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Abstract 29 

Aim: Global biodiversity loss has raised interest in understanding variation in diversity at different 30 

scales. Especially studies conducted across large spatial gradients are crucial, because they can 31 

increase perspectives on how ecological patterns change relative to environmental factors, and 32 

facilitate predictions of possible responses to environmental change. We explored the full extent of 33 

a brackish sea to test the hypotheses that (i) benthic communities are defined by species’ limited 34 

ranges, controlled by varying drivers along a large environmental gradient, (ii) the responses of 35 

taxonomic and functional community composition and turnover to the environmental gradient are 36 

different, thus highlighting the need to include both measures in ecological studies, and (iii) 37 

diversity reaches the minimum at intermediate salinities (Remane curve) due to the low adaptation 38 

of freshwater and marine species. 39 

Location: A large environmental and spatial gradient spanning the entire Swedish coastline (ca. 40 

2300 km; salinity 1.2-27.6), the Baltic Sea 41 

Time period: August 2018 42 

Major taxa studied: Benthic diatoms 43 

Methods: We assessed environmental drivers for the communities and calculated the taxonomic 44 

and functional alpha and beta diversity along the gradient. We also compared the taxonomic and 45 

functional composition and diversity of communities between areas with different salinity. 46 



Results: We found support for the hypothesis of limited species ranges, as taxonomic beta diversity, 47 

mainly induced by changes in salinity and climate, was high, whereas functional beta diversity 48 

remained considerably lower, and the composition and diversity of communities, as well as 49 

environmental drivers controlling the communities, differed between regions with different salinity. 50 

The lowest taxonomic diversity was found at intermediate salinities of 5-6. 51 

Main conclusions: These findings advance understanding of large-scale patterns of benthic 52 

diversity, emphasize the importance of large gradient studies for a better understanding of general 53 

ecological patterns, and highlight the vulnerability of brackish water ecosystems as ecologically 54 

important tipping point realms. 55 
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Introduction 59 

The ongoing biodiversity crisis has increased the need for understanding the variation of diversity. 60 

This, in turn, has raised interest and triggered substantial efforts for studying the different kinds of 61 

gradients that often are associated with changing diversity patterns (Mittelbach et al., 2007). 62 

However, our understanding of gradients underlying diversity patterns is hampered by different 63 

obstacles: i) natural gradients are almost always complex, with several physical, chemical and 64 

biological factors interacting and correlating with each other (Huston, 1994; Willig, Kaufman, & 65 

Stevens, 2003), ii) diversity varies constantly along environmental, spatial and temporal gradients, 66 

although the rate of this variation depends on the type of organisms (Willig et al., 2003), iii) 67 

physical and chemical gradients are also constantly changing, and the ongoing climate change 68 

accelerates this change (The BACC II Author Team, 2015). 69 



Despite the challenges listed above, studies conducted along gradients facilitate a better 70 

understanding on how ecological patterns, such as variation in biodiversity, change relative to the 71 

environment (Thrush et al., 2006). Spatial gradients, including gradients in latitude, have received 72 

considerable attention as drivers of diversity (Willig et al., 2003). However, many environmental 73 

variables vary in concert with spatial gradients and, hence, spatial gradients can act as surrogates for 74 

primary environmental gradients, such as the ones of climate or productivity (Fuhrman et al., 2008). 75 

Here we focus on the responses of benthic diatom communities to environmental factors along a 76 

large-scale gradient of salinity, climate and space. For aquatic organisms, salinity is often a major 77 

environmental driver that can vary along spatial gradients (Villnäs, & Norkko, 2011; Ji et al., 2019). 78 

This applies for both freshwater and marine realms but is particularly pronounced in ecosystems 79 

with strong salinity gradients, such as estuaries or semi-enclosed seas (Remane, 1934; Olli, Ptacnik, 80 

Klais, & Tamminen, 2019). 81 

As a study area, we used the Baltic Sea, which is a good example of a semi-enclosed, high-latitude 82 

sea, where salinity forms a strong gradient but interacts and correlates with other environmental 83 

factors, such as climatic and latitudinal forces. Due to several reasons, the Baltic Sea provides an 84 

excellent platform for studying the responses of biotic communities to environmental factors across 85 

gradients. First, the environmental gradient of the Baltic Sea is large, spanning from freshwater to 86 

brackish and finally marine conditions. Studies conducted across such large gradients can be 87 

particularly useful for increasing understanding and building predictions of possible community 88 

responses to environmental change (Thrush et al., 2006). However, most of the studies in the Baltic 89 

Sea, with consistently collected data have focused on regional or local areas, whereas only few have 90 

utilized the whole salinity gradient (see Ulanova, Busse, & Snoeijs, 2009; Villnäs & Norkko, 2011; 91 

Olli et al., 2019 for large gradient studies). Furthermore, sampling of large gradients is notoriously 92 

time-consuming and arduous and, thus, large datasets have usually been collected in several parts 93 

(but see Herlemann et al., 2011 for a large bacterial investigation). This may not cause a problem 94 



while studying large organisms in stable climatic conditions, but may compromise the results of 95 

studies conducted on quickly evolving communities, such as microphytobenthic communities, at 96 

high latitudes, where strong seasonality leads to a seasonal succession of changing species 97 

composition and diversity among short-lived organisms (Huston, 1994). 98 

Secondly, across the Baltic Sea gradient, species typically have limited ranges that follow the 99 

pattern suggested by the central-marginal hypothesis, i.e., lower and more variable abundances 100 

towards the margins of their distribution dictated by environment, typically salinity (Gaston, 2009; 101 

Westerbom, Mustonen, Jaatinen, Kilpi, & Norkko, 2019). Because the effects of environmental 102 

change on biotic communities and their distributions can often first be detected at the edges of 103 

distribution areas, studying gradients that include such marginal areas may further facilitate 104 

understanding population responses to future environmental change (Sorte et al., 2017). In the 105 

Baltic Sea, as well as other basins with strong salinity gradients, the limited ranges of species often 106 

result in species richness minimum at intermediate salinities. This pattern is called the Remane 107 

curve (Remane, 1934), and it is due to the inability of freshwater or marine species to tolerate such 108 

salinities. Thirdly, the Baltic Sea has been predicted to respond strongly to climate change due to 109 

increasing temperatures and river flow, thus lowering salinity and changing the salinity gradient 110 

(The BACC II Author Team, 2015). And fourthly, the Baltic Sea has a long history of 111 

eutrophication, and species are strongly affected by anthropogenic drivers (Gustafsson et al., 2012; 112 

Andersen et al., 2017). 113 

Diversity and distribution of species along gradients have most commonly been described using 114 

taxonomic metrics, e.g., species richness and community composition. However, including the 115 

functional characteristics, i.e. traits, of communities can provide a more effective way to describe 116 

diversity and facilitate establishing links between environment and the community (Hooper et al., 117 

2005). Functional traits describe differences in resource acquisition, environmental preferences, and 118 



tolerance to stressors and consumers (Passy, 2007), thus linking communities effectively to small- 119 

and large-scale environmental gradients.  120 

Here, while keeping in mind the theories of limited ranges of species, central-marginal hypotheses 121 

and Remane curve (Remane, 1934), we sought to find new insights into the effects of environment 122 

on communities and, thus, provide ideas of possible community responses to environmental change. 123 

We did this by means of assessing the taxonomic and functional composition and diversity of 124 

benthic diatoms in relation to environmental drivers along a large salinity, climatic and spatial 125 

gradient in the Baltic Sea. Diatoms are eukaryotic microorganisms that have been estimated to 126 

produce ~20% of oxygen in the atmosphere (Nelson, Treguer, Brzezinki, Leynaert, & Queguiner, 127 

1995; Field, Behrenfeld, Randerson, & Falkowski, 1998). They are an integral part of the 128 

microphytobenthos in all aquatic systems, and in regions with strong environmental gradients, 129 

diatoms exhibit large variation in community composition and diversity (Passy, Pan, & Lowe, 130 

1999) and, hence, provide an excellent model group for large gradient studies. We performed the 131 

sampling during a short time period using consistent methods, and verified the results with re-132 

sampling of certain sites to control for temporal variance. We predicted that (i) despite continuous 133 

water flow between sites and consequent free dispersal of organisms, differences in the environment 134 

and consequent species’ limited ranges would result in significant spatial variation in the 135 

composition and diversity of communities (Busse & Snoeijs, 2003), thus identifying potential 136 

tipping points that may indicate mechanisms and drivers of community change in response to 137 

environmental change (Westerbom et al., 2019). We also hypothesized  that different environmental 138 

factors would structure the communities in the different parts of the gradient (Ulanova et al., 2009), 139 

showing that studies conducted at large gradients are necessary for the understanding of general 140 

ecosystem processes, and also possibly suggesting that climate change induced changes in physical 141 

gradients may change environmental drivers and ultimately the communities in ways that we cannot 142 

yet predict; (ii) the taxonomic and functional community composition would respond differently to 143 



the environment (Virta et al., 2019), which would highlight the advantages of including both 144 

community measures in ecological analyses; and (iii) lowest taxonomic diversity of communities 145 

would be found at brackish water salinities of ca. 6 (Remane, 1934), thus emphasizing the 146 

uniqueness and vulnerability of brackish water ecosystems. 147 

Materials and methods 148 

Study area and sampling 149 

Our study area spanned the entire coastline of Sweden, in northern Europe. It extended from the 150 

northern to southern Baltic Sea and finally to the transition zone from the Baltic Sea to the North 151 

Sea (Fig. 1). The sampling gradient covered ca. 2300 km of coastline between latitudes 55.73°N 152 

and 65.79°N and longitudes 11.17°E and 23.90°E. Environmental conditions in this area are highly 153 

variable. Climate-related factors, such as air and water temperature, precipitation and the duration 154 

of ice cover, follow a north-south gradient. Due to the restricted water exchange between the Baltic 155 

Sea and the North Sea, and the abundance of rivers discharging into the Baltic Sea, salinity follows 156 

a north-south and east-west gradient and increases from ~1 in the northeastern part of the sampling 157 

gradient to ~28 in the western part of the gradient. Thus, biotic communities represent a transition 158 

from freshwater to brackish and finally to marine species. Nutrient concentrations are also highly 159 

variable but site-dependent without a clear gradient. 160 

We conducted our sampling over a short time period in late summer, 9 - 24 August 2018, to 161 

minimize the potential for temporal variability. We had a total of 46 study sites, focusing on areas 162 

where the change in environment, such as salinity, is known to be most pronounced, and then re-163 

sampled the first six sites to explore the potential bias due to temporal variation. To minimize the 164 

effect of terrestrial factors, such as the effect of land use, we chose sites at far ends of peninsulas or 165 

islands, and avoided close proximities of river mouths. We conducted the sampling following the 166 

modified recommendations by Kelly et al. (1998). At each site, we randomly selected twenty 167 



cobble-sized stones along the shoreline from depths of 20-50 cm. We collected the biofilm by 168 

scraping the surfaces of stones with a sponge (25 cm² per stone) and pooled the accumulated 169 

suspension into a composite sample, which was then stored in cold (+4 °C) and dark conditions 170 

until further processing. To account for the stability of the substrate, which may affect the growing 171 

conditions of microphytobenthic organisms, we measured the volume (length ⨯ width ⨯ height) of 172 

each sampling stone. We also measured salinity, pH and water temperature in-situ, and collected 173 

water samples from each site. We froze the water samples immediately after sampling and later 174 

analyzed them for nutrients, namely NO2
- + NO3

-, NH4
+, PO4

3-, and Si. To evaluate habitat 175 

characteristics, we classified the bottom type according to the amount of sediment (classes 1 to 3; 176 

class 1 denotes a rocky bottom, class 2 a sedimentary or sandy bottom covered with stones, and 177 

class 3 a sedimentary or sandy bottom with only a few stones) and the amount of macroalgae or 178 

vegetation on stones (classes 1 to 3; class 1 denotes no macroalgae/vegetation, and class 3 stones 179 

totally covered by macroalgae/vegetation) at each site.  180 

Diatom and laboratory analyses, trait characteristics, wind exposure, and climatic variables 181 

Diatom samples were boiled with hydrogen peroxide (30% H2O2) to remove organic material, and 182 

the cleaned diatoms were mounted on slides using Naphrax (Brunel Microscopes Ltd, United 183 

Kingdom). We used a phase contrast light microscope with a 1000⨯ magnification to identify 500 184 

valves per sample to the lowest possible taxonomic level (typically species level) following 185 

Krammer and Lange-Bertalot (1986, 1988, 1991a, b), Snoeijs (1993), Snoeijs and Vilbaste (1994), 186 

Snoeijs and Potapova (1995), Snoeijs and Kasperovicienè (1996), and Witkowski (2000). After the 187 

identification of diatoms, we transformed species counts into relative abundances and verified 188 

taxonomic names according to AlgaeBase (Guiry, 2020). 189 

To account for the functional composition of communities, we used the abundances of traits that are 190 

robust indicators of ecological behavior (Westoby, Falster, Moles, Vesk, & Wright, 2002). We 191 



classified diatom species according to their size (biovolume classes: large > 1000µm³ / small < 192 

1000µm³), mobility (mobile / non-mobile), type of attachment (adnate / pedunculate [which was 193 

further divided to pad-attached / stalk-attached] / non-attached), colonization (colonial / non-194 

colonial), guild (low-profile / high-profile / motile / planktonic) (Rimet & Bouchez, 2012), 195 

nitrogen-fixing abilities (nitrogen-fixer / non-nitrogen-fixer) (Passy, 2007), and salinity preference 196 

(freshwater / brackish / marine; each species may belong to 1-3 salinity categories depending on the 197 

breadth of distribution). Each species was classified according to all seven classifications, which 198 

resulted in numerous possible combinations for classifying a certain species. As the measure of trait 199 

composition, we used the combination of traits of all the species present in the community.  To 200 

identify traits for each diatom species, we used, in addition to above mentioned species and trait 201 

literature, Snoeijs, Busse and Potapova (2002) and Diatoms of North America (2019). Traits used 202 

here indicate morphological characteristics of species and are related to ecosystem functioning. For 203 

example, grazers are dependent on high-profile diatom species, whereas low-profile species persist 204 

at low nutrient levels, where high-profile and motile species cannot survive (Passy, 2007). 205 

Nutrient analyses of the water were conducted with an automated photometric analyzer (Thermo 206 

Scientific Aquakem 250 [Thermo Fisher Scientific Oy, Vantaa, Finland]) (NO2
- + NO3

-, PO4
3-, and 207 

Si), except for NH4
+, which was analyzed manually. To account for the wind exposure of our 208 

sampling sites, we calculated fetch, i.e., the distance over which wind can travel across open water. 209 

We did this using the ruler tool in Google Earth (Google). We placed the beginning of the ruler at 210 

the exact study site and measured the distance to next shore, island or islet along 36 lines, which 211 

were 10° apart from each other. Thus, we obtained 36 values for each site, and used the sum of 212 

these values as the measure of the fetch of the sampling site (Mason, Riseng, Layman, & Jensen, 213 

2018). To account for climate, we extracted the average annual temperature and average annual 214 

precipitation (representative of 1950-2000, spatial resolution ~ 1km²) from WorldClim database 215 



(Hijmans, Cameron, Parra, Jones, & Jarvis, 2005) and calculated climatic values for sampling sites 216 

with the ArcGIS 10.2.1, Arcmap-application. 217 

Statistical analyses 218 

Prior to statistical analyses, we log10-transformed environmental variables NO2
- + NO3

-, NH4
+, 219 

PO4
3, Si, salinity, stone volume and fetch to reduce their skewed distributions. We assessed 220 

statistical dependence between explanatory variables using Spearman’s rank correlation 221 

coefficients. Si, air temperature, precipitation, latitude and longitude were highly correlated (> 0.7) 222 

with salinity. Thus, these variables were excluded from analyses, and salinity was used as a proxy 223 

for climatic and spatial variables, reflecting the joint effect of these factors for biotic communities. 224 

To validate the results of the spatial sampling, we calculated the degree of temporal beta diversity at 225 

the six sites that had been visited twice. Our aim was to see whether the communities changed 226 

significantly during our sampling project. This was done using temporal beta diversity indices (TBI) 227 

(Winegardner, Legendre, Beisner, & Gregory-Eaves, 2017). TBI computes the total temporal beta 228 

diversity and its components (species gain or species loss) at each sampling site. We calculated the 229 

TBI for taxonomic composition using binary data and Sørensen dissimilarities, and computed 230 

significances with a parametric paired t-test with 9999 permutations. TBI was done with the R 231 

package adespatial (Dray et al., 2019). 232 

To study the spatial beta diversity of communities, we calculated all pairwise dissimilarities in 233 

taxonomic and functional community composition using abundance data and the Bray-Curtis 234 

dissimilarity index (Bray, & Curtis, 1957). Then, we examined the relationship between 235 

dissimilarities and the salinity gradient, which was identified by generalized dissimilarity models 236 

(GDM) as the only environmental variable to significantly affect the communities (see below), 237 

using linear models. The significance of the relationship was determined using Mantel tests with 238 

Pearson’s correlation and 999 permutations. 239 



We studied the effects of individual environmental variables on taxonomic and functional beta 240 

diversity with generalized dissimilarity modelling (GDM) (Ferrier, Manion, Elith, & Richardson, 241 

2007). GDM is a technique for studying spatial variation in biodiversity between pairs of 242 

geographical locations, and for defining the importance of predictor variables for beta diversity. We 243 

performed GDMs with taxonomic and functional abundance data and Bray-Curtis distance, and 244 

used function gdm.varImp with 50 permutations to estimate p-values for the whole model and each 245 

of the predictor variables. We constructed GDMs using R package gdm (Manion et al., 2018).  246 

To study the variation in communities along the environmental gradient, we classified our sampling 247 

sites according to salinity, which was indicated by GDM as the only environmental variable to 248 

significantly explain taxonomic and functional beta diversity. The classification of samples was 249 

conducted, because it enabled us to visualize the taxonomic and functional community composition 250 

at different salinities, and also enabled us to indicate, which environmental variables control the 251 

communities at areas with different salinities. This is important for, e.g., conservation perspectives, 252 

because if different factors affect the communities at different salinities, conservation measures, 253 

such as nutrient reductions, need to be modified accordingly. No consensus of common salinity 254 

categories has been reached in literature (Snoeijs, & Weckström, 2019), but we used salinity 255 

categories of > 20 to indicate brackish to marine water with high salinity (11 samples), 10-20 to 256 

indicate brackish water with higher salinity (6 samples), 4-10 to indicate brackish water with lower 257 

salinity (21 samples), and 0-4 to indicate fresh to brackish water with low salinity (14 samples) 258 

(modified from Snoeijs, 1993 and Snoeijs, & Weckström, 2010). We then used pie charts to 259 

illustrate diatom species assigned to major taxonomic groups, i.e., genus, and functional traits in 260 

different salinity categories. For the pie charts, we used the R package ggplot2 (Wickham, 2019). 261 

We also used distance-based redundancy analyses (dbRDA) with Hellinger-transformed data to 262 

examine the influence of environmental variables on the taxonomic and functional community 263 

composition within different salinity groups (Legendre, & Gallagher, 2001). We used Bray-Curtis 264 



distance for species composition and Gower’s distance for trait composition (Legendre, & 265 

Anderson, 1999). To ensure an adequate number of samples in each salinity group, salinities 10-20 266 

and > 20 were combined in dbRDA analyses. We used the R package vegan for the dbRDA 267 

analyses (Oksanen, 2019). 268 

We studied the relationship between taxonomic and functional community composition and species 269 

richness and salinity using regression models. Taxonomic and functional community composition 270 

was described as multidimensional scaling (nMDS) 1 scores, and the nMDS were calculated with 271 

Bray-Curtis similarity index and two dimensions. To visualize the relationships, we used the R 272 

package ggplot2 (Wickham, 2019). 273 

All statistical analyses were calculated using R version 3.6.1 (R Development Core Team, 2019). 274 

All data used in the analyses are available through the Dryad Repository 275 

(https://doi.org/10.5061/dryad.bvq83bk6p). 276 

Results 277 

Community composition did not change significantly at any of the twice-visited six sites between 278 

the first sampling at the beginning of August and the second sampling at the end of August 279 

(Appendix, table 1). 280 

Across the broad-scale spatial gradients, communities were taxonomically highly different at 281 

different parts of the sampling gradient (Fig. 2). Pairwise mean taxonomic dissimilarity was 0.732 282 

(max 0.990, min 0.206). Functional dissimilarities were considerably lower, as pairwise mean 283 

functional dissimilarity was 0.230 (max 0.577, min 0.032). Taxonomic and functional 284 

dissimilarities changed significantly (p: 0.001) along the salinity gradient, and the relationships 285 

between community similarity and the salinity gradient were statistically significant (taxonomic 286 

dissimilarity: R: 0.549, p: 0.001; functional dissimilarity: R: 0.403, p: 0.001) (Fig. 2). 287 



Environment explained taxonomic and functional spatial beta diversity significantly (p < 0.001), 288 

although the deviance of taxonomic beta diversity was explained more efficiently than the deviance 289 

of functional beta diversity (Table 1). Salinity was the only significant variable for both taxonomic 290 

and functional beta diversity. However, this may indicate the combined influence of salinity, 291 

climate and spatial factors, because climatic and spatial variables were excluded from analyses due 292 

to high correlation with salinity. 293 

The genus Navicula and Nitzschia were the dominant taxonomic groups along the environmental 294 

gradient (Appendix, fig. 1) and formed 16.9% and 28.5% of the communities, respectively, when all 295 

salinity categories were considered. The contribution of different taxonomic groups varied between 296 

salinity categories, with salinity category < 4 featuring the most even distribution of groups with no 297 

clear dominance. Many functional traits showed a gradient from high to low salinity (Fig. 3). The 298 

relative proportion of large versus small diatoms increased towards low salinity, as well as the 299 

relative proportion of pedunculate versus mobile diatoms, high-profile versus motile diatoms, and 300 

colonial versus non-colonial diatoms. The relative proportions of diatoms with preference for 301 

freshwater, brackish or marine environment did not show a clear pattern. 302 

Taxonomic and functional community composition was significantly explained by environmental 303 

variables in all salinity groups (Table 2). Nutrients were among the significant environmental 304 

variables in all salinity groups for taxonomic composition and in two of three salinity groups for 305 

functional composition. Wind exposure, i.e. fetch, and stone volume were significant in almost all 306 

the groups, and water temperature, pH, salinity, vegetation amount, and sediment amount were 307 

significant in at least one of the salinity groups for either taxonomic or functional community 308 

composition. 309 

The relationships between salinity and taxonomic/functional community composition or species 310 

richness were non-linear (Fig. 4, Fig. 5). Lowest species richness (26, 28 and 29 species per sample) 311 

was found in brackish water with intermediate salinity (5.4, 5.2 and 5.3, respectively), whereas 312 



highest species richness (109, 98 and 83 species per sample) was found in marine water with high 313 

salinity (26.0, 26.6 and 26.7, respectively). 314 

Discussion 315 

We investigated the general hypotheses that benthic communities along a large environmental 316 

gradient are defined by species’ limited ranges (Gaston, 2009), controlled by varying drivers along 317 

a large environmental gradient, and that diversity reaches the minimum at intermediate salinities 318 

due to the low adaptation of freshwater and marine species (Remane, 1934). To our best knowledge, 319 

this is one of the first studies to investigate aquatic microorganismal communities on an 320 

environmentally and spatially large gradient (across ca. 2300 km) with a coherent sampling project 321 

that minimized the influence of temporal variability on the communities. 322 

As suggested by the theories of limited species ranges and the central-marginal hypothesis (Gaston, 323 

2009), we found an almost complete spatial taxonomic beta diversity, i.e. turnover of communities 324 

from one end of the gradient to the other end, in other words, only a few same species were found at 325 

both ends. Due to the strong gradient in environment, especially salinity, this was expected. 326 

However, functional beta diversity remained low, i.e., species were replaced by taxonomically new 327 

but functionally similar species along the gradient. Similar results of low functional despite high 328 

taxonomic beta diversity have been found before across short spatial gradients in estuaries 329 

(Villéger, Miranda, Hernandez, & Mouillot, 2012 in a tropical estuary; authors’ unpublished data in 330 

a Baltic Sea estuary), but our large spatial gradient makes the result interesting. It seems that the 331 

functional characteristics of microphytobenthos needed for efficient benthic ecosystem functioning 332 

are very similar in very different environments. In our study, the number of species per site (54 on 333 

average) was considerably higher than the number of traits (7 per site), and this confounding effect 334 

may affect the notable difference between taxonomic and functional beta diversity. However, due to 335 

our method of categorizing each species according to seven different classifications, the number of 336 

possible functional combinations per site was high and closely comparable to the species number. 337 



Salinity was the only environmental variable that significantly explained taxonomic and functional 338 

beta diversity of the communities. Due to the large range of salinity (1.2-27.6) in our sampling area, 339 

the effect of salinity was to be expected, as salinity has regularly been found as a major driver for 340 

biotic communities in aquatic systems (Cognetti, & Maltagliati, 2000; Villnäs, & Norkko, 2011), 341 

even in studies with considerably smaller range (Svensson, Norberg, & Snoeijs, 2014 on a salinity 342 

gradient of 0.5-7.8). However, salinity was also used as a proxy for highly correlated climatic and 343 

spatial variables, and hence, climate and spatial distance probably also contributed to beta diversity. 344 

There are a number of climatic variables that can affect aquatic communities at high latitudes, such 345 

as air temperature (Chu, Jones, Mandrak, Piggott, & Minns, 2008), precipitation (Primo, Azeiteiro, 346 

Marques, Martinho, & Pardal, 2009), day-time length, and ice cover duration (Virta, Soininen, & 347 

Norkko, 2020). These variables are usually highly inter-correlated, which supports the use of only 348 

one or two of them to represent climate, which we did. Our finding of climate as an important factor 349 

for determining species distribution is supported by several previous studies at the regional scale 350 

(Pearson, Dawson, & Liu, 2004; Pajunen, Luoto, & Soininen, 2016). Although spatial variables 351 

(latitude and longitude) were also correlated with salinity and climate, we think that they are not a 352 

major driver for the communities in this study, because there is a continuous water flow and, thus, 353 

free dispersal of species between sites. 354 

Our classification of sites according to salinity divided the sampling area to four different areas: 1. 355 

the western area of Kattegat and the North Sea, with salinity of > 20; 2. the southwestern area of the 356 

Belt Sea, with salinity of 10-20; 3. the eastern area of the Bornholm Basin, the Western Gotland 357 

Basin, the Åland Sea and the Bothnian Sea, with salinity of 4-10; and 4. the northernmost area of 358 

the Bothnian Bay, with salinity of < 4. As was hypothesized following the ideas of limited species 359 

ranges and the central-marginal hypothesis (Gaston, 2009), the taxonomic composition of 360 

communities differed between these areas. All the main taxonomic groups were present in all 361 

salinity areas, but their relative proportions varied across areas, and the area with the lowest salinity 362 



differed from the other areas by having the most even distribution of taxonomic groups. Thus, it 363 

seems that marine and brackish waters share characteristics of taxonomic groups, whereas there is a 364 

clear distinction and a threshold between brackish and fresh waters. This may indicate potential 365 

changes in the benthic communities at the transition zone between brackish and freshwater 366 

conditions, if future climate change decreases salinity in the Baltic Sea as has been predicted. 367 

Many functional characteristics also showed a gradient along salinity areas. The general trend was 368 

the increase of large and high-growing species or colonies (traits large, pedunculate, high-profile 369 

and colonial) towards low salinities. This was surprising, because other organisms, such as benthic 370 

macrofauna, grow in size from the low salinities of the Baltic Sea to the higher salinities of the 371 

North Sea (Furman, Pihlajamäki, Välipakka, & Myrberg, 2014). The different behavior of diatoms 372 

in relation to other organisms may be due to several abiotic factors, such as different responses to 373 

salinity and other environmental factors by small and large diatom species (Snoeijs et al., 2002), 374 

varying nutrient conditions along the gradient, or increasing disturbance by wind exposure towards 375 

marine conditions (Passy, 2007). We also speculate that, due to the increase of the species richness 376 

and abundance of benthic fauna towards marine conditions (Norkko et al., 2015), biotic 377 

disturbances, i.e., grazers, may have played a key role in shaping the functional characteristics of 378 

diatom communities along the salinity gradient and in favoring smaller species with better 379 

resistance to grazers at high salinities. The distribution of species with preference to fresh, brackish 380 

or marine water was surprisingly constant across salinity areas. This may be due to a high number 381 

of species that were included in two or three preference groups because of their large geographical 382 

distribution areas. 383 

Our hypothesis of different environmental drivers for community composition at different salinity 384 

areas was partly confirmed, because many of the variables appeared as significant at only one or 385 

two salinity areas. This emphasizes the importance of large gradient studies for the understanding of 386 

ecosystem processes. However, certain environmental drivers seemed to affect communities 387 



everywhere. Wind exposure and stone volume, both describing physical disturbance, were 388 

important in almost all areas. Physical disturbance has been shown to affect all kinds of benthic 389 

communities, such as diatoms (Passy, 2007), macroalgae (Underwood, 1998), and macrofauna (Cai, 390 

Gong, & Qin, 2012), and this effect may increase in the future with intensifying winds and more 391 

severe storms (The BACC II Author Team, 2015). Nutrients were also important for the 392 

communities in all salinity groups, but with varying contributions. The areas with lowest (< 4) and 393 

highest (> 10) salinity were limited by both nitrogen and phosphorus, and the brackish waters 394 

(salinity 4-10) by phosphorus. These results disagree with several other studies that have shown 395 

phosphorus limitation in freshwater realms and in the northern parts of the Baltic Sea and nitrogen 396 

limitation in brackish and marine waters (Tamminen, & Andersen, 2007). This disagreement may 397 

possibly be due to the seasonally varying nutrient compositions in the Baltic Sea, or the effect of 398 

eutrophication, as suggested by Tamminen and Andersen (2007).  399 

All the relationships between community metrics (taxonomic and functional community 400 

composition, and species richness) and salinity were non-linear but considerably different from 401 

each other. Change in the taxonomic and functional community composition remained quite even 402 

through salinities 0-ca. 20 before levelling off at salinities >20. This seems to indicate that even 403 

small changes in salinity have strong effects on communities in fresh and brackish waters, which 404 

may lead to considerable changes in communities if climate change alters the salinity, as has been 405 

expected. The relationship between species richness and salinity indicated high diversity in samples 406 

with low and high salinity, whereas diversity in the brackish water samples was lower. This agrees 407 

with the ideas of Remane (1934) and many other studies after him that have described the lowest 408 

diversity of organisms at intermediate salinities of ca. 5-8 (e.g. Olli et al., 2019). The species 409 

richness is at its lowest at these salinities probably because estuaries and brackish water seas are 410 

universally small, ephemeral and isolated from each other, which has prevented the development 411 

and speciation of actual brackish-water species (Olli et al., 2019). 412 



To conclude, resolving patterns in biotic communities and their drivers along large environmental 413 

gradients is important for understanding variation in biodiversity, especially given concerns over 414 

environmental change and consequent biodiversity loss. Large gradients can reveal patterns that 415 

remain hidden in smaller areas. We showed that, across a large environmental and spatial gradient, 416 

benthic diatom communities can exhibit a total taxonomic turnover and be controlled by different 417 

environmental factors in different parts of the gradient, thus supporting the hypotheses of species’ 418 

limited ranges and central-marginal theory. Functional turnover remained considerably lower, 419 

suggesting that functional characteristics needed for stable ecosystem functioning are fairly similar 420 

in very different environments. The minimum diversity occurred at intermediate salinities, which 421 

confirmed the validity of the Remane curve and suggested that areas with intermediate salinities are 422 

a threshold and a tipping point for biotic communities. This emphasizes the vulnerability and 423 

uniqueness of brackish water areas and the need to apply measures to preserve biodiversity in these 424 

ecosystems in the course of human-induced climate change. 425 
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Figures 602 

Fig. 1. Our sampling sites and the salinity along the coastline of Sweden, in the Baltic Sea. Salinity 603 

values have been obtained by interpolation from field data. Source of the European coastline 604 

shapefile: European Environmental Agency 605 

Fig. 2. Pairwise relationships between taxonomic and functional similarities (Bray-Curtis 606 

dissimilarity index, abundance data) and the salinity gradient. The dashed line denotes linear model 607 

fitted to data. 608 
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Fig. 3. Relative proportions of functional traits in different salinity categories. Towards low salinity, 609 

there was an increase in the relative proportion of large versus small, pedunculate versus mobile, 610 

high-profile versus motile, and colonial versus non-colonial diatoms. The relative proportions in 611 

salinity preference did not show a clear pattern. 612 

Fig. 4. The relationship between taxonomic and functional community composition (described as 613 

NMDS1 scores) and salinity. 614 

Fig. 5. Species richness of diatom communities along the salinity gradient. 615 

Appendix, fig. 1. Relative proportions of diatom species assigned to major taxonomic groups in 616 

different salinity categories. Groups that had less than hundred frustules in the whole data, are 617 

featured in the combined group of Other. 618 
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Tables 622 

Table 1. Results of generalized dissimilarity models (GDM) to explain taxonomic and functional 623 

spatial beta diversity. Fetch denotes wind exposure. 0.001 ***, < 0.01 **, < 0.05 *, < 0.1 . 624 



 625 

Table 2. Results of the distance-based redundancy analyses (dbRDA) to examine the effect of 626 

environmental variables on taxonomic and functional community composition in different salinity 627 

groups. Only significant variables indicated by the dbRDA are listed. Fetch denotes wind exposure. 628 

< 0.001 ***, < 0.01 **, < 0.05 *, < 0.1 . 629 

Deviance explained

Model p-value

Importance p-value Importance p-value

Salinity 74.31 < 0.001 *** 73.96 < 0.001 ***

PO4
3-

3.12 0.08 1.10 0.40

Fetch 1.13 0.14 0.84 0.30

NO2
- 
+ NO3

-
0.89 0.16 0.00 0.98

Water temperature 0.48 0.36 6.46 0.14

Sediment amount 0.41 0.20 2.93E-07 1.00

Vegetation amount 0.20 0.22 0.00 0.92

Stone volume 0.11 0.64 0.74 0.44

Ammonium 0.00 0.98 1.27 0.36

pH 0.00 1.00 0.00 1.00

Diatom species Diatom traits

52.50 %

< 0.001 ***

28.24 %

< 0.001 ***



 630 

Salinity < 4

Taxonomic composition Functional composition

Eigenvalues: CAP1: 10.378, CAP2: 0.344 Eigenvalues: CAP1: 0.308, CAP2: 0.238

Proportion explained: CAP1: 0.187, CAP2: 0.170 Proportion explained: CAP1: 0.359, CAP2: 0.2770

Model p: 0.001 *** Model p: 0.011 *

SumOfSqs F p-value SumOfSqs F p-value

PO4
3-

0.284 3.191 0.001 *** Fetch 0.216 7.416 0.001 ***

NO2
- 
+ NO3

-
0.282 3.163 0.001 *** Stone volume 0.131 4.523 0.007 **

Salinity 0.198 2.227 0.003 ** pH 0.125 4.3 0.009 **

NH4
+

0.162 1.813 0.029 * NO2
- 
+ NO3

-
0.07 2.421 0.067 .

Water temperature 0.161 1.805 0.029 * PO4
3-

0.064 2.202 0.087 .

pH 0.141 1.584 0.062 .

Vegetation amount 0.15 1.685 0.053 .

Salinity 4-10

Taxonomic composition Functional composition

Eigenvalues: CAP1: 0.533, CAP2: 0.395 Eigenvalues: CAP1: 0.561, CAP2: 0.150

Proportion explained: CAP1: 0.194, CAP2: 0.144 Proportion explained: CAP1: 0.612, CAP2: 0.163

Model p: 0.001 *** Model p: 0.014 *

SumOfSqs F p-value SumOfSqs F p-value

Fetch 0.329 3.422 0.002 ** PO4
3-

0.321 7.311 0.002 **

PO4
3-

0.275 2.857 0.002 ** Fetch 0.169 3.856 0.017 *

Sediment amount 0.247 2.576 0.005 ** pH 0.099 2.259 0.083 .

Salinity 0.207 2.151 0.013 * Salinity 0.098 2.242 0.091 .

Stone volume 0.145 1.506 0.091 .

Salinity > 10

Taxonomic composition Functional composition

Eigenvalues: CAP1: 0.769, CAP2: 0.517 Eigenvalues: CAP1: 0.760, CAP2: 0.096

Proportion explained: CAP1: 0.253, CAP2: 0.170 Proportion explained: CAP1: 0.641, CAP2: 0.081

Model p: 0.001 *** Model p: 0.025 *

SumOfSqs F p-value SumOfSqs F p-value

NH4
+

0.457 4.27 0.001 *** Fetch 0.478 13.483 0.001 ***

Water temperature 0.37 3.458 0.001 *** Stone volume 0.098 2.777 0.096 .

Salinity 0.358 3.352 0.001 ***

Fetch 0.239 2.24 0.017 *

Stone volume 0.226 2.116 0.020 *

NO2
- 
+ NO3

-
0.222 2.074 0.023 *

PO4
3-

0.196 1.832 0.050 *



Appendices 631 

Appendix, table. 1. Results of the temporal beta diversity indices (TBI). TBI denotes the level of 632 

change in community composition between two sampling occasions, p-value the significance of the 633 

change (values of < 0.05 are considered significant), Change species gain (+) or species loss (-) 634 

from the first sampling occasion to the second, SR1 species richness during the first sampling, and 635 

SR2 species richness during the second sampling. 636 

 637 

 638 

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6

TBI 0.447 0.495 0.558 0.506 0.548 0.425

p-value 0.851 0.489 0.075 0.392 0.120 0.939

Change + + + - - -

SR1 29 35 26 53 49 47

SR2 40 35 28 51 56 65


