi-index o with |a| < k, weak derivatives D%u
exist and belong to LP(), is called a Sobolev space. We then denote the space W*P(Q).

The WHP(Q) spaces are normed spaces when endowed with a norm

@) = ([ by ar)”

o<k

lu

if 1 <p<ooand

k,00 @
lulli* () = > D%l
jal<h
if p = oo. Here || - ||o denotes the essential supremum. Equipped with these norms, W»

spaces are also Banach spaces [1].

In particular we are interested in a Sobolev space with p = 2 and k = 1, that is,
W2(Q) c L*(2). Such a space is denoted H'({2) as this space is also a Hilbert space
with the inner product

(1,9) = | F@)g(@) + F@)g @) do fh € H'(S).

This space consist of functions in L?*(€2) that have weak first order partial derivatives in
L*(Q). In a similar manner we’ll denote H*(Q2) = W*?2 for positive integers k. We'll also
denote the closure of C%° in the space W*? as WP, and HY(Q) = Wi?(Q).

Let’s now consider the behaviour of functions u € W?(Q) on the boundary 9. If

u € C(Q), then u has values on 0f2 in the usual sense. However, if u is not continuous, we
need the concept of traces. For this purpose, let’s introduce the trace theorems in W1t».



Theorem 2.10. Let’s assume Q@ C R"™ is bounded and the boundary 0 is C*. Let
1 < p < oo. Then there exists a bounded linear operator T’

T :Wh(Q) — LP(09)
such that
a) Tu = ulog if u € WHP(Q) N C(Q)
b) HTUHLP(Q) < CHUHWLP(Q).
The operator T is called the trace operator and Tu the trace of u on 02.

Proof. Proof can be found for example in Partial Differential Equations by Lawrence
Evans [1]. O

Trace theorem also gives a convenient way to define the spaces Hz(8S). For this
purpose, let’s consider the trace operator T' from H(Q) to L*(82). Then Hz2(99) can
be defined as the range of T, that is

H2(0Q) = {u € L*(09) | u = T(p) with some ¢ € H'(Q)}.
This is not the only way to define H %(GQ), but for our purposes it is enough. The
space Hz (012) is a normed space with a norm defined as

Jull 3 o, = (o) | TF = )
where T is the trace operator from H'(2) to L*(9f2) as defined above.

Next, let’s discuss the duality of Sobolev spaces. We start by recalling the definition
of dual spaces. Let E be a normed space with scalar field K. Then the dual space of E,
denoted E*, contains the bounded linear operators from E to K [9]. Thus

(2.11) E*=2(E,K)={T: E — K| Tis a continuous linear operator}.

Let u € E and f € E*. We'll denote the pairing between E and E* as f(u) = (f, u).
We can now study the duals of Sobolev spaces.
Definition 2.12. Denote by H~'(Q2) the dual space to H} ().

The space H ! is a normed space with norm
£l -1y = sup{{f,u) | w € Hy(Q), [[ull o) < 1}
However, with this definition we do not identify H}(Q) with its dual, H~(€2). Instead the

inclusion H}(Q) ¢ L2(Q) ¢ H1(Q) holds [1]. In a similar manner, we define H~2(99)
as the dual space of Hz(05)).



In the later chapters we’ll also need to consider values of Sobolev functions on the
boundary. But what exactly does it mean for Sobolev function to have boundary values?
We already mentioned the existence of traces, but what can we say about the weak
derivatives on the boundary? The definition of weak derivatives only applies to the
interior of the 2. Let’s study the behaviour on 02 with the use of Green’s formulas, and
start by studying the expression

833 aBl 2
/Q(VXB)'W‘”_/(axQ‘P_a “”3> dx+/(ax3“02 3“01> dr
0B,  OBs
) (aw - a*”) de.

We can apply Green’s formulas to this expression to find out that

/Q(v % B) - dr = —/ (B 92 _p, a¢3> da:+/m (ngowg - Blgogug) ds

8$2 81'2
D2 D1
— / Bli — BQ dxr + / Bl@gyg — BQQDlyg dsS
Q 03 0xs a0
0 0
/ <BQS03 — B3 S02) dx + (Bgipgyl — Bg(ﬂgl/l) dS
83:1 6.931 o0

We notice that we can again combine these terms back to the form

Ops Oy ) (8901 O3 ) ((9902 Oy )
B) - = [ B[22 - Z2) 4 By 22 — 22 4 By 222 — 222
/Q(v % ) 14 dr = / ! (8@ 8x3 2 0x3 8x1 + 8x1 0@ du

+ /asz Bsp1vg — Bipsia) + (Bipavs — Baprvs) + (Basvs — Bsparr) dS
:/B-(ngo)dx+/ (B x¢)-ndS
Q o0
which is by the rules of the triple product equivalent to
/B-(ngp)dx—i—/ (n x B)- o dS.
Q o0
Thus we get

/m(”xB)'MS:/Q(VxB>-soda:—/QB-(vw)dx.
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We can use this equation to define the boundary values of Sobolev functions’ weak
derivatives. To do this, let’s define the linear functional from Z(2) — L?(2) by

90_>/Q(VXB)'(,DCZZE—/QB-(VXQD)d:L’.

This is a continuous linear operator on the boundary as long as V x B and V X ¢ are
regular enough. We identify the weak derivative of B on 02 with the aforementioned
operator.

As a conclusion, with the concept of weak derivatives, one can examine weak solutions
in Sobolev spaces. While the equation might not have solutions in the usual sense because
of a discontinuity or in general non-differentiability, it might still have solutions in the
weak sense. The weak solutions often carry information about the equation.

11



2.2 Curl and divergence spaces

In later chapters we’ll study Maxwell equations by studying the so-called curl and divergence
spaces, so we present some definitions and results in this section. We’ll be studying
concepts and results which can be found in [1, 3, 4]. Let us denote

7'(Q) = Z2(2(2)),

that is, a set of continuous linear operators from Z(2) to R. The definition of Z(Q) is
the same as in the previous section. We use the shorter notation 2/(Q)" for (2'(2))".

The set 2'(2)™ consists of continuous linear forms on €2, that is, distributions on €.
[t’s important to note that the set Z(2) is not a normed space, and thus the continuity
of the linear operators isn’t defined as the boundedness of the operator. Instead we define
the continuity with the use of convergence.

If T € 7'(2), we denote its value on ¢ € Z(Q) as (T, ) or sometimes simply by T'(¢p).
The linear operator 7" is continuous on Z(12) if for every sequence {p,},en in Z(2) such
that ¢, — ¢ as p — oo, we have that (T, ¢,) — (T, ¢).

Alternatively, one can show the continuity with semi-norms ||¢||y = max.j<nzca [D*(¥)|
in Z(K) for all compact K C Q. In this case L € 2'(Q) is continuous if and only if for
each compact K C € there is N € N and C € R such that |Lyp| < C|¢||y for all
v e D(K).

Let’s now recall the definitions of divergence and curl. Let Q C R™ and v € Z'(Q2)".
Then the divergence of v is

" Ov;
v . _ d. — K3

v=divv Z:ZI o,
where v = (v1, vy, ..., v,). Let us now assume that n = 3, that is, @ C R®* and v € 2'(Q)3.
Then the curl of v is

81}3 81]2 81}1 8v3 81}2 81)1
va:curlv:< )

8@ B 6.1‘3, 81’3 B 8I1’ 8x1 B 8.732

We now define the following Sobolev spaces that have useful properties for the study
of our problem.

Definition 2.13. Let €2 be an open subset of R". We define
H(div,Q) = {v € L*()" | V-v € L*(Q)}.
Similarly we define the following.
Definition 2.14. Let Q be an open subset of R3. We define
H(curl, Q) = {v € L*(Q)* | V x v € L*(Q)3}.

12



We denote as Hy(div,Q) and Hy(curl, Q) the closures of 2(Q)% in H(div,Q) and
H(curl, Q) respectively. We notice that both H(div,2) and H (curl, 2) are Hilbert spaces
with inner products

(w,v) gaiv0) = (w,v) +(V-w,V-v)

and
(W, V) gewnn) = (w,v) + (V x w,V X v)

respectively, with (, ) denoting the inner product in L? spaces. Similarly, they can then
be equipped with norms corresponding to these inner products,

[0l v,y = (0] + ||V - 0%/

and
0]l reuney = (JJ0]|* + ||V x v]|*)'/2

respectively.

2.2.1 Trace theorems

As discussed in the section 2.1.3, the trace operator is a tool that can be used to define
the restriction of the function to the boundary.

Next we will introduce the trace theorems for H(div,2) and H(curl, 2) presented in
[4]. We will start by recalling the definition of Lipschitz boundary which loosely refers to
a boundary that can be thought of as a graph of a Lipschitz continuous function. This
kind of boundary is often regular enough for our needs.

Definition 2.15. Let 2 C R™. Then €2 is called a Lipschitz domain if for every point
x € 0f) there exists a hyperplane H of dimension n — 1 which goes through x, a Lipschitz
continuous function g: H — R over the hyperplane H, and positive real numbers r, h € R
such that

(2.16) {QﬁCz{y—l—zn]yeBr(x)ﬂH, —h<z<g(y)}

oNC ={y+zn|y€ B (x)NH, g(y) ==z}
where n is the unit normal vector to H, B,(z) is the open ball of radius r centered around

rxand C ={y+zn|y € B.(r)NH,—h < z < h}. The boundary of Lipschitz domain is
called a Lipschitz boundary.

13



Theorem 2.17. Let ) C R” be an open subset with a bounded Lipschitz boundary 02 = T'.
Then

(i) The trace map v,: 2()" — R defined by v,(v) = v - nlsq where n denotes the unit
normal to 0N towards the exterior of €, extends to a continuous linear mapping

from H(div,Q) onto H™z(9Q)".
(ii) Let v, be as in (i). Then the kernel ker(~y,) is the space Hy(div, <)
(iii) The space D(Q)" is dense in H(div, ).

Recall the usual notation H~2(9Q)" = (H~2(dQ))". Alternatively we might in this
case assume that Q has a smooth boundary, for example C*!-boundary.

Proof. We start with the point (iii). B
(ili) Let w € H(div, ) such that w is orthogonal to the Z(2)". Define

(w,v)) = (w,v) +(V-w,V -v).

Then ((w,v)) =0 for all v € 2(Q)".
Let wg = V - w. We denote by w and w, the extensions of w and wq to the whole R"™
such that w and wy are zero outside of 2. Similar to before, we have that

(0, ) + (W, V-) =0

for all ¢ € Z(R™). Tt follows that @ = Vi in Z'(R™) and especially wy € H'(R"). This
on the other hand implies that wy € H}(Q2). Because Z() is dense in Hj (), there exists
a sequence (p,)pen of elements ¢, € 2(Q) such that ¢, — we in H(Q2) as p — .

Now it holds that

(w,v)) = lim ((Vegp,v) + (9, V- 0)) =0

p—o0

for all v € H(div, ), and thus w = 0. This proves the point (iii).
(i) Let’s recall the Green’s formula which states that

(2.18) (v,Vp)+(V-v,p) = /Fv ‘np dl'

for all v € 2(Q)" and all ¢ € 2(Q). Similarly this holds for all p € H'(Q) because 2(Q)
is dense in H'(Q). We get the inequality

‘/Fv N df‘ < vl a@v.e lella @)

14



for all v € 2(Q)" and p € H'(Q).

From the last inequality we obtain that

‘/F,U SN dl“' < ||'U||H(div,ﬂ)H90|F‘ H/2(T)

where ¢|r is the trace of ¢ on I'. This can be deduced by noting that

|lr| el o

= inf
HY2(T)  peHY(Q)¢lr=¢

Let’s now consider the mapping v, : v + v-n|p which is defined on 2(Q)" and equipped
with the norm of H(div, ©2). It follows from previous remarks that ~, has values in Hz (I
and that -, is also continuous. Thus it extends by continuity to the space H(div, ()
because, as mentioned in point (iii), Z2(Q)" is dense in H(div, Q).

Let’s now denote by ~,, the trace map defined from H(div, ) to H2(T"), again defined
by the rule v,v = v - n|p. Our goal is to show that -, is surjective. Let p € H_%(F) in

which case the Neumann problem

(2.19) 5

{—Au—i—u:OonQ

anrzuonl“.

has a solution u € H'(Q) [3].

With the function u gotten from the Neumann problem, one can define v = Vu. In
that case v € H(div,Q) and v,v = p. This proves the point (i).
(ii) Finally, let w belong to the kernel of ~,,, w € ker(~,). Additionally, let w be orthogonal
to 2(Q)" in H(div,2), that is,

(2.20) (v,w)) = (v,w) +(V-v,V-w)=0

for all v € 2(Q)™.
This implies, with the notation wy = V - w, that w = Vwy. Thus we find that
wy € HY(Q2). We can then apply Green’s formula of the form

(v, Vo) + (V- v,0) = (Y, ¢lr)

where (-,-) denotes the duality between H~2(I') and Hz(I'). By replacing ¢ in Green’s
formula with wy and v by ker(v,), the result 2.20 gives

((v,w)) = (v, wolr) = 0,

and thus w = 0. In other words, ker(,) = Hy(div, ) which proves the claim.
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Theorem 2.21. Let Q C R3 be an open subset with a bounded Lipschitz boundary Q) =T .
Then

(i) The trace map v,: 2(Q)* — R defined by v,(v) = v An|gq where n denotes the unit
normal to 0N towards the exterior of €, extends to a continuous linear mapping

from H(curl, Q) into H2(0%)3.
(ii) Let v, be as in (i). Then the kernel ker(~y,) is the space Hy(curl, Q).
(iii) The space D(Q)" is dense in H(curl, Q).

As mentioned before, A operator used on the 2.21 (i) denotes the exterior product
(see 2.25). We omit the proof for the second trace theorem but it can be found in Robert
Dautray and Jacques-Louis Lions’s Mathematical Analysis and Numerical Methods for
Science and Technology: Volume 3, Spectral Theory and Applications [4].

2.2.2 Properties of curl and divergence

In this section we will go through some of the properties and connections between curl,
divergence, gradient and their respective Hilbert spaces. First we note some connections
between spaces defined in the last section. In the following result reqularity of the subset
Q2 means that it is of class €. This means that for every point 2y € I' there exists r > 0
and a C* function v: R"™! — R such that

UN B(xg,r) ={x € B(xo,r) | xp > v(x1,...,2,)}.

What this means in practice is that the boundary is quite smooth. Similarly we can define
C* boundaries and C* boundaries if v is C* or C* instead of C? [1].

Theorem 2.22. Let Q) C R3 be a bounded, open and reqular subset of R3. Let the boundary
of Q0 be I' = 002 and define the Sobolev spaces

(223) {Htlo@)?’ ~ {ve B | vAnl =0}

H ()3 ={ve H(Q)? | v-n|r =0}.
Then for these spaces it holds that

Hy(92)* = Hy(curl, Q) N H(div, Q)
and

H!(Q)? = H(curl, Q) N Hy(div, Q).
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Note that to define the boundary values in 2.23 you need trace theorems which we
present in section 2.2.1.

In the last result A operator is called an exterior product which is loosely related to the
cross product in three dimensional spaces. Let u, v € R? have the following representations
with the standard basis {e1, es, €3}.

(2.24)

U = U1€] + Ug€2 + Uses3
UV = V161 + U2e2 + V3e3.

Then the exterior product u A v is a bivector defined by
(2.25) uAv = (ujvg — ugvy)(er A eg) + (ugus — uzve)(ea A e3) + (ugvy — ugvs)(es A ey).

Note that the coefficients are the same as in the cross product. While cross product
can be interpreted as a vector perpendicular to both u and v, the exterior product can
be interpreted as the parallelogram spanned by the vectors u and v. It’s also important
to note that the exterior product does not depend on the choice of orientation. Exterior
product is also associative, whereas cross product is not.

The spaces H}y(Q)? and H}(Q)? defined above represent those elements in H'({2)3
that are either not tangential or normal vector fields of the surface I'.

Another interesting connection is the decomposition of L? spaces using divergence
spaces and the gradient of Sobolev spaces. This is often called the Helmholtz decomposition.
Recall how we defined Lipschitz boundary on 2.15.

Lemma 2.26. Let Q be a connected open set in R® with a Lipschitz boundary T'. L*(Q)?
has the following orthogonal decompositions

LX(Q)* = VH'(Q) @ Ho(div 0,Q)
L2(Q)® = VHY(Q) & H(div 0,9)

where we use spaces H(div 0,8) and Hy(div 0,Q) defined by
H(div 0,0) = {u €120 |V u = 0},
Hy(div 0,9) = {u€L2(Q)3 |[V-u=0,n-u=0 onF}.
Proof. (of Lemma 2.26)
It’s enough for us to prove that VH!(Q) is orthogonal to Hy(div 0,) and similarly

that VH}(Q) is orthogonal to H(div 0, ().
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Now we get the Helmholtz decomposition by noting that H'(€2) and respectively H}(£2)
are closed in L?*(2)?. This is because for Hilbert spaces E and their closed subspaces M
it holds that £ = M @& M+ [9)].

Let v € L*(92)? be orthogonal to the space VH'(2). Then

(’U,V(p) = —<V 'v7§0> =0

with all ¢ € 2(Q2). Here (v,Vp) denotes the scalar product of v and Ve in L*(Q)3.
Similarly here (V - v, ) denotes the duality between corresponding spaces of the V - v
and .

Thus V-v =0 and v € H(div,Q). Let’s use the Green’s formula of the form

(v, Vo) + (V- v,90) = (v - n, 0|r)
or in other terms,
/vVgp dx+/(V-v)go dx:/(v-n)gp dr
Q Q r

where n is the unit normal on 92 = I'. Then we get that v-n|r = 0. Thus v € Hy(div 0, 2)
and we have proven that

(VH'(Q))* C Hy(div 0,9).

Now, let v € L*(Q)® be orthogonal to Hy(div 0,9). Then (v,p) = 0 with all
@ € Hy(div 0,9). Because for ¢ it holds that V- = 0 and n- ¢ = 0 on I', the
Green’s formula

/(va dx—i—/(V-cp)v dx:/(go-n)v dr
0 Q r
implies that Vv = 0 and thus v € VH!. This proves that

Hy(div 0,Q) C (VH*(Q))*.

We have now proven that VH'(Q2) and Hy(div 0,9) are orthogonal. In a similar
manner one can deduce that VH}(Q) is orthogonal to H(div 0, ().

With these results and the knowledge that H'(Q) and H}(Q) are closed in L*(Q)3, it
follows that

L2(Q)® = VH'(Q) @ Ho(div 0,9)
LX(Q)* = VH(Q) @ H(div 0,).
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Next, let’s take a look at some other results related to curl, divergence and gradient.
The following lemma is an important result that gives sufficient conditions for existence
of gradient or curl representation for a vector field.

Lemma 2.27. (Poincare’s lemma) Let ) be an open set in R® and let u = (u;),
i€{l,...3}. Let u; € CY(Q) with everyi € {1,...3}.

(i) If V x u = 0 then there exists p € €* such that u = Vp locally, that is, every point
xg € Q has a neighborhood U(xo) and a differentiable p defined in U(xy) such that
u= Vp in U(zg). Note that p may change when moving from one neighborhood to
another.

(ii) If V - u = 0 then there exists w such that for the component functions it holds that
w; € Ct and uw =V x w locally.

Proof. Let u € C'(Q)? such that V x u = 0. Let 2/ = (2}, 7}, 75) € Q. Now, let’s define
the function p by using integration in a smart way.

T2

3
/ ug (1, T2, x3) das +/, ug(z1, T2, x3) drs
Ty T3

T1
p(x) = /, uy (21, To, x3) dry +

1

where = = (x1, 9, 23). Now if we calculate the gradient of p, we notice that

Vp=u

which proves the first part.
In the second part, let u € C1(Q)? such that V-u = 0. Let 2’/ = (2, 2}, x4) € Q. Let’s
define the functions v = (vq,ve,v3) and v’ = (v}, v}, v4) in a similar manner as before by

3

T2
U1(a7) = /x/ U3($1,902,$3) dzy — /I/ U2($1,$2,$3) dxs
2 3
1

T3
02(56) :/ U1($1,1’2,5L’3) dzxs —/ U3(9517$2>$3) dxy
X

/ !
3 Ty

/

T xr2
U3(I) :/ U2($1,$2,l’3) dzr, — /, U1($1,l‘2,$3) dxy
X

1 T2
and
/ *2 / 3 /
vy (z) = /, ug(z1, T2, v3) drg — /, ug (1, Ty, x3) drs
x x
/ ZB / ;1 /
vy(z) = /, uy (2], xe, x3) drs — /, us(xy1, T2, x3) da
x x
/ il / ;2 /
vy(z) = /, us (1, x5, x3) dry — // uy (], T2, x3) drs.
*1 %2

19



Now V x v = =3u+ u' and V x v/ = —2u’ where we define v’ by

U'(ZE1,$2,$3) = (U1($3,$2,$3),U2($1,$,27$3),U3($1,$2,$/3))-

Then we notice that with w = —% (v + %v’) it holds that V x w = w. This proves the

second claim and ends the proof. O
Poincare’s lemma also has the following global form presented in [4].

Corollary 2.28. (Poincare’s lemma) Let Q be an open and simply connected set in R?
and let u € L*(Q2)3.

(i) If V X u =0 then there exists p € H*(Q) such that u = Vp.
(ii) If V -u =0 then there exists v € H'(Q) such that u =V X v.

For our purposes it will be useful to consider elements of L?*(2)? by decomposing them
into a gradient and curl part. The following lemma guarantees the uniqueness of such
decomposition [4].

Lemma 2.29. Let Q C R? such that Q can be made simply connected by a finite number
of reqular cuts. Then each element of u € L*(Q)? has the unique decomposition

u=Vp+(V xw)

where p € H*(Q) is unique up to a constant and w € H*(Q)? satisfies on the boundary T
n-(Vxw)r=0

where n is the normal vector of T'.

Here the set €2 can be made simply connected by a finite number of regular cuts. The
reqularity of the cuts means that for {2 C R"™ there exists cuts X1, ..., Xy of dimension
n—1 that are of class ¢ with r > 2 such that ,NY¥; =0 fori # jand i,j € {1,...,N}.

We also assume that ¥; are non-tangential to the boundary I' = 0Q. Thus Q\( U %)
i=1to N
is simply connected.
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The following result is also used later when studying magnetic and electric fields and
their decompositions.

Lemma 2.30. Let Q) C R” be an open subset with n = 2 or n = 3 such that it’s bounded
and connected, with n — 1 dimensional boundary of sufficient reqularity, say, class €>.
We also assume that €2 can be made simply connected with a finite number of reqular cuts
and that the boundary I' = 02 has a finite number of connected components.

Then, the kernel of curl in L*(Q)", denoted by H(curl 0,%), is the sum of two orthogonal
spaces VH(Q) and H, (), defined by

VH'(Q)={Vu|ue H(Q)}

and
HI(Q):{UELZ(Q)Q\qu:O,V-u:O,u.nh:o}.

Proof. We omit the proofs for these two results related to decompositions here but they
can be found in [4]. O
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2.3 Introduction to Maxwell’s equations

Maxwell’s equations are an important set of equations that describe the behaviour of
electromagnetic radiation in a vacuum or in a medium. The equations in a vacuum are

(i) V- E = £ (Gauss’s law)
(ii) V- B =0 (Gauss’s law for magnetic field)

(iii) VX E = —a{f (Faraday’s law)

OF
(iv) V x B = g (J + EO@t) (Ampere’s law),

where E denotes the electric field, B denotes magnetic flux density, J denotes current
density, 9 denotes vacuum permittivity and py denotes vacuum permeability [7, 2, 6].

In a medium the situation is a bit different. Let’s assume that the studied media
are isotropic so that they react to electric or magnetic fields in the same way no matter
the direction of the fields. In a medium the Maxwell’s equations differ from the vacuum
equations so that Gauss’s law obtains a form

V-D=p

and Ampere’s law a form

D
VXH:J—F&TOaat,

where D = ¢F is the electric displacement field and H = B/u is the magnetic field. We
say that the media is perfect if D = eF and H = B/p hold for some constants € and p.

Above ¢ is called the permittivity of the medium and g is called the permeability of
the medium. In a vacuum the situation reverts to the forms mentioned earlier, so in the
future we will often present the equations with D and H.
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Time-harmonic forms

Often it’s useful to present Maxwell’s equations in a form that doesn’t depend on time
but instead of the angular frequencies of the fields. Thus we need to define so-called
time-harmonic Maxwell’s equations.

For simplicity, we consider sinusoidal signals, that is, signals that have time dependancy
shaped like sine wave. However, in general case any arbitrary signal could be formed with
a sum of sinusoidal waves. Let’s use complex representation and thus our signal is of the

form
[z, t) = u(x)e*?

where u(x) € C does not depend on time. We can denote u = ug + iu; where ug € R is
the real part and u; € R is the imaginary part.

Time derivative acts only on the term e*? in the Maxwell’s equations. Thus the
time derivative in the equations can be replaced with iw, and the time-harmonic Maxwell’s
equations are

(i

) VD)= p
(i) V- B
)
)

() =0
(iii) V x E(z) = —iwB(x)
(iv) V x H(z) = J + iweo E(x).

We notice that the equation (ii) follows from the equation (iii) by taking a divergence.
Similarly equation (i) follows from equation (iv) by taking into account the conservation
of charges, V - J = —iwp. Thus it’s enough to view the equations

(2.31)

V x E=—iwuH
VxH=iweE+J

assuming that the medium is perfect.
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Chapter 3

Magnetostatics and Electrostatics

3.1 Magnetostatics of a surface current

Let’s consider the following problem presented and studied in Mathematical Analysis
and Numerical Methods for Science and Technology: Volume 3 by Robert Dautray and
Jacques-Louis Lions which we utilise as a source during this chapter [4]. A media is called
perfect magnetic media if it holds that B = uH with some constant p. Now, let there be
two perfect magnetic media with permeability p and p'.

Let these media be such that the first one is taking up the domain 2 which is open,
bounded and regular subset of R3, while the latter is taking up the domain ' where
V' =R3\ Q. For the regularity, we can for example assume that the boundary of € is of
class €. Let’s also assume that there is no current through € and 2, and thus there can
only be currents in the surface between these two media. In particular, what happens to
the magnetic field in the surface that separates the media? Let’s denote this surface by
= 090.

Problems such as this where we study the magnetic field in a system where the currents
are steady are called magnetostatic problems. We will go through the details later, but
we notice that there might be a jump in the magnetic field on the boundary I" where we
know currents can exist. This discontinuity is exactly the reason why we need to study
the problem from the perspective of Sobolev spaces. Let’s then study the problem further.

Let 2, Q' and I' be as defined above. Let there be no current in € or . Now
Maxwell’s equations imply that

(3.1)

V-B=0inR3
VxB=0in Q and in
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We might also assume that our solution needs to have finite energy. This is so that
the solution will be consistent with the real-world phenomenon where energy needs to be
finite but it also guarantees unique solvability. Nonetheless, it’s important to note that
our system is extremely idealized as we use perfect media. The finite energy means that

1 1
3.2 W:—/B2d 7/ BI? dz < oo.
32 s 1B o 1B de < oo
Let’s study the problem in two parts. First, let the surface current Jr be known. Then

the problem is equivalent to the problem of finding a function B € L?*(R?)3 which satisfies
the following conditions.

V-B=0inR3
(3.3) VxB=0in Q and €
B )
{—/\n} =Jrinl
I r

where n is a normal vector on I' orientated to the exterior of €2, and Jr satisfies
(V- Jr)lr = 0. Recall how we defined the boundary values of Sobolev functions in

Chapter 2.1. Here | — % A n} denotes the jump in —% An on I'. In other words,
r
B By B
{_Aﬂ :_(Qh_ MwAn
H r H H

Now, let’s denote the following spaces containing fields equipped with zero divergence as
Vir = {A e WHR?)? | V- A =0}

and
Vi: = H(div 0,R*) = {B € L*(R*)’ | V- B = 0}.

Here the notation W!(R3) refers to Beppo-Levi space of R3. For any arbitrary open
set 2 C R?* we define the semi-norm [|[V||r2(q) for ¢ € Z(Q). Let us also assume € is
connected. Then we define the space W*(Q2) as the closure of Z(Q) under ||V 12
Because (2 is connected, if we assume that Vo = 0 for ¢ € 2(2), then it actually holds
that ¢ = 0 [4]. Thus [|[V¢l|r2() is a norm on Z(Q2). We can then define the closure of
2(Q2) under the norm in the usual way as the intersection of all closed sets containing
2(9Q). Analogously to the definition of W1!(R?) we define Wi (Q) as the closure of 2(Q)
under the norm ||V||2(q)n.
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~ We know by Poincare’s lemma 2.27 that for each B € Vj: there exists a unique
A € Vi1 such that B =V x A. Let us define the following operators.
1

a(B, B) = /B Bdr+-— [ B-Bdx
2u' Jor

and _ -
ap(A,A) =a(V x A,V x A)

with all B, B € V;» and A, A € V1. Note that a corresponds to the magnetic energy
defined in 3.2 if B = B. Using these operators we can find equivalent form to the problem
3.3 and also show the uniqueness of the solution.

Lemma 3.4. Let Jr be a given surface current such that Jp € H*%(F)?’, Jr-n =0 almost
everywhere on I' and V - Jp =0 on I'. Then the problem 3.3 is equivalent to the problem
of finding B € V2 (and respectively A € Vi1 for B =YV X A) satisfying the condition

(3.5) a(B, B) = ao(A, A) /JF Alp dr

for all B=VxAe Vi, A€ V1. This problem has exactly one solution.

Proof. Let’s show that if 3.5 holds for B € V}2 then the second and third equations in 3.3
are satisfied. Because B € V}2, it follows that V - B = 0 and the first equation is already
clear.

Let’s choose A in 3.5 such that A € 2(Q)%. In particular V - A = 0 because A € Vp».
Equation 3.5 then gives V x B = 0 in . Then, let’s choose A in 3.5 such that A € 2(')3.
Again, 3.5 then gives V x B =0 in . Thus the second equation in 3.3 holds.

Now, let’s apply Green’s formula in Q and € for A € 2(R?)? with V- A = 0, or
A € V1. Now 3.5 gives

~ ~ 1
(36)  a(B.B) =4 A) =5 /(BQ An)-Adl— 7/ (B An)- A dr.
Thus
) o B .
(3.7) (B, B) = ag(A, A) = 2M/F [— = n]F Al D,

We notice that the set of functions in f € H_%(F)B’ that satisfy /f -ndl =0 is
r

exactly the same as the set that contains traces f = fl|p for A € Viy1. Now the equation
3.7 gives that
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and thus the third condition in 3.3 holds.
Finally, let’s show the uniqueness and existence of the problem, guaranteening the

unique solvability. We notice that the mapping L: A — % / Jr - A|1" dI' is a continuous
r

linear form because Jp € H~2(I')3. We also notice that the bilinear forms a and ay are
coercive. Let p; = inf{,u,u’} and po = sup{u, '}, Then

/ \B? dz < a(B, B) <7/ B|? dz
2u2 R3 R3

for all B € V2. This proves that a is Vz2-coercive. Analogously aq is Vijy1-coercive.
Because it holds that the bilinear form ag is Vyyi-coercive (and similarly a is Vie-

coercive), we can use Lax-Milgram theorem which states that there exists exactly one

solution B =V x A € Vj2 to the problem 3.5 [9]. O

Now, let’s consider a general case of the problem and try to find all of the solutions
to the problem 3.1 that also have finite energy. Our goal is to prove the following result.

Theorem 3.8. The set of solutions to the problem 3.1 that also satisfy the finite energy
requirement consists of such functions B € L*(R3)3 that for Bq = Blq and Bq = Blq it
holds:

V-BQ:OinQ
(39) VXBQ:OinQ
' V-Bg =0in
VXBQ/ZOinQ/
and
(310) n'BQ|1":TL'BQ/‘F on I’

where n is any normal vector of T, orientated to the exterior of §2.

Proof. Let B satisty the conditions 3.1 and 3.2. Now B and Bg satisfy the equations
3.9. We can now use Green’s formula. Let ¢ € 2(R?). Then by Green’s formula of the
form

(3.11) (v, Vo) + (V- v,p) = /F(’U ‘n)p dl
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we get that

(B,w):/QBw d:c+/Q/Bw dz
:—/Q(V-B)godx—/Q(V-B)gpdx—l—/[B-n]pcde
' r

= /F[B~n]pcp dr’

since V- B = 0 in R3. This implies that n - Bo|r = n - Bo/|r on T since test functions are
dense in Sobolev spaces and the duality is non-degenerate.

For the other direction, let Bg € L*(2)® and By € L*(Q))? satisfy the equations
3.9 and 3.10. Let’s show that then the function B € L*(R?)? such that Blg = Bq and
B‘Q/ = BQ/ satisfy 3.1.

By Green’s formula, for all ¢ € Z(R?) it holds that

(V- B,p) = —(B,Vy) = —/QBQW dx—/ﬂ/ BV do
:/Q<V-BQ)¢ dg;+/gl(v-39,)¢ dz

—I—/(n-BQ/—n-BQ)gadF:O
r

Thus V- B = 0 in R3. Additionally V x B = 0 in © and €', so the set of equations in
problem 3.1 hold. O]

3.1.1 Decompositions of the solutions

Now by the results mentioned in chapter 2.2.2, especially Lemma 2.30 which quaranteed
a decomposition of H(curl 0,) into H' part and H; part under certain conditions, Bgq
and Bg have the forms

(3.12) {Ba — Vi + Bo with éo € #(Q), Bg € Hy(Q)

Bg = Vo + Bo with ¢o € 1Y), By € Hy ()

where the sets 221(Q2) and H; () are defined by

(3.13) Q) = {ue H(Q) | Au=01in Q}
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and

(3.14) H, (€2) :== H(curl 0,2) N H(div 0, Q)
={ue ()" |Vxu=0,V-u=0u-nlp=0}.

Now, because n - Bg|r = n - Bo/|r on I', we notice that

O0n) = %]
on IT On I’

_8¢Q/
r on|p

Let’s denote g = 85%? . From the last condition we get that / gdl'=20
0%

and g dI' = 0 for each bounded and connected component of Q2 and '. Specifically,
0%,
/ g dI' = 0 for each connected component of T'.
T
Here the functions ¢ and ¢q/ are called magnetic scalar potentials. Scalar potentials
represent the difference in potential energy that depend only on location.

Additionally, by using the decomposition 3.12 we can express the surface current Jr
in a new way. We notice that

(3.15) Jp:{—f/\n]rz{—va ]F+{—/\n]r
Let’s denote
e [i]rzqﬁﬁ_qﬁb

and note that mp € H2(I'). Let’s now define the operator curlp as

(3.16) curlp h == (Vh) Anlp

for all h € Hz(T') where h denotes the extension of h in a neighbourhood of T'. In
particular, curlp h € H—2(I)3.
Then the surface current in 3.15 can be expressed as

B
Jr = —curlp mp — {] An
plr

with the condition V - Jp =0 on I, as was assumed in Lemma 3.4.
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Let’s now denote J{ = —curlp mp and J2 = —[ﬂ A n to get the decomposition
r

Jr = J& + J2. Here J} is the surface current that gives the magnetic potential while J2
corresponds to a surface current that does not contribute to the magnetic potential.
Similarly we can decompose B in both 2 and €)' by using equations 3.12. Let’s denote

Bglz = V¢Q
B% =B
(3.17) b
BQ/ = V¢Q/
Bgy = BQ/

so that Bg = BY + B3 and Bo = Bl + B%,. By expressing the magnetic field as a pair
B = {Bgq, Bo'}, we can simply denote

(3.18) B = B'+ B?

when B' = {B}, B, } and B* = {B3, B4 }.
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3.2 Electrostatics of a surface charge

Similar to the previous section, we consider electric fields caused by surface charges
between two media. Let’s consider two perfect dielectric media that are occupying
the domains Q and €' such that Q' = R3\ Q and Q is a regular bounded set in R3.
Here regularity means that the boundary 9 = I is of class €. Let these media have
permittivities € and €’. Perfect dielectricity means that the material has zero conductivity.

We assume that there isn’t any charge in either of the media. It follows that only
surface charges can exist on I' that separates 2 and €2'. Our goal is to solve the electric
field E in R3. We know that £ must satisfy Maxwell’s equations

(3.19)

VxE=0inR3
V- -E=0in Q and V.

Similar to the case of magnetostatics, we only consider solutions with finite energy.
Thus it must also hold that

/
(3.20) VV:%/Q|E|2 d:p+%/(2l|E|2 dr < 0.

However, this condition is equivalent to £ € L*(R?)? as we know that ¢ and ¢’ are
finite, positive constants.

As we did in the last section, we consider the problem in two parts. First, let’s study
the case where the surface charge is known. Let’s denote the surface charge with pr. Now
the problem 3.19 is equivalent to finding a solution to the problem

VXxE=0inR?
(3.21) V-E=0in and ¢
o],

with finite energy condition 3.20 applying, and {EE . n}r denotes the jump in €eE - n on
I'. In this case,

{EE . n}r = (€EQ’F — 5/EQ"F) - n.

Again, the boundary values of Sobolev functions are defined in the same way as
explained in Chapter 2.1.
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Similar to the case of magnetostatics and the space V2, we define the space
Veurt = H(curl 0,R?) = {E € L*(R*)? | V x E = 0}.

We note that by Poincare’s lemma 2.27, for all E € V. there exists exactly one

function @ € W1(IR3), often called electric potential of the field E, such that
(3.22) E=-Vg.

Recall how the Beppo-Levi spaces W were defined in section 3.1. Equation 3.22 states
that the potential ¢ satisfies a scalar Neumann problem. Now, let’s define a bilinear form
a corresponding to the electric energy, in the analogous way as in the chapter 3.1.

/

(3.23) a(E,E) = /E Edm+2 E-Ede

for any E, E € V. Similarly we define for ¢, 3 € W'(R3) the operator

(3.24) ao(p, @) = a(=Vep, —VQ).
Now we can express the problem 3.21 in an equivalent way by using these operators.

Lemma 3.25. Let pr be a surface charge such that pr € H*%(F). Then the problem
3.21 is equivalent to the problem of finding E € Voyy and respectively ¢ € WH(R3) where
E = —V¢, that satisfy the condition

(3.26) a(E, E) = ao(¢, d) = / prlr dr

for all E = Vgg € Veurt, gg € WY(R3). This problem has ezactly one solution.

Proof. The result is analogous to the Lemma 3.4 and the proof follows a similar structure
as well.

Because E € V..., then V x E = 0 and the first equation in 3.21 is automatically
satisfied. Then, if F satisfies 3.26, then the second and third claim in 3.21 are satisfied.
We first choose ¢ in 3.26 such that ¢ € 2(£2). Then by 3.26 it holds that V- £/ = 0 in (.
Similarly, we choose ¢ in 3.26 such that ¢ € 2(€V). Then by 3.26 it holds that V- E =0
in €. Thus the second claim holds.

To prove the third part of 3.21, we use Green’s formula. Let ¢ € 2(R3) or b€ WHR?).
Now 3.26 gives
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_ ~ 1 ~ 1 -
(3.27) W(E,E) = ao(, ) = —§/F5EQ g dr + 5/Ffe’EQ, 1 dr.
Thus it holds that

(3.28) o(E, E) = ag(6, ) = ;/F {gE . n]rgﬂp dr.

This implies that pr = [gE . n} which proves the third condition in 3.21.
r

Finally, let’s show the uniqueness. The mapping L, gb e WH(R3) — / pp¢|p dl' is

a continuous linear form since pr € H 2 (I"). We also notice that the bilinear forms a and
ag are coercive. Let ey = inf{e, &’} and g9 = sup{e, £’}. Then clearly

51/ B]? de < a(E, E) < /yEPdm

for all £ € V.. This proves that a is V_,-coercive. In a similar manner the bilinear
form ag is W'-coercive.
Because the bilinear form ay is coercive on W!(R3), the Lax-Milgram theorem shows
that there exists exactly one solution £ = —V¢ € L*(R3)? to the problem 3.26 [9].
O

Let’s now return to the general case of the problem 3.19 where the surface charge may
not be known.

Theorem 3.29. The set of solutions E of 3.19 with finite energy consists of such functions
E € L*(R?)3 that for Eq = Elq and Eq = E|q it holds

VXEQ:OinQ
V-Eq=01inQ

(3.30) .
V x Eqg =0 in Y
V- EQ/ =0 1in Q/
and
(331) n A EQ|F =nAN EQ’|F onT.
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Proof. As the result is similar to Theorem 3.8, the following proof is also quite similar.
Let E satisfy 3.19 and also the finite energy condition. Then Eq = E|q and Eq = E|q
satisfy the equations 3.30. In addition, for all v, € Z(R?)3, we have the Green’s formula
of the form

(3.32) (U,Vxap)—(va,gp):/F(v/\n)-gOdF

or equivalently for both € and ¢

(3.33) /Qv-(ngo)dx—/Q(Vxv)-gpdx:/r(v/\n)~g0dF.

This gives that

(E,VXQ@):/QE-(VXQD)dw+/Q/E~(V><g0)dw

:/Q(VxE)-gpdm—l—/ﬂ/(VxE)-gpdm—i—/F[E/\nhgodf

:/F{EAn]Fgo dr

as V x E =0 in R?. This proves the equation

(334) n A EQ’F =nAN EQ/’F on .

For the other direction, let Eq € L*(Q)% and FEqo € L*(2)? such that they satisfy the
equations 3.30 and 3.31. Let’s construct a function E € L?(R?)? such that E|q = Eq and
E|q = Eq. Then the function E satisfies 3.19, as for any ¢ € R® the Green’s formula
gives

<V><E,g0>:(E,ngo):/QEQ-(ngp)dx—l—/QlEQ/'(ngp)dm

- /Q(v x Ba)p do + | (V x Eq)p da

+/(EQ/\n—EQ//\n)~g0dF
r
=0

which implies that V x E = 0 in R? in addition to the previously assumed V - E = 0 in
Q and €Y. Thus the conditions in 3.19 are satisfied.
O]
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3.2.1 Decompositions of the solutions

Analogously to the case of magnetostatics, we can use the results such as Lemma 2.30
mentioned in chapter 2.2.2 to show that Fo and Eq have the forms

(3.35) Eq = —Voqg + Eq with ¢q € #1(Q), Eq € Hy(Q)

. Eq = —Voq + EQ/ with ¢ € %11<Q/>, EQ/ S HQ(Q/)
since in fact E is of the form F = —V¢ with ¢ € W!(R?) as mentioned in Lemma 3.25,
and thus Eg € VJ2'(Q) and Eg € V' (). Note that since E = —V¢, the potential

¢ does not only consist of ¢q and ¢q if Eq or Eg are non-zero. Here the sets #1(Q)
and Hy(Q) are defined by

ANG) = {ue 49| [ gf; dT' = 0 with i = 1 to n(T")}
Iy

and

Hy(Q) ={u=Vy|pe H(Q),Ap=0,¢

r, is constant for ¢ = 1 to n(I")}

where I'; are the connected components of I' and n(I") denotes the amount of them. Recall
how spaces () and H,;(Q) were defined in 3.13 and 3.14.
Now, because n A Eq|r = n A Eq/|r on I" by 3.31, we notice that

n A Vaolr =n A Vou|r.
We can then write with the notation from 3.16
(3.36) curlr ¢q = curlp ¢gr.

This means that the tangential derivatives of the functions ¢q and ¢ are equal on
['. Thus on each connected component I'; the traces ¢qg|r and ¢q|r can only differ by a
constant.

We can choose the functions ¢q and ¢q/ in such a way that the traces ¢q|r and ¢q|r
are equal. In this case the choice is actually unique. This is not trivial at all but we omit
the details here. Details can be found in Mathematical Analysis and Numerical Methods
for Science and Technology: Volume 3 by Robert Dautray and Jacques-Louis Lions [4].
This gives us a well-defined potential ¢ on the whole R3.
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We can now continue studying the surface charge density pr. By using third equation
of 3.3 and 3.35 we get that

0¢ ~
3.37 =—|le— E- .
(3:37) P {6 anL " [5 nL
where ¢ is a function such that ¢|g = ¢q and ¢|or = ¢or and similarly p is a function such

that plo = po and plor = por.
Let’s denote

(3.38) pr = — {6} and pf = [55 : n}
nir

in which case p = pl + p3.
We can also decompose E in a similar manner by using 3.35. We denote

E'=—-V¢and B> =F
where F is such that E|q = Eq and E|g = Eq. Then E = E' + E2.

36



3.3 A review of chapter 3

In this chapter we studied the following problem. Let €2 be an open domain in R?® with
permittivity e and permeability p, and ' = R?\ Q with permittivity ¢’ and permeability
1/. Here we only consider static cases where there is zero current and charge density going
through the media. Thus there can only exist surface currents or surface charges on the
boundary I which separates €2 and €.

Then the problem we study is to find electromagnetic field, that is, fields £, D, B and
H that satisfy

VxH=J]
V-D=p
VxE=0
V-B=0

(3.39)

where J and p are given and J satisfies V - J = 0. Additionally we want the energy

|
W:f/ (DE + HB) dz
2 Jgrs

€ 1
== [ B de+ o [ 1BFd
5 Jo B o [ IBP d

to be finite.

Without going into too much detail here, in the end we proved the existence and
uniqueness of the solution, as long as the current J and charges p belong to the dual
space of the Beppo-Levi space W!(R?). Recall that W' (R?) is the closure of Z(R?) under
the semi-norm ||Vl|2. Dual spaces were defined in 2.11.

These results allow the current and charge to be concentrated on surfaces. In particular
we are interested in the case where the current or charges are concentrated on the surface
I' = 09 which separates 2 and €. Let n denote the normal of I' orientated to the exterior
of 2. In this case the problem is equivalent to the problem of finding fields £, D, B and
H which satisfy

Vx H=0inQ and
V-D=0inQ and
VxE=0inR3
V-B=0inR3

(3.40)
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and it holds that
(3.41) (Holr — Holr) An = —J

and

(3.42)

This is to say that the jump in quantity D - n on the boundary corresponds to the
charge density p and jump in quantity H A n corresponds to current —.J. The last two
conditions further explain how the fields £ and B behave on the boundary.

Additionally we find that the electric and magnetic fields admit to decompositions

E=FE'"+FE?
(3.43) { N

B=B'+ B’

where £' and B! arise from electric and magnetic potentials, while £? and B? satisfy the
conditions

E% A Tl‘r =0
3.44
( ) {B2 . n|p = 0.
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Chapter 4

Non-static boundary value problem
as a spectral problem

4.1 Spectral theory

Before moving to the problem related to Maxwell’s equations, we’ll discuss some concepts
of spectral theory. The following definitions and results are explained in detail in [4].

Let X be a Banach space with a norm || - ||x. We have the set of continuous linear
mappings from X to itself, denoted by £ (X). Equivalently, Z(X) is the space of bounded
operators on X. When equipped with a norm

1Bl = sup |[Bz|x,

llzllx <1

the space .Z(X) is a Banach space.

Recall that a subset 2 C X is dense in X if the closure of 2 in X is the whole X. In
other words, every point in X either belongs to 2 or is a limit point of 2. Furthermore,
we call a linear operator B from topological vector space X to another topological vector
space Y densely defined if it is defined on a dense linear subspace of X [10].

Let A be a densely defined unbounded operator on X. We may now define another
operator Ay in the following manner.

(4.1) Ay=M—A

where A € C and [ is the identity on X.
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We can now define the resolvent sets and start studying spectrums [9, 4].

Definition 4.2. The resolvent set for A, denoted by p(A), is the set of those A € C such
that

(4.3) {A/\(D(A)) is dense in X

A exists and is continuous from Ay(D(A)) into X

where D(A) denotes the domain of A. For A € p(A) we define the resolvent operator
R(\, A) or resolvent of A as the inverse of Ay, that is, R(\, A) = A"

With the resolvent sets p(A) we can define the spectrum of operator A.

Definition 4.4. The spectrum of A, denoted by o(A), is the complement in C of the set
p(A). For a bounded operator A the spectrum o(A) is the union of the point spectrum
o,(A), the continuous spectrum o.(A) and the residual spectrum o,(A) [4]. These are
defined by

op(A) = {X € C| X is an eigenvalue of A}
o.(A) = {\ € C| A;' is unbounded on X with a domain that is dense in X}
0.(A) = {\ € C | A;! exists with a domain which is not dense in X}.

Recall that such A € C such that the equation
(4.5) Az = \z
has at least one non-trivial solution z, is called an eigenvalue of A, while the solution x

is called and eigenvector of A corresponding to the eigenvalue \.

Remark 4.6. If Ay = A — Al is non-injective, then A\ is an eigenvalue and
A € 0,(A) C g(A). In fact, we could’'ve just as well defined o, as those A € C such
that A, is not injective.

The set of eigenvectors relative to the eigenvalue A is called the eigenspace associated
with A and denoted by F\. We note that the set F) is in fact the kernel of Ay. Additionally,
the dimension of the eigenspace F) is called the multiplicity of \.
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4.2 Study of the Maxwell’s equations as a spectral
problem

We'll now move on to study a spectral problem related to Maxwell’s equations. The
structure and main results in this chapter follow the Mathematical Analysis and Numerical
Methods for Science and Techonology: Volume 3, Spectral Theory and Applications by
Robert Dautray and Jacques-Louis Lions [4]. In this chapter we’ll study electromagnetic
field in the interior of a bounded domain 2 which is occupied by either empty space or
by a perfect medium. This is often referred to as a cavity. We assume (2 is bounded by a
perfect conductor.

Recall the time-harmonic forms of the Maxwell’s equations in Chapter 2.3. Now
we can study the following spectral problem. Find the angular frequencies w, and the
corresponding electromagnetic fields £y and By with finite, non-zero energy such that

V x By —iwEy =0

—V X Ey —iwBy =0
V-Ey=V-By=0

Eo An|r =0, By-n|r =0.

(4.7)

We use the same definitions for energy as in 3.2 and 3.20, essentially meaning that
the fields £y, and By have finite, non-zero L? norms. The frequencies w are called
eigenfrequencies or natural frequencies of the cavity, while the corresponding electromagnetic
fields are called the eigenmodes of the cavity. Note that if w # 0, then the third condition
is implied by the first two conditions.

We'll need to discuss the Maxwell operator here, as the problem 4.7 is the spectral
problem relative to the Maxwell operator .o7.

Definition 4.8. Let Q2 € R? be an open subset. We define the Maxwell operator <7 by
A ((E,B))=(-V x B,V x E)
where 2/’s domain is

D(&Z)={(E,B) € L*(2)° | (-V x B,V x E) € L*()°, E An|r = 0}
= Hy(curl, Q) x H(curl, Q).

The Maxwell operator &7 has the following matrix representation

0 —curl
(4.9) o = (curl 0 )
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where (Ey, By) € L*(Q)3 x L*(Q)3 = L2(Q)° [7, 4].
The problem 4.7 is a spectral problem relative to ./ because 4.7 can be represented
as a spectral problem

(4.10) o (E,B) = —iw(E,B) for w#0

0 —curl\ (E)\ [—iwE
curl 0 B) \—iwB

which gives

that is,

(4.11)

VxB—iwE=0
—V x EF —iwB =0.

We note that 4.10 is equivalent to the spectral problem of i</ with the eigenvalues w,
i/ (E,B) =w(E, B).

Before moving into studying the properties of Maxwell operator, let us recall how
adjoint operator is defined and what the self-adjointness of an operator means.

Definition 4.12. Let B: X — Y be a linear operator between two Hilbert spaces X
and Y with corresponding inner products (z1,xs2), and (y1,¥y2)y with 1,25 € X and
y1,Yy2 € Y. Then the adjoint operator B* is the linear operator B*: Y — X that satisfies
the condition

(Bx7y)Y = (va*y>X

for x € X,y € Y. For the adjoint B* to be uniquely determined, we also require it to be
densely defined, so it must hold that D(B) is dense in the Hilbert space X [5].

Definition 4.13. Let z,y € X. A linear operator A: X — X is called self-adjoint, if it
holds that (Az,y) = (x, Ay) for all x,y € D(A) (in this case A is called symmetric), and
the domain of adjoint A* (that is, those y € X such that z — (Az,y) is a continuous
linear functional in D(A)) is dense, that is, A is densely defined. This means that the
operator A is its own adjoint A* [5, 9].
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We’ll shortly discuss the properties of the Maxwell operator 7.

Theorem 4.14. Let Q € R? be an open set with a bounded and reqular, say, Lipschitz
boundary T'. Then the operator o in L*(2)3 x L*(Q)3 = L?(Q)° is a closed operator with
dense domain such that

o= —af
where &/ is the transpose of <. The operator i</ is self-adjoint in complex L*(2)°.

Proof. The domain D(&/) can be shown to be dense in L?*(Q)% by noting that
2(Q)% C D(«). Because 2(Q) is dense in L*(Q), it follows that 2(Q)°% is dense in
L?(02)% and similarly D(«) is dense in L?*(£2)S.

Operator & is closed if D(</) is closed under the graph norm

(4.15) lull pery = (Jul® + [Aul?) /2.
However, we notice that
(4.16) D(e/) = Hoy(curl, ) x H(curl, Q)

and that the closedness follows from the trace theorem 2.21 for H(curl,2). Thus &/ is a
closed operator.

Next, let’s show that &/" = —o/. We notice that (
mapping (E,B) — («/(E,B), (F,B)) = (~V x B, E) +
D(4) equipped with the topology of L*(€2)S.

By restricting ourselves to 2(€)%, this equivalency implies that V x E € L?(2)? and
V x B € L?(Q)3. If on the other hand we restrict to 2(2)? x 2(Q)® and apply Green’s
formula, we get that n A E|r = 0.

Remembering the decomposition 4.16, we have shown that if (E, B) € D(&/"), then
(E,B) € D(&). If on the other hand (E, B) € D(&7), then for all (E,B) € D(«/) it
holds that

E,B) € /" is equivalent to the
(V x E, B) being continuous on

(4.17) («/(E,B),(E,B)) = ((E,B), «(E,B))

from which the self-adjointness of 7.<7" also follows.
Thus D(«7) C D(«/"). Because it was shown before that also D(&/') C D(«7), it
holds that D(«7) = D(&/"). Finally, it’s easy to show that on the domain of &/ and </*

it holds that &/ = —a/*. Since
B 0 —curl
-~ \curl 0 ’
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it holds that . |
o = <—curl C1(1)r> ’
Thus for all (E, B) € D(&/) = D(«/") we can easily see that
A (E,B)=(-VxBVxE)=—-(VxB,-VxE)=-a"E,B)
which proves the claim. [

We also note that the kernel of & is

ker(#/) = {(E,B) € L*(Q)° |Vx E=0,EAn|pr =0,V x B=0}
= Hy(curl 0,9Q) x H(curl 0, Q).

Now, let’s denote
A = H(div 0,Q) x Hy(div 0,Q)

which is a closed subspace of L*(Q)%. In fact, 7 C ker(&) and we say that J is a stable
subspace for 7. Now we can define the restriction of & to the space 5 by

(4.18) {eQ/,yf((E,B)) = o/ ((E, B)) where (E, B) € D(y)

D(ety) = D(of) N .

Similarly, we can define the 7. as the corresponding complex space to 7, or the
complexification of J.

Corollary 4.19. Let Q € R? be a bounded open set which is also regular, in this case
of class €*. Then the domain D(y) = D(&) N H is a closed vector subspace of the
Sobolev space H*(2)? x HY(Q)3 when D(oy) is endowed with the graph norm 4.15.

Now we note that because the natural injection H'(Q2) — L?(f2) is compact with the
conditions of the last corollary, it follows that the injection D(.e7) — J is also compact.
Thus the operator o7 has a compact resolvent R(\, .27,»). What this means is that there
exists A\ € p(4Z) such that the resolvent R(\, .o/, ) is a compact operator. Recall that
compact operators are defined to map any bounded subset into a relatively compact
subset, that is, the image has a compact closure. Such an operator is also bounded and
thus continuous.

The previous deduction about @75 having a compact resolvent gives us the main
theorem of the chapter [4].
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Theorem 4.20. Let Q € R? be a reqular, bounded and open subset of R3. Then the
spectrum of the operator 1o/ in the space F. is a real point spectrum with no finite
accumulation point. The vector space E,, of eigenvectors of </ for the eigenvalue iw
has finite dimension.

The theorem 4.20 gives a solution to the problem 4.7. This is because the set of
frequencies w for which there exists a solution (Ey, By) to the problem 4.7 with finite, non-
zero energy is exactly the same as the set o(i?). Thus the set of solutions is a discrete set
of real values with finite multiplicity. Note that the assumption that V- Ey =V - By =0
guarantees that zero is not included in the spectrum.

Given a frequency w, there are two alternatives. If the frequency w & o(ief), there
is no possibility of a stationary electromagnetic field with finite and non-null energy as a
solution of 4.7. If on the other hand w € (i), there is a corresponding eigenmode of
finite and non-null energy.

4.2.1 Non-homogeneous case

In a similar manner we can treat non-homogeneous problems, in which case there exists
non-zero charge densities and currents in 2. In this case, the problem is to find
(Eo, Bo) € L*(Q)® which satisfies

V X By —iwEy = jo in

—V X Ey —iwBy =0 in €
V-Ey=py,V-By=0 in {2
EoAnlp =0, By-nlr=0 onT'

(4.21)

with w € R and given current and charge densities jo € L*(Q)3 and py € H~1(Q) which
satisfy the condition
iwp0+V'j0 =0.

This problem can also be written using the Maxwell operator <7 as
(4.22) o (Fy, By) + iw(Eo, By) = (—7J0,0).

As S is a closed subspace of L?(2)%, we can decompose the space L*(Q)® into @7+
and similarly elements of L?(2)® into two parts,

(Eo, By) = (E1, B1) + (Es, By)
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where (Ey, By) € 2 and (Fy, By) € 2+, Similarly we may write
Jo = J1+ J2
where j; € H(div 0,9) and j, € H(div 0,9)*.

The problem 4.22 can then be represented as

(4.23) {”(EbBl) +iw(Er, Br) = (—5,0) in

iw(Ey, By) = (—Ja,0) in s+

The second equation of 4.23 then gives

B, =-2
W

and
By =0.

We again denote o7 as the restriction of .7 in 7. The behaviour of the first equation
of 4.23 instead depends on whether w € o(i2/) or not. Let’s study the two alternatives.

If w & o(ie?), then for all j; € L*(Q)?, the first equation of 4.23 has exactly one
solution (E1, B1) € D(4Z). Thus the problem 4.22 has exactly one solution

(Eo, Bo) = (E1, By) + (—‘ij,()).

If on the other hand w € (i<, then the first equation of 4.23 has only one solution
if (—j1,0) is orthogonal to the eigenspace corresponding to the frequency w, denoted by
E,,. However, in this case E,, must be known which is not always reasonable to expect.
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Chapter 5

Appendix: Notation

5.1 Function spaces

Definition 5.1. Let €2 C R™. Then we define
2(Q) =Cr(Q) = {w € C®(R™) | supp(¢p) C Q is compact}.

A function belonging to Z(1Q2) is called a test function. We often use shorter notation
2(Q)" for (2(Q))".
Definition 5.2. Let 2 be an open subset of R™. The set consisting of locally integrable

functions u € LP(£2) such that for each multi-index « with |a| < k weak derivatives D%u
exist and belong to LP(), is called a Sobolev space. We then denote the space WH5P(Q).

Definition 5.3. The Sobolev space W'%(Q) is denoted H'(Q2). In a similar manner we’ll
denote H*(Q) = W2 We'll also denote the closure of C2° in the space W"? as Wg*,
and HF(Q) = W*(Q).

Definition 5.4. For any arbitrary open set  C R? we define the Beppo-Levi space W1(2)

as the closure of 2(Q) under the semi-norm [|[Ve|| 2y for ¢ € 2(Q). Analogously we
define W} (Q) as the closure of Z(€2) under the same semi-norm.

Definition 5.5. Let T be the trace operator from H(Q) to L2(82). Then Hz(9%) can
be defined as the range of T, that is

1

Hz2(09) = {u € L*(09Q) | u = T(p) with some ¢ € H*(Q)}.

Definition 5.6. Let £ be a normed space with scalar field K. Then the dual space of E,
denoted E*, contains the bounded linear operators from E to K. Thus

E*=2(E,K)={T: E — K| Tis a continuous linear operator}.
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Let u € E and f € E*. We'll denote the pairing between E and E* as f(u) = (f, u).

Definition 5.7. Denote by H () the dual space of H}(£2). The space H! is a normed
space with norm

1F Il = sup{(f, u) | u € Hg(Q), [ullmy() < 1}-

In a similar manner, we define H~2(9Q) as the dual space of Hz(9).

5.1.1 Divergence and curl spaces
The divergence and curl spaces are defined as follows.

Definition 5.8. Let €2 be an open subset of R”. We define
H(div,Q) = {v e L*(Q)" | V-v e L*(Q)}.
Similarly we define
H(curl, Q) = {v € L*(Q)* | V x v € L*(Q)*}.

We denote as Hy(div, Q) and Hy(curl, Q) the closures of 2(Q2)? in H(div, ) and H (curl, Q)
respectively.

Definition 5.9. We define the spaces H(div 0,£2) and Hy(div 0,2) as
H(div 0,0) = {u € I2(Q)P |V -u= 0},
Ho(div 0,9) = {u € L2(Q)° | V-u=0,n-u=0on r}.
Similarly,
H(curl 0,9Q) = {u € LN’ |V xu= O},
Hy(curl 0,9) = {u €L | Vxu=0nAu=0on F}.

Definition 5.10. The sets #!(Q) and H, (Q) are defined by
AN Q) ={ue H(Q) | Au=0in Q}
and

H,; (2) = H(curl 0,Q) N H(div 0,€)
={ue L*("|Vxu=0,V-u=0u-n|p=0}.
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In chapter 3 we also define the following spaces for convenience, but these are very
specific to the task at hand.

Vi = {Ae WY(R3)? | V-A=0}
(5.11) Vie = H(div 0,R%) = {B € LA(R®)?3 | V- B = 0}
Vewrt = H(curl 0,R?) = {E € L*(R®)® | V x E = 0}
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