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Childhood aggressive behavior (AGG) has a substantial heritability of around 50%. Here we present a genome-wide association meta-
analysis (GWAMA) of childhood AGG, in which all phenotype measures across childhood ages from multiple assessors were included.
We analyzed phenotype assessments for a total of 328 935 observations from 87 485 children aged between 1.5 and 18 years, while
accounting for sample overlap. We also meta-analyzed within subsets of the data, i.e., within rater, instrument and age. SNP-heritability
for the overall meta-analysis (AGGoverall) was 3.31% (SE= 0.0038). We found no genome-wide significant SNPs for AGGoverall. The gene-
based analysis returned three significant genes: ST3GAL3 (P= 1.6E–06), PCDH7 (P= 2.0E–06), and IPO13 (P= 2.5E–06). All three genes
have previously been associated with educational traits. Polygenic scores based on our GWAMA significantly predicted aggression in a
holdout sample of children (variance explained = 0.44%) and in retrospectively assessed childhood aggression (variance explained =
0.20%). Genetic correlations (rg) among rater-specific assessment of AGG ranged from rg= 0.46 between self- and teacher-assessment
to rg= 0.81 between mother- and teacher-assessment. We obtained moderate-to-strong rgs with selected phenotypes from multiple
domains, but hardly with any of the classical biomarkers thought to be associated with AGG. Significant genetic correlations were
observed with most psychiatric and psychological traits (range rg

�� ��: 0.19–1.00), except for obsessive-compulsive disorder. Aggression
had a negative genetic correlation (rg= ~−0.5) with cognitive traits and age at first birth. Aggression was strongly genetically correlated
with smoking phenotypes (range rg

�� ��: 0.46–0.60). The genetic correlations between aggression and psychiatric disorders were weaker
for teacher-reported AGG than for mother- and self-reported AGG. The current GWAMA of childhood aggression provides a powerful
tool to interrogate the rater-specific genetic etiology of AGG.
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INTRODUCTION
There is a variety of phenotypic definitions of aggressive
behavior (AGG), from broadly defined externalizing problems
to narrow definitions like chronic physical aggression [1].
Generally any action performed with the intention to harm
another organism can be viewed as AGG [2, 3]. AGG is
considered a common human behavior [4], with people varying
in the degree of AGG they exhibit [5]. Children typically display
AGG early in life, after which symptoms tend to diminish [6, 7],
although in some individuals AGG persists into adulthood [8].
AGG is also part of numerous childhood and adult disorders [9],
including oppositional defiant disorder and conduct disorder
(CD) [10]. In its extreme forms, AGG may be considered a
disorder by itself—inflicting a huge personal and financial
burden on the individual, their relatives, friends, and society as
a whole [11]. In general population studies, AGG is commonly
treated as a quantitative trait, and pathological AGG has been
argued to be best seen as the extreme end of such a continuum
[12–14]. Childhood AGG co-occurs with many other behavioral,
emotional, and social problems [15, 16] and is associated with
increased risk of developing negative outcomes later in life,
including cannabis abuse [17], criminal convictions [18], anxiety
disorder [19], or antisocial personality disorder [20]. Not all
associated outcomes are harmful [21]. For example, children who
learn to control their impulses and apply aggressive acts as a

well-timed coercion strategy are generally more liked by their
peers and score higher on social dominance [22].
Despite a heritability of roughly 50% [5, 23], genome-wide

association studies (GWASs) on childhood AGG have not identified
genome-wide significant loci that replicated [1]. Childhood
cohorts often have rich longitudinal data and assessments from
multiple informants and we aimed to increase power to detect
genomic loci via multivariate genome-wide association meta-
analysis (GWAMA) across genetically correlated traits [24, 25]. In
AGG, twin studies have reported moderate to high genetic
correlations among instruments, raters, and age [26–29]. Child-
hood behavior can be context dependent, with teachers, fathers,
and mothers each observing and rating aggression against a
different background. Teachers are typically unrelated to the child,
and see the child in the context of a structured classroom and can
judge the child’s behavior against that of other pupils. Parents
share part of their genome with their offspring and, most often, a
household. Parental genomes also influence the home environ-
ment, and it is predominantly within this context that parents
observe the child’s behavior. Multiple assessments of aggression
by teachers, fathers, and mothers, by different instruments and at
different ages, provide information that may be unique to a
specific context and therefore may capture context-dependent
expression of AGG. These considerations support an approach in
which all AGG data are simultaneously analyzed, while retaining
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the ability to analyze the data by rater. Our analyses include
repeated observations on the same subject, which requires
appropriate modeling of the clustered data, since the covariance
between test statistics becomes a function of a true shared
genetic signal and the phenotypic correlation among outcomes
[29]. We developed an approach that allowed inclusion of all
measures for a child—e.g., from multiple raters at multiple ages—
and resolved issues of sample overlap at the level of the meta-
analysis. By doing so we make full use of all data and maximize
statistical power for gene discovery. At the same time, by
aggregating data at the level of the meta-analysis, we retain the
flexibility to estimate rgs between AGG at different ages, by
different raters and instruments, and test how AGG assessed by
multiple raters differ in the rg with other phenotypes.
Data on AGG from parent-, teacher-, and self-report in boys and

girls were collected in 29 cohorts from Europe, USA, Australia, and
New Zealand with 328 935 observations from 87 485 participants,
aged 1.5–18 years. First, we combined all data to produce the
largest GWAMA on childhood AGG to date. SNP-based association
tests were followed up by gene-based analyses. We computed
polygenic scores (PGSs) to test the out-of-sample prediction of
AGG to explore the usefulness of our GWAMA in future research
[30]. To assess genetic pleiotropy between AGG and associated
traits, we estimated rgs with a preselected set of external
phenotypes from multiple domains—with a focus on psychiatric
and psychological traits, cognition, anthropometric and reproduc-
tive traits, substance use, and classic biomarkers of AGG, including
testosterone levels. Second, meta-analyses were done by rater,
instrument, and age. We estimated rgs across these assessments of
AGG. To identify context-specific genetic overlap with the external
phenotypes, rgs were also estimated between rater-specific
assessments of AGG and the external phenotypes.

METHODOLOGY
Data description
Extended description of the cohorts and phenotypes is supplied in
the Supplementary text and Supplementary Tables 1–9. Cohorts
with assessment of AGG in genotyped children and adolescents
took part in the meta-analysis. AGG was assessed on continuous
scales, with higher scores indicating higher levels of AGG. Within
cohort, samples were stratified by (1) rater, (2) instrument, and (3)
age, maintaining at least 450 observations in each stratum. We ran
a univariate GWAS for each stratum within each cohort (Supple-
mentary Table 8). GWASs were run by local analysts following a
standard operation protocol (see URLs) after which the summary
statistics were uploaded to a central location for the meta-analysis.
To account for dependence within cohort in the meta-analysis (see
Supplementary text), each cohort supplied the phenotypic
covariance matrix between the AGG measures (Supplementary
Table 10) and the degree of sample overlap (Supplementary Table
11) between the different strata. Supplementary Fig. 1 shows the
distribution of phenotypic correlations across all AGG measures.
We assumed no sample overlap across cohorts, and phenotypic

correlations among cohorts were set to zero and omitted from
Supplementary Fig. 1. Phenotypic correlations of zero also
correspond to independent samples within a cohort. For GWASs
with sample overlap, most phenotypic correlations ranged
between 0.1 and 0.4, with a median value of 0.29. When
stratified by rater, phenotypic correlations were more heavily
centered around 0.4 (see Supplementary Fig. 1). The maximum
number of correlations within cohort at a specific age is three
based on four raters, with the largest number of observations
within age-bin around age 12 years. Within this age group,
phenotypic correlations among raters ranged between 0.22 and
0.65, with a median of 0.34. The lowest phenotypic correlations
were seen between teachers and parents. Since limited data
were available on individuals of non-European ancestry, we
restricted analyses to individuals of European ancestry.
In total, 29 cohorts contributed 163 GWASs, based on 328 935

observations from 87 485 unique individuals (Supplementary Table
2). Children were 1.5–18 years old at assessment, or retrospectively
assessed at these ages. Cohorts supplied between 1 and 26
univariate GWASs. Approximately 50% of the subjects were males.
Most GWASs were based on maternal- (52.4%) and self-assessment
(25.1%), with the remainder based on teacher (12.4%) and paternal
report (10.1%). After QC, applied to the univariate GWASs, between
3.47M SNPs and 7.28M SNPs were retained for meta-analysis (see
Supplementary Fig. 2 and Supplementary Table 9). Note that the
wide range of retained SNPs is a result of applying more stringent
QC filters for GWASs with smaller sample sizes and that GWASs
with comparable sample sizes returned roughly equal number of
SNPs (see Supplementary text and Supplementary Fig. 2).

Meta-analysis
Within cohort measures of AGG may be dependent due to
including repeated measures of AGG over age and measures from
multiple raters. To account for the effect of sample overlap, we
applied a modified version of the multivariate meta-analysis
approach developed by Baselmans et al. [25] (see Table 1). Instead
of estimating the dependence among GWASs based on the cross-
trait-intercept (CTI) with linkage disequilibrium score regression
(LDSC) [29, 31], the expected pairwise CTI value was calculated
(Table 1) using the observed sample overlap and phenotypic
covariance as sample sizes of the univariate GWASs were
insufficient to run bivariate LDSC. The effective sample size (Neff)
was approximated by the third formula in Table 1. When there is
no sample overlap (or a phenotypic correlation equal to zero)
between all GWASs (i.e., CTI is an identity matrix), Neff is equal to
the sum of sample sizes.
First, we meta-analyzed all available GWASs (AGGoverall). Second,

we meta-analyzed all available data within rater (rater-specific
GWAMAs). Third, rater-specific age-bins were created for mother-
and self-reported AGG based on the mean ages of the subjects in
each GWAS (age-specific GWAMA). To ensure that the age-specific
GWAMAs would have sufficient power for subsequent analyses,
age-bins were created such that the total univariate number of
observations (Nobs) exceeded 15 000 (see Supplementary text and

Table 1. (a) Multivariate test statistic in the meta-analysis of results based on overlapping samples; (b) expected value for the cross-trait-intercept;
(c) effective sample size for a GWAMA.
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(c) N is an P-sized vector of sample sizes, and CTI is the P × P matrix of cross-trait-intercepts.
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Supplementary Table 12). For father- and teacher-reported AGG,
there were insufficient data to run age-specific GWAMAs. Fourth,
we performed instrument-specific GWAMAs for (1) the ASEBA
scales and (2) for the SDQ, because for these two instruments the
total univariate Nobs was over 15 000.
SNPs that had MAF < 0.01, Neff < 15 000, or were observed in

less than two cohorts were removed from further analyses. SNP-
heritabilities (h2SNP) were estimated using LDSC [31]. rgs were
calculated across stratified assessments of AGG using LDSC [29].
To ensure sufficient power for the genetic correlations, rg was
calculated across stratified assessments of AGG if the Z-score of
the h2SNP for the corresponding GWAMA was 4 or higher [29].

Gene-based tests
For AGGoverall, a gene-based analysis was done in MAGMA [32].
The gene-based test combines P values from multiple SNPs to
obtain a test statistic for each gene, while accounting for LD
between the SNPs. From the MAGMA website (see URLs) we
obtained (1) a list of 18 087 genes and their start- and end-
positions, and (2) pre-formatted European genotypes from 1000
Genomes phase 3 for the reference LD. We applied a Bonferroni
correction for multiple testing at α= 0.05/18 087. A lookup for
significant results was performed in GWAS Catalog and PhenoS-
canner (see URLs).

Polygenic scores
All data were meta-analyzed twice more, once omitting all data
from the Netherlands Twin Register (NTR) and once omitting the
Australian data from the Queensland Institute for Medical
Research (QIMR) and the Mater-University of Queensland Study
of Pregnancy (MUSP). As the NTR target sample we considered
mother-reported AGG at age 7 (N= 4491), which represents the
largest NTR univariate stratum. In the QIRM participants, we tested
whether our childhood AGG PGS predicted adult retrospective
assessment of their own CD behavior during adolescence (N= 10
706). We allowed for cohort-specific best practice in the PGS
analysis. In the NTR, we created 16 sets of PGSs in PLINK1.9 [33],
with P value thresholds between 1 and 1.0E–05 (see Supplemen-
tary Table 13). The remaining SNPs were clumped in PLINK. We
applied an r2 threshold of 0.5 and minimum clumping distance of
250 000 base pair positions [33]. Age, age [2], sex, first five
ancestry-based principal components, a SNP-array variable, and
interaction terms between sex and age, and sex and age [2] were
defined as fixed effects. To account for relatedness, prediction was
performed using generalized equation estimation (GEE) as
implemented in the “gee” package (version 4.13–19) in R (version
3.5.3). GEE applies a sandwich correction over the standard errors
to account for clustering in the data [34]. To correct for multiple
testing, we applied an FDR correction at α= 0.05 for 16 tests.
QIMR excluded SNPs with low imputation quality (r2= 0.6) and
MAF below 1% and selected the most significant independent
SNPs using PLINK1.9 [35] (criteria linkage disequilibrium r2= 0.1
within windows of 10 MBp). We calculated different PGS for seven
P value thresholds (P < 1e–5, P < 0.001, P < 0.01, P < 0.05, P < 0.1,
P < 0.5, and P < 1.0) of the GWAS summary statistics. PGS were
calculated from the imputed genotype dosages to the 1000
Genomes (Phase 3 Release 5) reference panel. We fitted linear
mixed models, which controlled for relatedness using a Genetic
Relatedness Matrix (GRM) and covariates sex, age, two dummy
variables for the GWAS array used, and the first five genetic
principal components. The parameters of the model were
estimated using GCTA 1.9 [36] The linear @@model was as follows:

CDsymptom score ¼ interceptþ Covariates � bþ c � PGSþ G

Where b and c represent the vectors of fixed effects; and G �
Nð0; GRM � σ2GÞ represents the random effect that models the
sample relatedness, with GRM being the N by N matrix of

relatedness estimated from SNPs and N= 10 706 is the number of
individuals.

Genetic correlations with external phenotypes
We computed rgs between AGGoverall and a set of preselected
outcomes (N= 46; collectively referred to as “external pheno-
types”; Supplementary Table 14). Phenotypes were selected based
on established hypotheses with AGG and the availability of
sufficiently powered GWAS summary statistics. We restricted rgs to
phenotypes for which the Z-scores of the LDSC-based h2SNP ≥ 4
[29]. Next, we estimated rgs for all rater-specific assessments of
AGG (except for father-reported AGG). Genomic Structural
Equation Modelling (Genomic SEM) [37] was applied to test if
rgs were significantly different across raters. Specifically, for every
phenotype, we tested whether (1) all three rgs between the
external phenotype and rater-specific assessment of AGG, i.e.,
mother, teacher, or self-ratings, could be constrained at zero, and
(2) whether rgs could be constrained to be equal across raters. A χ2

difference test was applied to assess whether imposing the
constraints resulted in a significant worse model fit compared to a
model where the rgs between the phenotype and three rater-
specific assessment of AGG were allowed to differ. We applied an
FDR correction at α= 0.05 over two models for 46 external
phenotypes, for a total of 92 tests. An FDR correction for 4 × 46=
184 tests was applied to correct for multiple testing of whether
the genetic correlations were significantly different from zero.

RESULTS
Overall GWAMA
We first meta-analyzed the effect of each SNP across all available
univariate GWASs. Assuming an Neff of 151 741, the h2SNP of
AGGoverall was estimated at 3.31% (SE= 0.0038). The mean χ2

statistic was 1.12 along with an LDSC-intercept of 1.02 (SE= 0.01).
This indicated that a small, but significant, part of the inflation in
test statistics might have been due to confounding biases, which
can either reflect population stratification or subtle misspecifica-
tion of sample overlap within cohorts. No genome-wide
significant hits were found for AGGoverall (Fig. 1). The list of
suggestive associations (P < 1.0E–05) is provided in Supplemen-
tary Table 15. SNPs were annotated with SNPnexus (see URLs). The
strongest association, in terms of significance, was located on
chromosome 2 (rs2570485; P= 2.0E–07). The SNP is located inside
a gene desert, without any gene in 400 Kbp in any direction. The
second strongest independent association was found with
rs113599846 (P= 4.3E–07), which is located inside an intronic

Fig. 1 Manhattan plot of overall meta-analysis for childhood
aggression (AGGoverall). Red triangles represent SNPs that were
included in the significant genes from the gene-based analysis. SNPs
for ST3GAL3 and IPO13 are included in the same locus on
chromosome 1.
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region of TNRC18 on chromosome 7. None of the suggestive
associations have previously been reported for AGG or AGG-
related traits [1].
We tested previously reported genome-wide significant asso-

ciations for AGG [1] and performed a lookup in AGGoverall. We
restricted lookup to associations with autosomal SNPs that were
found in samples of European ancestry, resulting in three loci. One
genome-wide significant hit was reported for adult antisocial
personality disorder (rs4714329; OR= 0.63 [odds ratio was signed
to the other allele in the original study]; P= 1.64E–09) [38]. The
same SNP, however, had an opposite direction of effect in
AGGoverall (β= 0.0022; P= 0.41). Tielbeek et al. [39] reported two
genome-wide significant hits for antisocial behavior, one on
chromosome 1 (rs2764450) and one on chromosome 11
(rs11215217). While both SNPs have the same direction of effect,
neither SNP is associated with AGGoverall (both P > 0.5).

Gene-based analysis
After correction for multiple testing, the gene-based analysis
returned three significant results (Supplementary Table 16):
ST3GAL3 (ST3 beta-galactoside alpha-2,3-sialyltransferase3; P=
1.6E–06), PCDH7 (protocadherin 7; P= 2.0E–06), and IPO13
(importin 13; P=2.5E–06). ST3GAL3 codes for a type II membrane
protein that is involved in catalyzing the transfer of sialic acid from
CMP-sialic acid to galactose-containing substrates. ST3GAL3 has
been implicated in 107 GWASs, most notably on intelligence and
educational attainment. The top SNP in ST3GAL3 (rs2485997; P=
2.48E–06) is in strong LD (r2 > 0.8) with several other SNPs inside
the gene body of ST3GAL3 and in moderate LD (r2 > 0.6) with SNPs
in several neighboring genes (Supplementary Fig. 3). PCDH7 codes
for a protein that is hypothesized to function in cell-cell recognition
and adhesion. PCDH7 has been implicated in 196 previous GWASs,
for example educational attainment and adventurousness. The top
SNP for PCDH7 (rs13138213; P= 1.44E–06) is in strong LD (r2 > 0.8)
with a small number of other closely located SNPs and the signal
for the gene-based test appears to be driven by two independent
loci (Supplementary Fig. 4). IPO13 codes for a nuclear transport
protein. IPO13 has been implicated in the UKB GWASs on whether
a person holds a college or university degree and intelligence. The
top SNP (rs3791116; P= 1.19E–05) is in moderate-to-strong LD
with multiple SNPs (Supplementary Fig. 5), including SNPs in the
neighboring ST3GAL3 gene.

Polygenic prediction
In children, 11 out of 16 PGSs were significantly correlated with
mother-reported AGG in 7-year olds (Fig. 2) after correction for
multiple testing. The scores explained between 0.036 and 0.44%
of the phenotypic variance. The significant correlations consis-
tently emerged when scores including SNPs with P values above
0.002 in the discovery GWAS were considered. In the retro-
spective assessments of adolescent CD, the PGS calculated at
various thresholds (Fig. 3) explained up to 0.2% of the variance in
symptom sum scores. Generally, CD is significantly predicted at
most thresholds, although, as we would expect based on the
SNP-heritability of AGGoverall, the proportion of explained
variance is small.

Genetic correlation with external phenotypes
Genetic correlations between AGGoverall and a set of preselected
external phenotypes are shown in Fig. 4 and Supplementary Table
17. These phenotypes can broadly be grouped into psychiatric
and psychological traits, substance use, cognitive ability, anthro-
pometric traits, classic biomarkers of AGG, reproductive traits, and
sleeping behavior. We included childhood phenotypes (e.g., birth
weight and childhood IQ) and disorders (e.g., ADHD and autism
spectrum disorder [ASD]), but the majority of phenotypes were
adult characteristics or characteristics measured in adult samples.
After correction for multiple testing, 36 phenotypes showed a

significant rg with AGGoverall (P < 0.02). In general, the highest
positive correlations were seen with psychiatric traits, notably
ADHD, ASD, and major depressive disorder (MDD). The largest
negative genetic correlations were found for age at smoking
initiation, childhood IQ, and age at first birth. Based on the
biomarker-aggression literature, we tested for the presence of
genetic correlations between AGGoverall, and lipids, heart rate,
heart rate variability, and testosterone levels. Very low genetic
correlations were observed for AGGoverall, and these biomarkers,
with in many cases the sign of the genetic correlation opposite to
what was expected based on the literature on biomarkers of AGG.

Stratified assessment of childhood aggressive behavior
Separate meta-analyses were carried out for raters, instruments
and age. None of these GWAMAs returned genome-wide

Fig. 2 Proportion of explained variance (vertical axis) in child-
hood aggression at age 7 by polygenic scores from the overall
GWAMA for multiple P value thresholds (horizontal axis).
Numbers above the bars represent unadjusted P values for two-
sided test of significance.

Fig. 3 Proportion of explained variance (vertical axis) in retro-
spective adolescent CD (two-sided tests). Blue bars indicate
positive correlation with the conduct disorder score.
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significant hits. Manhattan plots for the four rater-specific
GWAMAs are shown in Supplementary Fig. 6. Estimates of h2SNP
for rater-specific assessment of AGG are shown in Supplementary
Table 18. The lowest h2SNP was observed for father-reported AGG
(h2SNP = 0.04; SE= 0.03) and the highest for teacher-reported AGG
(h2SNP = 0.08; SE= 0.02). We estimated rg between rater-specific
assessment of AGG, except for father-reported AGG, which
returned a non-significant h2SNP . A substantial genetic correlation
was observed between AGGMother and AGGTeacher (rg= 0.81; SE=
0.11). Moderate genetic correlations were observed between
AGGSelf and AGGMother (rg= 0.67; SE= 0.10), and between AGGSelf

and AGGTeacher (rg= 0.46; SE= 0.13). Both genetic correlations
involving self-reported AGG were significantly lower than 1.
We performed a GWAMA across all GWASs where an ASEBA

scale was used (AGGASEBA) and another GWAMA across all GWASs
for the SDQ (AGGSDQ). SNP-heritabilities for AGGASEBA and AGGSDQ

were 0.031 (SE= 0.0099) and 0.026 (SE= 0.0086), respectively. The
GWAMAs were insufficiently powered to estimate rg across
instrument-specific assessment of AGG.
Age-specific GWAMAs were performed for mother- and self-

reported AGG, which made up 77.5% of the data. Mother-
reported data were split into seven age-bins and self-reported
data into three (Supplementary Table 12). Estimates of the h2SNP
for each age-specific GWAMA can be found in Supplementary
Table 19. For mother-reported AGG, h2SNP ranged between 0.012
and 0.078. For self-reported AGG, the highest h2SNP was seen for
the retrospective data (h2SNP = 0.12; SE= 0.03), which also
showed a significantly inflated intercept (1.05; SE= 0.01). rg
could only be estimated between AGGM7, AGGS13, and AGGSR

(Supplementary Table 20).

Genetic correlation between rater-specific assessment of AGG
and external phenotypes
We estimated rater-specific rgs with the external phenotypes,
except for father-reported AGG, and tested for each external
phenotype whether these rgs could be constrained to be equal to
zero. For 31 out of 46 external phenotypes, constraining the rgs to
be equal to zero for all three raters resulted in significant
reduction in model fit (Supplementary Table 21), indicating that,
for these external phenotypes, at least one rater has an rg that is
significantly different from zero.

Next, we tested for each external phenotype whether the three
rater-specific rgs with the external phenotypes could be constrained
to be equal across mothers, teachers and self-ratings. For ADHD,
ASD, MDD, schizophrenia, well-being, and self-reported health,
constraining the rgs to be equal across rater resulted in significantly
worse model fit (Supplementary Table 21). For all these phenotypes,
rgs with teacher-reported AGG were consistently lower compared to
mother- and self-reported AGG (Supplementary Fig. 7 and
Supplementary Table 17). For lifetime cannabis use, genetic
correlations also could not be constrained to be equal across
raters. Here, a relatively strong rg was found with self-reported AGG
(rg= 0.36; SE= 0.08) compared to teacher- (rg= 0.13; SE= 0.07)
and mother-reported AGG (rg= 0.08; SE= 0.08).

DISCUSSION
We present the largest GWAMA of childhood AGG to date. The
gene-based analysis implicated three genes, PCDH7, ST3GAL3, and
IPO13, based on the overall meta-analysis (AGGoverall), which did
not return genome-wide significant SNPs. Lead SNPs in the
implicated genes were related to educational outcomes, but did
not reach genome-wide significance and these loci require further
evidence before being considered as AGG risk variants. PGS
predicted childhood AGG and retrospectively assessed adolescent
CD. Stratified analyses within AGG generally returned moderate-
to-strong genetic correlations across raters. We found substantial
genetic correlations between AGGoverall and a list of preselected
external phenotypes from various domains, including, psychiatry
and psychology, cognition, anthropometric and reproductive
traits. Most notably was the perfect rg between AGGoverall and
ADHD (rg= 1.00; SE= 0.07). This is in line with the moderate-to-
strong phenotypic correlations that have consistently been found
across sex-, rater-, age-, and instrument-specific assessment of
AGG with attention problems and hyperactivity [15]. Significant
genetic correlations were further observed with other psychiatric
and psychological traits (range rg

�� ��: 0.19–0.55). Negative genetic
correlations (rg= ~−0.5) were found with all three traits from the
cognitive domain. Genetic correlations were positive with smok-
ing initiation (rg= 0.55; SE= 0.04) and smoking quantity (rg= 0.46;
SE= 0.06), and negative with age at smoking initiation (rg=
−0.60; SE= 0.09).

Fig. 4 Genetic correlation with external phenotypes. Phenotypes are ordered by domain. Bars indicate 95% confidence intervals.
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We examined genetic correlations with classical biomarkers of
AGG. Higher levels of aggression have been associated with lower
levels of LDL [40] and lower resting heart rate [41, 42]. We found a
positive, albeit weak, rg between AGGoverall and LDL (rg= 0.15; SE=
0.07), which has an opposite sign than what was expected based on
the literature [39]. More broadly, except for HDL (rg=−0.13; SE=
0.07), all measures of lipid levels returned significant positive rgs with
AGGoverall, albeit weakly (rg < 0.2). No heart rate measure showed a
significant genetic correlation with AGGoverall. The relationship
between testosterone levels and (childhood) AGG in the literature
is, at best, unclear. A positive association between AGG and
testosterone is often assumed, but the relation may be more
complex [43]. Both positive and negative phenotypic correlations
have been found and seem context-dependent [44]. We found
significant negative, rgs between AGGoverall and testosterone levels in
males and females ( rg

�� �� < 0.15). These should be interpreted with
some caution because of the design of the GWA studies: AGG was
measured in children and young adolescents whereas testosterone
levels were measured in adults in the UK Biobank [45], and genetic
stability of testosterone levels might be low, at least for males [46].
Genetic correlations with reproductive traits showed a positive
relation with having more children (rg= 0.27; SE= 0.08) and having
offspring earlier in life (rg=−0.60; SE= 0.06), tending to confirm that
not all associated outcomes are harmful.
The stratified design of our study also allowed for examination

of the genetic etiology of AGG in subsets of the data and
examination of genetic correlations among raters. We found a
high genetic correlation between AGGMother and AGGTeacher (rg=
0.81; SE= 0.11). However, the 95% confidence interval covers 1,
which makes these results hard to reconcile with previous findings
of rater-specific additive genetic effects in childhood AGG [47].
Most external phenotypes showed comparable rgs with mother-,
self-, and teacher-reported AGG. For ADHD, ASD, MDD, schizo-
phrenia, well-being, and self-reported health, rgs differed sig-
nificantly across raters. Weaker rgs were consistently found in
teacher-reported AGG compared to mother- and self-reported
AGG. These findings indicate the presence of rater-specific effects
when considering the genetic correlation of AGG with other
outcomes. rgs are generally stronger in the psychopathology and
psychological domains. A lack of power, however, seems
insufficient to explain why we found weaker rgs between
AGGTeacher and phenotypes from these two domains. Other
phenotypes, like smoking behavior, educational attainment or
age at first birth, are, like psychopathological phenotypes, highly
genetically correlated with AGGoverall, but, unlike psychopatholo-
gies, have near identical rgs across raters. The rater-specific effects
on rgs between childhood AGG and external phenotypes might be
limited to psychopathologies, and future research into the
genetics of childhood psychopathology might consider these
nuances in effects of assessment of childhood AGG from various
sources, be that multiple raters, instruments, and ages.
Despite the considerable sample sizes, we were still under-

powered to compute genetic correlations with external pheno-
types while stratifying AGG over age or instrument. Age-stratified
GWASs in larger samples across development are a desirable
target for future research. Because genetic correlations can be
computed between phenotypes for which a well-powered GWAS
is available, age-stratified GWAS of many developmental pheno-
types, behavioral, cognitive, and neuroscientific can be leveraged
to better understand development of childhood traits.
We note that multivariate results should be interpreted with some

caution. While combining data from correlated traits can indeed
improve power to identify genome-wide associations, interpreting
the phenotype may not be straightforward. In the current GWAMA,
we have referred to our phenotype as “aggressive behavior” and
interpreted the results accordingly. AGG, however, is an umbrella
term that has been used to identify a wide range of distinct—though
correlated—traits and behaviors [1].

GWASs are increasingly successful in identifying genomic loci
for complex human traits [48] and also in psychiatry, genetic
biomarkers are increasingly thought of as promising for both
research and treatment. Genetic risk prediction holds promise
for adult psychiatric disorders [30] and it seems reasonable to
expect the same for childhood disorders. Here we found that
PGSs explain up to 0.44% of the phenotypic variance in AGG in
7-year olds and 0.2% of the variance in retrospectively reported
adolescent CD. Note that differences in ages, instrument and
local best-practices have led to differences in explained
variance. Future studies may explore the utility of these PGSs
in illuminating pleiotropy between AGGoverall and other traits. A
limiting factor in this regard is the relatively low SNP-
heritability, which puts an upper bound on the predictive
accuracy of PGSs. Since measurement error suppresses SNP-
heritability, better measurement may offer an avenue to higher
powered GWAS, and subsequently to better PGS. Furthermore,
sample sizes for developmental phenotypes, including AGG,
may need to increase by one to two orders of magnitude before
PGS become useful for individual patients.
Despite our extensive effort, the first genome-wide significant

SNP for childhood AGG has yet to be found. Even in the absence of
genome-wide significant loci, however, GWASs aid in clarifying the
biology behind complex traits. Our results show that, even without
genome-wide significant hits, a GWAS can be powerful enough to
illuminate the genetic etiology of a trait in the form of rgs with other
complex traits. Non-significant associations are expected to capture
part of the polygenicity of a trait [31] and various follow-up analyses
have been developed for GWASs that do not require, but are aided
by, genome-wide significant hits [49]. PGSs aggregate SNP effects
into a weighted sum that indicates a person’s genetic liability to
develop a disorder. While their clinical application is still limited in
psychiatric disorders, they can already aid in understanding the
pleiotropy among psychiatric and other traits [30]. Similarly,
summary statistics-based genetic correlations (rg) provide insight
into the genetic overlap between complex traits [29, 50].

URLS
GWAS SOP: http://www.action-euproject.eu/content/data-protocols
MAGMA: https://ctg.cncr.nl/software/magma
SNPnexus: https://www.snp-nexus.org/index.html (Accessed 28

Aug 2019)
GWAS Catalog: https://www.ebi.ac.uk/gwas/ (Accessed 29

Aug 2019)
PhenoScanner: http://www.phenoscanner.medschl.cam.ac.uk/

(Accessed 29 Aug 2019)

CODE AVAILABILITY
Code for meta-analyses and follow-up analyses are available from the corresponding
author upon request.
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