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Abstract 

Synaptic adhesion molecules, including presynaptic neurexins (NRXNs) and post-synaptic leucine-

rich repeat transmembrane (LRRTM) proteins are important for development and maintenance of 

brain neuronal networks. NRXNs are probably the best characterized synaptic adhesion molecules, 

and one of the major presynaptic organizer proteins. The LRRTMs were found as ligands for 

NRXNs. Many of the synaptic adhesion proteins have been linked to neurological cognitive 

disorders, such as schizophrenia and autism spectrum disorders, making them targets of interest 

for both biological studies, and towards drug development. Therefore, we decided to develop a 

screening method to target the adhesion proteins, here the LRRTM-NRXN interaction, to find 

small molecule probes for further studies in cellular settings. To our knowledge, no potent small 

molecule compounds against the neuronal synaptic adhesion proteins are available. We utilized 

the AlphaScreen technology, and developed an assay targeting the NRXN-LRRTM2 interaction. 

We carried out screening of 2000 compounds and identified hits with moderate IC50-values. We 

also established an orthogonal in-cell western blot assay to validate hits. This paves way for 

future development of specific high affinity compounds by further high throughput screening of 

larger compound libraries using the methods established here. The method could also be applied 

to screening other NRXN-ligand interactions. 
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1. Introduction 

The synaptic adhesion molecules such as presynaptic neurexins (NRXNs) and post-synaptic leucine-

rich repeat (LRR) proteins including the LRR transmembrane (LRRTM) family of proteins are 

important for the development and maintenance of brain and formation of neuronal networks. 

Synapses are the major contact and information relay points between the individual neurons that 

constitute the neuronal network of the brain [1, 2]. NRXNs are probably the best characterized 

synaptic adhesion molecules [3, 4, 5, 6]  and one of the major presynaptic organizer proteins [7].  

 

Mammals have three NRXN genes (NRXN1-3), and each NRXN gene produces two isoforms, 

NRXNα and NRXNβ. In addition, NRXNs can produce potentially thousands of different splice 

variants [6]. The NRXNαs have five canonical splice sites, SS1-SS5, of which SS4 and SS5 are 

also present in the NRXNβ genes [3]. The NRXN interactions are largely Ca2+ dependent [3]. 

They have several post-synaptic ligands such as neuroligins [8], LRRTMs[4], neuroxophilin, 

dystroglycan [9], cerebellin [10] and calsyntenins [11]. The NRXNs and LRRTM interaction 

requires the splice form lacking the SS4 splice site sequence [12]. NRXNs family proteins are 

found in both excitatory and inhibitory synapses. The extracellular part of NRXNs constitutes of 

LNS (laminin, NRXN and sex-hormone-binding protein) and EGF domains. NRXNα has 6 LNS 

domains (L1-6), arranged in three modules with EGF domains (E1-3) between two LNS domains 

(Fig. 1A). NRXNβ contains only one LNS-domain, identical to the NRXN-α LNS6, after which 

there is a highly glycosylated linker region and a transmembrane (TM) domain and an 

intracellular tail with a PDZ binding motif, that interacts with the presynaptic organizing 

machinery [3]. Structures of both partial NRXNα ectodomain and various NRXNβ constructs 

alone and in complex with neuroligin ligands have been resolved by X-ray crystallography [13, 

14, 15, 16] .  

 

The LRRTM family of proteins that include four members are found in the excitatory 

glutamatergic synapses of the brain and were found originally as ligands of NRXNs [17, 18, 19]. 

LRRTMs all share the same domain organization with N-terminal extracellular domain with ten 

repeat LRR domain followed by a linker region and TM domain, and intracellular tail with a PDZ 

binding motif (Fig. 1A) anchoring the LRRTMs to post-synaptic density organizing proteins and 

the glutamate receptors. We have earlier solved the structure of engineered thermostabilized 

LRRTM2 extracellular domain [20] and recently the LRRTM2-NRXNβ1 complex crystal 

structure was solved [21], revealing the interaction interface, located surprisingly in the helical C-
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terminal capping region of the LRR domain on LRRTM2 (Fig. 1B). Further, in particular 

LRRTM4, but probably also other LRRTMs, have also been found to be ligands for heparan 

sulphate proteoglycans [18, 22]. It has been suggested that NRXNs are post-translationally 

decorated with heparan sulphate in the membrane proximal region of the extracellular domain and 

this might increase the affinity towards LRRTMs [23]. Other ligands are currently not known for 

LRRTMs, and thus their ligand repertoire is not as wide as for NRXNs. 

 

Many of the synaptic adhesion proteins have been genetically linked to neuronal disorders, in 

particular, cognitive disorders such as schizophrenia, autism spectrum disorders and bipolar 

disorder [24, 25], which make them targets of interest for biological, therapeutic and disease 

mechanism studies in model organisms or in cell culture. For the functional studies of synaptic 

adhesion proteins, both gain-of-function and loss-of-function studies have been important.  

However, overall loss-of-function studies would benefit from specific compounds that target a 

particular interaction, e.g. studies with knock-out animals or neuronal cultures would be potential 

applications for such effector molecules. Loss-of-function studies have involved generation of 

knock-down and knock-out mice for various adhesion proteins. For NRXNs, neuroligins and 

LRRTMs it has been shown that single knock-downs are not necessarily lethal and probably single 

knock-downs can be compensated functionally by the other homologs or ligands to some extent [17], 

while triple NRXNα knock-outs are lethal [26, 27]. Currently, no inhibitor compounds for these 

synaptic adhesion proteins are available to our knowledge. Therefore, we have taken up the task 

to develop a screening method to target adhesion protein interactions, here, the LRRTM-NRXN 

interaction. We utilized the AlphaScreen technology[28] (Fig. 1B) and developed an assay for 

screening compounds targeting the LRRTM-NRXN interaction. We carried out validatory 

screening and identified several hits with moderate IC50-values in the range of tens of 

micromolar. We also established and used an orthogonal assay to validate the potency of the hits 

in a cell-based assay. This setup paves way for the future development of specific high-affinity 

compounds either through optimization of the obtained hit compounds or by further high 

throughput screening of larger compound libraries using the methods established here.   

 

2. Materials and methods 

 

2.1 Cloning, protein expression and purification  
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Extracellular regions of the mouse LRRTM2 (LRRTM230-421) and NRXNα1 (NRXNα131-1286, 

lacking the SS4 splice site) were cloned into Drosophila pRMHA3 expression vector [29]. The 

expression constructs included a CD33 signal sequence at the N-terminus of the insert and a C-

terminal Fc-tag. LRRTM2-Fc was expressed from stably transfected Drosophila S2 cells, and 

expressed and purified as described previously [20].  

 

NRXNα1-Fc protein construct was expressed from stably transfected Drosophila S2 

cells.  Expression was verified by transient transfection using western blot method with goat 

polyclonal horse radish peroxidase (HRP) conjugated antibody (Abcam, ab98567) against human 

IgG-Fc. For expression from stable cell line of S2 cells, 1.25 ×106 cells per well were plated on a six-

well plate at room temperature. After 24 hours, the cells were transfected with 4 µg of DNA 

containing 1:20 part of selection plasmid pCoHygro. The DNA was diluted into 400 µL of the 

medium; 8 µL of TransIT insect reagent (Mirus Bio LLC) was mixed with the DNA, and the mixture 

was incubated for 20 min and added to the cells. After 3 days, the selection was started; the cells and 

medium were centrifuged and the cells were resuspended into medium with 0.3 mg/mL hygromycin 

and re-plated into the same wells. After 3 weeks, the cells were grown in T75 flask (ThermoFischer). 

The cells were passaged every 6 days in T75 flask until the cell viability was above 95%. For large 

scale purification from the generated stable cell line, the S2 cells were diluted 1:10 into HyQ-SFX 

(ThermoFischer) medium supplemented with 0.15 mg/mL hygromycin, grown in shaker at 25°C for 

1 day, and induced with 0.7 mM CuSO4, and expression was conducted for further 6 days, after 

which the medium was harvested and cells were pelleted by centrifugation at 7000 rpm for 20 min at 

4°C. The protein was purified using the C-terminal Fc-fusion tag with protein-A sepharose 

(Invitrogen). Samples were eluted with 0.1 M glycine (pH 3.0) directly to neutralizing buffer, 60 mM 

Tris (pH 7.4), 300 mM NaCl. 

 

The NRXNβ1 gene construct (His6-NRXNβ140–216 LNS domain lacking the SS4 splice site sequence) 

was cloned into pHYRSF53LA vector. The resulting His-NRXNβ1 construct was expressed from E. 

coli BL21(DE3) in LB medium at 37 °C and induced at an OD600 of 0.8 with 1 mM IPTG, and 

expressed for 4–5 h at 30 °C, after which the cells were collected and suspended in 50 mM Tris HCL 

pH8, 300 mM NaCl. Cells were lysed via sonication. The His6-tagged NRXNβ was purified with 

HisTrapTM column (GE Healthcare) and eluted with 50 mM Tris HCl pH 8, 300 mM NaCl, 250 mM 

imidazole. The protein was further purified with size exclusion chromatography with S-75 Superdex 

10/300 column (GE Healthcare) in 30 mM Tris pH 7.5 and 300 mM NaCl.  
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The Fc-His6-pETDuest plasmid was expressed from E. coli BL21(DE3) in LB media at 37 °C and 

induced at an OD600 of 0.6 with 1 mM IPTG, and expressed for 4 hours at 30 °C, after which the 

cells were collected and suspended in 20 mM sodium phosphate pH 8.0, 150 mM NaCl, and 10 mM 

imidazole buffer. Cells were lysed via sonication and supernatant collected, and Fc-His6 protein was 

purified with Ni2+-NTA resin (Qiagen), further purification by size exclusion chromatography was 

done with S-200 Superdex 10/300 column in 1x PBS buffer. 

 

2.2 Assay Development 

We utilized the AlphaScreen technology [28] to develop a binding assay to screen inhibitors for the 

LRRTM2-NRXN interaction. All AlphaScreen assays were performed using AlphaPlate384 

(PerkinElmer) plates. The AlphaScreen reaction consisted of LRRTM2-Fc, His-NRXNβ1, Protein A 

donor and nickel chelate acceptor beads (PerkinElmer) (Fig. 1B) in assay buffer containing 30 mM 

HEPES (pH 7.5), 150 mM NaCl, 1 mg/mL bovine serum albumin (BSA) and 0.2 mM CaCl2. The 

plates were incubated at room temperature and protected from light after addition of the AlphaScreen 

beads. Luminescence was monitored with Tecan infinite M1000 Pro plate reader using the 

AlphaScreen detection module with 100 ms excitation and 300 ms integration times.  

 

Assay sensitivity was first tested in order to establish the optimal concentrations of LRRTM2-Fc and 

His-NRXNβ1, and to obtain a maximal AlphaScreen signal (hook point). A reaction mixture of 

LRRTM2-Fc and His-NRXNβ1 was prepared in a total volume of 15 µl, followed by incubation at 

room temperature for 2 hours. After the incubation, the AlphaScreen beads were added according to 

the recommended protocol (PerkinElmer): first 5 µl of the acceptor beads were added, followed by 

30 min of incubation and addition of 5 µl of the donor beads, followed by 60 min incubation. The 

final concentrations of LRRTM2-Fc and His-NRXNβ1 were 0-0.5 µM, and 50 µg/ml of the acceptor 

and donor beads. 

 

2.3 Assay optimization 

After assay development, we optimized different assay parameters that included protein incubation 

time, order of addition of beads, bead concentration and bead incubation time. First, we optimized 

the incubation time for the interaction of LRRTM2-Fc and His-NRXNβ1 by testing different times 

from 5 minutes to 2 hours. Second, the order of addition of the beads was determined with three 

sequences, (a) both beads were added together, followed by 90 min of incubation; (b) the acceptor 

beads were added and incubated for 30 min, followed by addition of the donor beads and addition 
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incubation for 60 min, and (c) the donor beads were added and incubated for 30 min, followed by 

addition of the acceptor beads and addition incubation for 60 min. Third, the concentration and 

incubation times of the beads was optimized by testing different concentrations: 20, 10, 5 and 2.5 

µg/ml and incubation times from 60 minutes to 7 hours. Finally, we measured the DMSO tolerance 

of the assay in the  0–10% DMSO concentration range.    

 

Ethylene glycol-bis(2-aminoethylether)-N,N,N’,N’-tetra acetic acid (EGTA) was tested as a positive 

control to inhibit the LRRTM2-NRXN interaction. We measured the effect of 100 µM - 1 mM 

EGTA on the interaction using the selected final assay conditions. For the validation, we also tested 

if EGTA in the range of 50 nM to 5 mM is able to quench the AlphaScreen signal. For this we used 

the commercial AlphaScreen Biotinylated-His peptide assay (PerkinElmer). 

  

2.4 Assay validation  

We validated the assay by measuring the repeatability of the maximal and minimal signals between 

different plates, wells and days. Altogether during 3 days, we measured five plates containing 

maximal and minimal signals; one plate on days 1 and 2, and three plates on day 3. Each plate 

included forty maximal and minimal signal points. Variations of well-to-well, plate-to-plate, and 

day-to-day were calculated as coefficients of variations (CVs). The quality of the data was measured 

with common statistical parameters: signal-to-noise ratio (S/N), signal-to background-ratio (S/B), 

and screening window coefficients (Z’) [30, 31]. 

 

2.5 Library and counter screening  

We screened MicroSource Spectrum compound library with 2000 compounds (obtained from 

FIMM, University of Helsinki) at a single concentration (100 µM). 250 nl of 10 mM compounds 

were transferred to the assay plates with Labcyte Echo 550 acoustic dispenser. 15 µl of the mixture 

of 50 nM LRRTM2-Fc and 50 nM His-NRXNβ1was added to the assay plates. The plates were 

incubated for 5 minutes at room temperature, followed by addition of acceptor and donor bead 

mixture (10 µl, final concentration of 5 µg/ml) according to the optimized procedure, and incubated 

further at room temperature for 3 hours. Each screening plate contained blank wells (AlphaScreen 

beads only), positive controls (inhibition by 0.2 mM EGTA) and negative controls (0% inhibition; no 

EGTA or added compounds). 

 

The counter screening assay was performed in order to rule out false positives obtained from the 

library screening. For this we used Fc-His6 protein, which binds both donor and acceptor beads 
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creating an AlphaScreen signal. Compounds decreasing the signal are considered as false-positives 

due to interaction with the beads or quenching the signal. We performed the counter screening using 

100 µM compound concentration. 15 µl of 16.5 nM Fc-His6 in 25 mM HEPES pH 7.5, 150 mM 

NaCl, 1 mg/ml BSA was added to plate wells followed by addition of 10 µl of AlphaScreen bead 

mixture containing 5 µg/ml of the acceptor and donor beads. The plate was incubated at room 

temperature for 3 hours before reading. 

 

2.6 Potency Measurement  

Concentration response curves for the hit compounds were measured in quadruplicates from 300 µM 

to 1 µM using quarter-logarithmic dilutions. The compounds were transferred to the assay plate 

using Labcyte Echo 550 acoustic dispenser, followed by addition of 15 µl of the mixture of 50 nM 

LRRTM2-Fc and 50 nM His-NRXNβ1. The plates were incubated for 5 minutes at room 

temperature, followed by addition of 10 µl of acceptor and donor bead mixture (final concentration 5 

µg/ml) and an additional incubation at room temperature for 3 hours. The dose-response curves were 

fitted using a four-parameter nonlinear regression analysis (sigmoidal dose-response fitting with 

variable slope) with GraphPad Prism version 5.03 for Windows (GraphPad Software). 

 

2.7 Cell culture and cell-based binding assay  

For cell-based binding assays, we used the mouse LRRTM2 cDNA cloned into pEGFP-N1 plasmid 

vector [20]. We employed the in-cell western blot method to detect the LRRTM2-NRXNα1 

interaction on cell surface with the Odyssey Infrared Imaging System (LI-COR Biosciences) 

following manufacturer’s recommendations. In this assay LRRTM2 was expressed in HEK293T 

cells as a C-terminal GFP-fusion to enable visualization of the protein expression on 96-well cell 

culture plates. The soluble NRXNα1-Fc was added on the cells in a 96-well plate and binding was 

detected with anti-human Fc antibody and signal per well was read with the Odyssey Imaging 

system.  

 

For the transfection of LRRTM2-pEGFP-N1 into Human embryonic kidney 293T (HEK293T) cells, 

cells were grown to 90% confluency on a T75 flask using DMEM media with 10% FBS 

(ThermoFisher) at 37 °C and 5% CO2. These cells were washed in 1x PBS and trypsinized in 0.05% 

Trypsin-EDTA pH 7.4. Cells were seeded into a poly-L lysine-coated 96 well plate at approximately 

20 000 cells/well, and they were allowed to grow 24 hours at 37° C until they reached confluency of 

90%. After 24 hours, the cells were transfected with LRRTM2-pEGFP-N1 (400 µg/well) plasmid 
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and polyethylenimine (1.2 µg/well). The transfected cells were incubated at 37° C for 48 hours and 

preceded for in-cell western blot assay.  The LRRTM2-GFP fusion protein expression in transfected 

cells was detected with FloidTM Cell Imaging system (ThermoFischer). For the in-cell western blot 

experiment, LRRTM2-pEGFP-N1 transfected cells were washed with 1xPBS and blocked with EGB 

buffer [22] (168 mM NaCl, 2.6 mM KCl, 10 mM HEPES pH 7.2, 2 mM CaCl2, 2 mM MgCl2, 10 

mM D-glucose, and 5% BSA) for 2 hours at room temperature with slow shaking. Blocking buffer 

was removed and cells were covered in 50 µl of NRXNα1-Fc diluted in EGB buffer with 1% BSA. 

The cells were incubated overnight at 4° C with gentle shaking. Next day, cells were washed with 

1xTBS buffer and were then incubated with 50 µl of 1:200 dilution of secondary antibody (goat anti-

human IgG IRDye 800CW) in EGB buffer with 1% BSA. Following a 60 minute incubation at room 

temperature with gentle shaking, plates were washed with 1xTBS, and further scanned using LI-

COR Odyssey (169 µm resolution and medium quality) with channel (800 nm) intensity of 8. For 

assay development, initially different concentrations of NRXNα1-Fc (10 nM to 1000 nM) were 

used, and the minimum concentration which gave the saturation signal was used for the in-cell 

western blot assay of LRRTM2 and NRXNα1-Fc in presence of inhibitor compounds.  

 

Inhibition assay was performed in triplicates (n=3) and each assay was repeated three times. The 

compounds pyrithione zinc, benzoxiquine, indole-3-carbinol and 6-methoxyharmalan were ordered 

from Sigma-Aldrich, and iodoquinol, pyrvinium pamoate and econazole nitrate were ordered from 

MedChemExpress. For inhibition assay, HEK293T cells transfected with LRRTM2-pEGFP-N1 in 96 

well plate was washed with 1 x PBS and blocked with EGB buffer with 5% BSA for 2 hours at room 

temperature. After blocking for 2 hours, 0.8 µM NRXNα1-Fc diluted in EGB buffer with 1% BSA 

and 300 µM hit compounds were added in each well. Inhibition of the LRRTM2-NRXNα1-Fc 

interaction was detected using 1:200 dilution of goat anti-human IgG IRDye 800CW secondary 

antibody and detected with the LI-COR Odyssey Imaging system. As negative controls for the assay 

we used i) 2 µM purified receptor protein tyrosine phosphatase σ-Fc fusion protein (RPTPσ-Fc) or 

ii) 1-2 µM purified Fc-fragment added on to the cells, and iii) plain HEK293T-cells without 

LRRTM2 expression, but with addition of 1 µM NRXNα1-Fc or iv) HEK293T cell expressing 

LRRTM2 but without soluble ligands added. RPTPσ-Fc was purified as described previously [32]. 

 

3. Results 
 

3.1 Binding assay for LRRTM2-NRXN β-1 interaction 
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In this paper, we have aimed to establish a screening assay for identification of compounds inhibiting 

trans-synaptic interaction of the postsynaptic LRRTM2 with presynaptic NRXNs. Previously, no 

such assay has been reported for synaptic adhesion proteins. The assay measures the proximity-

generated luminescence using the AlphaScreen technology. An LRRTM2-Fc construct bound to 

Protein A donor beads, and a His-NRXNβ1 construct lacking the SS4 splice site, binding to the 

nickel-chelate acceptor beads were used for the assay. The interaction of LRR domain of LRRTM2 

with the LNS domain of NRXN brings the protein donor beads close to the acceptor beads, and the 

proximity of the beads leads to the transfer of energy due to excitation of donor beads, resulting in 

luminescence emission by acceptor beads at 520-620 nm (AlphaScreen signal, Fig. 1B) [28]. Loss of 

LRRTM2-NRXNβ1 interaction is read as a decrease of in total luminescence in comparison to the 

control. The assay sensitivity was first tested to establish the optimal concentrations of LRRTM2-Fc 

and His-NRXNβ1 to obtain the maximal AlphaScreen signal. This was obtained with 50 nM of 

LRRTM2-Fc and 50 nM of His-NRXNβ1 (Fig. 2A).  

 

Once we had established the assay, we optimized different assay parameters including protein 

incubation time, order of addition of donor and acceptor beads, bead concentration and bead 

incubation time. We first optimized the incubation time for the interaction of LRRTM2-Fc and His-

NRXNβ1. No major difference in the AlphaScreen signal was detected with increase in incubation 

time, therefore we selected the shortest 5 min protein incubation time (Fig. 2B). To increase 

robustness of the assay, we tested different order of addition of beads (Fig. 2C). Acceptable signal 

window for screening was obtained after mixing the donor and acceptor beads followed by addition 

of bead mixture in the reaction mixture containing LRRTM2-Fc and His-NRXNβ1, and further 

incubation for 90 minutes. In order to decrease the running cost of the assay, we tested different 

beads concentrations and incubation times, and acceptable signal was detected with 5 µg/mL of the 

acceptor and donor bead mixture, followed by incubation time of 3 hours (Fig. 2D and 2E). The aim 

was to achieve robust screening assay with high signal-to-noise ratio, with reduced the running costs. 

We found the following protocol to be most optimal for the assay in terms of the both robustness and 

cost-effectiveness: 15 µl of a reaction solution containing 50 nM LRRTM2-Fc and 50 nM of His-

NRXNβ1was incubated for 5 minutes, before adding 10 µl of 5 µg/mL the AlphaScreen acceptor and 

donor bead mixture followed by incubation of 3 hours before signal detection. This would result in 

approximately 0.15$ costs per well for larger assays (e.g. with tens of thousands of conditions) 

excluding compound and dispensing costs. 
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The LRRTM2-NRXN interaction has clearly been shown to be calcium dependent in cell-based 

assays [3, 17]. Therefore, we tested if we could use the calcium chelator EGTA as a control for 

inhibition the interaction. Experiments showed that addition of 0.5 mM EGTA decreased the 

AlphaScreen signal down to ca. 5% indicating loss of the LRRTM2-NRXN interaction at 0.2 mM 

Ca2+-ion concentration, while initial 2 mM CaCl2
.used in the assay was too high to be inhibited (Fig. 

2F). It was further verified with Biotinyled-His peptide (Biotinylated-HIS, PerkinElmer) that  EGTA 

did not interfere with the assay itself and EGTA indeed did not quench the AlphaScreen signal at the 

concentrations used through e.g. Ni-chelation (Fig. 2G).  

 

We also measured the affinity for the LRRTM2-NRXNβ1 interaction with purified soluble proteins 

by surface plasmon resonance (SPR) in presence of Ca2+, and found it to be similar to that reported 

recently by others [20], with a Kd-value of 6.6 µM. We further confirmed by SPR that in presence of 

2 mM EGTA in the buffer the affinity was lost, as only 2.4% of signal was left at 50 µM NRXNβ1 

concentration (Supplementary material, Suppl. Fig. 1).  

 

Next, since DMSO is a commonly used solvent for the compound libraries, we tested the DMSO 

tolerance of the assay. The assay was found to tolerate DMSO up to the tested 10% concentration. 

No substantial deviation in signal between control reaction without DMSO and the 10% DMSO 

containing reaction was found (Fig. 2H). 

 

In order to validate the quality of the assay for screening, we tested the changes in the plate-to-plate 

and day-to-day minimal and maximal signals with five different plates. The average Z’ value for all 

the plates was 0.82 with high signal-to-noise ratio, indicating that the screening assay was robust 

(Table 1). 

 

Table 1. Assay performance. 

S/B 14.9 ± 0.9 

S/N 19.0 ± 4.9 

Z’  0.82 ± 0.04 

Well to well CV (max/min,%) 5.04  ± 0.98 / 8.35 ±  5.8 

Plate to plate CV (%) * 4.7 

Day-to-day CV (%)* 4.17 (2.83-6.59) 

* Calculated from Z’-values (see text for definitions). 
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3.2 Screening and potency measurements 

We next performed a validatory screening assay using the MicroSource Spectrum library of 2000 

compounds, which includes drugs, natural products, and bioactive compounds. The compounds were 

used at 100 µM concentration. The assay performed well in screening, with an average Z’ of 0.8 ± 

0.02 over six plates calculated from the control wells. We obtained 92 initial hits with a 4.6% hit-

rate, all of which decreased the AlphaScreen signal at least to same extent as EGTA, indicating 

potential inhibition of LRRTM2-NRXNβ1 interaction (Fig. 3A).   

 

However, as the hit-rate was high due to the high concentration used, and likely due to the nature of 

the validatory compound library, we also controlled for false positives through counter screening.  

Possible mechanisms of non-specific interference with the AlphaScreen signal that the compounds 

could manifest include 1) by acting as singlet oxygen quenchers, 2) by interfering with the 

production of luminescence signal itself, or 3) binding to the donor or acceptor beads and interfering 

with the ligand tag (His-tag or Fc-fragment) binding. In order to rule out false positives we 

performed a counter screen with the initial 92 hits and His-tagged Fc-fragment binding both the 

donor and acceptor beads in absence of the actual target interactor proteins to monitor for the 

AlphaScreen signal. From this we obtained 12 hits that did not interfere with the output signal, out of 

the initial 92 hits (Fig. 3B), 80 compounds thus interfered with the assay and were excluded. These 

were not analyzed further, but the 12 hit compounds that did not interfere in the counter screen were 

taken further for validation. The final hit-rate based on the set hit limit after counter screening was 

thus 0.6%. 

 

Dose-response curves were measured for further validation for the 12 hit compounds (Fig. 4), which 

revealed four of the initial hits (solasodine, meta-cresyl acetate and harmaline and penicillin) as 

actual false positives. The IC50 values for the remaining eight hit compounds were between 30-76 

µM (Fig. 4 & 5).  These were further checked for pan-assay interference compounds (PAINS) 

patterns to recognize possible frequent false hits, and  from these early hit compounds only 

iodoquinol and pyrvium pamoate (Fig. 5) contained recognizable PAINS and aggregation patterns 

when analysed with the ZINC server (http://zinc15.docking.org/patterns/home/) [33]. Hence, the 

results on these two compounds should be further validated, in case these compounds are used and 

developed further.    
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3.3 Cell binding assay 

Next, we performed an in-cell western blot assay to detect the binding affinity of NRXNα1-Fc to 

LRRTM2 expressed on HEK293T cells in order to use this as an orthogonal assay for the 

verification of inhibition of binding, as explained in the methods. We measured the apparent binding 

affinity of soluble dimeric NRXNα1-Fc to LRRTM2 on the cell surface to be 154 ± 18 nM (Fig. 

6A). The negative controls showed no detectable signal (Fig. 6C), which confirmed the assay is 

specific for detecting the interaction between LRRTM2 and NRXNα1.  

 

For the orthogonal in-cell western assay for inhibitor hit validation, we used 0.8 µM NRXNα1-Fc as 

ligand for LRRTM2 interaction. We measured the inhibition of LRRTM2 and NRXNα1-Fc 

interaction with 300 µM AlphaScreen hit compounds, that were separately ordered for this assay. 

The assay shows average inhibition rate of 82% for econazole nitrate, 60% for pyrithione zinc,  54% 

for 6-methoxyharmalan, 54% for iodoquinol, 47% for benzoxiquine, and 46% for pyrvinium 

pamoate, while indole-3-carbinol did now show any inhibition. As a control, we tested for inhibition 

by harmaline for which the IC50-value could not be determined, and it showed only 3.3 % inhibition 

of the signal also in the cell-binding assay (Fig. 6B). Cetylpyridinium chloride was excluded from 

further assays due its unlikeliness to be a specific protein binder or inhibitor based on the detergent-

like structure. 

 

4. Discussion 

The presynaptic NRXNs are in particular attractive targets as they have multiple post-synaptic 

ligands [3], and several if not all of these proteins have been linked genetically to neuronal disorders, 

most probably as their misexpression will lead to synapse loss and imbalance of inhibitory/excitatory 

synapse-ratio and regulation of signaling in the brain. Direct studies of the effects of these proteins in 

neuronal culture or tissue in animal models remain quite challenging, and hence small molecule 

chemical probes would be highly valuable in understanding the functions of various adhesion 

complexes at the cellular or tissue level and in animal models.   

 

In the current paper we establish a high-throughput method to assay for inhibitors of the synaptic 

NRXN-LRRTM interaction. The developed AlphaScreen-assay detecting protein-protein interaction 

is suitable for finding initial hits inhibiting neuronal synaptic adhesion protein interactions. Assay 

performs well based on statistical parameters (Table 1) highlighting the robustness and applicability 
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for screening of large compound libraries in singlets. The assay tolerates DMSO (up to at least 10%), 

enabling high compound concentrations to be screened. Here we used high compound concentrations 

in the validatory screening, in order to demonstrate both the performance and possibility for 

identifying hit compounds. High concentration of compounds challenges most screening assays 

through quenching the signal and affecting assay reagents. AlphaScreen assay suffers also from 

interference resulting in a large number of false positives in the assay setup and that makes counter-

screening strategy necessary [34] . We used an Fc-His6 construct for counter screening, and indeed 

found out that majority of the compounds inhibiting the signal where not inhibiting protein-protein 

interaction, but affected the signal by another mechanism.  

 

In addition to counter screening it is important to measure the discovered hit effectively with an 

orthogonal assay. With the described cell-based assay we demonstrated that AlphaScreen assay can 

indeed be used to discover function compounds interfering with the LRRTM2-NRXN interaction. 

The assay can be readily automated for high-throughput screening and it can be also miniaturized for 

the high density microplates. The obtained current hit compounds have relatively low affinities based 

on their IC50-values and are limited in their usefulness as chemical probes. Based on the orthogonal 

assay however, several compounds have specific inhibitory potential also in cellular environment 

and varied in the efficacy: while indole-3-carbinol had no effect, econazole nitrate was clearly the 

most promising scaffold from this compound selection in a cell-based assay (Fig. 6). Furthermore, 

some of the compounds active in the cell-based assay are rather small (e.g. benzoxiquine and 6-

methoxyharmalan, Fig. 5) and could possibly be optimized for increased potency. An interesting 

finding is the very different effects of harmaline and 6-methoxyharmalan, which are isomers of each 

other, yet, harmaline (7-methoxyharmalan) was not active in the validatory assays.  

 

The current study provides proof-of-principle for the assay and shows that it can be utilized for 

screening, although larger compound sets are needed to find specific high affinity binder scaffolds 

for further development. Together with the cell binding assay we provide a set of tools for the 

discovery of protein-protein interaction inhibitors. The assay was developed for LRRTM2-NRXN 

interaction, but could be generalizable for other adhesion proteins. This is in particular true for other 

NRXN-ligand interactions, e.g. neuroligins and LRRTMs recognize the same binding epitope on 

NRXNs [14, 35, 36]. Overall, to our knowledge this is the first published account on development of 

inhibitors towards synaptic adhesion protein interactions. 
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Figure Legends 

 

Figure 1. Protein organization, interactions and the assay principle. A) Domain organization of 

LRRTM2 and NRXN. Main features of LRRTM2 and NRXN are indicates as: L(1-6), LNS domains 

1-6; E(1-3), EGF domains 1-3; and P; PDZ binding motif. LRRTM2: white ellipsoids mark the LRR 

repeats 1-10, and grey ellipsoids the LRRNT and LRRCT regions. LRRTMs bind to the LNS6 

domain of NRXN-α/NRXN-β. B) Schematic representation for the interaction of LRRTM2 with 

NRXN using the AlphaScreen assay. The interaction of LRR domain of LRRTM2 (red) with the 

LNS domain of NRXN (blue) brings the protein A donor beads closer to nickel chelate acceptor 

beads. The excitation of protein A donor beads at 680 nm convert the ambient oxygen to a excited 

singlet state. If an acceptor bead is within the proximity, energy is transferred from the singlet 

oxygen to the Acceptor bead, subsequently culminating in light production at 520-620 nm 

(AlphaScreen signal).  

 
Figure 2. AlphaScreen assay development and optimization. A) The sensitivity of the 

AlphaScreen assay was tested with concentration series of LRRTM2-Fc and His-NRXNβ-1. The 

maximal signal (hook point) was determined for the assay, measured in counts per second (cps).  The 

reaction mixture containing LRRTM2-Fc and His-NRXNβ-1were incubated for 2 hours, followed by 

the addition of acceptor beads and incubation for 30 minutes, after which donor beads was added 

with additional incubation for 60 minutes. B) The protein incubation time of LRRTM2-Fc and His-

NRXN β-1 was tested for different time periods using developed AlphaScreen assay. C) The order of 

addition of the AlphaScreen beads was tested: (a) both beads were added together, followed by 90 

min of incubation; (b) the acceptor beads were added and incubated for 30 min, followed by addition 

of the donor beads and addition incubation for 60 min, and (c) the donor beads were added and 

incubated for 30 min, followed by addition of the acceptor beads and addition incubation for 60 min. 

D) The optimal bead concentration was determined by incubating reaction mixture containing 

LRRTM2-Fc and His-NRXN β-1for 5 minutes and addition of various beads concentration and 

additional incubation for 90 minutes. E) The effect of bead incubation time to the signal level was 

optimized using a 5 µg/mL each bead concentration. F ) The effect of addition  of 50 nM to 5mM 

EGTA on the beads using the standard AlphaScreen kit (Biotinylated-HIS, PerkinElmer) G) 

Inhibition of NRXN-LRRTM2 interaction by EGTA at either at 2 mM (squares) or 0.2 mM Ca2+ 

(dots) concentration. In the experiment 50 nM each of LRRTM2-Fc, His-NRXNβ-1and 100 µM to 1 

mM EGTA were mixed and incubated for 5 minutes before the addition of donor/acceptor beads. 

The results are presented as %-signal compared to the EGTA-free control. H) DMSO tolerance 
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assayed with reaction mixture containing 50 nM each of LRRTM2-Fc and His-NRXN β-1 and 0-

10% DMSO, incubated for 5 minutes before the addition of donor and acceptor beads. The results 

are presented as signal percentage compare to the 0% DMSO control.  

 

Figure 3. Primary screen results and counter screen results for identification of false positives. 

A) LRRTM2-Fc and His-NRXNβ-1 interaction screened against the MicroSource Spectrum 

compound library (%-inhibition plotted against compounds). Relative inhibition of the compounds 

calculated from the positive controls (0% inhibition) on the plate. The hit limit was set to >88% 

inhibition, based on the EGTA control (88% inhibition). B) A counter-screen experiment with the 

positive hit compounds from the initial screen with a Fc-His6 protein to rule out non-specific 

inhibition due to interference with interaction with the beads.  Compounds that showed less than 

30% inhibition (dashed line) were taken forward. 

 

Figure 4. Dose–response measurements to determine IC50-values of the hit compounds. A) 

iodoquinol B) cetylpyridinium chloride C) benzoquinone D) pyrithione zinc E) indole-3-carbinol F) 

pyrvinium pamoate G) econazole nitrate H) 6-methoxyharmalan. Dose–response measurements were 

done with hit compounds obtained after counter screen experiment. The compounds were assayed in 

quadruplicates using quarter -logarithmic dilutions. Determined IC50-values are given as inserts in A 

to H for each compound.  

 

Figure 5. Structures of the hit compounds. Compounds are labeled A-H as in Figure 4. A) 

iodoquinol B) pyrithione zinc C) benzoquinone D) pyrvinium pamoate E) indole-3-carbinol  F) 

econazole nitrate G) 6-methoxyharmalan. Molecular weight of each compounds in Daltons (Da) is 

included in brackets.  

 

Figure 6. Cell-based binding assay and validation of the hit compounds with orthogonal in-cell 

western blot assay. A) Cell binding assay of soluble NRXNα-1-Fc (0-1000nM) to LRRTM2 on the 

HEK293T cells. Detected in-cell western blot signals (right) and equilibrium binding curve (left). B) 

Validation of the hit compounds from primary screen with the in-cell western blot assay. Detected 

in-cell western blot signals (right) and intensities detected in the presence of 300 µM compounds 

(left). Relative intensity of the assays was calculated from the positive control (100% intensity). C) 

Controls for the cell binding assay. From left; plain (HEK293T) cells (“-/-“) , HEK293T cells with 

LRRTM2 transfected (“LRRTM2/ -“), plain HEK293T cells with ligand NRXNα-1-Fc added (“ - / 
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NRXN”) , HEK293T (LRRTM2 expressed) with ligand RPTPs-Fc added (“LRRTM2/RPTPσ”), and 

HEK293T (LRRTM2 expressed) with ligand NRXNα-1-Fc added (“LRRTM2/NRXN”).  
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Highlights  

 

 

 

• AlphaScreen assay for inhibitors of synaptic adhesion protein function is described 

 

• Optimized assay was robust for screening of NRXN-LRRTM interaction inhibitors 

 
•  Eight early hit compounds were discovered 

 
• Orthogonal cell assay is described which can be used to confirm the potency of hits 

 
 


