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Abstract—Technical debt has become a common metaphor
for the accumulation of software design and implementation
choices that seek fast initial gains but that are under par and
counterproductive in the long run. However, as a metaphor,
technical debt does not offer actionable advice on how to get
rid of it. To get to a practical level in solving problems, more
focused mechanisms are needed. Commonly used approaches
for this include identifying code smells as quick indications of
possible problems in the codebase and detecting the presence
of AntiPatterns that refer to overt, recurring problems in design.
There are known remedies for both code smells and AntiPatterns.
In paper, our goal is to show how to effectively use common
tools and the existing body of knowledge on code smells and
AntiPatterns to detect technical debt and pay it back. We present
two main results: (i) How a combination of static code analysis
and manual inspection was used to detect code smells in a
codebase leading to the discovery of AntiPatterns; and (ii) How
AntiPatterns were used to identify, characterize, and fix problems
in the software. The experiences stem from a private company
and its long-lasting software product development effort.

Index Terms—Technical debt, code smells, AntiPatterns, case
study, software maintenance, code refactoring

I. INTRODUCTION

The need for constant change has become a key driver in
software development. Bug fixes, new features, and technology
and architecture updates take place frequently, even multiple
times per day [1]. At times, changes have been carefully
considered whereas at some other times, changes are made
in a hurry to fix an urgent issue in the codebase.

Technical debt [2] has become a common metaphor for the
accumulation of software design and implementation choices
that seek fast initial gains but that are under par and, con-
sequently, counterproductive in the long run [3]. A typical
example of this would be risking the internal quality of the
codebase in favor of delivering features faster. Over time,
these deficiencies in code quality build up in a similar way
as financial debt does if nothing is done to pay it back. Then,
any new change will require ever more time and effort.

While technical debt is a useful concept for characterizing
the status of a software system, it is often too generic to
offer actionable advice, other than saying that the codebase
should be improved or fixed. To get to a practical level
in solving problems, more focused mechanisms are needed
— the metaphorical concept must be reified [4]. Commonly
used approaches for this include identifying code smells [3]]
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and detecting AntiPatterns [6]. The former refers to quickly
identifiable indications of possible problems in the codebase;
the latter refers to a manifest, recurring problem in design that
can be fixed by following a prescribed sequence of changes.

In this experience report, our goal is to show how to
effectively use common tools and the existing body of knowl-
edge on code smells and AntiPatterns to detect technical debt
and pay it back. We present two main results: (i) How a
combination of static code analysis and manual inspection
was used to detect code smells in a codebase leading to the
discovery of AntiPatterns; and (ii) How AntiPatterns were used
to identify, characterize, and fix problems in the software. The
work is based on the lead authors’ Master’s thesis [7]], where
the full research setup is presented. Here, we focus on the
practical part of the work, done for a private company.

The rest of this paper is structured as follows. In Section
2 we present the background of this work. In Section 3, we
present an overview of the case company. In Section 4, we
discuss the study we did in the company’s context with respect
to code smells and AntiPatterns. In Section 5, we list the
lessons we learned in the process. Finally, in Section 6, we
draw our conclusions.

II. BACKGROUND AND RELATED WORK

Technical debt is a metaphor that reflects the implied cost of
additional deferred rework caused by choosing an expedient,
easy solution now instead of following a recognized best
practice that is more laborious. While the root causes of
occurrences of debt are usually the same — solutions are
designed and implemented without understanding the big
picture or with limited resources and under time pressure —
its manifestations are many. For instance, legacy code and
opportunistic designs [8] whose behavior is hard to understand
are practical symptoms of technical debt. However, missing
tests and other quality assurance infrastructure issues that
complicate verification can be regarded as technical debt, too.

Due to the wide interpretation, it is difficult to be very
precise when using the term. Hence, to understand and con-
trol technical debt, other concepts are needed. While the
breakdown of technical debt has been proposed, including
testing debt, design debt, defect debt, and documentation debt
[9], [4], even this results in concepts that require further
operationalization (reification) for guiding concrete actions.



In our case, we will use two additional concepts to manage
technical debt. These are code smells, used in looking for tech-
nical debt, and AntiPatterns, used for characterizing debt and
introducing a recipe for paying it back. These two concepts
will be addressed next.

A. Code Smells

A code smell has been defined as a surface indication that
usually stems from a deeper problem in the system [10], [S].
Not all smells end up being bad — for example some long
methods have a reason to exist — but a long method is usually
considered dubious and it should be investigated to corroborate
that it is not. The above definition also indicates that usually
the smelly part might not constitute the actual problem by
itself but it might be a signal of deeper problems.

A key aspect of code smells is that they have one or more
associated refactoring solutions that can help getting rid of the
smell. For example, in the case of long functions, the Extract
Function refactoring [S, p. 106] directs us to divide the logic
of a long function into shorter functions.

One way to detect possible code smells automatically is to
use static source code analysis tools [L1], [12f], [[13]. Static
source code analysis tools analyze the source code without
the need to compile and run it and there are different tools
discerning different things in the code [14], [15]], [16]. Some
tools, like Lint [17], are usually run continuously in the
Integrated Development Environments (IDE) or in editors used
to write code, which allows the tool to immediately warn the
developer of suspicious code while it is being written. Tools
can also provide visualized representations of the code and the
relations between different files, classes and functions.

B. AntiPatterns

While code smells reflect symptoms that are quick to spot
— almost intuitively — and there are several ways to rectify the
underlying problems, AntiPatterns [6] are more formal in their
nature. This formalization covers not only the problematic
pieces of design but also their underlying causes and often
also a generalized refactored solution for the problem.

Since AntiPatterns not only describe problems but also po-
tential solutions, they offer a way to harmonize the refactoring
of a codebase. In other words, to fix a recurring problem, a
repeatable solution is applied. This in turn keeps the codebase
more uniform than following an approach where individual
code smells are dealt with individually in various ways. In
general, this helps in maintaining the codebase in the long
term.

Some sources call AntiPatterns design smells. In fact, a
recent systematic literature survey has recognized a number
of inconsistent definitions for many kinds of ‘software smells’
[18]. However, in this report, we use the terms code smell
and AntiPattern in their original meanings. We used [J5] as the
catalog of code smells and [6] as the catalog of AntiPatterns.

There is active research in the area of tools for detecting
smells and AntiPatterns, but the results are somewhat mixed
[18] and not very well received by practitioners [4]]. For

example, the lack of available tooling for identifying and mea-
suring technical debt related to deep architectural structures of
software is recognized as a problem in the empirical study [19]
of eight software development teams in a large organization
that provides multiple software solutions.

According to the study [19], the identification of technical
debt relies mostly on developers discovering problematic code
structures during development and on architects doing deeper
analysis with the help of static analysis tools to mark suspect
code. The study did not go into details about how analysis
work and corrective actions (repayment) were planned and
carried out but emphasized the manual work needed. Our
study shows that using AntiPatterns to (i) characterize the
deeper design problems and the solutions proposed by the
AntiPatterns as guidance to (ii) rectify design and architecture
issues is an effective way for doing this kind of work in
practice. It helps to jump up a level from code smells to design
problems and their rectification.

III. CASE OVERVIEW

The case company under study is a software startup whose
product is a customer satisfaction surveying and response
analysis tool for companies. The main product is a dashboard
where survey responses and data analysis are visualized for
the customers.

The application has been under active development for five
years, with the team growing from one hired consultant, who
did the initial implementation, to six in-house developers.
During this time, the company has followed the principles
of lean startup [20] ensuring the delivery of features and a
product that has a good fit in the market. Over the years, the
company has made numerous pivots, or changes in product
strategy but not in product vision, particularly during the first
year of the development.

The software product was composed of the main backend
and frontend (customer dashboard). In addition, there were six
other services that dealt with sending the surveys, giving the
responses to the main backend, and performing some analysis
on the responses. All of the services were hosted in Amazon
Web Services (AWS) [21]].

Here, the focus is placed on the main backend, built with
Clojure during the first year of development. It was a simple
web application with a database. It not only contained the
API for the frontend to use the data in its database, but
some background tasks like an importer that brought in the
responses of the surveys from a third-party tool used to
send the surveys. Although being in the same Leiningen [22]]
project, the importer was run in its own AWS Elastic Beanstalk
instance through an environment variable. In addition to these
two independent applications, the same project contained an
admin dashboard done with ClojureScript [23]. This admin
dashboard and the importer code had not been changed after
the second year of development.

Most of the code written from the second year of de-
velopment onward was written in Java. To achieve this, the
only developer at that point built an interoperability helper



to be used as a bridge between Clojure and Java code. This
helper file had not been changed since the second year of
development. This helper helped with the translation of objects
between Clojure and Java. What this meant in practice is
that every single object passed to the Clojure side was of the
Java Map type. The MapHelper class was created in Java to
make it easier to make the transformations of objects into
Maps. As a consequence of the need to interoperate with
Clojure, another special characteristic of the Java code was
the use of classes with only static methods. This was due to
Clojure being a functional programming language and thus
not supporting classes and objects. This made the Java code
very untypical and in consequence difficult to write and read
with an idiomatic Java mindset. In total the Java code extended
through about 20.000 lines of code, making it a small software
system.

Finally, testing was clearly a problem. The Clojure part
had 23 tests in 5 files, all written during the first months of
the development. These were run on every build, but their
coverage was low. Furthermore, nothing was really modified
in the Clojure code — adding and modifying endpoints of the
web application, which was the main development target, did
not require this — and these tests would always pass. On Java
side, there were 505 tests in 55 files, but 120 tests were marked
as ignored and thus would not be run, unless the annotation
used for ignoring them was removed. Java tests were not
automated; they were never a part of the official verification
of new releases, as they could only be run manually in the
IDE.

IV. FROM CODE SMELLS TO ANTIPATTERNS

To find out all the things that needed changing concerning
the product, an analysis of both the codebase and the devel-
opment practices was performed. The intention was to find
the underlying AntiPatterns that could be hiding behind very
apparent code smells that had already surfaced in the develop-
ment. Then, the AntiPatterns would provide a systematic way
to fix the identified problems.

A. Sniffing for Code Smells

When working on a codebase that developers are very
familiar with, developers might lose their sense of smell, hence
making them unable to notice the most obvious code smells.
Furthermore, haste and time pressure can worsen the situation,
as the attention of developers is focused on the tasks at hand
and not the codebase as a whole. This was also the case with
this product; the need to build new features and fix critical bugs
impeded developers from taking a wider view to understand
the underlying problems.

To avoid possible biases resulting from familiarity with the
code, the decision to use static code analysis tools was made.
Two static code analysis tools were used in this case study,
CodeMR [24] and IntelliJ] IDEA’s code inspection tool [25].
These tools have complimentary features — CodeMR has a
more visualization centric approach that measures the quality
of code with different metrics on the Java class level, while

IntelliJ IDEA’s code inspection tool shows concrete potential
coding problems line by line. Unfortunately, the tools did
not support both Clojure and Java, and hence only the Java
code was analyzed. Furthermore, a decision was made that
the Clojure code should be removed in the codebase in short-
to-medium term in any case. Both tools were used in their
default configuration without tuning the threshold values nor
the problem categories used in reporting problems.

1) CodeMR: CodeMR is a software quality tool that sup-
ports multiple languages, with integrations to multiple IDEs. It
provides an insight to the quality of software through an array
of attributes — coupling, complexity, cohesion, size, and so on.
In general, these metrics are often affected by several features
in code, which makes them promising for seeking code smells.

The Java code of the backend of the application under study
was analyzed with the help of the CodeMR IntelliJ IDEA
plugin version 2020.4.1-release-2020.2. Test files were ignored
for this analysis. The analysis showed that the number of code
lines is nearing 20.000, indicating that the size itself might help
hiding details and making it more complex to find something
specific a developer might be looking for. The number of
classes and packages was reasonable or even low, with 21
packages and just under 19 classes per package on average,
totalling 397 classes. The number of external packages and
classes is a bit more concerning — 92 and 374, respectively
— as the number of external classes is nearly the same as
the native ones. While using external libraries is a standard
procedure in today’s software development, a review of the
external dependencies would be advisable based on these
numbers. Finally, CodeMR had identified that 34 classes were
problematic and 1 was highly problematic.

As for the four key metrics discussed above — coupling,
complexity, cohesion and size — CodeMR provided a chart
view (Figure [I) where each chart visualizes the amount of
classes with high or low values of the metric. Based on
the charts, complexity and coupling seem to be the biggest
possible problems. According to CodeMR, 35.5% of the code
has the highest level of complexity, and only just over a third of
the code was categorized as having medium to low complexity.
This was confirmed by the feeling of developers that code is
difficult to reason about in many places. For coupling, just
under half of the code was deemed to have medium to very
high coupling. This was also confirmed by developers who
saw that modifications often cascaded to a flood of changes
all over the codebase. Lack of cohesion and size seemed to do
a bit better. In both respects, well over half of the codebase was
identified to have medium to low levels of both metrics, and
no instances of very high levels were found. The experiences
of the developers again match the result.

For a more detailed inspection of the codebase, CodeMR
also provided a variety of graphs and detailed metrics for each
class. Figure [2] shows all the classes analyzed in their respec-
tive packages, using colors to indicate complexity, shapes for
coupling, the size of the symbols indicating size, and cohesion
with a web of dependencies between the symbols. This more
detailed view helps to understand and pinpoint the classes that
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Fig. 1. CodeMR metrics from the backend analysis.

would be potential problem makers. Some of the packages
have been marked with letters for further reference below.

The first indication in the graph is that there were some
classes that seemed to be used all over the codebase. One
example is a class in package (b), which was used to do every
single database query, so it was used by all service classes of
the codebase. Most classes in package (a) and its subpackages
(a.1-7) had lots of dependencies, which might be reasonable.
These packages contained all the main service classes that
mostly deal with the business logic of the software. Another
thing that was apparent from the graph is that although the
average size of classes was just over 43 lines of code, the
distribution of real code lines was very uneven. There was a
considerable number of classes that clearly were either too big
or were nearing that limit. Based on the detailed data provided
by CodeMR, there were 11 classes with more than 300 lines of
code, with the biggest class that can be seen as a big red star
on package (c) having 950 lines of code. With the exception of
package (a) that had many more complex and coupled classes,
most packages seemed to have one particularly complex and
coupled class. This seemed to suggest that there was a bloated
main class and too few helper classes around it.

To summarize, CodeMR’s analysis provided tangible evi-
dence that there were areas of the codebase that might have
or cause problems. In general, this was what the developers
were expecting, to a large degree.

2) IntelliJ IDEA code inspection: IntelliJ IDEA offers static
analysis of the code in real time, while the developer writes it.
This feature, called code inspection, can be run for a given part
of the project or for the full codebase. In comparison to the
static code analysis made with CodeMR, IntelliJ] IDEA’s code
inspections try to give warnings regarding concrete problems

TABLE I
MOST MEANINGFUL WARNINGS UNDER THE JAVA TOP LEVEL CATEGORY
GIVEN BY THE INTELLIJ IDEA CODE INSPECTION.

Category | Subcategory | Instances
Control flow | Pointless boolean expressions 57
issues

Data flow Redundant local variable 75
Declaration Declaration can have final modifier | 140
redundancy

Declaration Unused declaration 1489
redundancy

Performance String concatenation in loop 42
Probable bugs | Constant conditions & exceptions 99
Probable bugs | Unused assignment 76

in the code, line by line. The tool even suggests fixes that can
be automatically applied, thus automating refactoring for com-
mon problems. Running the inspection tools for the whole Java
codebase of the backend under study on version 2020.2.2 of
IntelliJ IDEA resulted in a detailed report regarding problems
in code.

The 533 typos found by the tool under the proofreading
category were for the most part caused by the use of acronyms
and words that the dictionary simply did not recognize. How-
ever, some of the warnings revealed real typos in the names
of variables and method names that just had not been noticed.

The Java category contained most of the warnings the
tool reported of which the most meaningful ones have been
collected into Table [l The first thing that was noticed was
the number of declaration redundancy warnings. Over half of
all the warnings were of this kind. Looking closer into the
subcategories, 1489 of those warnings were unused declaration
warnings. This was attributed to using Clojure as the entry
point to the application, which the tool was unable to deduce.

In addition, there were lots of different kinds of warnings.
Those that seemed more like repeated code smells rather
than isolated mistakes included the use of pointless boolean
expressions, redundant local variables, string concatenations
in loops, constant conditions & expressions, and unused
assignments. Except for string concatenations in loops that
might negatively affect performance, the rest mostly affect the
readability and the clarity of intention of the code. In the case
of the constant conditions and expressions, most of them were
clearly potential bugs that could end up triggering null pointer
exceptions.

B. Confirmed Code Smells

The static code analysis tools gave some good insight on
the possible location of the most obvious problems in the case
project. The likely code smells that could be inferred by study-
ing the results produced by both tools were: Mysterious Name,
Mutable Data, Divergent Change, Shotgun Surgery, Feature
Envy, Temporary Field, Large Class and Data Class. These
findings then required a manual inspection to corroborate them
and to see how pervasive they might be. The inspection could
also uncover other problems and code smells that the static
code analysis tools might have overlooked.
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Fig. 2. CodeMR graphic showcasing the relationship between classes in their respective Java packages.

For example, the web of dependencies shown in Figure [2]
(CodeMR) suggested to the inspector the whiff of Divergent
Change, Shotgun Surgery and Feature Envy. The inspector
then studied the suspect classes in more detail (illustrative
examples of analysis are given below). Some smells were
more directly observable in the tools’ output, like Large Class
(CodeMR) and Temporary Field (IntelliJ).

Manual analysis was also done to create a priority list of the
most complex classes, in the order of severity and amount of
warnings. Next, we discuss three representative classes in more
depth, explaining the findings in them, and finally considering
the codebase as a whole.

1) Code smells in Class 1: Class 1 was considered as
the most problematic by both static code analysis tools. The
class processes a configuration and sends a screenshot of the
application’s dashboard as email to the users of this particular
configuration. This task has four parts: Process the configura-
tion, retrieve the dashboard, create an image of the dashboard,
and send the email with the image as an attachment.

As the class was single-handed responsible for doing all
this, with no helper classes, its size was considerable. Even
the main function, used to initiate the process, was 91 lines
of code, with a very complex conditional flow that was nested
five levels deep. Several other functions were also well over



50 LoC. Furthermore, there was another class inside the main
class instead of being in its own file. This internal class was
potentially even more problematic; some of its functionality
was not implemented as its own methods but by those of the
parent class. For example, setters for some fields of the class
were outside the class itself.

A further suspicious factor was passing the same parameters
from one method to another, which was related to using static
methods. For instance, a data source object used to connect
to the database was passed from the very first entry point
to wherever database connections were needed. Consequently,
parameter lists were very long, with some inconsistency in
the location of the different parameters. This was harmful for
readability of the code.

In summary, Class 1 is definitively smelly, containing at
least the Long Function, Long Parameter List, Mutable Data,
Divergent Change, Data Clumps and Large Class smells.

2) Code smells in Class 2: Class 2 is used to define filtering
of the data requested in a query. It contains a set of parameters
that can be transformed directly into SQL query parameters.
It performs three tasks, parse itself from JSON, transform into
an SQL query, and serialize itself into JSON.

An obvious smell in the class is the extensive use of
primitive types to represent all the data in this one class instead
of defining subclasses encapsulating more cohesive groupings
of the data, which would simplify the design. The rationale for
this solution is the use of a custom serializer and deserializer
for JSON. The serializer was built using Java StringBuilder,
whereas, the deserializer was implemented with JSON in
Java’s JSONObject interface. To add to the complexity, the
class had also annotations used to serialize and deserialize
objects into JSON through the FasterXML Jackson library
[26], which seemed redundant due to the extensive use of the
custom implementation throughout the codebase.

In summary, Class 2 has somewhat comprehensive smells.
These include Long Function, Divergent Change, Primitive
Obsession and Large Class.

3) Code smells in Class 3: Class 3 handles all the dif-
ferent possible configurations used for the dashboards. There
are dozens of different configurations, and more are added
whenever new features require them. The main responsibility
of the class is to create, read, update and delete the different
kinds of configurations in the database.

The class starts with a list of 18 different SQL string
constants, all written in different styles. Most are one-liners,
with varying use of upper and lower case letters, but two
of them are divided into several lines to improve readability.
Some of these SQL statements use capitalized SQL keywords,
others do not, and some mix the styles in the same statement.
The class contains 10 additional internal classes, resulting in
a complex design. Except for one of the many methods in the
class, they have a reasonable size. However, many methods
use temporary variables just before the return statement, which
seems confusing.

The smells in this class include Long Function, Divergent
Change and Large Class.

4) Summary: The three examples above showed some of
the particularities of the case project, many of which are
tangled in all classes. Furthermore, change-related smells, Di-
vergent Change and Shotgun Surgery, were well represented.
There were numerous instances of Divergent Change on larger
classes, as they had been modified for a number of reasons.
Furthermore, passing parameters through all the method calls
had made the codebase prone to Shotgun Surgery because if
even one new parameter was needed in a method deep down a
call chain, the whole chain would need to be modified, which
implies changes in many classes. Another recurring problem
was the use of public fields, which is an instance of both
the Global Data and Mutable Data smells. The origins of this
problem was tracked to the design of the interaction between
Java and Clojure, where all fields that Clojure accessed had
to be public.

There was also a lot of utility functionality embedded
in service classes, which were then used by other service
classes, presenting a clear case of Feature Envy. Sometimes
this created circular dependencies that were only hidden by
the fact that the code is mostly composed of static methods.
This would become a real problem once the classes would be
transformed to follow object-oriented idioms more closely.

To summarize, the code smells that the static code analysis
tools had hinted to were confirmed in manual inspection.
In addition to those code smells, the manual analysis also
revealed some smells that could not be inferred from the
reports of the automated tools. Hence, various tools can help
find some problems, but a manual review is able to find more
subjective smells.

C. Identifying AntiPatterns

Although many problems in the codebase were identified
through the search for code smells, the codebase seemed to
have deeper problems than the surface level smells alone
suggested. Most code smells are usually centered on one small
section of the code and can appear repeatedly, but they are
usually easily fixable with the use of simple code refactorings.
In search of deeper recurring problems, the codebase was
further inspected manually using the smelly sections of the
codebase as the starting point to study if any AntiPatterns [6]]
were present. For conciseness, we use here a truncated form of
the full AntiPattern template with the addition of the 'Related
Code Smells’ field to signify the code smells that led to the
discovery of the presence of the AntiPattern in the codebase:

AntiPattern Name: AntiPattern’s name, variant names

Refactored Solution Name: Identifying name of the refac-
tored solution

Root Causes: List of the root causes pertinent to the AntiPat-
tern

Related Code Smells: Code smells that might be symp-
tomatic of the AntiPattern which were identified through
the static code analysis

General Description: An overview of the AntiPattern, its
forces and characteristics.



The identified AntiPatterns are listed below. Each AntiPattern
is followed by some concrete examples of how they were
present in the system. The initial plans and actions to be taken
to solve them are also presented were applicable. In addition,
a link to the related code smells is also given.

Lava Flow AntiPattern

AntiPattern Name: Lava Flow, Dead Code [6]

Refactored Solution Name: Architectural
Management

Root Causes: Avarice, Greed, Sloth

Related Code Smells: Temporary Field

General Description: This AntiPattern is characteristic of
software that has gone through lots of changes in di-
rection. Each change in direction generates new code
that is then never removed when the idea behind it is
abandoned. This results in sections of code that might
not clearly be no longer used and that never are removed.
This adds to the complexity of the code. Parts of the
code might even end up being reused elsewhere, making
the dependency structure and the elimination of this dead
code even harder.

Configuration

This AntiPattern is elusive, as developers need to look for it
with intention, and problems are rarely found by coincidence.
Things like unused variable and temporary fields might be
an indication of its existence, but in most cases the code will
look just normal, but it just implements functionality that is no
longer used. As already mentioned, the case project underwent
many changes in direction early on in the development. In this
process, code that was no longer used was left in the codebase,
making it obvious that this AntiPattern was met.

A particular detail of this AntiPattern is related to charac-
teristics of web software. In general, knowing if the endpoints
of a web application are actively used cannnot be verified
from its code alone, but an external analysis must be done.
This was carried out in the case project. The code of all the
client services that used its endpoints were searched for the
usage of the endpoints. In addition to this, AWS CloudWatch
Logs Insights [27] tool was used to count the number of
http requests done to the endpoints from the http logs of the
production servers. The result of this analysis was that 77
endpoints from over 350 were no longer used at all. These
were subsequently removed, resulting in the deletion of 2690
lines of dead code.

Another symptom that might indicate of the presence of
this AntiPattern is the existence of columns and tables in the
database that are either completely empty or always have the
exact same value. Some instances of this were found in case
project. They were immediately removed if no refactoring was
needed; if refactoring was considered necessary, associated
cleaning tasks were added to the project backlog.

Functional Decomposition AntiPattern

AntiPattern Name: Functional Decomposition, No Object-
Oriented Pattern [|6]
Refactored Solution Name: Object-Oriented Reengineering

Root Causes: Avarice, Greed, Sloth

Related Code Smells: Long Parameter List, Global Data,
Mutable Data, Data Clumps, Data Class

General Description: This AntiPattern is in its simplest term
the misuse of an object-oriented language as it were a
functional or structural language. This can make the code
very convoluted. object-oriented programming has lots of
beneficial design patterns which this kind of code does
not take advantage of. Depending on how widespread this
AntiPattern is the reengineering work needed to fix it
might be overwhelming and must be done in increments.

Due to the Clojure roots of the project, parts written in Java did
not follow the usual object-oriented structure of classes that
are instantiated into objects. Instead, the code relied on the
use of static methods that could be run without creating new
instances. In addition to the extensive use of static methods,
smells like long parameter lists, global data and Mutable
Data were among clear indicators of the presence of this
AntiPattern.

As this was a very overarching AntiPattern in the codebase,
it would be no easy task to convert the whole codebase into
beautiful object-oriented code. As it had already been decided
that the original Clojure code would be eliminated, the devel-
opers decided to refactor the system to follow the inversion
of control patterns of Java Spring [28|] when migrating it to a
new Spring MVC based repository. When migrating a part
of the code, it was also noticed that the current paradigm
had made circular dependencies in the code possible. These
would start to surface when instantiating the classes instead of
using their methods statically. Another detail associated with
this refactoring is passing parameters through function calls
— services containing the utility and necessary information
could be directly included in objects that need them. Work
refactoring this AntiPattern out will continue in tandem with
the removal of the old Clojure code which had been started.

Spaghetti Code AntiPattern

AntiPattern Name: Spaghetti Code [6]

Refactored Solution Name: Software
Cleanup

Root Causes: Ignorance, Sloth

Related Code Smells: Long Function, Divergent Change,
Shotgun Surgery, Loops, Message Chains, Insider Trad-
ing, Large Class

General Description: Spaghetti code needs no introduction,
being the most famous of all AntiPatterns and known
even to developers that are not aware of the concept of
AntiPatterns itself. This AntiPattern depicts code without
a logical structure. This kind of code will be difficult to
understand even to the original developer if it has not
been in its focus even for a few weeks. The code might
contain large classes, with convoluted flows in a single
function. Some classes might also contain clearly out
of place functionality that then other classes might use,
making the dependencies between classes very difficult
to understand.

Refactoring, Code



In the case project, large classes and long functions found with
static code analysis were clear examples of spaghetti code.
These classes had one main entry point function that would
then go through a convoluted flow of conditional expressions
and function jumps that made the code difficult to understand.
Although these classes were clearly in need of refactoring, the
developers rarely had the time to refactor them while making
changes in them.

Another instance of this AntiPattern was the misplacement
of functionality in classes where the functionality clearly did
not belong to. The rationale for this was keeping the number of
classes at a minimal level, by including all the functionality
needed by a class in itself. This was done for the sake of
development speed, knowing that some functions would better
fit another service or a helper class, which could then be
used by other classes, too. Ultimately, the solution would have
been acceptable, assuming refactoring would take place once a
function functionality embedded into the class was needed by
other classes. Unfortunately, this was not the case, resulting in
bloated classes and weird dependency graphs between them.

To fully eliminate spaghetti code, a change in the mentality
regarding when to refactor was needed, making refactoring a
first-class citizen in the development workflow. Then, instead
of forcing new changes to code that clearly is in need of
refactoring, the code is refactored first to make the change
easier to implement and understand. This piecemeal approach
can be complemented with bigger refactoring sessions, when
time was available. A few instances of this AntiPattern were
soon opportunistically refactored at the same time as the
classes needed other functional changes. The remaining cases
were added to the backlog for later refactoring.

Reinvent the Wheel AntiPattern

AntiPattern Name: Reinvent the Wheel, Design in a Vac-
uum, Greenfield System [6]

Refactored Solution Name: Architecture Mining

Root Causes: Pride, Ignorance

Related Code Smells: Duplicated Code

General Description: This AntiPattern refers to the lack of
reuse of code from the codebase itself or of external
available libraries. It usually stems from the lack of
knowledge of what has previously been done or the
believe of some developers that think that they could do
it better themselves.

This is the only AntiPattern we encountered that had no code
smells to even slightly indicate its presence — there was no true
duplicate code. Therefore, to spot this AntiPattern a logical
view of what was readily available either in the codebase itself
or in open external libraries.

The first example of wheel reinvention in the case project
was multiple implementations of comma-separated values
(CSV) file parsing and writing. Although an external library
had been introduced for this, only some of the instances of
handling CSV files used this external library. Others created
their own, non-trivial specific implementations that were not
reused nor reusable by other classes. This was so widespread

yet low risk issue, that fixing it by harmonizing the code was
added to the backlog as a low priority task.

A similar instance of wheel reinvention is related to JSON
serialization/deserialization. This was sometimes done by
hand, instead of relying on libraries that are readily available.
JSON is a much more complex format than CSV, hence
making its manual implementation more risky. At the same
time, an external library was used in the case project. As
for refactoring, it was decided that whenever manual JSON
handlers need updates, the external routine will be used
instead.

V. DISCUSSION

Working on the case project has provided us confidence that
the combination of code smells and AntiPatterns are a practical
way to manage technical debt.

In the case project, (i) areas of code with code smells did
often have underlying AntiPatterns. Each AntiPattern usually
had its own set of code smells that were related to it but there
was no direct causation the other way around. Instead, code
smells served as indicators of the need for deeper inspection
of the underlying behavior. Furthermore, (ii) the use of An-
tiPatterns to analyze and fix the problems in the codebase was
very helpful. Looking for AntiPatterns instead of individual
problems made it easy to find more overarching patterns and
thus using the refactored solution of the AntiPattern enabled
planning and making fixes that would improve the codebase’s
structure and readability as a whole.

Another observation and confirmation made was the added
difficulty that not having tests causes for dealing with technical
debt in a codebase. Refactoring, the main tool used to improve
code without changing its behavior, relies heavily on having
tests that can confirm that regressions are not introduced while
trying to fix other problems. Adding tests is thus always the
first step towards getting rid of the accrued technical debt. Fur-
thermore, some AntiPatterns were continuously reintroduced
even after having realized their existence and its active removal
in other areas of the code. It is thus of the utmost importance
to understand AntiPatterns, particularly those that have already
been previously identified, and have good peer review practices
that make it possible to catch them before they end up in the
production code and before not too long the project is back
on square one.

Numerous directions for future work in the field of this
paper exist. Firstly, since the goal of this paper is to summarize
our first-hand experiences, a direct successor of this work
would be a more comprehensive study of advanced static
code analysis tools that could aid in the identification of
AntiPatterns in industrial projects. Another direction of further
research is the matter of scaling the approach in terms of the
size of the codebase. To confirm central findings of this paper,
similar studies in the context of different kinds of software
development projects and types of companies are needed
to hypothesize if the use of AntiPatterns in technical debt
management is feasible on projects of different sizes and types.
Finally, a more constructive research theme would be to build a



repository of AntiPatterns from previous, related projects with
concrete examples of refactored and implemented solutions.
This in turn would help understanding possible problems in
the new context and the extent of remedies required.

VI. CONCLUSIONS

To conclude, understanding AntiPatterns has the potential
to help projects alleviate the technical debt that they have
accrued. However, the concept of AntiPatterns is not as
widely known or used with their full meaning, including their
refactorings, as that of design patterns, and hence it is less
common to analyze software systems with them.

In this paper, we presented our experiences in detecting
and removing technical debt from a case system where the
codebase had clear signs of decay. In our experience, the
concepts of code smells and AntiPatterns considerably helped
in the process. Furthermore, while tools for performing static
analysis did help in the process, also human insight and
manual work were deemed important, in particular when
performing a deeper analysis of implications of the problems.
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