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ABSTRACT
Introduction: Drug repurposing provides a cost-effective strategy to re-use approved drugs for new 
medical indications. Several machine learning (ML) and artificial intelligence (AI) approaches have been 
developed for systematic identification of drug repurposing leads based on big data resources, hence 
further accelerating and de-risking the drug development process by computational means.
Areas covered: The authors focus on supervised ML and AI methods that make use of publicly available 
databases and information resources. While most of the example applications are in the field of 
anticancer drug therapies, the methods and resources reviewed are widely applicable also to other 
indications including COVID-19 treatment. A particular emphasis is placed on the use of comprehensive 
target activity profiles that enable a systematic repurposing process by extending the target profile 
of drugs to include potent off-targets with therapeutic potential for a new indication.
Expert opinion: The scarcity of clinical patient data and the current focus on genetic aberrations as 
primary drug targets may limit the performance of anticancer drug repurposing approaches that rely 
solely on genomics-based information. Functional testing of cancer patient cells exposed to a large 
number of targeted therapies and their combinations provides an additional source of repurposing 
information for tissue-aware AI approaches.
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1. Introduction

Drug repurposing (also called drug repositioning, reprofiling, 
redirecting, and drug rediscovery [1]) is a strategy for identify-
ing new therapeutic purposes for approved drugs in medical 
indications beyond the scope of their original therapeutic use 
[2]. Drug repurposing offers various advantages over the de- 
novo development of entirely new drugs, including the possi-
bility to speed-up the discovery process and to reduce failure 
rates in the clinical development and testing phases [3]. In 
particular, drug repurposing makes it possible to avoid safety 
evaluation in preclinical models and humans, hence leading to 
potentially lower overall development costs, if the safety test-
ing has been completed for the original indication and it 
displays dose-compatibility with the new indication. 
Traditionally, drug repurposing success stories have mainly 
resulted from largely opportunistic and serendipitous findings 
[4]; for example, sildenafil citrate was originally developed as 
an antihypertensive drug, but later repurposed by Pfizer and 
marketed as Viagra for the treatment of erectile dysfunction 
based on retrospective clinical experience, leading to massive 
worldwide sales.

Over recent years, a number of computational approaches 
have been developed for a more systematic drug repurposing 
process. Popular information sources for in-silico drug repur-
posing include, for instance, electronic health records, gen-
ome-wide association analyses or gene expression response 
profiles, pathway mappings, compound structures, target- 

binding assays, and other phenotypic profiling data [4]. 
Several systematic review articles on the use of computational 
approaches are available [4], which cover also machine learn-
ing (ML) and artificial intelligence (AI) algorithms, such as 
those based on network propagation, matrix factorization, 
and completion, as well as recently developed deep learning 
models [5–8]. Databases and other resources supporting in- 
silico drug repurposing, such as Drug Repurposing Hub [9] and 
RepurposeDB [10], have also been recently surveyed [11]. 
There are also excellent reviews and perspectives on the use 
of ML and AI approaches in the overall drug discovery and 
development process [12,13], as well as in the lead optimiza-
tion or designing of completely new molecules [14].

Our focus here is on supervised ML and AI methods that 
make use of publicly available databases and information 
sources. A particular emphasis is placed on the use of com-
prehensive target activity profiles of drugs as a resource for 
a systematic repurposing process, in which an existing drug is 
found to have an off-target effect or a newly recognized on- 
target effect for a new indication, hence providing sufficient 
evidence to take it forward for further development and com-
mercial exploitation. Such target-based drug repurposing 
makes use of the fact that most drugs are not specific for 
any single target, but rather display a wide spectrum of target 
activity. In cancer applications, some of the unintended off- 
targets correspond to known anticancer targets, while others 
may reveal new cancer vulnerabilities [15]. However, we note 
that drug repurposing is not by any means limited to 
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anticancer applications alone, but covers various medical indi-
cations [16]. For instance, a recent review surveyed how exist-
ing drugs may have activity against SARS-CoV-2 to be readily 
applied to treat COVID-19 patients [17,18]. Similarly, target 
repositioning [19] can be used in the field of infectious dis-
eases, where a drug is used to inhibit the ortholog target 
proteins in other species [20,21].

The repurposing process is often initiated after phenotypic 
observations of adventitious polypharmacological drug activ-
ities. For instance, we observed a surprising activity for axiti-
nib, an endothelial growth factor receptor (VEGFR) inhibitor 
approved for advanced renal cell carcinoma, in primary 
chronic myeloid leukemia (CML) and acute lymphoblastic leu-
kemia (ALL) cells [22]. Since these cancers are driven by the 
oncogenic BCR-ABL1 fusion protein, we hypothesized that 
axitinib might bind to BCR-ABL1. This was confirmed by struc-
tural and functional analysis, and interestingly, axitinib bound 
to T315I-mutated BCR-ABL1 with roughly 40 times higher 
affinity than to the wild-type BCR-ABL1. Currently, axitinib is 
being investigated in an alternating regimen with bosutinib 
for CML patients (NCT02782403). Subsequent reports, how-
ever, have indicated that axitinib may lose potency when 
additional compound mutations emerge in BCR-ABL1 [23], 
and the drug does not seem to be effective against ponatinib- 
resistant T315I-mutated cells [24]. These observations raise the 
question whether one could use AI algorithms to predict at 
least some of the potential drawbacks already before the 
repurposing process enters the clinical stage.

2. Data resources for in-silico drug repurposing
We start by going through selected data and information 
resources that we find useful for in-silico drug repurposing. 
Rather than providing a systematic review of all developed 
resources, we mainly focus on information sources motivated 
by the axitinib repurposing study from the previous section, 
including resources for drug–target activity data, cell-based 
pharmacogenomic data, and chemical structure information. 
For more comprehensive surveys of various data resources, 
the reader is referred to recent reviews [4–6,11]. We will dis-
cuss the use of these resources in Section 3.

2.1. Drug–target interaction resources

Comprehensive knowledge about the intended on-targets 
and non-intended or so-called off-targets of a drug is 
important for understanding its underlying mechanism of 
action (MoA), and for modeling its efficacy or toxicity in 
various tissue and cancer types. As shown in the motivat-
ing example of axitinib study, drug–target activity profiles 
are highly valuable in drug repurposing [22]. In contrast to 
proprietary resources, which were used e.g. in Drug 
Repurposing Hub, we promote here the use of publicly 
available drug–target activity resources and how these 
can be useful in training supervised ML models for in- 
silico off-target predictions and drug repurposing. Table 1 
highlights 18 selected compound/target databases, along 
with various features such as the number of compounds, 
targets and interactions covered, as well as whether API is 
provided for programmatic data access for AI-based 
explorations. For simplicity, we have divided the com-
pound–target activity data types into three categories 
according the type of activity data they contain: quantita-
tive bioactivity data (e.g. from multi-dose Kd, Ki, or IC50 

assays), binary interactions (both active and inactive 
drug–target pairs), and unary interactions (only active 
drug–target pairs). These categories determine whether 
regression or classification algorithms are applicable for 
the target activity predictions, and whether one has true 
positive as well as true negative examples for training of 
the supervised prediction models.

Most of the in-silico DTI prediction studies are based on 
one of the resources listed in Table 1 [42]. So far, ChEMBL is 
the most popular target activity resource for regression 
modeling (i.e. prediction of quantitative drug–target binding 
affinities). Classification algorithms try to predict whether 
a drug has sufficient potency against the given target. In 
addition to the problem formulation (regression vs. classifi-
cation), we have argued that at least the following factors 
should be taken into consideration in in-silico target predic-
tion studies to avoid reporting overoptimistic drug–target 
activity prediction results: (i) multiple evaluation datasets 
specific to particular drug and target families to evaluate 
the application domain of the prediction model, (ii) evalua-
tion procedure, where nested cross-validation is preferred 
over the standard cross-validation, and (iii) prediction pro-
blem setting (i.e. whether the training and test sets of com-
pound-target pairs share common drugs and targets, only 
drugs or targets, or neither, where the latter is often the 
most challenging case) [43]. Obviously, the more compre-
hensive is the information present in the databases, e.g. in 
terms of drug classes and target families, the better cover-
age the prediction algorithm will have. The predicted target 
activities should also be experimentally validated before 
suggesting for drug repurposing [44]. Accordingly, we 
recently organized an IDG-DREAM Challenge, where the 
teams used bioactivity data from ChEMBL, DTC, and 
BindingDB to make quantitative target activity predictions, 
which were later validated using subsequent experimental 
assays [42].

Article highlights

● AI-guided drug repurposing benefits from large drug–target binding 
affinity resources for compound off-target activity predictions

● Repurposing leads needs to be further explored in cell-based phar-
macogenomic resources for drug efficacy and toxicity predictions

● A wide variety of supervised machine learning algorithms have been 
developed for drug–target activity and drug response predictions

● There is critical need for context-specific modeling of tissue-specific 
drug mode of action for more actionable drug repurposing 
applications

● Scattered location of heterogeneous preclinical pharmacogenomic 
data limits our ability to use these data in AI-based drug repurposing

This box summarizes key points contained in the article.
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Table 1. Drug–target interaction resources for target activity predictions.

Resource Website Brief description
Data 
type* Compounds Targets Interactions Mut Vis API Ref

BindingDB https://www.bindingdb. 
org/bind/index.jsp

Comprehensive resource of quantitative 
bioactivity data in terms of IC50, AC50, Kd 

and Ki assays.

B ≥0.7 M ≥7.2 K ≥1.2 M √ [25]

Cancer Genome 
Interpreter (CGI)

https://www.cancergen 
omeinterpreter.org/

Supports the identification of tumor 
alterations that drive the disease and flag 
those that may be therapeutically 
actionable.

C 310 837 [26]

ChEMBL https://www.ebi.ac.uk/ 
chembl/

Most compressive manually-curated 
bioactivity data from HTS of compound 
activities.

B, C ≥1.9 M ≥12 K ≥15.5 M √ √ [27]

ChemicalChecker https://chemicalchecker. 
org/

Provides processed, harmonized and 
integrated bioactivity data.

B 0.8 M >20 K [28]

DrugCentral http://drugcentral.org/ Provides information on active chemical 
entities and drug mode of action

A, B ≥4.5 K ≥11 K ≥15 K √ [29]

DrugTargetCommons 
(DTC)

http://drugtargetcom 
mons.fimm.fi/

Manually curated bioactivity data along 
with protein classification into super- 
families, clinical phase and adverse 
effects as well as disease indications.

B, C 1.6 M 13 K 14.8 M √ √ [30]

Drug Target Profiler 
(DTP)

http://drugtargetprofiler. 
fimm.fi/

Contains drug target bioactivity data and 
implements network visualizations. DTP 
also contains cell-based response profiles 
of the drugs and their clinical phase 
information.

A, B 0.9 M 6 K 4.4 M √ √ [31]

DrugBank https://www.drugbank. 
ca/

Combines drug information (i.e. chemical, 
pharmacological and pharmaceutical) 
with drug target information (i.e. 
sequence, structure, and pathway).

A ≥12 K ≥5 K ≥18.9 K √ [32]

DGIdb http://www.dgidb.org/ Drug–target interactions mined from > 30 
trusted sources, including DrugBank, 
PharmGKB, Chembl, Drug Target 
Commons, Therapeutic Target Database.

A 9501 ≥41 K ≥29 K √ [33]

GtopDB http://www.guidetophar 
macology.org/

Contains quantitative bioactivity data for 
approved drugs and investigational 
compounds.

B ≥9.7 K ≥2.9 K ≥31.2 K √ [34]

GLIDA http://pharminfo.pharm. 
kyoto-u.ac.jp/services/ 
glida/

Contains drug–target interactions only for 
G-protein-coupled receptors (GPCRs), 
which is the largest drug class today.

A ≥24 K ≥3.7 K ≥39.1 K [35]

PubChem https://pubchem.ncbi. 
nlm.nih.gov/

Provides information on chemical 
structures, identifiers, chemical and 
physical properties, biological activities, 
patents, health, safety, and toxicity data.

C ≥95 M ≥58 K ≥264.8 M √ [36]

PDSP Ki https://pdspdb.unc.edu/ 
pdspWeb/

Contains bioactivity data in terms of Ki 

especially for GPCRs, ion channels, 
transporters and enzymes.

B >15 K 1146 >93 K [37]

Probes & Drugs Portal https://www.probes- 
drugs.org/home/

A public resource joining together focused 
libraries of bioactive compounds (e.g. 
probes, drugs, specific inhibitor sets)

B ≥67 K ≥8.7 K ≥0.96 M [38]

PharmGKB https://www.pharmgkb. 
org/

In addition to drug–target information, 
contains comprehensive data of effects of 
genetic variation on drug response.

A 694 ≥900 √ [39]

SuperTarget http://insilico.charite.de/ 
supertarget/

Contains information only on active drug– 
target interactions and drug side effects.

A ≥0.2 M ≥6.2 K ≥0.33 M [40]

SwissTargetPrediction http://www.swisstarget 
prediction.ch/

Contains information on predicted targets 
of drugs based on similarity principle 
through reverse screening.

A ≥0.38 M ≥3 K ≥0.58 M [80]

STITCH http://stitch.embl.de/ Contains known and predicted interactions 
of chemicals and proteins, as well as 
pathways and drug–drug interactions.

A, B ≥0.43 M ≥9.6 M √ √ [41]

Drug/target data resources listing the number of compounds, number of targets, and the number of drug–target interactions. Mut, the database contains drug 
activities also for mutant proteins; Vis, implements network visualizations for drug–target interaction networks. *Data type A, contains only active drugs for the 
targets; B, contains quantitative bioactivity data for drug–target binding affinity; C, contains both active and inactive drug–target pairs. Table contents adapted 
with permission from Oxford University Press from review paper [11]. 
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2.2. Cell line and patient-derived omics resources

Drug–target bioactivity information offers possibilities to make 
informed predictions whether the explored compounds have 
the possibility to modulate a given target or not, and to what 
extent, but this information is typically cell context indepen-
dent. However, since the drug MoA is often highly cell con-
text-specific, it is important to actually measure (or predict) 
the activity of the compound against the cell model or target 
using cell-based assays. Cell line omics resources contain drug 
response data along with multi-omics profiles for established 
cancer cell lines (in vitro models), whereas patient-derived 
resources include pharmacogenomic information on the 
patient primary cells tested against various drugs (ex-vivo 
models). Table 2 lists a selected set of drug response and 
omics resources, along with additional features, such as num-
ber of drugs, cell lines, patient samples, and whether the 
resource contains API or drug response visualizations, useful 
for drug repurposing AI-applications.

The drawback of most of these resources is that they do 
not provide programmatic API (except for GDSCtools), and 
that pharmacogenomic data typically come solely from one 
lab or study (except for CellMinderCDB and PharmacoDB that 
integrate data from multiple studies). However, these data are 
freely available either through GUI (downloadable in many 
cases) or using batch queries. The patient-derived primary 
cell data are still limited in these resources, but at least 

PharmacoDB is currently extending to ex-vivo data as well. 
We do not consider here more complex preclinical models, 
such as patient-derived xenografts (PDXs) or other animal 
models, as the pharmacogenomic data from these models 
are still rather scarce for AI developments. However, the cell- 
based omics resources also enable one to predict patient 
responses to drug treatments, such as those available in The 
Cancer Genome Atlas (TCGA) resource; see Section 3.3.

2.3. Biological pathway information resources

Biological pathways facilitate the understanding of the inner 
working of the cells and the cellular responses of the drugs, 
and can therefore aid the drug repurposing efforts. For 
instance, mapping of the protein targets of drugs either to 
the same or orthogonal pathways may help to reveal the MoA 
of both multi-targeted monotherapies and combination thera-
pies. However, various databases may contain different repre-
sentations of the same biological pathways, which leads to 
variable results of statistical target pathway enrichment ana-
lysis and predictive models in the context of precision medi-
cine [54]. In this section, we highlight six pathway databases 
that contain information of compound target pathways, along 
with their characteristics in terms of the number of proteins, 
compounds, pathways and interactions (Table 3). 
PathwayCommons [55] and KEGG Pathways [56] are currently 
the two most comprehensive databases in terms of the 

Table 2. Cell-based pharmacogenomic resources for drug efficacy predictions.

Resource Website Brief description Compounds
Cell 
lines

Patient 
cells Vis API Ref

Connectivity Map (CMAP) https://clue.io/ 
cmap

A genome-scale library that catalogs transcriptional responses to 
chemical and genetic perturbation. CMAP contains 1 M response 
profiles resulting from perturbations of multiple cell types.

≥19 K 9 3176 √ [45]

Cancer Therapeutics 
Response Portal (CTRP)

https://portals. 
broadinstitute. 
org/ctrp/

Multidimensional profiles to explore the associations between 
groups of small molecules and groups of cancer cell lines at 16 
concentrations.

481 860 [46]

Cancer Cell Line 
Encyclopedia (CCLE)

https://portals. 
broadinstitute. 
org/ccle

Large cancer cell line collections broadly capture the genomic 
diversity of human cancers and provide valuable insight into 
anti-cancer drug responses.

24 1457 √ [47]

CellMinerCDB https://discover. 
nci.nih.gov/ 
cellminercdb/

An interactive web-application that simplifies the access and 
exploration of cancer cell line pharmacogenomic data across 
different sources.

≥20 K 1000 √ [48]

Dependency Map 
(DepMap)

https://depmap. 
org/portal/

Resource for systematic identification of biomarkers of genetic 
vulnerabilities and drug sensitivities in hundreds of cancer 
models.

4686 578 √ [49]

Genomics of Drug 
Sensitivity in Cancer 
(GDSC)

http://www.can 
cerrxgene.org/

Screening of >1000 genetically characterized human cancer cell 
lines with a wide range of anti-cancer therapeutics from multiple 
tissue origins.

265 1001 √ √ [50]

gCSI NA In vitro drug testing, RNA sequencing and single-nucleotide 
polymorphism (SNP) array analysis of 675 human cancer cell 
lines.

16 675 [51]

LINCS http://www.linc 
sproject.org/ 
LINCS/

LINCS data portal contains details about the drug assays, cell types, 
and perturbagens that are currently part of the library, as well as 
software that can be used for analyzing the data

>41 K 1127 [45]

NCATS OpenData Portal https://ncats.nih. 
gov/preclini 
cal/repurpose

COVID-19-related drug repurposing data and screening a panel of 
SARS-CoV-2-related assays for all approved drugs

>4,895 6 [52]

Profiling Relative 
Inhibition 
Simultaneously in 
Mixtures (PRISM)

https://depmap. 
org/portal/ 
prism/

PRISM is an experimental approach to screen thousands of drugs 
across hundreds of human cancer cell line models.

≥18 K 750 [53]

PharmacoDB https://pharma 
codb.pmge 
nomics.ca/

A web-application assembling the largest in vitro drug screens in 
a single database, allowing users to easily query the harmonized 
data from multiple studies released to date.

759 1691 √ [123]

Cell-based drug response and omics resources listing the number of compounds, number of established cell lines, and number of patient-derived primary cell 
samples. Vis, resource implements visualizations for compounds. Table contents adapted with permission from Oxford University Press from review paper [11]. 
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number of reactions or interactions. Four out of six pathway 
databases also provide programmatic access for data using 
APIs, making them easy for systematic AI model development.

2.4. Chemical structure and protein property data 
resources

The chemical structural descriptors and target protein proper-
ties provide important information for AI and ML models for 
drug repurposing. There are various online web-servers and 
toolkits to calculate chemical descriptors for drugs and target 
properties of proteins. For instance, ChemCPP calculates ker-
nel functions between the compounds [61]. EDragon software 
computes more than 1600 topological and geometrical 
descriptors for the chemicals [62]. The Open Babel toolkit 
provides several useful features including substructure search 
and calculation of fingerprints of the chemicals [63]. RDKit 
provides features including 2D depiction, molecular serializa-
tion, fingerprint generation, and similarity analysis for the 
compounds [64]. Finally, PyDPI is python package that com-
putes molecular descriptors for drugs and structural and phy-
siochemical properties for proteins [65].

There are also web-tools that help to draw chemical struc-
tures, compute physiochemical properties and chemical fin-
gerprints. These tools have opened-up various applications for 
in-silico drug–drug interaction prediction [66] and for drug 
toxicity prediction [67]. ChemSketch is a package to draw 
chemical structures including organics, organometallics, poly-
mers, and Markush structures [68]. KNIME comprises features 
for molecule conversion into various formats, generation of 
signatures, fingerprints, and molecular properties [69]. PaDEL- 
Descriptor is a software for calculating molecular descriptors 
and 10 different types of fingerprints [70]. BlueDesc is a free 
tool, which computes 36 different types of fingerprints [71]. 
However, most of the fingerprint calculation methods are 

derived from the following five fingerprints: MACCS, 
PubChem, FP2-based, Atom Pair, and ECFP4.

Table 4 lists selected open-access databases that contain 
chemical structural information, such as InchiKeys and SMILES, 
and that implement options for structure or sub-structural 
searches either through GUI or API, which we find useful for 
in-silico drug repurposing.

3. Supervised ML and AI algorithms for drug 
repurposing

3.1. Algorithms for drug–target interaction predictions

To accelerate the costly and time-consuming experimental 
mapping approach to identify DTIs by means of biochemical 
experiments, various computational approaches have been 
developed over the past decade, providing a systematic 
means for prediction of potential DTIs [77–79]. Concomitant 
with the experimental drug–target discovery efforts that pro-
vide either quantitative or qualitative compound–target inter-
actions data (see Table 1), computational tools are being built 
to predict activities against new molecular targets for drug 
repurposing. For instance, ML models are using orthogonal 
drug–target space deconvolution, where the molecular struc-
tures of both the drugs and targets help to guide the in-silico 
predictions [80,81]. Another research line has utilized crowd-
sourcing-based AI and ML methods to effectively predict tar-
get activities for kinase inhibitors [42]. Similarly, Cichonska 
et al. adopted pairwise multi-kernel learning to predict the 
compound-kinase target-binding affinities [82]. Extending to 
other target families, Li et al. predicted compound activity 
classes for enzyme, ion channel, G protein-coupled receptors 
(GPCRs), and nuclear receptors using substructure chemical 
fingerprints and rotation forest classifier [83].

There are excellent review articles that provide 
a comprehensive overview of AI- and ML-based methods for 

Table 3. Pathway resources for understanding compounds’ mode of action.

Resource Website Brief description Proteins Species Compounds Pathways Interactions API Ref

PathwayCommon http://www. 
pathwaycommons. 
org/

Pathways including biochemical reactions, 
complex assembly and physical interactions 
involving proteins, DNA, RNA, small molecules 
and complexes.

18,490 ≥414 11,437 4,794 2.3 M √ [55]

Kyoto 
Encyclopedia 
of Genes and 
Genomes 
(KEGG)

http://www.genome. 
jp/kegg/

A reference knowledge base that integrates 
genomic, chemical and systematic functional 
information.

33 M 6,221 18,749 ≥541 627,677 √ [56]

Reactome http://www.reac 
tome.org

Manually curated and peer-reviewed pathway 
database with bioinformatics tools for the 
visualization, interpretation and analysis of 
pathway knowledge.

>10 K 16 1,854 2,477 >13 K √ [57]

MetaCyc http://metacyc.org Curated database of experimentally elucidated 
metabolic pathways from all domains of life.

13,613 3,161 16,631 2,847 >16,810 [58]

SIGNOR 2.0 https://signor.uni 
roma2.it/

SIGnaling Network Open Resource 2.0 (SIGNOR 
2.0) is a public repository that stores signaling 
information as binary causal relationships 
between biological entities.

5,229 995 49 >25 K √ [59]

PathBank https://pathbank. 
org/

PathBank is designed specifically to support 
pathway elucidation and pathway discovery in 
transcriptomics, proteomics, metabolomics and 
systems biology.

8,993 10 78,488 1,10,234 176,535 [60]

Table contents adapted with permission from Oxford University Press from review paper [11]. 
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DTI prediction. For instance, Chen et al. [84] categorized the 
learning methods into nearest neighbor methods, bipartite 
local models, matrix factorization methods, and semi- 
supervised methods, and discussed pros and cons of the method 
classes. There are also reviews on various classes of DTI predic-
tion methods; for instance, Sachdev et al. provided a review on 
feature-based chemogenomic methods for DTI prediction [85], 
and Wu et al. discussed the pros and cons of network-based 
methods for predicting DTIs [86]. They further sub-divided net-
work-based methods into categories such as network-based 
inference (NBI) methods, similarity inference methods, random 
walk-based methods, and other network-based methods. As 
specific examples of network methods, DTiGEMS+ is 
a computational approach to predict DTIs using graph mining 
and similarity-based techniques [87]. Mongia et al. proposed 
method that is based on multi-graph regularized nuclear norm 
minimization to identify interactions between drugs and target 
proteins from three inputs: known DTI network, similarities over 
drugs, and those over targets [88]. DGraphDTA utilizes graph 
neural networks to obtain deeper representations for drug–tar-
get activity prediction, based on structural information of both 
molecules and proteins, where the two network graphs of drug 
molecules and proteins are built up, respectively, [89].

Recently, several deep learning methods have been devel-
oped for predicting DTIs, including convolutional network 
model that first uses a graph convolutional network to learn 
the features for each drug–protein pair, and then based on 
these feature representations as inputs, utilizes deep neural 
network to classify between positive and negative DTI classes 
[90]. These in-silico methods provide a deeper understanding 
of the factors affecting DTI prediction, and have opened novel 
strategies for computational drug repurposing.

Accurate DTI prediction has the potential to not only com-
plement the experimentally mapped DTI networks but also to 
provide novel drug repurposing leads by extending the target 
space of already approved drugs [91]. There are also in-silico 
methods that make use of DTI mappings or predictions 
directly in the drug repurposing process. For instance, Mei 
et al. have proposed a multi-label learning framework to find 
new uses for approved drugs, and conversely to discover new 
drugs for known target proteins [92]. In their framework, each 
drug is treated as a class label and its target proteins as class- 
specific training data to train l2-regularized logistic regression 

model. Stratified multi-label cross-validation showed that 
84.9% of the known target proteins were correctly predicted 
at least for one drug, and the proposed framework correctly 
recognized 86.73% of the independent test DTIs from 
DrugBank. These results show that the proposed framework 
could generalize well in the large drug space without requir-
ing the information of drug chemical structures and target 
protein structures. The recently introduced iDrug method 
integrates drug repositioning and DTI prediction into one 
coherent model via cross-network embedding [93]. The 
embedding approach provides a principled way to transfer 
knowledge across the drug–target–disease relationships, and 
in doing so, it enhances the prediction accuracy for both of 
the prediction tasks (i.e. DTI and drug–disease relationships). 
The performance of the iDrug method was tested on various 
real-world datasets, covering multiple disease types, hence 
making it widely applicable to repurpose drugs for several 
indications. For more targeted application, Molecule 
Transformer-Drug Target Interaction (MT-DTI) is a pre-trained 
deep learning-based drug–target model to identify commer-
cially available drugs that could act on viral proteins for the 
inhibition of SARS-CoV-2 [94]. Through a detailed analysis, the 
authors showed that atazanavir, an antiretroviral medication 
for treatment of HIV, proved to be the most potent drug with 
an inhibitory potency of Kd = 94.94 nM against the SARS-CoV 
-2, followed by remdesivir (Kd = 113.13 nM), efavirenz (Kd 

= 199.17 nM), ritonavir (Kd = 204.05 nM), and dolutegravir 
(Kd = 336.91 nM).

3.2. Algorithms for molecular docking and molecular 
dynamic simulations

Molecular docking is a widely used in-silico method in struc-
ture-based drug design, due to its ability to predict the bind-
ing-conformation of small molecule ligands to the appropriate 
target-binding site [95–97]. The drawback of molecular dock-
ing is that the 3D structures of many target proteins have not 
yet been resolved, which is required for running the docking 
simulations. Furthermore, the accuracy of docking-based 
methods decreases in cases where the number of known 
ligands for a protein is not sufficient [98]. Regardless of these 
limitations, there are several examples of successful docking- 
based drug off-target activity predictions [99]. For instance, 

Table 4. Chemical structure databases using InchiKey searches or structure drawings.

Resource Website Brief description Compounds API Ref

ChemSpider http://www. 
chemspider.com/

Provides chemical structures and physiochemical properties of small and large 
molecules.

≥67 M √ [72]

ChemDB http://cdb.ics.uci.edu/ Provides chemical structures and molecular properties. ChemDB also predicts 
3D structures of molecules.

≥65 M [73]

ChEMBL https://www.ebi.ac.uk/chembl/ Chemical structures, bioactivity data, physiochemical properties and clinical 
development status of the compounds.

≥1.9 M √ [27]

Cambridge Structural 
Database (CSD)

https://www.psds.ac.uk/csd A collection small-molecule organic and organometallic crystal structures that 
can be visualized and downloaded.

≥1 M [74]

ChemIDplus https://chem.nlm.nih.gov/che 
midplus/chemidlite.jsp

Contains names, synonyms and structures of the chemicals. ChemIDplus also 
includes links to other databases and resources.

≥0.1 M [75]

PubChem https://pubchem.ncbi.nlm.nih. 
gov/

Provides chemical structures as well quantitative bioactivity data and clinical 
development status of the compounds.

≥90 M √ [36]

ZINC http://zinc15.docking.org/ An open-access database of commercially available compounds and their 
structures for virtual screening.

≥230 M [76]
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antipsychotic agent thioridazine was found among 1500 FDA- 
approved compounds to possess anti-inflammatory activity by 
binding and inhibiting IκB kinase, which is critical for the NF- 
ΚB pathway [100]. Similarly, virtual docking accurately pre-
dicted inhibitory activity of five compounds from a collection 
of more than 1400 FDA-approved drugs against Pseudomonas 
aeruginosa quorum-sensing (population-wide virulence) 
mechanisms, with antipsychotic agent pimozide displaying 
potent in vitro activity in inhibiting bacterial virulence gene 
expression [101]. Moreover, AI is also emerging as an increas-
ingly accurate approach for predicting the 3D structures of 
proteins from their amino-acid sequences [102,103].

We recently implemented VirtualKinomeProfiler, an effi-
cient computational platform that captures distinct represen-
tations of the chemical similarity space of the druggable 
kinome for speeding-up drug discovery and repurposing pro-
cess for highly promiscuous kinase inhibitors [104]. An ensem-
ble support vector machine (eSVM) algorithm enabled activity 
classification for >30 M compound-kinase pairs, using which 
we carried out in-silico activity predictions for >151 K com-
pounds in terms of their drug repositioning and lead molecule 
potential. Experimental testing with biochemical assays vali-
dated 19 of the 51 of the predicted interactions, leading to 
a 1.5-fold increase in precision and 2.8-fold decrease in false- 
discovery rate, which demonstrated its potential to expedite 
the kinome-specific drug discovery process. There are also 
several other case studies, where structural information of 
chemicals has been directly utilized for drug repurposing 
applications in various target classes. For instance, CATNIP is 
ML model for drug repurposing that requires only similarity 
information of the molecules based on their structural, target, 
or pathway information [105]. Another model utilized chemi-
cal fingerprint information to predict that 22 FDA-approved 
drugs have potential activities on heart failure, and confirmed 
experimentally 8 of the 22 of the cardioprotective activities 
in vitro [106].

3.3. Algorithms for cell and tissue-based drug response 
predictions

Once the target activity potential of a drug has been predicted 
or established, either by using DTI prediction algorithms or 
molecular docking methods, the next important prediction 
task involves the investigation whether the drug has efficacy 
in a relevant cell context. This is critical because biochemical 
compound affinity and structure-based modeling provide only 
hypotheses of compound activity against a particular disease 
target, and these predictions need to be further investigated 
using a relevant disease model. In anticancer applications, 
cancer cell line models and patient-derived primary cells are 
widely used for such predictive purposes (see Table 2).

As an early community effort and an example for other 
in-silico precision oncology studies, NCI-DREAM Drug 
Sensitivity Prediction Challenge benchmarked in 2013 
a number of supervised ML algorithms based on genome- 
wide omics and drug response profiles of 53 human breast 
cancer cell lines [107]. Notable, the predictive models that 
made use of multiple omics profiles of the cancer cell lines 

had the best performance, suggesting that the genomic, 
transcriptomic, epigenomic, and proteomic profiles each 
provides complementary predictive signal for the cell-based 
drug response modeling. The best-performing approach was 
based on the Bayesian efficient multiple kernel learning 
(BEMKL) model [108], a kernelized regression model that 
makes use of multi-task and multi-omics learning, where 
the pairwise similarities of cell lines in terms of the multiple 
omics profiles are first represented as separate profile ker-
nels, and a multiple kernel learning algorithm then calcu-
lates a combined kernel as the weighted sum of all profile- 
specific kernels. Finally, multi-task learning allows one to 
estimate the BEMKL model simultaneously for all the drugs 
as related prediction tasks.

After the DREAM Drug Sensitivity Prediction Challenge, 
hundreds of prediction algorithms have been developed for 
matching cancer cell omics features to the cell-based drug 
efficacies. Some common features of the best-performing 
methods can be inferred from two recent systematic analyses 
in cancer cell lines datasets [109,110]. Both of these compara-
tive analyses focused on multi-omics and multi-target learning 
approaches, and concluded that matrix-factorization and ker-
nel-based methods performed best in drug response predic-
tion across various cancer cell lines. More specifically, 
similarity-regularized matrix factorization (SRMF) approximates 
the drug response matrix by the product of two low-rank 
similarity matrices; one that uses the cell line omics profiles, 
and the other that is based on drug structural similarities 
[111]. Similarly, pairwise multi-kernel learning (pairwiseMKL) 
method integrates heterogeneous cell line and chemical struc-
ture information into a single model, enabling the joint ana-
lysis of the kernel mixture weights for the different 
information sources [82]. Importantly, SRMF and pairwiseMKL 
methods showed robust and improved performance in various 
cell line datasets and in terms of different evaluation metrics 
[109,110].

However, there are still some critical missing pieces that 
need to be addressed in these drug efficacy prediction meth-
ods when used for drug repurposing. The first challenge is 
how to identify panels of multi-omics features that are pre-
dictive of the drug efficacy in the target cancer type. While 
matrix factorization and kernel-based methods often provide 
high predictive accuracy, they cannot directly identify clinically 
actionable biomarkers among the genome-wide omics profiles 
[112]. Toward feature selection, the use of drug–target activity 
information has been shown to improve the predictive perfor-
mance and interpretability of drug efficacies [113]. Recent 
systematic analysis demonstrated how rather simple feature 
selection methods enabled identifying relative small feature 
panels using prior information on targets and pathways of 
molecularly targeted drugs, whereas wider feature sets were 
required for drugs affecting general cellular mechanisms (i.e. 
standard chemotherapies) [114]. These results indicate that 
there are both target-based and non-target-based features 
that can be predictive of specific drug efficacies in various 
cancer types (see Figure 1).

The next challenge is how to best predict treatment out-
comes in cancer patients (e.g. clinical in vivo responses to 
treatments), rather than merely drug efficacies in established 
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cell lines (in vitro responses), as the former enables straightfor-
ward translational precision oncology applications and drug 
repurposing opportunities. A recent systematic analysis inves-
tigated the importance of a number of modeling components 
for the clinical treatment response prediction of cancer 
patients [115]. As expected, the sample size of the patient 
response data was found as an important determinant for 
the predictive modeling, along with experimental noise within 
the data that can easily deteriorate the models’ robustness. 
Rather surprisingly, the in vitro drug treatment profile was not 
among the most predictive feature when predicting the clin-
ical response of the same drug in actual cancer patients. These 
results indicate that even cell line models of high accuracy do 
not necessarily translate to accurate predictions of drug 
response processes in cancer patients in vivo [115].

For drug repurposing, there is an added need for accu-
rate tissue-specific drug efficacy predictions to study the 
efficacy of a drug in a relevant tissue-of-origin. Recent 
models, such as tissue-guided LASSO, make use of infor-
mation on samples’ tissue-of-origin to improve in vivo pre-
diction performance [116]. It was shown that tissue-guided 
LASSO improves the clinical predictions and was able to 
distinguish resistant and sensitive patients for selected 
drugs. Furthermore, the method identified genes asso-
ciated with the drug response, including known targets 
and pathways involved in the drugs’ MoA. Surprisingly, 
the use of information on the tissue-of-origin did not 
improve the prediction results, suggesting that there is 
still room for improvement for tissue-aware drug efficacy 
predictions. We further argue that one needs to consider 
several drug response-informative gene sets when 

predicting the potential efficacy and toxicity of specific 
drugs, some of which are illustrated in Figure 1. Finally, 
one needs to avoid inhibiting so-called anti-targets, i.e. 
proteins that are involved in normal cellular processes, 
which may lead to severe toxic side effects if modulated.

4. Conclusion

This review described the use of supervised ML and AI models, 
with accompanying data resources, for three levels of prediction 
tasks related to drug repurposing process. First, biochemical 
bioactivity predictions for new DTIs; second, cell-based com-
pound response predictions for drug–cell line/patient interac-
tions; and third, drug repurposing predictions by means of novel 
drug–disease relationships. Each of these levels is important for 
understanding the MoA of the repurposed drugs in terms of their 
on/off target potencies and tissue-based response profiles. In 
addition to the identified protein targets, repurposed drugs 
may reveal additional molecular targets and pathways that can 
be further exploited therapeutically using other drugs or their 
combinations. Polypharmacological effects originating either 
from combination therapies or multi-targeted drugs are impor-
tant for treating complex diseases, including many cancers and 
viral infections, but the potential toxicity of polytherapies needs 
to be carefully predicted using computational and experimental 
models. We also note that the entire field of drug repurposing is 
at risk of publication bias in the sense that much of the content of 
the various data and information sources is derived from pub-
lished research; this introduces biases, e.g. well-known drugs 
tend to have more publications, and therefore weighting evi-
dence more heavily than for lesser-studied drugs.

Figure 1. Schematic illustration of overlaps between cancer-related gene sets. There are both target-based and non-target-based features that can be predictive of 
specific drug efficacies in various cancer types. The cancer genes and protein targets should be studies separately for each tissue type (e.g. breast cancer) and 
inhibitor class (e.g. HER2 inhibitors). Selective efficacies are preferred in the repurposing predictions, as tissue of origin-independent targets may lead to toxic side 
effects.
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5. Expert opinion

In this section, we highlight our opinion on drug repurposing 
specifically in cancer research, where large-scale cancer 
sequencing efforts are being carried out to identify genomic 
aberrations specific to each tumor type. These genomic data 
are invaluable to match drug therapies targeting specific aber-
rations, either using the drug’s intended medical indications or 
repurposed drugs. However, even though the extent of geno-
mic testing and the diversity of our pharmacological portfolio 
are constantly increasing, we argue that genomics alone is 
currently insufficient to identify therapeutic options for the 
majority of patients, especially for those with advanced dis-
ease or cases without known cancer drivers and rare cancer 
types. The scarcity of clinical patient data and focus on genetic 
aberrations as the primary drug targets may further limit the 
accuracy of those drug repurposing approaches that rely 
solely on genomics-based information. We and others believe 
that this limitation can be partly addressed by functional 
testing of cancer patient cells exposed to large number of 
both targeted and conventional therapies using drug testing 
assays in patient-derived cell models ex vivo, and later verified 
in patient-derived organoids (PDO) or xenograft (PDX) models 
in vivo [117–119]. Cell-based drug testing enables identifica-
tion of patient-selective target activities, rather than broadly 
toxic effects that often lead to severe toxic side-effects. 
Compared to the genomics-only approach, predictions from 
drug testing are often pharmaceutically actionable. However, 
we believe that integration of mutation profiling and drug 
sensitivity testing leads to improved, and sometimes unex-
pected drug repurposing options (e.g. axitinib for CML and 
ALL [17]).

In addition to the data from in vitro or ex vivo model 
systems (Table 2), there is also a need for flexible computa-
tional models that can speed-up the early investigation of 
both the therapeutic and toxic effects of small molecules 
before entering into lengthy and costly animal or clinical 
studies. Rather than using single outcomes to rank the in- 
silico predictions, we argue that it is important to carefully 
dissect various readouts, such as those quantifying efficacy, 
toxicity, or synergy of multi-targeting mono- and combinator-
ial therapies in the pre-clinical model systems, when develop-
ing safe and effective therapeutic regimens for cancers and 
other diseases [120]. The use of both in-silico and preclinical 
pharmacogenomic predictions can greatly reduce the exten-
sive cost, time and risks associated with drug discovery pro-
cess, before entering clinical trials. While a large number of in- 
silico drug repurposing approaches have been developed, 
including AI and ML models, what is unclear, however, is 
how useful these methods are in producing clinically effica-
cious repositioning hypotheses. Most computational studies 
perform analytic validation, where the prediction results are 
compared to existing biomedical knowledge. When examining 
the repositioning literature, however, there appeared no con-
sistent practices for validation of the methods [121]. To 
address this unmet need, Brown and Patel reviewed the com-
putational repositioning literature, focusing on the studies in 
which authors claimed to have validated their work. Their 
analysis revealed a widespread variation in the types of 

strategies, predictions made, and databases used as ‘gold 
standards’ [121]. This suggests that further developments are 
needed to make the in-silico drug repurposing predictions 
more actionable.

However, the heterogeneous preclinical data are currently 
housed in various locations. Drug–target bioactivity profiles 
are being collected in drug/target databases (Table 1), which 
provide insights into the potential use of small-molecule com-
pounds to modulate various on- and off-targets, including 
mutant targets and wild-type proteins. Cell-based drug 
response phenotypic data (Table 2) provide further evidence 
that the compound is actually effective in a given cell context 
or patient-derived sample (and not broadly effective in many 
cell types, which may be a sign of toxic effects). Finally, drug– 
target potencies and gene–drug associations can be linked to 
tumor genomic profiles and associated lifestyle and clinical 
data to make informed decisions about therapeutic efficacies, 
hence leading to translationally actionable drug repurposing 
opportunities. The scattered location of the preclinical phar-
macogenomic data means that these information sources are 
currently available in formats that are not interoperable with 
each other, greatly limiting our ability to use these data in 
a systematic manner in AI-based predictive models. In the 
past, the lack of common standards for cancer models and 
chemical compounds, as well as meta-data for quantitative 
drug response profiles, further prevented the wider transla-
tional re-use of such data. Recent data harmonization efforts, 
such as DrugTargetCommons [122] for compound-target 
activities, PharmacoDB [123] for cell-based drug response pro-
files, as well as Cell Model Passports [124] and Xeva [125] for 
in vitro, ex vivo and in vivo models, are likely make their 
integrated use more straightforward in the AI models.

Although genomic sequencing and cell-based drug testing 
technologies continue to improve, wider adoption of genomics- 
based precision oncology and functional drug repurposing in 
the clinics has been held back by several logistic, regulatory and 
financial issues. For instance, even though the off-target poten-
cies of approved drugs should lead to rather straightforward 
drug repurposing opportunities, it is often unclear for the aca-
demic researcher how to deal with approvals of off-label use of 
drugs or investigational molecules that show potency in patient- 
derived samples ex vivo, perhaps in combination with agents 
from other pharma companies. At the regulatory level, new 
types of clinical trials may be needed to get molecules approved 
sometimes for very narrow and specific indications, e.g. basket 
trials for molecularly targeted patient subgroups, or umbrella 
trials for rare cancer types. Furthermore, sharing and re-use of 
the pharmacogenomic data for new research or translational 
purposes is often complicated by uncertainties at the legal or 
ethical level, as different countries adopt divergent legislations. 
For translational applications, working with early phase diagnos-
tic patients, rather than with the late stage relapsed cases, 
should lead to improved and sometimes also more durable 
outcomes. For routine cancer diagnosis and prognosis, cell- 
based drug sensitivity testing ex vivo cannot be implemented 
for each cancer patient, which calls for accurate response pre-
dictive biomarkers inferred, for instance, by computational AI 
models. This requires collaborative and multidisciplinary effort 
between experimental scientists, computational biologists and 
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clinicians or translational researchers to solve these and other 
future challenges.

A recent comprehensive review of the time and cost expen-
ditures of drug repurposing clinical trials in acute myeloid 
leukemia (AML) debunked the common dogmas associated 
with drug repurposing, namely (1) drug repurposing saves 
time, (2) phase I clinical trials can be skipped, and (3) repur-
posed drugs are safe as their toxicity profile is known [126]. 
However, the realities are much more complex, and in parti-
cular the toxicities of drug combinations can be unexpected, 
and should not be underestimated. For example, combination 
with cholesterol medication pravastatin with idarubicin and 
cytarabine resulted in multi-organ failure in AML patients 
[126]. Thus, it remains vital to develop better AI and ML 
models to predict combinatorial toxicities. Furthermore, there 
is a need to further improve our capacity to understand the 
effects of tumor subclonality and adaptive responses to drug 
responses, repurposed or otherwise. Notably, a recent report 
featuring single-cell DNA sequencing of 123 primary AML 
samples revealed simultaneous co-evolution of several inde-
pendent but leukemogenic tumor subclones in each patient 
sample [127], implying a requirement for multi-targeting treat-
ments for a lasting tumor control using either drug combina-
tions or promiscuous drugs [128]. Fortunately, computational 
tools are being developed to help us decipher the multiple 
cellular drug targets and their associated pathways, with the 
aim to better predicting toxicities and targeting multiple sub-
diseases in the patient. Open-access, crowdsourced web- 
based resources to complement missing drug activity annota-
tions [122], combined with AI-based predictive models and 
analytic visualizations should facilitate manual efforts by auto-
mated data mining approaches toward more systematic and 
accurate drug repurposing leads.

We also note that many computational repurposing predic-
tions are mechanistic or statistical only, and will require separate 
evaluation for specific medical indications and patient popula-
tions. It is well known, for instance, that drug metabolism and 
pharmacodynamics are influenced by gender, age, concomitant 
medications and food intake, as well as underlying physiological 
states, and thus drug repurposing from one indication to 
another still necessitates a thorough understanding of the indi-
vidual and disease-specific clinical safety parameters [129,130]. 
FDA maintains both the ‘passive’ postmarketing pharmacovigi-
lance database FAERS (FDA Adverse Event Reporting System) 
and the ‘active’ sentinel system, which collect information on 
adverse events that may occur in patients outside the clinical 
trials in the long term. In cancer treatment, for instance, genetic 
alterations that may negatively or positively influence drug 
efficacy in the malignant tissue are being collected in databases 
such as OncoPDSS [131], but the germline changes, and epige-
netic and non-genetic physiological states that impact efficacy 
and safety outside the tumor context have not been similarly 
annotated. Yet, single nucleotide variation and other genetic 
alterations can combine with physiological states to deviate 
drug responses. For instance, individual nucleotide variances in 
drug metabolizing CYP450 cytochrome family enzymes that 
alter drug metabolism, such as CYP2C19, drastically influence 
both efficacy and safety of several drugs, such as antiplatelet 
agent clopidogrel. Taken together, while the process of drug 

repurposing can be initiated through drug–target or pathway 
interactions, the actual clinical translation will depend on several 
additional biological and physiological checkpoints.

Funding

The work was supported by the Academy of Finland under Grants 310507, 
313267, 326238; iCAN Digital Precision Cancer Medicine Flagship under 
Grant 1320185 and Helse Sør-Øst under Grant 2020026.

Declaration of interest
The authors have no other relevant affiliations or financial involvement 
with any organization or entity with a financial interest in or financial 
conflict with the subject matter or materials discussed in the manuscript 
apart from those disclosed.

Reviewer Disclosures

Peer reviewers on this manuscript have no relevant financial or other 
relationships to disclose.

ORCID
Tero Aittokallio http://orcid.org/0000-0002-0886-9769

References

Papers of special note have been highlighted as either of interest (•) or of 
considerable interest (••) to readers.

1. Langedijk J, Mantel-Teeuwisse AK, Slijkerman DS, et al. Drug repo-
sitioning and repurposing: terminology and definitions in 
literature. Drug Discov Today. 2015;20: 1027–1034. Elsevier Ltd.

2. Ashburn TT, Thor KB. Drug repositioning: identifying and develop-
ing new uses for existing drugs. Nat Rev Drug Discov. 
2004;3:673–683. 

• This study describes representative repositioning success stor-
ies and challenges in the field.

3. Pantziarka P, Bouche G, Meheus L, et al. The repurposing drugs in 
oncology (ReDO) project. Ecancermedicalscience. 2014;8.

4. Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: progress, 
challenges and recommendations. Nat Rev Drug Discov. 
2019;18:41–58. 

•• This review present several approaches for systematic drug 
repurposing

5. Luo H, Li M, Yang M, et al. Biomedical data and computational 
models for drug repositioning: a comprehensive review. Brief 
Bioinform. 2020. Online ahead of print. DOI:10.1093/bib/bbz176.

6. Sam E, Athri P. Web-based drug repurposing tools: a survey. Brief 
Bioinform. 2019;20:299–316.

7. Lotfi Shahreza M, Ghadiri N, Mousavi SR, et al. A review of 
network-based approaches to drug repositioning. Brief Bioinform. 
2018;19:878–892.

8. Zhao K, So HC. Using Drug Expression Profiles and Machine 
Learning Approach for Drug Repurposing. In: Vanhaelen Q, editor. 
Computational Methods for Drug Repurposing. Methods in 
Molecular Biology, vol 1903. Humana Press, New York, NY; 2019. 
https://doi.org/10.1007/978-1-4939-8955-3_13

9. Corsello SM, Bittker JA, Liu Z, et al. The Drug Repurposing Hub: a 
next-generation drug library and information resource. Nat Med. 
2017;23:405–408. 

• This study describes a novel tool providing up-to-date indica-
tions for approved drugs

10. Shameer K, Glicksberg BS, Hodos R, et al. Systematic analyses of 
drugs and disease indications in RepurposeDB reveal 

986 Z. TANOLI ET AL.

https://doi.org/10.1093/bib/bbz176
https://doi.org/10.1007/978-1-4939-8955-3_13


pharmacological, biological and epidemiological factors influen-
cing drug repositioning. Brief Bioinform. 2017;19:656–678.

11. Tanoli Z, Seemab U, Scherer A, et al. Exploration of databases and 
methods supporting drug repurposing: a comprehensive survey. 
Brief Bioinform. 2020. Online ahead of print. DOI:10.1093/bib/ 
bbaa003. 

•• This review presents pros and cons of 102 public resources 
supporting drug repurposing.

12. Vamathevan J, Clark D, Czodrowski P, et al. Applications of machine 
learning in drug discovery and development. Nat Rev Drug Discov. 
2019;18:463–477.

13. Koromina M, Pandi M-T, Patrinos GP. Rethinking drug repositioning 
and development with artificial intelligence, machine learning, and 
omics. Omics A J Integr Biol. 2019;23:539–548.

14. Duca J, Jansen H, Schneider P, et al. Rethinking drug design in the 
artificial intelligence era. Nat Rev Drug Discov. 2019. DOI:10.1038/ 
s41573-019-0050-3.

15. Palve V, Liao Y, Rix LLR, et al. Turning liabilities into opportunities: 
off-target based drug repurposing in cancer. Semin Cancer Biol. 
2020. Elsevier. DOI:10.1016/j.semcancer.2020.02.003. 

• This review discusses methods that use single target and net-
work-based off-target repurposing strategies.

16. Rice C, Colon BL, Chen E, et al. Discovery of repurposing drug 
candidates for the treatment of diseases caused by pathogenic 
free-living amoebae. PLoS Negl Trop Dis. 2020 Sep 24;14(9): 
e0008353. doi: 10.1371/journal.pntd.0008353. PMID: 32970675.

17. Mohanty S, Rashid MHA, Mridul M, et al. Application of Artificial 
Intelligence in COVID-19 drug repurposing. Diabetes Metab Syndr 
Clin Res Rev. 2020. DOI:10.1016/j.dsx.2020.06.068.

18. Pantziarka P, Vandeborne L, Meheus L, et al. Covid19db–An online 
database of trials of medicinal products to prevent or treat COVID- 
19, with a specific focus on drug repurposing. medRxiv. 2020. 
https://doi.org/10.1101/2020.05.27.20114371

19. Parisi D, Adasme MF, Sveshnikova A, et al. Drug repositioning or 
target repositioning: a structural perspective of drug-target- 
indication relationship for available repurposed drugs. Comput 
Struct Biotechnol J. 2020;18:1043.

20. Bélgamo JA, Alberca LN, Pórfido JL, et al. Application of target 
repositioning and in silico screening to exploit fatty acid binding 
proteins (FABPs) from Echinococcus multilocularis as possible drug 
targets. J Comput Aided Mol Des. 2020;34:1275–1288.

21. Klug DM, Gelb MH, Pollastri MP. Repurposing strategies for tropical 
disease drug discovery. Bioorg Med Chem Lett. 2016;26:2569–2576.

22. Pemovska T, Johnson E, Kontro M, et al. Axitinib effectively inhibits 
BCR-ABL1 (T315I) with a distinct binding conformation. Nature. 
2015;519:102–105. 

•• This study shows how comprehensive drug testing of patient- 
derived cells can identify unpredictable and clinically signifi-
cant drug-repositioning opportunities

23. Zabriskie MS, Eide CA, Yan D, et al. Extreme mutational selectivity 
of axitinib limits its potential use as a targeted therapeutic for 
BCR-ABL1-positive leukemia. Leukemia. 2016;30:1418–1421.

24. Okabe S, Tauchi T, Tanaka Y, et al. Anti-leukemic activity of axitinib 
against cells harboring the BCR-ABL T315I point mutation. 
J Hematol Oncol. 2015;8:97.

25. Gilson MK, Liu T, Baitaluk M, et al. BindingDB in 2015: a public 
database for medicinal chemistry, computational chemistry and 
systems pharmacology. Nucleic Acids Res. 2016;44:D1045–D1053.

26. Tamborero D, Rubio Pérez C, Déu Pons J, et al. Cancer Genome 
Interpreter annotates the biological and clinical relevance of tumor 
alterations. Genome Med. 2018 Dec;10:25. 10 25.

27. Gaulton A, Hersey A, Nowotka M, et al. The ChEMBL database in 
2017. Nucleic Acids Res. 2016;45:D945–D954.

28. Duran-Frigola M, Pauls E, Guitart-Pla O, et al. Extending the 
small-molecule similarity principle to all levels of biology with the 
Chemical Checker. Nat Biotechnol. 2020;38:1–10.

29. Ursu O, Holmes J, Bologa CG, et al. DrugCentral 2018: an update. 
Nucleic Acids Res. 2019 [cited 2019 Apr 23];47:D963–D970. 
Available from: https://academic.oup.com/nar/article/47/D1/D963/ 
5146206

30. Tanoli Z, Alam Z, Vähä-Koskela M, et al. Drug Target Commons 2.0: 
a community platform for systematic analysis of drug–target inter-
action profiles. Database. 2018;2018:1–13.

31. Tanoli Z, Alam Z, Ianevski A, et al. Interactive visual analysis of 
drug–target interaction networks using Drug Target Profiler, with 
applications to precision medicine and drug repurposing. Brief 
Bioinform. 2018 [cited 2019 Mar 26];Available from: https://aca 
demic.oup.com/bib/advance-article/doi/10.1093/bib/bby119/ 
5232987

32. Wishart DS, Knox C, Guo AC, et al. DrugBank: a comprehensive 
resource for in silico drug discovery and exploration. Nucleic Acids 
Res. 2006;34:D668–D672.

33. Wagner AH, Coffman AC, Ainscough BJ, et al. DGIdb 2.0: mining 
clinically relevant drug–gene interactions. Nucleic Acids Res. 
2015;44:gkv1165.

34. Alexander SPH, Kelly E, Marrion NV, et al. The Concise Guide to 
PHARMACOLOGY 2017/18: overview. Br J Pharmacol. 2017;174.

35. Okuno Y, Tamon A, Yabuuchi H, et al. GLIDA: GPCR–ligand data-
base for chemical genomics drug discovery–database and tools 
update. Nucleic Acids Res. 2008 [cited 2019 Apr 18];36:D907–12. 
Available from: http://www.ncbi.nlm.nih.gov/pubmed/17986454

36. Wang Y, Bryant SH, Cheng T, et al. PubChem BioAssay: 2017 
update. Nucleic Acids Res. 2016;45:D955–D963.

37. Roth BL, Lopez E, Patel S, et al. The multiplicity of serotonin 
receptors: uselessly diverse molecules or an embarrassment of 
riches? Neurosci. 2000 [cited 2019 Apr 23];6:252–262. Available 
f r o m :  h t t p : / / j o u r n a l s . s a g e p u b . c o m / d o i / 1 0 . 1 1 7 7 /  
107385840000600408

38. Skuta C, Popr M, Muller T, et al. Probes & Drugs portal: an inter-
active, open data resource for chemical biology. Nat Methods. 2017 
[cited 2019 Aug 28];14:759–760. Available from: http://www.nature. 
com/articles/nmeth.4365

39. Hewett M, Oliver DE, Rubin DL, et al. PharmGKB: the pharmacoge-
netics knowledge base. Nucleic Acids Res. 2002;30:163–165.

40. Hecker N, Ahmed J, von Eichborn J, et al. SuperTarget goes quan-
titative: update on drug-target interactions. Nucleic Acids Res. 2012 
[cited 2019 Apr 23];40:D1113–7. Available from: http://www.ncbi. 
nlm.nih.gov/pubmed/22067455

41. Szklarczyk D, Santos A, von Mering C, et al. STITCH 5: augmenting 
protein–chemical interaction networks with tissue and affinity data. 
Nucleic Acids Res. 2016;44:D380–D384.

42. Cichonska A, Ravikumar B, Allaway RJ, et al. Crowdsourced map-
ping of unexplored target space of kinase inhibitors. BioRxiv. 
2020:2012–2019. https://doi.org/10.1101/2019.12.31.891812

43. Pahikkala T, Airola A, Pietilä S, et al. Toward more realistic drug– 
target interaction predictions. Brief Bioinform. 2015;16:325–337.

44. Cichonska A, Ravikumar B, Parri E, et al. Computational- 
experimental approach to drug-target interaction mapping: 
a case study on kinase inhibitors. PLoS Comput Biol. 2017;13:13.

45. Subramanian A, Narayan R, Corsello SM, et al. A next generation 
connectivity map: L1000 platform and the first 1,000,000 profiles. 
Cell. 2017 [cited 2019 Apr 17];171:1437–1452.e17. Available from: 
http://www.ncbi.nlm.nih.gov/pubmed/29195078

46. Seashore-Ludlow B, Rees MG, Cheah JH, et al. Harnessing connec-
tivity in a large-scale small-molecule sensitivity dataset. Cancer 
Discov. 2015;5:1210–1223.

47. Barretina J, Caponigro G, Stransky N, et al. The Cancer Cell Line 
Encyclopedia enables predictive modelling of anticancer drug 
sensitivity. Nature. 2012;483:603.

48. Rajapakse VN, Luna A, Yamade M, et al. CellMinerCDB for integra-
tive cross-database genomics and pharmacogenomics analyses of 
cancer cell lines. iScience. 2018 [cited 2019 May 29];10:247–264. 
Available from: https://www.sciencedirect.com/science/article/pii/ 
S2589004218302190?via%3Dihub

49. Tsherniak A, Vazquez F, Montgomery PG, et al. Defining a cancer 
dependency map. Cell. 2017 [cited 2019 Aug 28];170:564–576.e16. 
Available from: https://www.sciencedirect.com/science/article/pii/ 
S0092867417306517

50. Cokelaer T, Chen E, Iorio F, et al. GDSCTools for mining pharmaco-
genomic interactions in cancer. Bioinformatics. 2018;34:1226–1228.

EXPERT OPINION ON DRUG DISCOVERY 987

https://doi.org/10.1093/bib/bbaa003
https://doi.org/10.1093/bib/bbaa003
https://doi.org/10.1038/s41573-019-0050-3
https://doi.org/10.1038/s41573-019-0050-3
https://doi.org/10.1016/j.semcancer.2020.02.003
https://doi.org/10.1371/journal.pntd.0008353
https://doi.org/10.1016/j.dsx.2020.06.068
https://doi.org/10.1101/2020.05.27.20114371
https://academic.oup.com/nar/article/47/D1/D963/5146206
https://academic.oup.com/nar/article/47/D1/D963/5146206
https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bby119/5232987
https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bby119/5232987
https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bby119/5232987
http://www.ncbi.nlm.nih.gov/pubmed/17986454
http://journals.sagepub.com/doi/10.1177/107385840000600408
http://journals.sagepub.com/doi/10.1177/107385840000600408
http://www.nature.com/articles/nmeth.4365
http://www.nature.com/articles/nmeth.4365
http://www.ncbi.nlm.nih.gov/pubmed/22067455
http://www.ncbi.nlm.nih.gov/pubmed/22067455
https://doi.org/10.1101/2019.12.31.891812
http://www.ncbi.nlm.nih.gov/pubmed/29195078
https://www.sciencedirect.com/science/article/pii/S2589004218302190?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2589004218302190?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0092867417306517
https://www.sciencedirect.com/science/article/pii/S0092867417306517


51. Klijn C, Durinck S, Stawiski EW, et al. A comprehensive transcrip-
tional portrait of human cancer cell lines. Nat Biotechnol. 
2015;33:306–312.

52. Brimacombe KR, Zhao T, Eastman RT, et al. An OpenData portal to 
share COVID-19 drug repurposing data in real time. bioRxiv. 2020. 
DOI:10.1101/2020.06.04.135046.

53. Yu C, Mannan AM, Yvone GM, et al. High-throughput identification 
of genotype-specific cancer vulnerabilities in mixtures of barcoded 
tumor cell lines. Nat Biotechnol. 2016;34:419–423.

54. Mubeen S, Hoyt CT, Gemünd A, et al. The impact of pathway 
database choice on statistical enrichment analysis and predictive 
modeling. Front Genet. 2019;10:1203.

55. Cerami EG, Gross BE, Demir E, et al. Pathway Commons, a web 
resource for biological pathway data. Nucleic Acids Res. 2011;39: 
D685–D690.

56. Kanehisa M, Furumichi M, Tanabe M, et al. KEGG: new perspectives 
on genomes, pathways, diseases and drugs. Nucleic Acids Res. 
2017;45:D353–D361.

57. Fabregat A, Jupe S, Matthews L, et al. The reactome pathway 
knowledgebase. Nucleic Acids Res. 2018;46:D649–D655.

58. Caspi R, Billington R, Fulcher CA, et al. The MetaCyc database of 
metabolic pathways and enzymes. Nucleic Acids Res. 2018;46: 
D633–D639.

59. Licata L, Lo Surdo P, Iannuccelli M, et al. SIGNOR 2.0, the SIGnaling 
network open resource 2.0: 2019 update. Nucleic Acids Res. 
2020;48:D504–D510.

60. Wishart DS, Li C, Marcu A, et al. PathBank: a comprehensive path-
way database for model organisms. Nucleic Acids Res. 2020;48: 
D470–D478.

61. Perret J-L, Mahe P, Vert J-P Chemcpp: an open source c++ toolbox 
for kernel functions on chemical compounds. 2007. Software. 
Available from: http://chemcpp.sourceforge.net.

62. Mauri A, Consonni V, Pavan M, et al. Dragon software: an easy 
approach to molecular descriptor calculations. Match. 
2006;56:237–248.

63. O’Boyle NM, Banck M, James CA, et al. Open Babel: an open 
chemical toolbox. J Cheminform. 2011;3:33.

64. Landrum G, Penzotti JE, Putta S. Feature-map vectors: a new class 
of informative descriptors for computational drug discovery. 
Journal of computer-aided molecular design. 2006;20:751-762. 
DOI:10.1007/s10822-006-9085-8

65. Cao D-S, Liang Y-Z, Yan J, et al. PyDPI: freely available python 
package for chemoinformatics, bioinformatics, and chemoge-
nomics studies. J Chem Inf Model. 2013 Nov 25;53(11):3086–3096. 
doi:10.1021/ci400127q

66. Ekins S, Wrighton SA. Application of in silico approaches to pre-
dicting drug-drug interactions. J Pharmacol Toxicol Methods. 
2001;45:65–69.

67. Lagunin AA, Dubovskaja VI, Rudik AV, et al. CLC-Pred: a freely 
available web-service for in silico prediction of human cell line 
cytotoxicity for drug-like compounds. PLoS One. 2018;13:e0191838.

68. Hunter AD, ACD/ChemSketch 1.0 (freeware); ACD/ChemSketch 2.0 
and its tautomers, dictionary, and 3D plug-ins; ACD/HNMR 2.0; 
ACD/CNMR 2.0. J Chem Educ. 1997 [cited 2020 Aug 21];74:905. 
Available from: http://www.msi.com

69. Beisken S, Meinl T, Wiswedel B, et al. KNIME-CDK: workflow-driven 
cheminformatics. BMC Bioinformatics. 2013 [cited 2020 Aug 
21];14:257. Available from: https://bmcbioinformatics.biomedcen 
tral.com/articles/10.1186/1471–2105–14–257

70. Yap CW. PaDEL-descriptor: an open source software to calculate 
molecular descriptors and fingerprints. J Comput Chem. 2011 
[cited 2020 Aug 21];32:1466–1474. Available from: https://onlineli 
brary.wiley.com/doi/full/10.1002/jcc.21707

71. University of Tübingen: BlueDesc . [cited 2020 Aug 21]. Available 
from: http://www.ra.cs.uni-tuebingen.de/software/bluedesc/wel 
come_e.html.

72. Pence HE, Williams A. ChemSpider: An Online Chemical Information 
Resource. J Chem Educ. 2010;87(11):1123–1124. https://doi.org/10. 
1021/ed100697w

73. Chen JH, Linstead E, Swamidass SJ, et al. ChemDB update full-text 
search and virtual chemical space. Bioinformatics. 2007 [cited 2019 
Mar 27];23:2348–2351. Available from: https://academic.oup.com/ 
bioinformatics/article-lookup/doi/10.1093/bioinformatics/btm341

74. Moghadam PZ, Li A, Wiggin SB, et al. Development of a Cambridge 
Structural Database Subset: A Collection of Metal–Organic 
Frameworks for Past, Present, and Future. Chem Mater. 2017;29 
(7):2618–2625. https://doi.org/10.1021/acs.chemmater.7b0044

75. Tomasulo P, ChemIDplus–super source for chemical and drug 
information. Med Ref Serv Q. 2002 [cited 2020 Aug 21];21:53–59. 
Available from: https://pubmed.ncbi.nlm.nih.gov/11989279/

76. Sterling T, Irwin JJ, ZINC 15 - Ligand Discovery for Everyone. 
J Chem Inf Model. 2015 [cited 2020 Aug 21];55:2324–2337. 
Available from: https://clinicaltrials.gov

77. Lavecchia A, Cerchia C. In silico methods to address polypharma-
cology: current status, applications and future perspectives. Drug 
Discov Today. 2016;21:288–298. Elsevier Ltd.

78. Zheng M, Liu X, Xu Y, et al. Computational methods for drug 
design and discovery: focus on China. Trends Pharmacol Sci. 2013 
[cited 2020 Aug 21];34:549–559. Available from: https://pubmed. 
ncbi.nlm.nih.gov/24035675/

79. Chen X, Yan CC, Zhang X, et al. Drug–target interaction prediction: 
databases, web servers and computational models. Brief Bioinform. 
2015;17:696–712.

80. Daina A, Michielin O, Zoete V, SwissTargetPrediction: updated data 
and new features for efficient prediction of protein targets of small 
molecules. Nucleic Acids Res. 2019 [cited 2019 Aug 9];47:W357– 
W364. Available from: https://academic.oup.com/nar/article/47/ 
W1/W357/5491750

81. Mervin LH, Bulusu KC, Kalash L, et al. Orthologue chemical space 
and its influence on target prediction. Bioinformatics. 2018 [cited 
2019 Aug 9];34:72. Available from: https://www.ncbi.nlm.nih.gov/ 
pmc/articles/PMC5870859/

82. Cichonska A, Pahikkala T, Szedmak S, et al. Learning with multiple 
pairwise kernels for drug bioactivity prediction. Bioinformatics. 
2018;34:i509–i518.

83. Li Y, Huang Y-A, You Z-H, et al. Drug-target interaction prediction 
based on drug fingerprint information and protein sequence. 
Molecules. 2019;24:2999.

84. Chen R, Liu X, Jin S, et al. Machine learning for drug-target inter-
action prediction. Molecules. 2018;23:2208.

85. Sachdev K, Gupta MK. A comprehensive review of feature based 
methods for drug target interaction prediction. J Biomed Inform. 
2019;93:103159.

86. Wu Z, Li W, Liu G, et al. Network-based methods for prediction of 
drug-target interactions. Front Pharmacol. 2018 [cited 2019 May 
29];9:1134. Available from: http://www.ncbi.nlm.nih.gov/pubmed/ 
30356768

87. Thafar MA, Olayan RS, Ashoor H, et al. DTiGEMS+: drug–target 
interaction prediction using graph embedding, graph mining, and 
similarity-based techniques. J Cheminform. 2020;12:1–17.

88. Mongia A, Majumdar A, Olier I. Drug-target interaction prediction 
using multi graph regularized nuclear norm minimization. PLoS 
One. 2020;15:e0226484.

89. Jiang M, Li Z, Zhang S, et al. Drug–target affinity prediction using 
graph neural network and contact maps. RSC Adv. 
2020;10:20701–20712.

90. Zhao T, Hu Y, Valsdottir LR, et al. Identifying drug–target interac-
tions based on graph convolutional network and deep neural net-
work. Brief Bioinform. 2020. DOI: 10.1093/bib/bbaa044.

91. Cichonska A, Rousu J, Aittokallio T. Identification of drug candi-
dates and repurposing opportunities through compound–target 
interaction networks. Expert Opin Drug Discov. 2015;10:1333–1345.

92. Mei S, Zhang K. A multi-label learning framework for drug 
repurposing. Pharmaceutics. 2019;11:466.

93. Chen H, Cheng F, Li J. IDrug: integration of drug repositioning and 
drug-target prediction via cross-network embedding. PLoS Comput 
Biol. 2020 [cited 2020 Oct 20];16. Available from: https://pubmed. 
ncbi.nlm.nih.gov/32667925/

988 Z. TANOLI ET AL.

https://doi.org/10.1101/2020.06.04.135046
http://http//chemcppsourceforgenet
https://doi.org/10.1007/s10822-006-9085-8
https://doi.org/10.1021/ci400127q
http://www.msi.com
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471%20132105%201314%2013257
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471%20132105%201314%2013257
https://onlinelibrary.wiley.com/doi/full/10.1002/jcc.21707
https://onlinelibrary.wiley.com/doi/full/10.1002/jcc.21707
http://www.ra.cs.uni-tuebingen.de/software/bluedesc/welcome_e.html
http://www.ra.cs.uni-tuebingen.de/software/bluedesc/welcome_e.html
https://doi.org/10.1021/ed100697w
https://doi.org/10.1021/ed100697w
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btm341
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btm341
https://doi.org/10.1021/acs.chemmater
https://pubmed.ncbi.nlm.nih.gov/11989279/
https://clinicaltrials.gov
https://pubmed.ncbi.nlm.nih.gov/24035675/
https://pubmed.ncbi.nlm.nih.gov/24035675/
https://academic.oup.com/nar/article/47/W1/W357/5491750
https://academic.oup.com/nar/article/47/W1/W357/5491750
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5870859/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5870859/
http://www.ncbi.nlm.nih.gov/pubmed/30356768
http://www.ncbi.nlm.nih.gov/pubmed/30356768
https://doi.org/10.1093/bib/bbaa044
https://pubmed.ncbi.nlm.nih.gov/32667925/
https://pubmed.ncbi.nlm.nih.gov/32667925/


94. Beck BR, Shin B, Choi Y, et al. Predicting commercially available 
antiviral drugs that may act on the novel coronavirus (SARS-CoV- 
2) through a drug-target interaction deep learning model. 
Comput Struct Biotechnol J. 2020 [cited 2020 Oct 
20];18:784–790. Available from: https://pubmed.ncbi.nlm.nih. 
gov/32280433/

95. Pujadas G, Vaque M, Ardevol A, et al. Protein-ligand docking: 
a review of recent advances and future perspectives. Curr Pharm 
Anal. 2008;4:1–19.

96. Cheng AC, Coleman RG, Smyth KT, et al. Structure-based maximal 
affinity model predicts small-molecule druggability. Nat Biotechnol. 
2007;25:71–75.

97. Li H, Gao Z, Kang L, et al. TarFisDock: a web server for identifying 
drug targets with docking approach. Nucleic Acids Res. 2006;34: 
W219–W224.

98. Jacob L, Vert J-P. Protein-ligand interaction prediction: an improved 
chemogenomics approach. Bioinformatics. 2008;24:2149–2156.

99. Pinzi L, Rastelli G. Molecular docking: shifting paradigms in drug 
discovery. Int J Mol Sci MDPI AG. 2019 [cited 2020 Aug 21];20:4331. 
Available from: /pmc/articles/PMC6769923/?report=abstract

100. Baig MS, Roy A, Saqib U, et al. Repurposing Thioridazine (TDZ) as 
an anti-inflammatory agent. Sci Rep. 2018;8:8.

101. Mellini M, Di Muzio E, D’Angelo F, et al. In silico selection and 
experimental validation of FDA-approved drugs as anti-quorum 
sensing agents. Front Microbiol. 2019 [cited 2019 Nov 8];10:2355. 
Available from: http://www.ncbi.nlm.nih.gov/pubmed/31649658

102. Callaway E. “It will change everything”: deepMind’s AI makes gigan-
tic leap in solving protein structures. Nature. 2020;588:203–204.

103. Shi Y, Zhang X, Mu K, et al. D3Targets-2019-nCoV: a webserver for 
predicting drug targets and for multi-target and multi-site based 
virtual screening against COVID-19. Acta Pharm Sin B. 2020 [cited 
2020 Aug 21];10:1239. Available from: /pmc/articles/PMC7169934/? 
report=abstract

104. Ravikumar B, Timonen S, Alam Z, et al. Chemogenomic analysis of 
the druggable kinome and its application to repositioning and lead 
identification studies. Cell Chem Biol. 2019;26:1608–1622.

105. Gilvary C, Elkhader J, Madhukar N, et al. A machine learning and 
network framework to discover new indications for small 
molecules. PLoS Comput Biol. 2020 [cited 2020 Oct 20];16:16. 
Available from: https://pubmed.ncbi.nlm.nih.gov/32764756/

106. Peng Y, Wang M, Xu Y, et al. Drug repositioning by prediction of 
drug’s anatomical therapeutic chemical code via network-based 
inference approaches. Brief Bioinform. 2020 [cited 2020 Oct 20]; 
Available from: https://pubmed.ncbi.nlm.nih.gov/32221552/

107. Costello JC, Heiser LM, Georgii E, et al. A community effort to assess 
and improve drug sensitivity prediction algorithms. Nat Biotechnol. 
2014;32:1202–1212.

108. Gönen M, Khan S, Kaski S. Kernelized Bayesian matrix factorization. 
Int Conf Mach Learn. 2013;864–872.

109. Güvenç Paltun B, Mamitsuka H, Kaski S. Improving drug response 
prediction by integrating multiple data sources: matrix factoriza-
tion, kernel and network-based approaches. Brief Bioinform. 
2021;22:232-246.

110. Chen J, Zhang L. A survey and systematic assessment of computa-
tional methods for drug response prediction. Brief Bioinform. 
2021;22:232–246.

111. Wang L, Li X, Zhang L, et al. Improved anticancer drug response 
prediction in cell lines using matrix factorization with similarity 
regularization. BMC Cancer. 2017;17:1–12.

112. Ali M, Aittokallio T. Machine learning and feature selection for drug 
response prediction in precision oncology applications. Biophys 
Rev. 2019;11:31–39.

113. Knowles DA, Bouchard G, Plevritis S. Sparse discriminative latent 
characteristics for predicting cancer drug sensitivity from genomic 
features. PLOS Comput Biol. 2019;15:e1006743.

114. Koras K, Juraeva D, Kreis J, et al. Feature selection strategies for 
drug sensitivity prediction. Sci Rep. 2020;10:1–12.

115. Schätzle L-K, Esfahani AH, Schuppert A. Methodological chal-
lenges in translational drug response modeling in cancer: 
a systematic analysis with FORESEE. PLOS Comput Biol. 
2020;16:e1007803.

116. Huang EW, Bhope A, Lim J, et al. Tissue-guided LASSO for predic-
tion of clinical drug response using preclinical samples. PLoS 
Comput Biol. 2020;16:e1007607.

117. Friedman AA, Letai A, Fisher DE, et al. Precision medicine for cancer 
with next-generation functional diagnostics. Nat Rev Cancer. 
2015;15:747–756.

118. Dienstmann R, Tabernero J. Cancer: a precision approach to 
tumour treatment. Nature. 2017;548:40–41.

119. Letai A. Functional precision cancer medicine—moving beyond 
pure genomics. Nat Med. 2017;23:1028.

120. Giri AK, Ianevski A, Aittokallio T. Genome-wide off-targets of drugs: 
risks and opportunities. Cell Biol Toxicol. 2019;35:485–487.

121. Brown AS, Patel CJ. A review of validation strategies for computa-
tional drug repositioning. Brief Bioinform. 2018;19:174–177. 

• This review presents computational repositioning literature 
and capture studies in which authors claimed to have vali-
dated their predictions.

122. Tang J, Tanoli Z-R, Ravikumar B, et al. Drug Target Commons: 
a Community Effort to Build a Consensus Knowledge Base for 
Drug-Target Interactions. Cell Chem Biol. 2018;25:224–229.

123. Smirnov P, Kofia V, Maru A, et al. PharmacoDB: an integrative 
database for mining in vitro anticancer drug screening studies. 
Nucleic Acids Res. 2018;46:D994–D1002.

124. van der Meer D, Barthorpe S, Yang W, et al. Cell model passports— 
a hub for clinical, genetic and functional datasets of preclinical 
cancer models. Nucleic Acids Res. 2019;47:D923–D929.

125. Mer AS, Ba-Alawi W, Smirnov P, et al. Integrative pharmacoge-
nomics analysis of patient-derived xenografts. Cancer Res. 
2019;79:4539–4550.

126. Valli D, Gruszka AM, Alcalay M. Has drug repurposing fulfilled its 
promise in acute myeloid leukaemia? J Clin Med. 2020;9:1892. 

•• This review presents the state-of-the-art drug repurposing 
approach in AML

127. Morita K, Wang F, Jahn K, et al. Clonal evolution of acute myeloid 
leukemia revealed by high-throughput single-cell genomics. 
Nature Communications. 2020;11. Article number: 5327.

128. Sicklick JK, Kato S, Okamura R, et al. Molecular profiling of cancer 
patients enables personalized combination therapy: the I-PREDICT 
study. Nat Med. 2019;25:744–750.

129. Gandhi A, Moorthy B, Ghose R. Drug disposition in pathophysiolo-
gical conditions. Curr Drug Metab. 2012;13:1327–1344.

130. Tyson RJ, Park CC, Powell JR, et al. Precision dosing priority criteria: 
drug, disease, and patient population variables. Front Pharmacol. 
2020;11:420.

131. Xu Q, Zhai J-C, Huo C-Q, et al. OncoPDSS: an evidence-based 
clinical decision support system for oncology pharmacotherapy at 
the individual level. BMC Cancer. 2020;20:1–10.

EXPERT OPINION ON DRUG DISCOVERY 989

https://pubmed.ncbi.nlm.nih.gov/32280433/
https://pubmed.ncbi.nlm.nih.gov/32280433/
http:///pmc/articles/PMC6769923/?report=abstract
http://www.ncbi.nlm.nih.gov/pubmed/31649658
http:///pmc/articles/PMC7169934/?report=abstract
http:///pmc/articles/PMC7169934/?report=abstract
https://pubmed.ncbi.nlm.nih.gov/32764756/
https://pubmed.ncbi.nlm.nih.gov/32221552/

	Abstract
	1.  Introduction
	2.  Data resources for in-silico drug repurposing
	2.1.  Drug–target interaction resources
	2.2.  Cell line and patient-derived omics resources
	2.3.  Biological pathway information resources
	2.4.  Chemical structure and protein property data resources

	3.  Supervised ML and AI algorithms for drug repurposing
	3.1.  Algorithms for drug–target interaction predictions
	3.2.  Algorithms for molecular docking and molecular dynamic simulations
	3.3.  Algorithms for cell and tissue-based drug response predictions

	4.  Conclusion
	5.  Expert opinion
	Funding
	Declaration of interest
	Reviewer Disclosures
	References



