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Atomic force microscopy (AFM) is a widely utilized characterization method capable of capturing

atomic level detail in individual organic molecules. However, an AFM image contains relatively little

information about the deeper atoms in a molecule and thus interpretation of AFM images of non-

planar molecules offers significant challenges for human experts. An end-to-end solution starting

from an AFM imaging system ending in an automated image interpreter would be a valuable asset

for all research utilizing AFM.

Machine learning has become a ubiquitous tool in all areas of science. Artificial neural networks

(ANNs), a specific machine learning tool, have also arisen as a popular method many fields including

medical imaging, self-driving cars and facial recognition systems. In recent years, progress towards

interpreting AFM images from more complicated samples has been made utilizing ANNs.

In this thesis, we aim to predict sample structures from AFM images by modeling the molecule as

a graph and using a generative model to build the molecular structure atom-by-atom and bond-

by-bond. The generative model uses two types of ANNs, a convolutional attention mechanism to

process the AFM images and a graph neural network to process the generated molecule.

The model is trained and tested using simulated AFM images. The results of the thesis show that

the model has the capability to learn even slight details from complicated AFM images, especially

when the model only adds a single atom to the molecule. However, there are challenges to overcome

in the generative model for it to become a part of a fully capable end-to-end AFM process.
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1. Introduction

The Nobel Prize winning invention of scanning tunneling microscopy [1] (STM)

by Binnig and Rohrer in 1981 revolutionized surface science. It allowed imaging

of individual atoms, a task that was naturally intriguing for surface scientists but

up until then out of reach for the scientific community. Such high precision was

achievable because STM and atomic force microscopy (AFM) alike were not optical

microscopes and thus the optical diffraction limit was not a concern. STM and

AFM belong to a wider class of scanning probe microscopy (SPM) methods for

which the basic principle instead relies on "touching" the sample. However, for

STM the reliance on tunneling current meant that there was one major constraint:

the imaged sample had to be conductive. This ruled out imaging of all insulators,

including many polymers, ceramics and organic materials.

While STM had its limitations, the method was further developed by the

scientific community and later in 1985 Binnig et al. introduced the atomic force

microscope [2]. Instead of measuring current as in STM, in AFM the close range

interaction consisting of numerous different contributors, such as van der Waals

forces, electrostatic forces and Pauli repulsion, between the probe and the sample

directly affect the image. This made possible a wider range of samples. While

subsequent research gave rise to many different operating modes of AFM for different

purposes, in this thesis the imaging method is frequency modulation AFM [3] which

is a specific variant of non-contact AFM.
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Since the close range forces experienced by an AFM probe are strongest with

the surface layer of the sample, images of two-dimensional samples are straight-

forward to interpret [4]. However, images of non-planar samples and molecular

mixtures are often more obscure and their interpretation is time-consuming and dif-

ficult for human experts [5, 6]. In this thesis we aim to develop a tool to automate

AFM image interpretation making the AFM imaging process more efficient.

The second major component in this thesis is machine learning which is pro-

posed as an efficient framework for interpreting AFM images. The recent develop-

ments in computational methods, and more specifically in artificial neural networks,

have changed approaches in computational materials science drastically, and using

artificial neural networks in data processing has become a standard in almost all

areas of science and technology.

Classical computational physics has the following approach: the model is given

an input and the rules to follow to produce an output. For example in molecular

dynamics (MD) simulations this would mean that we give to an MD code the starting

positions and velocities of atoms and we consider the applicable laws of physics to

update the system in discrete timesteps. The modern data-driven approach turns

this mindset around: the model is given the input and the corresponding output

and its task is to discover the mapping which produces an output object from a

certain input condition. In a previous study, AFM images were analyzed using a

machine learning model which learned to represent the sample structures as images

containing information about the molecular geometry and chemical properties of

the sample [7]. In this thesis we design a machine learning model which learns

to translate the AFM image into a graph representation of the sample molecular

geometry. The model is trained and evaluated on simulated AFM images [8, 9].

The thesis has the following structure and content. Chapter 2 explains the

AFM imaging process, motivates this study and describes the AFM simulation
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method. Chapter 3 introduces the general principles of machine learning and ex-

plains in detail the properties of artificial neural networks (ANNs) and two subclasses

of ANNs, convolutional neural networks and graph neural networks. Chapter 4 de-

scribes the particular machine learning model designed in this thesis and elaborates

the training and evaluation process. Results of the thesis and the discussion thereof

is presented in chapter 5 while the conclusions and possible future prospects of

development are discussed in chapter 6.



2. Atomic Force Microscopy

2.1 AFM imaging process

2.1.1 General principles

The basic principle behind atomic force microscopy is that an atomically sharp tip is

constructed onto a cantilever and then brought close to the sample. The tip-sample

interaction causes a deflection of the cantilever position which is measured by, for

example, the beam deflection method [10]. A simplified schematic of the atomic

force microscope is shown in figure 2.1. Based on whether the cantilever is excited

to oscillate during the imaging process, the AFM methods can be categorized into

static and dynamic AFM.

One example of a static AFM is the constant force mode in which the tip is

very close to the sample and the tip-sample force Fts causes a deflection ∆z to the

cantilever. The deflection is caused by a balance of forces and in equilibrium the total

force acting upon the cantilever must vanish as Ftot = Fts+Fcant = 0. Assuming the

cantilever deflection is small, we can apply the Hooke’s law Fcant = −k∆z to say that

a certain deflection ∆z is caused by a tip-sample force Fts of certain magnitude. By

raster scanning the sample in the xy-plane while keeping the tip-height z constant

using a feedback loop we are able to construct an isosurface of equal deflection ∆z

which is interpreted through Hooke’s law as an isosurface of equal force Fts = k∆z.

The density of the raster scanning grid defines an upper limit for the resolution of

4



2.1. AFM IMAGING PROCESS 5

the AFM image.

The cantilever should be chosen so that its spring constant kcant is smaller than

the effective spring constant of the atomic bonds in the sample to avoid causing de-

formations to either. The reason for avoiding deformations in the sample is obvious

but even in the tip any possible deformations might cause artifacts in the image,

for example if the tip becomes asymmetric. However, if the cantilever is too flexi-

ble i.e. its spring constant is smaller than the maximum tip-sample force gradient

kcant < max
(
−∂Fts

∂z

)
, a sudden snap-to-contact might occur [11]. In dynamic AFM,

this instability can be avoided by oscillating the cantilever at an amplitude A larger

than kA > max(−Fts) even if the stiffness of the cantilever is small [11]. Neverthe-

less, in dynamic AFM the stiffness of the cantilever is typically much higher. Since

static AFM suffers from these tip and sample deformations making it a difficult

experimental realization, dynamic AFM is the more common choice for experiments

and it has also been the target of more recent developments.

Dynamic AFM can be further classified into two categories, amplitude modula-

tion (AM-AFM) and frequency modulation (FM-AFM). In AM-AFM, the cantilever

is driven using an actuator at a frequency slightly deviated from its eigenfrequency

f0. As the tip approaches the sample, the tip-sample interaction causes a shift in

the amplitude and phase of the oscillation while a feedback loop keeps the frequency

constant. The amplitude shift is interpreted as the topographic image of the sample.

AM-AFM however has a major drawback in that the method is very slow in vacuum

where Q is large as the amplitude shift is not instantaneous but instead happens on

a timescale of τAM ≈ 2Q/f0 where the Q factor of the cantilever can be as high as in

the magnitude of 105 [12]. The introduction of FM-AFM solved this obstacle as the

change in oscillation frequency happens on a timescale of τFM ≈ 1/f0 [12]. Of the

two dynamic AFM operation modes, FM-AFM is the most widely used technique for

atomic resolution AFM since it requires an ultra-high vacuum environment resulting
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Figure 2.1: Simplified scheme of the FM-AFM system. Recreated from [12].

in a large Q factor [12]. In ambient conditions and biological samples, AM-AFM is

the more commonly applied technique [13]. The FM mode is also the focus of this

thesis and in the next section it will we described in detail.

2.1.2 Frequency Modulation AFM

The idea behind FM-AFM is illustrated above in figure 2.1. On the contrary to AM

mode, in FM mode the cantilever is driven to oscillate exactly at its eigenfrequency

f0 and a feedback loop maintains a constant oscillation amplitude A. When the tip

is close to the sample, the oscillation frequency changes to f = f0 + ∆f caused by

the tip-sample interaction gradient kts = ∂Fts

∂z
. To solve for the frequency shift of

the cantilever we consider the harmonic oscillator consisting of the cantilever and

the tip-sample interaction. The eigenfrequency of a harmonic oscillator is

f = 1
2π

√
k∗

m∗
(2.1)

where k∗ and m∗ are the effective spring constant and the effective mass. Addition-

ally, if we assume the tip-sample force gradient kts to be constant in the oscillation

range from −A to A, we may write k∗ = k + kts to get

f = 1
2π

√
k + kts
m∗

(2.2)
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Further, if kts � k and the effective mass m∗ is the mass of the cantilever m then

f = 1
2π

√√√√k
(
1 + kts

k

)
m

(2.3)

≈ 1
2π

√
k

m

(
1 + kts

2k

)
(2.4)

= f0

(
1 + kts

2k

)
(2.5)

Now we have an expression for ∆f in a simplified system

∆f = kts
2k f0 (2.6)

However, in practise the force gradient kts varies by orders of magnitude inside one

oscillation cycle and the approximation above cannot be directly utilized.

In [14], Giessibl et al. have taken into consideration the varying force gradient

and utilized first-order perturbation theory and the Hamilton-Jacobi method to get

a general relationship between the frequency shift and tip-sample interaction

∆f = − f0

kA2 〈Fts(z0 − q′(t))q′(t)〉 (2.7)

= − f 2
0

kA2

∫ 1/f0

0
Fts(z0 − q′(t))q′(t)dt (2.8)

where q′(t) = −A cos(2πf0t) is the deflection of the cantilever and 〈Ftsq′(t)〉 is

averaged over one oscillation cycle. A change of integration variable t→ q′ yields

∆f = − f0

2k
2
πA2

∫ A

−A

Fts(z0 − q′)q′√
A2 − q′2

dq′ (2.9)

and integrating this expression in parts gives us the frequency shift in terms of the

force gradient kts

∆f = f0

2k
2
πA2

∫ A

−A
kts(z0 − q′)

√
A2 − q′2dq′ (2.10)

Comparing this to our earlier approximation Eq. 2.6 reveals a close connection

as the tip-sample force gradient kts is merely replaced by its weighted average over
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Figure 2.2: Illustration of the functionalized tip apex and the bending mechanism. (a) Tip apex

is far away from the sample and aligned symmetrically. (b) Tip apex is close to the sample and

bends away.

one cycle in the latter expression. As amplitude is a major contributor in the weight

function, tuning the amplitude of the oscillation in an experiment allows AFM to

be used in systems of varying force magnitudes [12].

2.1.3 Tip functionalization

High-resolution AFM achieves unmatched atomic resolution by utilizing an atomi-

cally well-defined tip termination in which the tip is functionalized by picking up a

chemically inert, flexible tip apex [4]. This is illustrated below in figure 2.2. Com-

pared to a bare metal tip, with a functionalized tip apex it is possible to oscillate the

cantilever closer to the sample without deforming the sample which is a challenge

in experimental AFM. This is because the inert CO molecule does not react with

the sample and during the tip approach its flexibility allows for a lateral relaxation

when the repulsive interaction Fts is strong [15].
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2.2 The inverse imaging problem

2.2.1 The need for an AFM simulator

An AFM imaging process can be formalized mathematically as Φ : (~R,Z)→ ∆f(~r)

where ~R and Z are the positions and types of atoms in the sample and ∆f is the

imaging signal i.e. frequency shift. The object of this study is to recognize a sample

(~R,Z) from an image ∆f without prior knowledge of the system which means the

inverse of the imaging process Φ−1 : ∆f(~r) → (~R,Z) has to be found. This is a

highly non-trivial inverse task since the imaging signal is a non-monotonic function

of distance and the complicated tip-sample interaction arises from van der Waals

forces, Pauli repulsion and others. Since no analytical solution is available, in this

study we utilize machine learning to decipher the inverse function. Machine learning

in general, and more specifically deep learning, will be discussed in detail in the next

chapter but to highlight the need for a robust and fast AFM simulator the following

has to be considered.

i. Experimental AFM is time-consuming

ii. Deep learning is very data-hungry

iii. Manual labeling is required to train a deep learning model with experimental

AFM

This shows an evident obstacle in gathering a sufficient amount of training data

for our model: using experimental AFM imaging to gather thousands of training

samples is simply unfeasible and even if an adequately sized database was acquired,

labeling the samples would be impossible since generally the imaged samples are

unknown.

Many different AFM simulation methods have been developed to study the

underlying mechanics of AFM and also to assist in overcoming the issues present
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tip base

probe particle

sample

Fsurf

Ftpp,R

~R

Ftpp,xy

Figure 2.3: The force components in Probe Particle Model. Fsurf consists of the sum of all

pairwise LJ forces between the probe particle and the sample, and the electrostatic force. The

radial force between the tip base and the probe particle is Ftpp,R and the lateral component is

Ftpp,xy while ~R is the position of the probe particle with respect to the sample.

in experimental imaging [16, 17]. Two prominent approaches to AFM simulation

are molecular dynamics based methods [18, 19] and ab initio quantum mechanical

methods [20, 21], such as density functional theory (DFT). Of these methods, the

quantum mechanical solutions offer more accurate representations of experimental

images as they model the tip-sample interaction in high detail. The downside to

high precision is the relatively high computational cost making it less suitable for

large databases.

2.2.2 Probe Particle Model

In this study, we used the Probe Particle Model [8, 9, 22] to simulate AFM. It is

a mechanical model based on describing the tip-sample interaction through three

contributors that are demonstrated in figure 2.3.

(1.) The Lennard-Jones potential

VLJ(r) = ε

[(
σ

r

)12
−
(
σ

r

)6
]

(2.11)
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is used to model the Pauli repulsion (r−12 term) and the attractive dispersion forces

(r−6 term). The parameters ε and σ control the depth of the potential well and the

distance at which the particle-particle potential vanishes and r is the distance be-

tween the particles. While the Lennard-Jones potential is relatively uncomplicated,

it has been observed to describe many systems in good agreement with experimental

results [9].

(2.) The electrostatic interaction

~Fes(~R) = ∂

∂ ~R

∫
ρprobe(~r)Vsurf (~r − ~R)d~r (2.12)

between the tip and the sample is the second contributor. In the expression above,

ρprobe(~r) is the charge density at the probe particle location, Vsurf is the electrostatic

potential obtained from point charges and ~R is the position of the probe particle

with respect to the sample. The integration is computed over all space ~r.

(3.) Thirdly, there are two separate forces acting between the probe particle

and the tip base. One is the radial spring force between the probe and the tip base

to keep the probe attached. Second is the lateral spring force stemming from the

attractive potential of the tip base.

The simulation is done by scanning the tip over the sample in an xy-plane and

at each lateral point, the tip is placed at an initial height z0 and its z-position is

lowered in small discrete steps. At each height, the probe particle is allowed to relax

until Fsurf + Ftpp,xy + Ftpp,R is lower than a certain preset threshold value. The tip

approach is computed separately for each lateral position which defines the image

resolution. Once the tip approach has been computed, the vertical component of

Fsurf is obtained through projection onto the z-axis Fz(z) and finally the formula of

translating the force function to frequency shift ∆f (Eq. 2.10) is used to integrate

the imaging signal from Fz(z). Using different slices of Fz(z) corresponding to

different oscillation heights allows us to acquire AFM images at multiple heights.

To speed up the simulation process, we use a GPU optimized version of the
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Probe Particle Model. This is possible because the lateral scanning in an xy-grid

is an embarrassingly parallel task [23], ideal for a GPU with thousands of cores.

More specifically, we use a version developed using OpenCL [24] making it possible

to obtain ∼ 100 stacks of AFM images per second.

2.3 Database generation

2.3.1 Database of molecular geometries

The quality of data is of vital importance in machine learning tasks and a wide

range of training samples is required for a well-generalizing model. In this study, we

use a database of more than 6,000 free-standing small organic molecules in vacuum

conditions optimized with DFT. For the Probe Particle Model, charge densities

required for the electrostatic interaction (Eq. 2.12) are obtained from point charges.

The molecules consist of atoms lighter than bromine (H, C, N, O, F, Si, P, S,

Cl, Br). The exact distributions of different atom types in the data set are shown in

table 2.1. The most prevalent atom types are hydrogen and carbon, both of which

are observed in over 94 % of the molecules. Carbon, oxygen and chlorine are also

quite common in the data set. Silicon and phosphorus are the most rare elements

with less than 1 % of the molecules containing either. Next to the table, figure 2.4

shows the distribution of sizes of molecules in the database. Most of the molecules

contain between 15 and 30 atoms with few instances of very small molecules or

molecules with Natoms > 40.

AFM images are sensitive with respect to the scanning angle because the tip-

sample interaction is very short ranged and thus an AFM image contains relatively

little information about the deeper atoms in a molecule. This means that rotating

the sample molecule even slightly can make the resulting image unrecognizable.

We can utilize the rotational sensitivity to expand the database using rotational
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Element % of selected rotations

H 94.2
C 31.1
N 10.3
O 25.3
F 2.1
Si < 0.1
P 0.2
S 8.5
Cl 20.0
Br 3.3

Table 2.1: Occurrences of different atom

types in the selected rotations.
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Distribution of molecule sizes in the database

Figure 2.4: Distribution of molecule sizes

within the database.

augmentation and doing the scanning for a single molecule from multiple scanning

angles. The rotations are done so that the number of atoms visible in each rotation

is maximized. That is, the following entropy function is maximized

S =
Natoms∑
i=1

exp(−β(zi − ztop)) (2.13)

and 30 rotations with highest entropy are chosen. In the above expression, Natoms is

the number of atoms in the molecule, β is the decay parameter chosen to be 1Å−1,

ztop is the z-coordinate of the top atom in that specific rotation, and zi are the z-

coordinates of the atoms. After the rotations, our molecular database is effectively

30 times larger.

2.3.2 Image augmentation

Since the eventual target for our machine learning model is to generalize from sim-

ulated AFM data to predicting from experimental images, a few things have to be

considered. Experimental AFM images are not always perfect; on the contrary, of-

ten there exists some impurities arising from e.g. electrical noise or experimental

artifacts. To combat this, we slightly modify the simulated AFM images with the
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following augmentations to make them more alike to their experimental counter-

parts.

The first two augmentations are parameter randomizations in the Probe Par-

ticle Model that are implemented in the AFM simulation phase. The rest are image

augmentations applied in the data loading phase during machine learning model

training. The following listing describes each augmentation trick.

i. Probe particle rotation. In experimental imaging, attaching the probe

particle to the tip base in perfect symmetry is difficult and instead the tip

termination is often slightly shifted with respect to the tip base. Asymmetric

probe particle attachment means that there are "shadows" cast asymmetrically

around the sample as the probe particle more easily bends in the direction of

the probe particle tilt. To match this, in the simulations the probe particle

equilibrium position is varied in a circle of radius 0.5Å.

ii. Tip-sample distance. In experiments, the tip-sample distance is only known

up until a certain precision but in simulations it is known exactly. In order to

make the machine learning model not dependent on the exact imaging height,

we slightly deviate the z-coordinate of the tip in the simulations.

iii. Image normalization. The simulated AFM images are normalized to zero

mean and unit variance for each scanning height independently. Normalizing

input data has been observed to be generally beneficial for training machine

learning models [25].

iv. Artificial noise. We add uniform random noise to artificially make the sim-

ulated AFM images more blurry. This augmentation tries to imitate electrical

and thermal noise present in experimental images.

v. Scanning plane shift. Each scanning plane is randomly shifted a slight

amount in relation to the previous scanning plane so that any two adjacent
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planes are shifted at most 2 % of the scanning plane width. The maximum shift

in either x or y dimension along all scanning heights is 4 %. In experiments,

when changing the scanning height, the images are often slightly misaligned

which we try to incorporate here.

vi. Cutouts. We randomly add small rectangular patches of zeros to the sim-

ulated images to resemble artifacts which are sometimes observed in experi-

mental images.



3. Machine Learning

3.1 Overview of machine learning

Machine learning is a broad subfield of an even larger field of artificial intelligence.

For many materials scientists, machine learning has become an essential tool in

solving complicated research problems, such as discovering new stable materials [26],

predicting DFT functionals [27] and discovering structures in AFM images [7]. In

this thesis, we build upon the research of Alldritt et al. [7] by predicting exact

atomic coordinates from AFM images using a generative graph neural network. In

this chapter, the necessary theoretical background for machine learning is described.

The principle behind machine learning is that a computer program should

learn from data to make decisions without explicit instructions. In [28], Mitchell

gives a succinct definition of a machine learning problem: a machine learning al-

gorithm improves its performance P at executing a task T through experience E.

A classic example is the problem of classifying hand-written digits into correct cat-

egories. Here, the task T would be the classification, the performance metric P

might be the classification accuracy and the experience E would be examples of

digits, each labeled with the correct answer. Determining the three components

(T, P,E) unambiguously defines the machine learning problem.

The field of machine learning is traditionally separated into three categories:

supervised learning, unsupervised learning and reinforcement learning. The differ-

16
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ence between the categories is the information the model is able to infer from the

data. Unsupervised learning deals with unlabeled data and is often used for cluster-

ing or segmenting the data set. Example algorithms of this class include k-means

clustering, principle component analysis and singular value decomposition, among

many others.

Reinforcement learning is a general class of learning algorithms in which an

agent performs actions in some action space while getting feedback from the en-

vironment as it to maximize some reward by making the right decisions. These

algorithm are useful when the feedback from some action is delayed, as is the case

for example in many games, in which the feedback whether the agent has won or

lost the game is only provided at the end of a game.

Supervised learning (SL) algorithms learn from data accompanied by the cor-

rect answers i.e. labels. In SL problems, the objective is to find a mapping which

translates a certain input to a correct output (label). The model learns the mapping

based on example input-output pairs. The class of supervised learning algorithms

includes, for instance, regression methods, Naive Bayes methods, decision tree based

algorithms and neural networks. The model used in this thesis is a supervised learn-

ing algorithm for which the data is the AFM images and the labels are the corre-

sponding molecular geometries. Arguably the simplest machine learning algorithm

is linear regression which learns a mapping from input vector x ∈ Rn to a scalar

value ŷ ∈ R. The model in this case should linearly predict the output ŷ when given

a vector x as input i.e. the model is formulated

ŷ = w>x (3.1)

where w ∈ Rn are the parameters of the model. Often, an intercept or bias term b

is added to the model for ŷ = w>x + b.

The behaviour of a machine learning model is controlled by its parameters and

often the objective is to find the optimal set of parameters w ∈ Rn that minimizes
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a performance metric P , essentially turning the problem into an optimization task.

Depending on the problem and the nature of the output, the parameter space Rn

can vary both in length and rank.

In machine learning terms, the performance metric is called a loss function of

which the mean squared error is a good example:

L = 1
N
‖ŷ− y‖2

2 (3.2)

The error represents the euclidean distances between the predictions ŷ and the

targets y and it is minimized when ŷ = y. The minimum in this case is found by

finding the root of the gradient with respect to w

∇w
1
N
‖ŷ− y‖2

2 = ∇w
1
N
‖Xw − y‖2

2 = 0 (3.3)

However, this expression is only true for convex losses with a single minimum since

non-convex loss functions can have multiple minima and maxima as well as saddle

points which all would have zero gradient. With more complicated models and loss

functions, the root of the gradient cannot be solved analytically and more sophisti-

cated methods are required to minimize the loss function. Some of these methods

are described in section 3.2.

The ultimate goal of a machine learning model is to make good predictions

on unseen data. However, if the model was trained on a specific data set (X,y)

containing the input vectors X and the corresponding output values y and the

optimal parameters were found by minimizing the loss function for this exact data

set, the model might have learned to make excellent predictions on (X,y) but it still

could perform poorly on unseen data. To combat this, the data set is often split

into training and testing sets. The training set (X(train),y(train)) is used to train

the model i.e. optimize the parameters and the testing set (X(test),y(test)) is used

to measure the performance. These sets are kept strictly apart to ensure that the

testing set truly represents unseen data and the performance of the model can be
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Figure 3.1: Illustration of training and testing errors as a function of model capacity. A larger

capacity offers better training error with the cost of worse generalization. A model with the optimal

capacity minimizes the test error.

reliably quantified. The parameter optimization task is updated

1
N (train)∇w

∥∥∥X(train)w − y(train)
∥∥∥2

2
= 0 (3.4)

and the test error is calculated

L(test) = 1
N (test)

∥∥∥X(test)w − y(test)
∥∥∥2

2
(3.5)

To achieve good performance, or generalization, on unseen data, the underlying

assumption is that the training and testing sets must be identically distributed and

the data items in both sets must be independent from each other.

In machine learning problems, the goodness of the test performance funda-

mentally arises from two origins: the magnitude of the training error and the gap

between training and testing errors. These factors are inseparable from the concepts

of underfitting, overfitting, generalization and model complexity, or capacity, which

are illustrated in figure 3.1. The capacity of a model refers to how complex the

model is, for example, increasing the number of parameters increases the capacity.

The model is said to underfit when the training error is large and to overfit when

the gap between training and testing errors is large. The former occurs when the

learning capacity of the model is inadequate and the latter when the capacity is
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Figure 3.2: In all figures the data points are sampled from y = x3 with added uniform noise. Left:

Underfitting model with low capacity. Center: Appropriate capacity results in good fit. Right:

Model has too high capacity and memorizes patterns from training data, bad generalization is

expected.

too high and the model learns to remember specific features from the training set

resulting in unreliable performance for unseen observations. Figure 3.2 illustrates

underfitting and overfitting and illustrates the effect of capacity to fitting accuracy.

Traditional machine learning algorithms have proven themselves in simple clas-

sification and regression problems but more abstract problems such as image recog-

nition or natural language processing require a more modern approach. One such

technique, artificial neural networks, is discussed in the following section.

3.2 Artificial neural networks

Artificial neural networks (ANN) are a specific class of machine learning algorithms.

The name and design of ANNs is inspired by biological neural networks in biological

brains where the neurons are connected by synapses. As biological neural networks,

ANNs also consist of neurons, or nodes, connected with edges that transmit a signal

from one node to another. However, in practice ANNs and their biological counter-

parts work in completely different ways and the resemblance is only on the surface

level.
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Figure 3.3: An example of a multilayer perceptron model with two hidden layers.

Since a typical artificial neural network is very complex due to the large number

of nodes, ANNs require massive amounts of data to learn effectively. Availability

of big data has made ANNs a ubiquitous tool in numerous fields, for example in

medical diagnosis [29], computer vision for self-driving cars [30] and facial recognition

systems [31,32]. Algorithms using ANNs have also reached superhuman capabilities

in playing games [33].

3.2.1 Multilayer perceptron

A multilayer perceptron (MLP) is a simple example of an artificial neural network as

illustrated by figure 3.3. They consist of an input layer, at least one hidden layer and

an output layer and the layered structure of the networks is why the field of artificial

neural networks is often referred to as deep learning. Each of the layers consists of

nodes which are connected to the nodes of the previous and the next layer. In the

case of fully connected layers each node is individually connected to all nodes of the

neighboring layers. In an MLP, each connection has a weight corresponding to the

relative importance of the connection and each node has an non-linear activation

function and a bias term. Considering the weights, biases and activation functions
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of each node by layer, the value of each neuron is

a(l) = σ(l)
(
W (l)a(l−1) + b(l)

)
(3.6)

Here, a(l) is the vector containing the values of neuron in the layer l, W (l) is the

weight matrix between layer l and l − 1 containing the entries wljk for the weights

between node j in layer l and node k in layer l − 1. Also, b(l) is the bias vector of

layer l and σ(l) is the activation function applied to layer l. Expanding the previous

expression for the entire network of L layers leads to the output vector g(x) for an

input x

g(x) = σ(L)
(
W (L)σ(L−1)

(
W (L−1) · · · σ(1)

(
W (1)x+ b(1)

)
· · ·

)
+ b(L)

)
(3.7)

The activation functions are used since otherwise the above combination of

functions would be reduced to only one matrix multiplication reducing the capacity

of the model drastically. There are multiple different activation functions for dif-

ferent purposes and some of these functions are described next and also shown in

figure 3.4.

3.2.2 Activation functions

In practice, a good default activation due to its simplicity is the rectified linear unit,

or ReLU [34]:

σReLU(z) = max (0, z) (3.8)

In the positive value regime it behaves as a linear unit and all negative values

are truncated to zero. The ReLU activation can be used in networks with large

depth as it does not suffer from the vanishing gradient problem as, for example,

the sigmoid σσ(z) = 1
1+e−z and hyperbolic tangent σtanh(z) = tanh(z) functions

do [35]. Essentially, the vanishing gradient problem means that the early layers

of a network learn very slowly since the gradient of the cost function is decreased
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Figure 3.4: Visualization of the ReLU, Leaky ReLU and hyperbolic tangent activation functions

exponentially if the later gradients are small as the gradient is calculated backwards

in the network. The backwards calculation, or backpropagation, of the gradient is

explained in section 3.2.4.

However, in some cases ReLU causes neurons to die if all inputs to the ac-

tivation function are negative. This causes the gradient to become zero and the

entire network becomes a constant function. To avoid this, an adaptive learning

rate should be used. Alternatively, there are variations of the ReLU function such

as the Leaky ReLU

σLeakyReLU(z) = max(αx, x), 0 < α < 1 (3.9)

which do not cancel the negative regime entirely but only suppress it with the

hyperparameter α.

One more important activation function is the softmax

σsoftmax(zi) = ezi∑K
j=1 e

zi
for i = 1, . . . , K (3.10)
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which is often used at the last layer in classification networks to normalize the output

of a network to a probability distribution. It transforms each value zi to range (0, 1)

and forces the transformed sum of components σsoftmax(zi) to equal 1.

3.2.3 Optimizers

In the previous example of linear regression, the loss function could be minimized

analytically. However, even for a relatively simple neural network this is not possible

and the parameters minimizing the loss function have to be found by different means.

In the field of deep learning, the method of parameter optimization is called the

optimizer.

Let L(f(X;θ),y) be a loss function, where f is the function representing the

model, (X,y) is the data set and θ is the model parameter vector to be optimized.

An often used method is the gradient descent which iteratively improves the param-

eters by taking steps into the direction opposite to the gradient of the loss function.

That is,

θi+1 = θi − γ∇θL(f(X;θi),y) (3.11)

where the learning rate γ controls the length of each step. The parameters θ0 should

be initialized to non-zero values to avoid the vanishing gradient problem but on the

other hand the values should not be too large to avoid exploding gradients.

Especially with large networks and data sets, the computational load of calcu-

lating the gradient with the entire data set becomes unfeasible. A better alternative

is stochastic gradient descent (SGD) which only uses a randomly selected part of

the data set each time the gradient is calculated reducing the cost of the operation.

A full pass over the training samples is called an epoch.

In this project, the Adam optimizer was used [36]. It is a variant of SGD which

maintains an individual learning rate for each parameter in the model. Each learning
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rate is also adjusted during training based on the gradient in each dimension. This

has the benefit of faster convergence compared to SGD.

3.2.4 Backpropagation

Calculation of the gradient was mentioned multiple times in the previous chapter

but considering the highly non-linear structure of neural networks, the computation

of the gradient is an evident challenge. In practise, the gradient in neural networks is

calculated using backpropagation which is an algorithm that computes the gradient

of the loss function ∇θL(f(x;θ), y) efficiently using the chain rule.

The goal of the backpropagation algorithm is to find the value of ∂L
∂wl

ij
for each

weight wlij from node i on layer l − 1 to node j on layer l. The weighted input of

node j in layer l before activation is

zlj =
nl−1∑
k=1

wlkja
l−1
j + bl−1

j (3.12)

For cleaner notation, the bias is implemented as an additional node to each layer

wl0i = bli with its output fixed as a constant al−1
0 = 1 and we use the chain rule to

write

∂L

∂wlij
= ∂L

∂zlj

∂zlj
∂wlij

(3.13)

Here, the first part is often labeled as the error term δlk and the latter is

calculated easily to get

∂L

∂wlij
= δlja

l−1
i (3.14)

where al−1
i is the output of node i in layer l − 1.

The value for the error term is also calculated via chain rule, in this case with

respect to the next layer l + 1:

δlj = ∂L

∂zlj
=

nl+1∑
i=1

∂L

∂zl+1
i

∂zl+1
i

∂zlj
(3.15)

=
nl+1∑
i=1

δl+1
i

∂zl+1
i

∂zlj
(3.16)
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where nl+1 is the number of nodes in the layer l+ 1. From this expression it is clear

that the error term δlj depends on error terms in the next layer δl+1 and the gradient

propagates backwards in the network. Inserting the expression for

zl+1
i =

nl∑
k=1

σ
(
wl+1
ki z

l
k

)
(3.17)

gives the following error term δlj

∂L

∂zlj
=

nl+1∑
i=1

∂L

∂zl+1
i

∂
∑nl
k=1 σ

(
wl+1
ki z

l
k

)
∂zlj

(3.18)

=
nl+1∑
i=1

∂L

∂zl+1
i

wl+1
ji σ

′(zlj) (3.19)

Combining the two results, the partial derivative ∂L
∂wl

ij
for each weight is obtained:

∂L

∂wlij
= σ′(zlj)al−1

i

nk+1∑
k=1

wl+1
jk δ

l+1
k (3.20)

Using this recursive logic, all parameters of the network can be computed while

progressing backwards through the layers. Using dynamic programming, i.e. storing

intermediate values for the parameters, each partial derivative has to be calculated

only once which makes the algorithm very efficient memory-wise.

3.2.5 Hyperparameter optimization

When designing a machine learning model, there are numerous architectural choices

the developer can make. For example, the number of layers, the number of neurons in

each layer , the learning rate and the choice of activation functions can all be tuned.

Practically, every component of a neural network has some parameter which may

be adjusted for the problem at hand. These parameters are called hyperparameters

and the choice of the hyperparameters can drastically affect the performance of the

model. The difference between hyperparameters and model parameters is that the

hyperparameters have to be set before the training process while model parameters,

i.e. weights and biases, are learned from data during the training.
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Figure 3.5: Flowchart showing how the data set splitting relates to the model training process.

Figures in parentheses show the number of molecules of each data set.

x1 x2 x3 x4 x5

a1 a2 a3 a4 a5

x1 x2 x3 x4 x5

a1 a2 a3 a4 a5

Figure 3.6: Left: Connections between two layers in a fully connected network. Right: Connec-

tions between layers in a convolutional neural network (Kernel width = 3). Recreated from [34].

To find the optimal hyperparameters, the training set is further split into a

training and a validation set. The model parameters are learned on the training set

and the model performance is measured on the validation set. The hyperparameters

are fine-tuned so that the performance on the validation set is maximized. The test

set should be only used after the optimal model and its hyperparameters have been

selected to ensure that the test set performance represents an unbiased estimate of

performance on unseen data. Figure 3.5 highlights how the data set is split and

how each data set contributes to the model training process. It also shows how the

entire data set of 6328 molecules is split. In reality, the data set partitions are 30

times larger due to the rotation augmentation.
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3.3 Convolutional neural networks

Convolutional neural networks (CNNs) are a useful tool when learning from data

with strong local connections. Fully connected multilayer perceptrons typically per-

form badly in these tasks since all neurons in a layer are connected to all nodes

of the next layers with individual weights meaning that even a slight spatial shift

in the data example might completely change the output of an individual neuron.

By contrast, in CNNs the neurons are only connected to spatially closely located

neurons in the next layer which emphasises local features in the dat. The second im-

portant feature of CNNs is shift invariance which is achieved through weight-sharing

meaning the weights of a filter are shared between locations in a layer. Figure 3.6

illustrates the difference in connections between layers for CNNs and MLPs. The

figure also shows how a value in the latter layer is affected by all neurons in the

previous layer in a fully connected network, but in a CNN the kernel size defines

the number of connections. Kernels and other details of CNNs are described in this

section. The reduced number of connections also help with the curse of dimension-

ality: increasing number of nodes exponentially increases the number of parameters

to be optimized thus making fully connected networks computationally inefficient.

A typical example task for 2-dimensional CNNs is image classification. For

example, one might want to classify images based on whether they contain a cat

or a dog. In principle, it should not matter where the animal is located in the

image, but the model should learn the local features that separate cats from dogs.

The importance of shift invariance in CNNs is apparent here: if an edge is deemed

significant in one part of the image, the edge is probably significant anywhere.

Previously, CNNs have been successful in many applications, such as X-ray image

analysis [37], character recognition [38] and in a related topic to this project, AFM

image interpretation [7].

The term convolution refers to the convolution operation (f ∗ g) but in a
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mathematical sense, the operation in convolutional neural networks is actually cross-

correlation which is a similar operation. In the field of deep learning, and also in

this thesis, convolution is used to mean cross-correlation.

A convolution operation has two arguments: (1) the input I, for example

an image which is a two dimensional grid with each value corresponding to the

brightness of that pixel and (2) the kernel K which is also a two dimensional grid.

In the operation, the kernel is "slid" across the input, and the output is formed as

the sum of element-wise products of the input and the kernel:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) (3.21)

Here, m and n refer to the size of the kernel. Figure 3.7 shows how the operation

is carried out. The image is often padded with zeros or using reflective boundary

conditions before the convolution to keep the image dimensions unaltered. One

convolutional layer typically contains multiple kernels, or filters, from which the

output is passed to the next layer. The number of kernels in each layer, along with

the size of the kernel and the stride used in convolution, are hyperparameters of the

model. A convolutional layer can be used on data with any number of dimensions

with the same logic.

Convolutional neural networks typically consist of convolutional blocks con-

taining one or more convolutional layers, activation functions and pooling layers.

The reasoning and details of using an activation function are discussed in section
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Figure 3.8: A 2-by-2 pooling operation on a 4-by-4 grid using max pooling and average pooling

3.2.2.

A pooling layer reduces the output dimension of a convolutional layer by re-

placing the output with a summary of the local environment around each pixel.

Pooling is used to make the model approximately invariant to minor translations

in the input which is often a desired quality. Pooling layers in consecutive blocks

help to gradually increase the field of view of convolutional filters to collect more

general properties from the input data. However, if the exact location of some fea-

ture is important, excessive pooling has to be avoided in the model to preserve the

spatial information in a wider context. Another benefit of pooling is that since the

spatial size of data deep in the network is reduced, a large number of filters can be

applied allowing for more abstract features to be detected without increasing the

computational cost.

Probably the most popular pooling method is the max pooling operation in

which the maximum of the local filter space is used as the output. One other

popular pooling operation is the average pooling in which the average of the local

filter space is reported. These methods are shown in figure 3.8. The gradient of the

loss function in convolutional networks is calculated using backpropagation and any

of the previously mentioned parameter optimization methods can be used.
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3.4 Graph neural networks

3.4.1 Motivation for graphs

Convolutional neural networks perform well at finding hidden patterns in data in

Euclidean form. One example of this type of data is an image which is represented

as a two dimensional grid. However, when the data is in non-Euclidean form and

the interdependencies in the data are complex, a different machine learning model

is required to capture the hidden patterns. For example, the connections between

individuals in a social network and bonds between atoms in a molecule are non-

Euclidean data structures. The input data used for this thesis is in euclidean form

consisting of stacks of 2D AFM images but the underlying atoms and chemical bonds

have natural graph representations.

Graphs are an abstract data type which models entities and the connections

between them. Mathematically formulated, a graph is a 2-tuple G = (V,E) con-

sisting of vertices V and edges E where edge is a tuple of vertices defining its two

endpoints, each of which might be associated with a weight ai. In addition, |V | = N

is the number of vertices and |E| = N e is the number of edges. A graph can be

also represented as an adjacency matrix A ∈ RN×N . For a simple graph, each entry

Aij ∈ {0, 1} specifies whether there is an edge from vertex vi to vj. Graphs are

either directed or undirected depending on whether the edges are oriented. Vertices

are also interchangeably called nodes.

Another motivation for graph based learning in addition to being able to gen-

eralize to non-Euclidean data structures is graph representation learning which aims

to capture graph features by representing the nodes in a graph as a low-dimensional

vector. The node embedding vectors can contain information about the local graph

structure and the node features. In the case of graph representation learning, there

are two additional properties for a node v: hv which is the hidden state vector and
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ov which is the output vector of the node.

Graph neural networks (GNNs) are an emerging field of research not as well-

established as CNNs [39]. Still, there exists numerous different variants of GNNs

with different model architectural choices. For example, the Graph Auto-Encoder

[40] (GAE) is an auto-encoder model that reconstructs the adjacency matrix using

an encoder-decoder type architecture. GAEs have been used for semi-supervised

node classification tasks. Another usage are user recommendation systems: for

example, a graph convolutional neural network is used at Pinterest to recommend

images to users [41]. In chapter 4, the GNN used in this project is described in more

detail.

3.4.2 Recurrent relational networks

Recurrent relational network is a general graph representation based method that

learns about objects and their interactions in a graph. It learns to encode a node

into an embedding vector which can be further processed. In a 2017 paper, Palm et

al. [42] describe the model and use solving a Sudoku as an example application.

A Sudoku problem is represented as a graph consisting of nodes i ∈ 1, 2, · · · 81

and edges from each node to nodes in the same row, column and box. Each node

also has an input vector xi which initialized based on whether the number in the

cell is given or solved for. In principle, a node gathers messages from its connected

cells in a message passing scheme which should inform the node which numbers are

allowed, and the network should solve the puzzle based on the allowed choices.

The node encoding is an iterative process meaning that multiple message pass-

ing operations are required. The idea behind the message passing scheme is related

to weight-sharing of CNNs but since the data here is in non-euclidean form the grid

shaped filters need to be replaced by a more abstract data format and instead, the

nodes share a part of the messages with their neighbors. At the start of the iteration,
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Figure 3.9: Structure of a GRU network. The gates of the GRU remember node states over

iteration steps. [43]

the hidden state vector of each node is initialized as h0
i = xi. At each iteration step

t, the messages mij from each node i to neighboring nodes j are calculated

mt
ij = f(ht−1

i , ht−1
j ) (3.22)

where f is a learned MLP message function. A learned message functions allows

the model to decide on which features and connections in the graph to focus. In the

message passing phase, the nodes aggregates all incoming messages

mt
j =

∑
i∈N(j)

mt
ij (3.23)

where N(j) is the set of nodes connected to node j. At the end of each iteration,

the hidden state of each node is updated. The states can be updated with a MLP

as is done by Palm et al. [42] but other methods can be used as well. One such

approach is by using a gated recurrent unit (GRU) [44]. A GRU is a neural network

architecture similar to long short-term memory [45]. It is used to "remember" node

states over iteration steps. Figure 3.9 shows the structure of a GRU unit. The
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updated hidden states ht are calculated via the following sequence:

rt = σ
(
Wirxt + bir + Whrht−1 + bhr

)
(3.24)

zt = σ
(
Wizxt + biz + Whzht−1 + bhz

)
(3.25)

ĥt = tanh
(
Wiĥx

t + biĥ + rt � (Whĥh
t−1 + bhĥ)

)
(3.26)

ht = (1− zt)� ĥt + zt � ht−1 (3.27)

The reset gate rt is calculated by first multiplying the current input vector xt with

the input-hidden weight matrix Wir and the previous hidden state vector with the

hidden-hidden weight matrix Whr. The corresponding biases biz and bhz are added

and finally the sigmoid function translates the gate values to range between 0 and

1. The weight matrices and biases are learnable and separate parameters are kept

for each gate. The update gate zt is calculated similarly but using the trainable

weight matrices Wiz and Whz, and biases biz and bhz. The new gate ĥ is otherwise

calculated in the same way but the sum of the hidden terms is multiplied with

the reset gate using Hadamard product �. Finally, the updated hidden state ht

is calculated by multiplying the element-wise inversion of the update gate with the

new gate and adding the Hadamard product of the update gate and the previous

hidden state.



4. Generative Graph Model

The previous chapters discuss the theoretical background for atomic force microscopy

and machine learning as well as the data generation scheme via Probe Particle Model.

This chapter ties together the two topics and describes the machine learning model

used for interpreting the AFM images.

4.1 Iterative scheme

In a previous study, Alldritt et al. [7] have used machine learning to interpret AFM

images as a set of image descriptors containing information about the geometry

and chemical properties of the sample. This thesis aims to expand this study by

predicting exact atomic coordinates of the molecules in a sample and also reveal the

chemical bonds between the atoms.

Predicting the atomic coordinates as a list of xyz positions with a CNN model

is a tempting idea but it is not a realistic approach since a list of coordinates is

not a convenient descriptor for an ANN to process. Some of the challenges are

that each molecule would have an output vector of different size, and permutating

the output vector would result in a seemingly different molecule despite the same

physical structure.

Graphs can consist of a different number of nodes and edges, and various

GNN methods are capable at processing graphs of varying sizes. Also, graphs are

inherently permutation symmetric. Another obvious reason for choosing a graph

35
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ML model

1

2

Add node

and bonds...

3

PPM

...or terminate?

Figure 4.1: The iterative scheme used in the thesis. The red arrows highlight the iterative

structure of the algorithm. The numbered arrows show the three inputs for the machine learning

model.
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based method is that a molecule can be naturally represented as a graph: the atoms

are the nodes of a graph and the bonds are the connecting edges.

The machine learning model used in this thesis closely follows the generative

graph model of Li et al [46]. Qualitatively, the scheme of the iterative model is the

following:

i. The AFM image and an empty molecule graph are given as input to the

machine learning model.

ii. The ML model decides whether to add a node and associated edges to the

graph or to terminate the generative process based on the inputs.

iii. If a node is added at step (ii), Probe Particle Model is used to take a new

AFM image of the incomplete molecule

iv. The reference AFM image, the newly simulated AFM image and the updated

graph are given as input to the machine learning model.

v. Go to step (ii)

The idea at the core of the model is that the molecule prediction is generated

atom-by-atom in an iterative scheme as shown in figure 4.1 and the model should

learn the mapping between a small mutation in the molecule and the corresponding

change in the AFM image. At a conceptual level, once the reference AFM image

and the newly simulated AFM image are similar, the model has correctly built the

reference molecule and the generative process is terminated at step (ii).

This scheme begs the question: how does the ML model decide what is the

correct action to take in a given situation? As figure 4.1 shows, the ML model

has three input branches: the reference AFM image (1), the newly simulated AFM

image (2) and the updated graph (3). Each branch is processed to form an encoding

vector which should contain the information of the specific branch in an abstract
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representation. The vectors are used as inputs for the decision making. Next, the

insides of the model will be explained by focusing on one input branch at a time,

starting with the input graph.

4.2 Model architecture

4.2.1 Input branches

Input graph

At the start of the iteration the graph is empty and the graph is zero-encoded. At

the second iteration and onwards the node features are computed using a single

linear layer with the node positions as input and 20 output parameters

h0
v = fe(xv) (4.1)

where xv is a containing the position and type of node v. Then, the recurrent

relational network as described in the section 3.4.2 is used to propagate the messages

and update the node features in the graph over 3 message passing iterations to

aggregate messages from a larger neighborhood

h3
V = prop(prop(prop(h0

V , G), G), G) (4.2)

where each propagation prop(htV , G) returns the updated node features ht+1
V , and

htV contains the node features of the entire graph G (htV = {ht1, ...,ht|V |}).

The node features are then expanded to a higher dimensionality

hGv = fm(hv) (4.3)

where fm is an MLP with a single hidden layer with 32 units and ReLU activation,

and 128 output units. The individual node features are aggregated to form a single

feature vector for the entire graph. For the aggregation, a separate gating network



4.2. MODEL ARCHITECTURE 39

is used

gGv = σ(gm(hv)) (4.4)

for each node v, where σ is the logistic sigmoid activation and gm is another MLP

with 32 hidden units, ReLU activation and 128 output units. The dimensionality

of the node feature vector is increased (Eq. 4.3) since the graph contains more

information than single nodes.

The final graph encoding vector is obtained as a gated sum of the individual

node features

hG =
∑
v∈V

gGv � hGv (4.5)

Additionally, the AFM image input branch requires a query vector for the atten-

tion mechanism as explained next. The query vector is computed from the graph

encoding vector through an MLP

q = fq(hG) (4.6)

Input AFM images

The reference AFM image and the newly simulated AFM image are both encoded by

an attention-gated CNN. An attention gate is another neural network which learns

to selectively concentrate on the important parts of the input [47,48]. In this thesis

attention gates are used to let the CNN focus on the most vital regions of an AFM

image.

Figure 4.2 shows the structure of the CNN. The first 3D convolutional layer has

a shape 128×128×10 corresponding to the spatial dimension 128×128 of the AFM

scan while 10 is the number of scanning heights. While the 3D convolutional layers

are computationally expensive, they capture important features present in adjacent

slices of the image stack which otherwise could not be utilized. The increasing
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∆f

Conv3D
4@128x128x10

Conv3D
8@64x64x5

Conv3D
16@32x32x2

Conv3D
32@16x16x1

Conv2D
32@128x128

Conv2D
48@64x64

Conv2D
64@32x32

Conv2D
96@16x16

Global

Max pooling 2x2x2

Figure 4.2: Structure of the CNN. The numbers next to the layers are in format

(Nfilters@XxY xZ). Max pooling operation with a 2x2x2 kernel is applied between the 3D con-

volutional layers. The output from the deepest 2D convolutional layer is referred to as the global

feature map.

number of filters in the deeper layers of the network allows the model to capture more

abstract features in the input image. Each convolutional layer is accompanied by a

ReLU activation unit and after each 3D layer a max pooling operation is performed

with a 2x2x2 kernel. Each output channel of the 3D layers is flattened and used

as separate input channels to the corresponding 2D layers so that the number of

input channels to the first 2D layer is 4 × 10 = 40, to the second 8 × 5 = 40 etc.

ReLU activation function is also used for the 2D convolutional layers. Outputs of

the 2D convolutional layers are called feature vectors. The output of the coarsest

2D convolutional layer (16 × 16), highlighted in red in figure 4.2, is referred to as

the global feature map. The gating mechanism is illustrated in figure 4.3.

Each feature vector xl is gated separately i.e. the attention mechanism is

applied to each layer l of the CNN output including the global feature map g. As

the dimensionality of the global feature map g is 16 × 16, to make it compatible

with the larger feature vectors it is upsampled using bilinear interpolation. When

applying the attention gate to the global feature map, upsampling is not necessary.

After the global feature map is upsampled to the correct dimensionality, it

is processed through a 2D convolutional layer with ReLU activation after which
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Figure 4.3: Flowchart of the attention gating mechanism.

the global features are added to the feature vector xl. A 2D convolutional layer

is applied to the sum xl + g and each channel of the sum is multiplied by the

corresponding component of the query vector q to obtain the attention map. Before

the multiplication operation, a softmax is applied to the query vector so in principle,

the query vector functions as an attention gate on the channels of the convolutional

feature maps. At this point, the attention map contains multiple channels but the

pixels of the map are summed channel-wise to leave only a single channel before

applying a softmax to the ultimate attention map. The attention map is multiplied

with the feature vector xl and a pixel-wise sum is applied to the result to get the

output of the attention gate a.

Now there are attention-gated feature vectors for each layer in the CNN. The

feature vectors are then concatenated and an MLP fi is applied to the concatenated

vector

x = ReLU(fi(a)) (4.7)
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Figure 4.4: Structure of the output branches.

to get the image encoding vector x. The network fi is a single linear layer with 128

output units.

The newly simulated AFM image, the reference AFM image and the graph

are all encoded using their respective encoding networks and the resulting vectors

are concatenated to form the complete encoding vector encompassing information

about the AFM images and the current graph.

4.2.2 Output branches

While the input encoding networks are rather complicated, computing the output of

the network is simple. As illustrated in figure 4.1, the model should either add one

node and the required edges to the graph or terminate the generative process. The

decision to add a node or to terminate is made via a classification network and the

location of the added node via a regression network. The output processing network

from encoding vector concatenation to the output layers is shown in figure 4.4.

The classification network is an MLP with 32 hidden units with ReLU activa-

tion. A softmax function is applied to the classification network so that its output

can be interpreted as a probability. Predicting class c0 means terminating the gener-

ative process. The atom type prediction is limited to distinguish between hydrogen

atoms to class c1 and all heavier atoms to class c2. The position network has two

hidden layers, both with 64 hidden units and ReLU activation. Readout of the po-
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sition network is straightforward since the output layer consists of 3 units, each of

which corresponds to one spatial coordinate of the added atom.

One component still missing from the graph are the edges between nodes, and

more specifically to which nodes should the new node connect. To achieve this, the

position and class vectors are concatenated and the node encoding network of Eq.

4.1 is used to obtain the node features of the new node. Then, the messages in the

old graph are propagated once again and the new node features are concatenated

to the features of each old node. The combined node features xcV are the input for

an edge classification net

eV = σ(fedge(xcV )) (4.8)

where the sigmoid activation function σ normalizes the output to range [0, 1] such

that there is a connection from the new node u to an old node v ∈ V if ev > 0.5.

Once the edges are added to the graph, we have passed one iteration in the generative

scheme and a new iteration starts.

The architecture of the machine learning model used in this thesis has now

been explained starting from encoding the three input branches and ending in the

readout of the output branches. The model was implemented with PyTorch [49]

and the Adam optimizer was used to compute the gradients with PyTorch default

parameters (learning rate = 1× 10−3, β1 = 0.9, β2 = 0.999). Total number of

parameters in the model was 750,335. The model was trained on a NVIDIA Tesla

v100 GPU on Triton at Aalto University [50].

4.3 Training and evaluation

The task of building a molecule from scratch atom-by-atom is a challenge for a

machine learning model since the reward of correct geometry prediction only comes

after the generative process, leading to a very delayed feedback: a badly positioned
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Figure 4.5: Example of a training data object.

atom at the start of the generation will lead to a bad prediction in the end, but from

the perspective of the model, it does not have sufficient information to discover the

source of the error. Another issue is the comparison of different sized graphs as a

loss function i.e. how to evaluate predictions with varying numbers of atoms? Is

predicting too few atoms in exactly the right position better than identifying the

correct number of atoms but predicting their positions badly?

The aforementioned ambiguities led us to make the design choice of training the

model in single-atom steps. This means that in one data example in the training data

set, there are (1) the original molecule generated by a coupled-cluster calculation,

(2) a "mutant" which is generated by randomly removing atoms from the original,

and (3, 4) the AFM images from both molecules generated by PPM. In terms of the

iterative scheme (Fig. 4.1), the graph representation of the mutant is the updated

graph, the AFM image from the mutant is the newly simulated image and the

original AFM image is the reference, while the original molecule is the reference

graph the model tries to predict. Figure 4.5 shows one such data example. The

number of atoms to remove from the reference is chosen randomly so that the model

learns to make consistent predictions at any iteration.

Since the tip in AFM scanning is only sensitive to the top atoms of the sam-
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ple and the images do not contain information from deeper atoms, one additional

challenge in interpreting AFM images is that identifying lower atoms is difficult.

Thus, we have made the decision of excluding atoms that are below zmin = −0.7 Å

when the topmost atom is fixed at z = 0 Å. While some information is lost, a good

prediction of the surface layer should be obtained.

Since the model predicts three quantities, the loss function is composed of

three parts, one for node regression, node classification and edge classification each.

For the positional regression task, mean squared error is used

Lpos = (xtrue − xpred)2 + (ytrue − ypred)2 + (ztrue − zpred)2 (4.9)

Predicting the z-coordinate is inherently more difficult than predicting coordinates

in the scanning plane. Thus, a discount d = − ztrue

2zmin
+1 is applied to the loss function.

The discount is larger when predicting deeper atoms and smaller when predicting

surface level atoms.

The node classification task is evaluated using cross-entropy

Lnode = −
2∑
i=0

ci,true log ci,pred (4.10)

where ci corresponds to the relevant classes. The edge classification task is evaluated

with binary cross-entropy

Ledge = − 1
m

m∑
i=1

bi,true log bi,pred + (1− bi,true) log(1− bi,pred) (4.11)

where bi = 1 if there exists a bond between the predicted node and node i, and bi = 0

otherwise. In the regression evaluation, the loss is calculated from the nearest atom

in the reference to the prediction. For the classification tasks, the type and bonds of

the nearest atom are used as the reference. Combining the individual loss functions

we get the loss function for the model

L = dLpos + 3Lnode + 2Ledge (4.12)
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where the factors for the node and edge losses ensure a balanced evaluation for each

contributor.

The model should learn to predict accurately one of the missing atoms in the

mutant in any situation. The training set also includes instances where none of

the atoms were removed and the model should learn to terminate to process when

necessary. From these single-atom additions, the model should generalize to being

able to predict a whole sequence of additions from scratch to the complete molecule.

In the next chapter results from the single-atoms additions, in addition to the results

from the generative processes, are shown.



5. Results and discussion

5.1 Single atom predictions

While a single-atom prediction is only the training procedure of the model, it is

important to know how the model performs since the training performance sets

an upper limit for the generative prediction performance. The single-atom predic-

tion accuracy was also used for model selection, since ranking the models based on

sequence predictions was difficult due to the ambiguous comparison of graphs as

mentioned previously.

The model was trained on the molecule data set described by table 2.1 and

figure 3.5. The training data set consisted of 4728 data examples, the validation set

of 600 and the testing set of 1000 examples, each augmented with 30 rotations using

Eq. 2.13. Figure 5.1 shows the total loss function and its contributors as a function

Training Validation Testing

Position 2.067× 10−1 2.007× 10−1 1.936× 10−1

Node class 0.979× 10−1 0.934× 10−1 0.881× 10−1

Edge class 0.347× 10−1 0.330× 10−1 0.350× 10−1

Total 5.698× 10−1 5.469× 10−1 5.279× 10−1

Table 5.1: Training, validation and testing losses after 50 training epochs before applying the

loss factors.

47
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Figure 5.1: Training and validation losses as a function of training epoch. Top left: Total loss.

Top right: Node position mean-squared loss. Bottom left: Node classification cross-entropy loss.

Bottom right: Edge classification binary cross-entropy loss. The numbers in parentheses are the

corresponding loss factors.
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Position errors |r| Å |x| Å |y| Å |z| Å

Mean 0.50 0.29 0.29 0.14
Median 0.40 0.20 0.21 0.11
Std 0.38 0.31 0.30 0.12

90th % 0.94 0.66 0.63 0.32
95th % 1.19 0.87 0.84 0.39
99th % 1.94 1.43 1.43 0.52

Table 5.2: Statistics of the node position predictions. Here, |r|2 = |x|2 + |y|2 + |z|2.

Figure 5.2: Parity plot of the reference coordinate versus predicted coordinate. Left: x-

coordinate. Center: y-coordinate. Right: z-coordinate.

of the training epoch and table 5.1 shows the training, validation and testing losses

after 50 training epochs. The learning curves show that the model does not improve

significantly anymore after 50 epochs at which point the training was stopped.

Since the model should iteratively generate the molecule atom-by-atom, the

node placement accuracy for single-atom additions is important. Table 5.2 shows

statistics of the node placement predictions for the testing set. It shows that the

mean position error is 0.50Å. The error in the scanning plane direction is larger than

in the z-direction. This is explained by the sizes of these dimensions, the scanning

place spans over 15 Å in both directions whereas the surface layer atoms we consider

in the predictions lie in the region −0.7 Å < z < 0 Å. Thus, the error relative to
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Figure 5.3: The mean error in each direction as a function of atom depth. Top left: Error in r.

Top right: Error in x. Bottom left: Error in y. Bottom right: Error in z.

the prediction range is larger in the z-direction. The difficulty of the z-coordinate

prediction is also highlighted in the parity plot of figure 5.2 where the true position

of a node is on the x-axis and the predicted position of that node is on the y-axis.

The predictions of both horizontal coordinates are generally quite accurate but the

model does not learn to predict the vertical coordinate. A worse performance in the

vertical direction was expected since an AFM scan is sensitive in vertical direction

to the top atoms but the probe cannot penetrate the sample and information about

the deeper atoms is lost.

One more interesting result from the position predictions is how the depth of

a predicted atom affects the prediction accuracy. This is shown in figure 5.3 which

presents the increasing difficulty of position prediction the deeper we go vertically.

In all directions, predicting atoms close to the surface is considerably easier than
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Figure 5.4: Confusion matrix of the node classification task. In each box, the top number shows

the fraction of predictions that fall into each class while the number in parentheses show the total

number of such cases.

predicting deep atoms. The total error r is twice as large at z = −0.7 Å than at

z = 0 Å. The tip-sample interaction is the strongest for the surface layer atoms and

degrades rapidly which explains the lack of information about the deeper atoms in

a molecule and the resulting bad performance in predicting deep atoms.

In addition to the node position prediction, the model also classifies the nodes

into classes of hydrogen atoms (class 1) and all heavier atoms (class 2). Class 0

represents the termination class for the generative process. The node classification

performance is shown in figure 5.4 in a confusion matrix format. A confusion matrix

shows the performance of a classification algorithm in a matrix where each column

represents a predicted class while each row represents the true class.

For all classes, the true positive rate is higher than 95 % which is very good.

Especially the termination class is predicted very reliably and there are few false
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Figure 5.5: Confusion matrix of the edge classification task. In each box, the top number shows

the fraction of predictions that fall into each class while the number in parentheses show the total

number of such cases.

positives or negatives. In the training phase if no atoms were removed during the

mutation, the two input AFM images would seem similar to the model and the

difference would be the random pre-processing applied to the images, and in that

case the model should be able to terminate the process with high confidence.

The excellent distinguish-rate between hydrogen atoms and heavier atoms is

however surprising since the difference between a missing hydrogen atom and a

missing heavier atom is not obvious in an AFM image.

Edge classification is the third task for the model and the accuracy of correctly

identifying bonds from the added atom is presented in figure 5.5 as a confusion

matrix. The true positive rate for "no edge" is 98.3 % and for edge class it is 85.7

%, 14.3 % of the edge classes are misclassified as "no edge". It seems that the model

is biased towards predicting no edges. From the case numbers in parentheses we see
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Figure 5.6: Single-atom prediction. Top left is the reference graph from which the reference

AFM image (bottom left) is taken. To get the input graph the purple node is removed of which

the second input AFM image (bottom right) is taken. The top right image shows the predicted

graph where the green node is the newly added node.

that "no edge" is the predominant class in the data set also which might steer the

model to overemphasize those predictions.

To give an example of a single-atom prediction, figure 5.6 shows the inputs

and the resulting prediction of the model. The reference graph is shown in the top

left image while the input graph consist of the red nodes i.e. the node in purple was

removed from the reference. This is also the node that the model should predict.

In this example only one node was removed, but the number of removed nodes is

chosen randomly. The figure also shows the AFM images both from the reference

graph and the input graph. The prediction is shown in the top right image where

the predicted node is highlighted in green. The z-coordinate of a node is represented

by its relative size: a larger node means that the atom has a higher z-coordinate.
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Comparing the two AFM images by eye, one can observe that the shape of the

bright region changes and might assume that an atom has been removed in that area.

In this example, the model has come to the same conclusion. The exact location of

the prediction is not completely accurate and the atom has been predicted too close

to the other atoms.

5.2 Generative predictions

Using these single-atom additions, the machine learning model should generalize to

make intelligent predictions in a generative process. The eventual goal of the model

is to predict the molecule geometry from a truly unknown experimental image but

in this thesis we are limited to predictions from simulated data where the reference

geometry is known. Due to the challenges in comparing the predicted graph to the

reference graph quantitatively, in this section three example generative predictions

are presented, one best-case, one approximately average and one worst-case scenario.

Each example will be accompanied by discussion on the details of the prediction.

The first example in figure 5.7 is the best-case scenario prediction. The graph

prediction sequence by iteration is shown on the top row and below each graph is

the corresponding AFM image. The bottom right image is the reference AFM image

which we try interpret and next to it is the reference geometry. The final prediction

is shown in the bottom left corner.

The predicted molecule has generally the same geometry as the reference which

is a success for the model. Each of the predicted atoms is correctly classified but

one atom from the reference is clearly missed, but looking at the reference AFM,

the contrast from the missed atom is insignificant. This probably happens because

the closest neighboring atom is located closer to the tip and the missed atom is left

in its shadow. Looking into the details of the prediction we see that each individual

atom is also slightly off from its reference position and there is no bond between the
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Generative process
Prediction Reference AFM Reference

Figure 5.7: Best-case scenario. The topmost rows show the graph generation sequence and the

corresponding AFM images. The bottom row shows the predicted graph, reference graph, and the

input AFM image. The graphs are accompanied by 3D rendered images of the atoms.
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carbon atom and one of the hydrogen atoms where there should be. The single-atom

predictions showed that there is variance in the node placement and bond classifi-

cation accuracies which explain the deviation from the reference. Additionally, the

reference molecule shows vertical deviation between the atoms which is missed in

the prediction. Here, the difficulty of predicting the vertical coordinates becomes

apparent and the model essentially disregards the vertical component and predicts

all nodes at approximately the same height. This is best seen in the 3D rendered

image of the prediction. Generally, when the reference molecule is small i.e. the part

above the vertical threshold zmin = −0.7Å consists of 1-3 nodes, the predictions are

quite robust and the placement of the nodes is consistently accurate.

The next example is from an approximately average prediction. The prediction

sequence in figure 5.8 is presented in the same format as the previous example. Again

the two first rows show the generative process and the last row shows the reference

geometry and AFM image in addition to the predicted geometry.

The triangular shape of the reference geometry is retained in the prediction

but the actual positions and the number of predicted nodes is not accurate. This

prediction also highlights the challenge of AFM image comparison as the reference

AFM image and the last AFM image from the sequence have very similar properties:

both images have a general round shape and there is a region of lighter contrast at

the left edge.

Probably the most significant flaw in the model is that it does not know physics.

The model has no inherent information of how a molecule is constructed or what

are allowed positions for hydrogen atoms connected to a carbon atom, but instead

the model should learn this from the thousands of example geometries. Partially,

this is an advantage as we allow the model to come to its own conclusions and we

let the model decide independently what are the important features in the data. On

the other hand, this leaves room for the model to make unphysical decisions. For
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Figure 5.8: An approximately average case prediction. The topmost rows show the graph gener-

ation sequence and the corresponding AFM images. The bottom row shows the predicted graph,

reference graph, and the input AFM images.
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example in this prediction, where in the third iteration the model has placed an

atom on top of an existing atom. This is obviously not an allowed position. The

vertical coordinates of the predicted atoms are again approximately the same.

The third example shows a worst-case scenario prediction. The AFM images

from the sequence are left out for this example and figure 5.9 shows only the graph

generation sequence, the reference molecule and the reference AFM image. Imme-

diately one can observe that the generative process has not produced an intelligent

prediction of the reference and many atoms are placed in the same position. A closer

inspection into the predicted coordinates reveals that the atoms are placed always

slightly above the previous atom in z-direction. Again, this comes back to the lack

of physical intuition in the model.

To solve this issue, we tried to implement a computationally inexpensive

pseudo-physical potential as another input for the model, essentially giving the

model information about physically viable positions for new atoms. However this

did not erase the erratic behaviour of the model and since it increased the training

time by 20 %, the model presented in this thesis does not use this additional input.

Definitive statements about predictions of a machine learning model are dif-

ficult to make. The massive amount of parameters and layers make it next to

impossible to establish why a certain prediction has been made. Still, some intu-

itive guesses for this chaotic behaviour can be offered. The model in this thesis is

deterministic, meaning that a certain set of inputs will always result in the same

prediction.

For example, consider the inputs to the model after iterations four and five

from which the newly simulated AFM images are shown in figure 5.10. At iteration

4 based on the current inputs, the model decides to place an atom at approximately

(x, y) = (10.5, 10) which would seemingly be translated to the brightest region of

the reference AFM from figure 5.9. After this addition, AFM 5 is obtained from a
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Graph prediction sequence

Prediction
Reference AFM Reference

Figure 5.9: A worst-case scenario prediction. The top images show the graph generation sequence.

The images at the bottom are the predicted graph, reference graph and the reference AFM image.

AFM 4 AFM 5

· · ·

AFM 18

Figure 5.10: Three AFM images from the worst-case scenario prediction. Left from iteration 4,

center from iteration 5. The right image shows the AFM image from the final 18th prediction.
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PPM simulation and used as an input for iteration five. However, comparing AFM 4

and AFM 5 by eye, the difference in contrast in that region is not significant at least

when compared to the reference AFM image. This means that the set of inputs for

iteration 5 is nearly identical as the previous iteration and the model makes another

prediction in the same region, eventually resulting in the model adding multiple

atoms in the same position. The iteration is eventually stopped after 18 iterations,

and the AFM image corresponding to the final prediction is shown rightmost in

figure 5.10.

One more observation from comparing the reference AFM image to either AFM

4 or AFM 5 from the sequence is that the brightest region is at a different location.

Generally, the brightest region corresponds to the atom closest to the tip and thus

it seems that correctly identifying the top atom of a molecule is vital for a good

prediction. Unfortunately, the model often predicts the first atom close to z = 0Å

which is the z-coordinate of the top atom regardless of which atom it is trying to

predict. This means that if the model does not predict the top atom first, later it

will most likely have trouble trying to replicate the bright features of the top atom

in the AFM image when there are already atoms near z = 0Å.



6. Conclusions

In this thesis we present an image-to-graph translation method for atomic force

microscopy image interpretation. In general, for human experts AFM images are

difficult and time-consuming to interpret manually. This motivated the thesis for

which the objective was to develop a tool to automate the process of identifying

sample geometries. The eventual goal for the developed tool is to assist experimen-

talists and make the AFM image interpretation process more efficient and robust.

However, in this thesis we were limited to consider only simulated AFM data.

The results in this thesis are separated into two parts. First of these is the

results for single-atom addition which acts as the training phase for the generative

model which learns to construct a molecule atom-by-atom. The single-atom predic-

tions are important as they set an upper limit for the prediction performance in the

generative phase. The accuracy of atom placement in the scanning plane direction

was significantly more accurate than in the vertical direction. This was expected

as AFM images inherently contain less information in the tip oscillation direction.

In addition to the atom placement, all atoms were classified as either hydrogen or

something heavier. The classification was done with an error rate of less than 5 %

suggesting that the model learned with very high confidence what distinguishes light

atoms from heavier ones. In further studies, the classification task can be expanded

to account for more atom types. To conclude the single-atom prediction results, the

obtained predictions were accurate and showed that the model has the capability to
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learn features from AFM images and translate those features into a geometry.

While the single-atom predictions are interesting, the main results in the thesis

are from the generative predictions. In this thesis, we presented three different

predictions corresponding to roughly the best possible prediction, average prediction

and the worst-case prediction.

The best-case prediction was qualitatively very accurate, missing only one

atom that was hardly observable from the AFM image even with knowledge of the

reference geometry. The most accurate predictions came generally from geometries

where the part above the threshold z = −0.7Å consists of three or fewer atoms.

The average and worst-case predictions highlight the issues of the model and give

possible clues for which parts of the model are most crucial for good performance.

This also paves the way for how the model may be improved in further studies. The

glaring problem was the bad prediction in the worst-case scenario. Some possible

explanations for the chaotic behaviour included the deterministic nature of the model

and the difficulty in predicting the z-coordinate of an added atom. The z-coordinate

prediction accuracy could be improved by varying the hyperparameters in the model.

Another approach could be to bias the training data set differently. Currently, the

data set is augmented using such rotations that the number of visible atoms in each

image is maximized. However, this is not necessarily the optimal augmentation

strategy and it could be studied how a different emphasis in the rotations would

affect the performance of the model.

Another possible improvement would be to introduce domain knowledge into

the model. More specifically, we know how a molecule should be constructed and

what are the physically allowed bond lengths and angles for specific atoms. This

information could be introduced to the model as another input as was mentioned

previously, or alternatively one might use a molecular dynamics simulation in be-

tween the iterations to relax the generated molecule and to force the model to stay
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within the boundaries of known physics.

To conclude this thesis, we presented a generative graph neural network based

model for predicting molecular geometries from AFM images. The model learns to

detect and translate features from simulated AFM images to a graph representation.

Still, more work has to be done before the tool can be realized in an experimental

framework.
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