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1  |  INTRODUC TION

The metabolic activities of microbes constantly modify the en-
vironment they live in (Ratzke et al., 2018; Schimel & Schaeffer, 
2012). Reciprocally, the selection impelled by the biotic and abiotic 
environment largely explains the diversity of bacteria and micro-
fungi (Koskella & Bergelson, 2020; Sorensen et al., 2013). Animals 
shape the microbial composition of their environment, by altering 
the physicochemical characteristics of soil, for example by burrow-
ing, constructing dams, excavating tunnels, or building nests (Duff 

et al., 2016; Hastings et al., 2007; Jílková et al., 2012, 2017; Vander 
Meer, 2012). Especially in areas of cold climate, many species are 
compelled to modify their immediate environment and construct 
nests in or above the soil to protect themselves and their offspring 
(Jurgensen et al., 2008). Nest building (or equivalently, construction 
of niche) influences the evolution of other species sharing the same 
niche (Hastings et al., 2007).

A nest is the product of the material and the host's building skills, 
but it is also a physicochemical framework, in which the host creates 
and shapes a characteristic microbiome. The microbiota of a nest or a 
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Abstract
In a subarctic climate, the seasonal shifts in temperature, precipitation, and plant 
cover drive the temporal changes in the microbial communities in the topsoil, forc-
ing soil microbes to adapt or decline. Many organisms, such as mound-building ants, 
survive the cold winter owing to the favorable microclimate in their nest mounds. We 
have previously shown that the microbial communities in the nest of the ant Formica 
exsecta are significantly different from those in the surrounding bulk soil. In the cur-
rent study, we identified taxa, which were consistently present in the nests over a 
study period of three years. Some taxa were also significantly enriched in the nest 
samples compared with spatially corresponding reference soils. We show that the 
bacterial communities in ant nests are temporally stable across years, whereas the 
fungal communities show greater variation. It seems that the activities of the ants 
contribute to unique biochemical processes in the secluded nest environment, and 
create opportunities for symbiotic interactions between the ants and the microbes. 
Over time, the microbial communities may come to diverge, due to drift and selection, 
especially given the long lifespan (up to 30 years) of the ant colonies.
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dwelling can decisively influence the fitness of its inhabitants, be the 
birds, insects, or humans (Brandl et al., 2014; Broussard & Devkota, 
2016; Voulgari-Kokota et al., 2019). Similar to the characteristic human 
gut microbiota (Coyte et al., 2015), or the plant root microbiome 
(Beckers et al., 2017), nest microbiota often differs from the one in 
the surrounding environment, regarding the taxonomic composition 
and patterns of abundance (Lindström et al., 2019). For example, bird 
nests, like those of reed warblers, contain bacteria originating from 
environmental sources, soil, food remains, or from the host plumage 
(Brandl et al., 2014). The incubation period before hatching, however, 
significantly changes the bacterial composition in bird nests. During 
this period, several harmful bacterial groups disappear, either due to 
antibiotic properties of the eggs, or the sanitation activities of the 
parents (Brandl et al., 2014). The inside of a termite nest, the termi-
tosphere (Moreira et al., 2018), also illustrates the effects of the nest 
environment on the microbial communities. When building the nest 
walls, the workers mix soil and feces into micro-aggregates which pro-
mote antibiotic microorganisms within the nest environment (Moreira 
et al., 2018). The nest mounds of wood ants are less conspicuous than 
the massive termite domes, but they too provide a unique environment 
for bacterial and fungal communities, compared to the background 
forest soil (Lindström et al., 2019).

By constructing their nests, mound-building ants modify the 
physical and chemical characteristics of soil (Frouz & Jilková, 2008; 
Kilpeläinen et al., 2007), thereby influencing the main drivers caus-
ing seasonal changes in the structure and composition of microbial 
communities. Seasonal variations in humidity (Evans & Wallenstein, 
2014; Sorensen et al., 2013), acidity, nutrient availability, and car-
bon sequestration (Kaiser et al., 2016; Lauber et al., 2008; Nacke 
et al., 2016; Rasche et al., 2011; Strickland et al., 2009; Tecon & Or, 
2017) shape the composition of soil bacteria and fungi. Nest con-
struction and maintenance affect porosity, aeration, water perme-
ability (Dostál et al., 2005; Duff et al., 2016; Holec & Frouz, 2006), 
pH (Boots et al., 2012; Dean et al., 1997) (Frouz & Jilková, 2008) as 
well as carbon and nutrient concentrations in the nest environment 
(Domisch et al., 2009; Dostál et al., 2005).

Biotic processes, such as seasonal plant processes, also strongly in-
fluence the temporal patterns of microbial communities in forest top-
soil (Kaiser et al., 2016; Prescott & Grayston, 2013; Zhou et al., 2017), 
for example, those of mycorrhizal fungi (Sietiö et al., 2018; Timonen 
et al., 2017) or fungal decomposers (Baldrian, 2017a). The occurrence 
rate of fungal decomposers varies, being frequent in early spring and 
late autumn, whereas mycorrhiza forming fungi are predominant during 
the photosynthetically active period before leaf decay (Santalahti 
et al., 2016; Žifčáková et al., 2016). Active, maintained ant nest mounds 
are mostly void of live plants (Frouz & Jilková, 2008; Laakso & Setälä, 
1998), and hence less, or not at all, affected by the plant processes.

1.1  |  Mound-building Formica ants

Mound-building wood ants, such as the Formica exsecta, are charac-
teristic of the boreal forest (Jurgensen et al., 2008). They construct 

their nest mounds above ground (Collingwood, 1979; Seifert, 2011), 
by gathering their nest material (pine and spruce needles, pieces of 
moss, and soil) from the surrounding forest floor (Littlewood & Young, 
2008). Like other Formicas, their nest mounds are void of plant cover, 
and due to continuous maintenance, the nests contain fewer or finer 
roots than the soils surrounding the nest (Frouz & Jilková, 2008; 
Laakso & Setälä, 1998). The F. exsecta ants select sunlit, open spots 
for their nest, to secure enough insolation during summer (Katzerke 
et al., 2010; Littlewood & Young, 2008). The decomposition of the 
organic nest material, together with abundant solar radiation, main-
tains a steady and relatively high temperature inside the nest mound. 
The protective characteristics of the nests allow for sufficient dura-
tion of suitable climatic conditions for brood development (Rosengren 
et al., 1987), but the nest also provides a favorable environment for 
microbes with low tolerance to sub-zero temperatures. This could 
have a basic influence on the composition of the microbial communi-
ties, in particular during sub-zero periods without an insulating snow 
cover (Margesin & Miteva, 2011; Rankinen et al., 2004). Furthermore, 
the social behavior of these ants, such as removing microbes from the 
cuticle of fellow ants, cleaning the nest, or bringing in pieces of anti-
microbial, coniferous resin to the nest modifies the microbial commu-
nities inside the nests (Brütsch & Chapuisat, 2014; Brütsch et al., 2017; 
Reber et al., 2011; Ugelvig et al., 2010).

1.2  |  Aims of study

In our previous work, we have shown that the nest environment, 
continuously maintained by its host, shelters bacterial and fungal 
communities, which are distinct from the surrounding reference soils 
(Lindström et al., 2019). The microbial communities in nest mounds 
are unique with respect to both the relative representation, and the 
presence of certain taxa, whereas the reference soils are signifi-
cantly less divergent. The nest microbes also assemble into modular 
networks, which are largely separated from those in the reference 
soils. The patterns of both indicative taxa, and the modular net-
works, were consistently maintained across a three-month sampling 
period (Lindström et al., 2019). This suggests that the factors which 
drive seasonal changes in the microbial communities differ between 
the nest and the reference soil environments. This raises the ques-
tion of whether these effects also persist across seasons. If so, other 
factors than the typical seasonal shifts in temperature, precipitation, 
plant cover, and plant species composition, which drive the microbial 
communities in the upper soil layers of a boreal forest, may drive the 
microbial communities of the nests.

Thus, we hypothesize that the nest environment alleviates some 
of the seasonal effects, which drive the microbial communities in 
the surrounding boreal topsoil in nests mounds of the ant F. exsecta. 
To test this, we assessed the level of within-season and between-
season variation of bacterial and fungal taxa in the nests over three 
years. We identify the most consistent taxa, evaluate their potential 
functions, and compare their frequency and abundance to that in the 
surrounding soils during one season.
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To achieve this, we used community fingerprinting (T-RFLP) to 
inform NGS (Illumina-MiSeq) read abundance and taxonomy data. 
We analyzed the similarity of the bacterial and fungal communities 
in the nests, based on their Bray–Curtis dissimilarities, with ordina-
tion methods and permutational ANOVAs (PERMANOVA). We pro-
duced diversity indices for the nest communities and tested them for 
variation within and between seasons with mixed-model ANOVAs. 
Finally, we assessed the turnover rates, and the consistency of the 
bacterial and fungal taxa, and discussed some potential functional 
reasons for their consistent presence in the nests.

2  |  MATERIAL S AND METHODS

2.1  |  Study organism, sampling, and extraction of 
DNA

The ant Formica exsecta is common in Finland (Czechowski et al., 
2002; Douwes et al., 2012), where it inhabits meadows and open 
woodlands (Sundstrom et al., 1996). The perennial nests have 
an average lifespan of 6.5 years (Haag-Liautard et al., 2009), but 
healthy nests can stay active for up to 30  years (Pamilo, 1991). 
At our study sites on the SW coast of Finland, on the two islands 
of Furuskär and Joskär close to the Tvärminne zoological station 
(59°84′196″N, 23°20′182″E), the F. exsecta populations have been 
monitored since 1994 (Sundstrom et al., 1996; Vitikainen et al., 
2011, 2015). The biotopes of the study sites consist of pine and 
spruce thickets intermixed with granite cliffs, dry meadows, and 
some lusher patches of the grove. In addition to pine and spruce, 
the vegetation consists mainly of junipers and ericoid shrubs. The 
immediate surroundings of the nests encompass plant communi-
ties that vary both spatially and temporally. The soil type consists 
mainly of thin layers of leptosol intermixed with stratified podzol 
(Lindström et al., 2018). The uppermost litter layer consists mostly 
of small twigs and needles of coniferous trees. The characteristic 
shared by all the sampled nest locations is that they are all built on 
rather open and dry spots.

We sampled six nests during May, June, and August in 2013–
2015, three nests from the island Furuskär (ca 1.5 km2), and three 
from the island of Joskär (ca 2 km2). The nests included in the study 
were distributed across the islands, usually at more than a 50  m 
distance from each other. In addition, we collected reference soil 
samples from the surroundings of three of these nests in May, June, 
and August 2015, in total nine reference soil samples, in addition to 
the 54 nest samples. The samples, (~0.2 L) of the nest or reference 
soil material, were collected by hand at a depth of 10–15 cm, using 
sterile gloves. The samples were placed in sterile zip-lock bags and 
stored at −80°C until further processing. DNA was extracted from a 
~0.25 g subsample of the nest material, using the MoBio PowerSoil® 
(Qiagen) DNA Isolation Kit, according to manufacturer's instruc-
tions, except using TissueLyser II (Qiagen) for 3 min at 20Hz, instead 
of vortexing (Lindström et al., 2018) instead of vortexing, during the 
cell lysis.

2.2  |  Molecular and bioinformatic procedures

All samples were subjected to T-RFLP (Liu et al., 1997). The PCR and 
purification of the soil DNA for the T-RFLP analysis were conducted 
as in Lindström et al. (2018). For bacteria, FAM-tagged forward 
primer 27F (AGAGTTTGATC(A/C)TGGCTCAG, Chung et al., 2004, 
Weisburg et al., 1991) and the reverse primer 1387R (GGGCGG(A/T)
GTGTACAAGGC, Wade et al., 1998) were used. For fungi, the pro-
tocol was modified to encompass the whole ITS area (both ITS1 and 
ITS2), instead of ITS2 only, using the TAMRA-tagged primer ITS1F 
(CTTGGTCATTTAGAGGAAGTAA, Gardes, & Bruns, 1993) and ITS4 
(TCCTCCGCTTATTGATATGC, White et al., 1990). The enzymes 
HaeIII and MspI were used for the digestion of the bacterial and fun-
gal sequences, as in Lindström et al. (2018).

The processing (separation, peak scoring, noise filtering, align-
ment, and binning) of the T-RFs (terminal restriction fragments) 
was conducted as in Lindström et al. (2018), except the minimum 
height of fungal T-RFs. Instead of applying 70 fluorescent units (fu) 
for fungi, we set the height at 100  fu for both bacteria and fungi 
(the T-RFLP data are available at https://doi.org/10.6084/m9.figsh​
are.14547558). Prior to further analysis, the T-RF data were nor-
malized with the function decostand in R, package vegan (Oksanen 
et al., 2017). The preliminary analysis showed comparable results for 
data generated by both of the enzymes, so the data generated by 
MspI were chosen for further analysis, for both bacteria and fungi. 
The number of T-RFs was counted, and the height of the normalized 
T-RFs was used as a proxy for abundance.

A subset of nest samples from three nests (years 2013–2015), 
and corresponding reference soil samples (the year 2015), a total 
of 36 samples, with an unbroken series of observations during the 
whole timeline, were submitted to Illumina MiSeq sequencing. The 
nests that were selected for sequencing had the most complete 
set of samples throughout the timeline. Preparation of libraries, 
sequencing, and the bioinformatics pipeline were performed as 
in Lindström et al. (2018). In brief, sequences from the bacterial 
16S rRNA region were amplified with the FAM-tagged forward 
primer 27F (AGAGTTTGATC(A/C)TGGCTCAG, Chung et al., 2004; 
Weisburg et al., 1991) and the reverse primer 1387R (GGGCGG(A/T)
GTGTACAAGGC, Wade et al., 1998). Sequences from the fungal ri-
bosomal ITS2 region were amplified with the same TAMRA-tagged 
forward primer as in the T-RFLP analysis. Library sequencing (pair-
end mode) was carried out by the DNA Sequencing and Genomics 
Laboratory, Institute of Biotechnology, University of Helsinki. Read 
filtering and the clustering of OTUs at the identity of 97% were 
conducted using UPARSE (Edgar, 2013). A higher taxonomic resolu-
tion could have been reached by the use of ASV (with a 99%–100% 
identity, Callahan et al., 2017; Edgar, 2018), instead of OTU. For this 
report we, however, decided to use the same methodology which 
we used in (Lindström et al., 2018, 2019), to retain full congruence 
with earlier results on the same colonies. The SILVA database v128 
(Quast et al., 2013) was used as a reference for the alignment of 
bacterial sequences and the UNITE v7 database (Kõljalg et al., 2013) 
for the fungal sequences. The negative controls of the sequencing 
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showed very low numbers and abundance of contaminants, suggest-
ing the risk of inflated read abundancies due to contamination was 
negligible.

2.3  |  Data analysis

The diversity and number of taxa were assessed based on the OTU 
data as the number of reads and taxa per year, month, and nest. 
When possible, taxa were identified to the level of genus, when 
genus-level information was unavailable a higher taxonomic level 
was used. All identified taxa are referred to as “GOH (Genus Or 
Higher) taxa”, and the taxonomic level is indicated separately. Prior 
to further analysis, the OTU data were rarefied to the lowest number 
of reads in the nest samples (to 24354 reads in bacteria and 14693 
reads in fungi) in R, package vegan, function rrarefy (Oksanen et al., 
2017), and the proportion of reads identified to the level of phylum 
and genus was calculated. The number of rarefied reads was used as 
a proxy for abundance (hereafter referred to as TA, total abundance).

Variation across the bacterial and fungal communities between 
the years, months, and nests was compared by generating Bray–
Curtis inter-sample dissimilarity matrices of both the OTU and the 
T-RF data, which were then plotted in a principal coordinates analy-
sis (PCoA). In a PCoA, the data are visualized by placing the commu-
nities in an n-dimensional space according to their dissimilarity, such 
that similar communities cluster close together, whereas dissimilar 
communities are placed further away from each other. The matrices 
were further subjected to a permutational ANOVA (PERMANOVA, 
Legendre & Anderson, 1999) with 999 permutations to test the 
effects of “year,” “month,” and “nest,” with “nest” as stratum to ac-
count for repeated measures. The matrices were performed with 
the function vegdist, the PCoAs with the function capscale, and the 
PERMANOVAs with adonis2, all in R, package vegan (Oksanen et al., 
2017).

To assess community dynamics, we counted richness of species 
and calculated Shannon–Wiener indices of diversity (H′) on GOH 
taxa and T-RFs, and tested the effect of “year” and “month” on the 
diversity in a mixed-model ANOVA (JMP v.13, SAS Institute Inc., 
Cary, NC, U.S), with “month” nested within “year” as the main fac-
tor, and “nest” as a random factor. The rate of yearly turnover (ap-
pearance and disappearance of the bacterial and fungal taxa) in nest 
samples was calculated with the package codyn (function turnover, 
Hallett et al., 2016) in R. In the nest samples, also the abundance 
and frequency of GOH taxa across years and months were measured 
in a consistency analysis, and a subset of consistent GOH taxa was 
derived, sensu Shade and Handelsman (2012). A GOH taxon was 
characterized as consistent if it was detected in all sampled nests, 
months, and years. The proportional distribution of the 20 most 
abundant bacterial and all the fungal GOH taxa that were consis-
tently detected in all nest samples or reference soil samples was 
plotted in a stacked bar graph.

Finally, we calculated the ratio of total abundance in nests and 
reference soils as an estimate of enrichment in the nest environment. 

To ensure comparability, we only included data from 2015. We then 
used repeated measures ANOVA on ln-transformed values to test 
for statistical significance for taxa that showed a 1.5-fold or higher, 
or 0.5-fold or lower prevalence in nests, compared to reference soils. 
To account for multiple tests, we adjusted the p-values for the false 
discovery rate (Benjamini-Hochberg, 1995).

3  |  RESULTS

The Illumina MiSeq DNA sequence data on the 27 nest samples pro-
duced in total 1,371,127 bacterial and 1,765,128 fungal sequence 
reads, which clustered into 33,580 bacterial and 8489 fungal OTUs, 
respectively (Table A1). The corresponding data for the nine refer-
ence soil samples produced 1,061,232 bacterial and 199,875 fungal 
reads, which clustered into 3776 bacterial and 3764 fungal OTUs, 
respectively. In total, 383 unique bacterial and 294 unique fungal 
taxa were detected in the nest samples, and 340 and 216, respec-
tively, in the reference soil samples (Table A1). When possible, taxa 
were identified to the level of genus, when genus-level information 
was unavailable a higher taxonomic level was used. In the bacterial 
data, 97.7% of the taxa were identified at the phylum and 57.4% at 
the genus level; in the fungal data, these numbers were 98.2% and 
53.4%, respectively. Identified taxa are referred to as “GOH (Genus 
Or Higher) taxa” in the text, and the taxonomic levels are indicated 
separately. The T-RFLP fingerprinting and restriction with enzyme 
MspI yielded 160 bacterial and 158 fungal terminal restriction frag-
ments (T-RFs).

Both the bacterial and the fungal communities were clustered 
according to the nest (Figure 1). The PERMANOVA further con-
firmed nest location as the main source of community variation in 
the bacterial nest data, both for OTU and T-RF data (Table 1). In ad-
dition, the fungal T-RF nest data showed significant effects of year 
and month (Table 1). We found no significant variation in either di-
versity or number of GOH taxa across years or months in the OTU 
nest data, in neither bacteria nor fungi. However, the bacterial T-RF 
data showed significant yearly variation in both the diversity and the 
number of T-RFs. The corresponding fungal data showed no such 
effects of year and month (Tables 2 and A2). The yearly turnover of 
bacterial GOH was on average lower than the one of fungi, as 10% of 
the bacterial taxa appeared or disappeared during 2013–2014, and 
31% during 2014–2015. The corresponding figures for fungi were 
27% and 40%, respectively (Table 3), indicating that the fungal com-
munities were in general temporally less stable than the bacterial 
ones.

Forty-five bacterial GOH taxa were present in all 26 nest samples. 
These encompassed 12% of all bacterial GOH taxa and 75% of the 
bacterial TA (Table A3). The three most abundant and consistent phyla 
(Acidobacteria, Actinobacteria, and Proteobacteria) encompassed 68% 
of the TA. The ten most abundant of these taxa, each of which en-
compassed over 2% of the TA, were the Acetobacteraceae (Family), 
Acidobacteria Gp1, Actinomycetales (Order), Bradyrhizobiaceae (Family), 
Burkholderia, Granulicella, Massilia, Mycobacterium, Rhizobiales (Order), 



    |  5 of 18LINDSTRÖM et al.

F I G U R E  1 Principal coordinates analyses on bacterial OTU data (a and c) and T-RF data (b and d), fungal OTU data (e and g), and T-RF 
data (f and h). PCoA:s indicated by letters a, b, e, and f show clustering according to Bray–Curtis dissimilarities by year and month, and c, d, g, 
and h show clustering by nests
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and Solirubrobacterales (Order) (Table A3, Figure A1). Conversely, the 
338 bacterial GOH taxa, which were found in fewer than 26 samples, 
encompassed 88% of all GOH taxa, but only 25% of the TA.

Sixteen fungal GOH taxa were present in all 26 nests. These en-
compassed 5% of all the fungal GOH taxa and 53% of the fungal TA 
(Table A4, Figure A1). Taxa belonging to the phylum Ascomycota ac-
counted for 50% of the TA, whereas the phylum Basidiomycota com-
prised 1%, and unidentified fungi 2%, respectively, of the TA. The 
five most abundant GOH taxa, each of which encompassed more 
than 2% each of the TA, were Ascomycota (Phylum), Cladosporium, 
Leotiomycetes (Class), Oidiodendron, and Pleosporales (Order). The 
278 fungal GOH taxa, which were found in fewer than 26 samples, 
encompassed 95% of all GOH taxa and 47% of the TA (Table A4).

When comparing the species composition of nests and reference 
soils, we found that 18 bacterial and 5 fungal GOH-taxa had a 1.5-
fold or higher abundance in the nest material, compared to the ref-
erence soils (Tables A3 and A4, and Figure 2a,b). Conversely, eight 
bacterial taxa and one fungal taxon were enriched in the reference 
soil samples (fold difference <0.5). In bacteria, the difference was 
statistically significant, after correction for false discovery rate, in 19 
cases, 11 of which were enriched in nests, and 8 in the reference soils 

Effect

OTU-data T-RF data

F R2 p n F R2 p n

Bacteria

Year 1.13 0.04 0.297 26 1.87 0.04 0.084 42

Month 1.39 0.05 0.203 0.92 0.02 0.463

Nest 3.39 0.12 0.026 4.16 0.02 0.001

Fungi

Year 1.17 0.04 0.295 26 8.39 0.14 0.001 53

Month 1.45 0.05 0.181 1.76 0.03 0.041

Nest 3.49 0.12 0.003 2.11 0.03 0.012

Note: dfden in all cases 1 (data in Table A1).
Bold values are significant p-values.

TA B L E  1 PERMANOVA tests of the 
effects of year, month, and nest on 
the bacterial and fungal Bray–Curtis 
dissimilarities

Overall mean

Effect

OTU T-RF

OTU T-RF F p df F p df

Shannon-W. H

Bacteria

3.67 (+/-0.56) 2.45 (+/-0.58) Month 1.84 0.193 2 0.84 0.442 2

Year 0.9 0.519 6 3.27 0.014 6

Fungi

2.54 (+/-0.55) 2.37 (+/-0.59) Month 1.88 0.186 2 0.18 0.835 2

Year 1.5 0.244 6 0.5 0.806 6

No. of taxa

Bacteria

176 (+/-60) 26 (+/-14) Month 2.02 0.167 2 2.35 0.113 2

Year 0.76 0.611 6 10.7 0.001 6

Fungi

96 (+/-24) 25 (+/-13) Month 2.63 0.104 2 0.7 0.504 2

Year 1.56 0.227 6 1.25 0.304 6

Bold values are significant p-values.

TA B L E  2 MANOVA results for 
Shannon–Wiener diversity, and the 
number of bacterial and fungal OTUs and 
T-RFs (breakdown of averages per year 
and month are given in Table A2)

TA B L E  3 Turnover of bacterial and fungal GOH-taxa in nests in 
2013–2015

Years

GOH-taxa

Change (%)Same Different

Bacteria

2013–2014 304 34 10.06

2014–2015 254 112 30.60

2013–2015 262 116 30.69

Fungi

2013–2014 197 74 27.31

2014–2015 161 107 39.93

2013–2015 156 113 42.01
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(Repeated measures ANOVA: F1,8 > 7.64, p < 0.025). These included 
six Actinobacterial taxa (including the genera Actinomycetospora, 
Streptomyces, and Conexibacter), which together accounted for 7.7% 

of the TA, with an average fold difference of 10.1. Furthermore, 
five Proteobacterial taxa (including the genera Methylobacterium, 
Massilia, and Burkholderia, and the families Beijerinckiaceae and 

F I G U R E  2 Relative representation of bacterial (a) and fungal (b) taxa in nests and reference soils, sampled in 2015. The p-values refer 
to repeated measures ANOVA, conducted on taxa that showed either a 1.5-fold or higher or a 0.5-fold or lower prevalence in nests than in 
reference soils. The asterisks indicate samples in which the differences were statistically significant after correction for false discovery rate.

Opitutus
Sphingomonas

Sphingomonadaceae_Fam
Rhodospirillaceae_Fam

Rhizomicrobium
Myxococcales_Ord
Methylobacterium

Massilia
Gammaproteobacteria_Cl
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Streptomycetaceae_Fam

Streptomyces
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Pseudonocardiaceae_Fam
Mycobacterium

Microbacteriaceae_Fam
Conexibacter

Actinomycetospora
Actinomycetales_Ord

Terriglobus
Acidobacteria_Gp3

Verrucomicrobia

Proteobacteria

Planctomycetes
Bacteroidetes

Actinobacteria

Acidobacteria
Nest
Ref. soil

Cryptococcus_g1
Basidiomycota_Ph

Venturia
Trichoderma

Sordariomycetes_Cl
Pleosporales_Ord

Penicillium
Oidiodendron
Lophodermium

Leotiomycetes_Cl
Helotiales_Ord

Exophiala
Dothideomycetes_Cl

Cladosporium
Ascomycota_Ph

Fungi, not identified

Basidiomycota

Ascomycota

0 20 40 60 80 100
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Prevalence %

Prevalence %

*
**
*
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*
**
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*
*

*
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Acetobacteraceae) accounted for 13.8% of the TA, with an average 
fold difference of 6.1. All six bacterial taxa that were absent from 
some of the reference soil samples belong to Actinobacteria or 
Proteobacteria (Table A3).

In fungi, five GOH-taxa belonging to the phylum Ascomycota, 
including the genera of Oidiodendron, Exophiala, Penicillium, and 
Trichoderma, showed a twofold or higher prevalence in the nests 
compared to reference soils. However, none of the differences 
were significant, given the extensive variation across nests and 
reference soils. The only fungal taxon to exceed 2% of the TA was 
the genus Oidiodendron, which alone comprised 17.7% of the TA, 
with a fold difference of 7.5. The remaining genera (Exophiala, 
Penicillium, Trichoderma, and an unidentified taxon) together rep-
resented 4.3% of the TA, with an average fold difference of 5.6 
(Figure 2b, Table A4). Two of these, Exophiala and Penicillium, 
were absent from some of the reference soil samples from 2015. 
In the reference soils, four taxa showed enrichment, but only one 
of these was statistically significant (order Helotiales) and repre-
sented 1.82% of the TA (Table A4).

4  |  DISCUSSION

4.1  |  Community dynamics

Here, we show based on the sequenced OTUs that the compo-
sition of bacterial communities in ant nests remained fairly sta-
ble both within seasons and across years, yet varied significantly 
among nests. The fungal communities showed a similar, although 
less clear, pattern, as the T-RF data also signaled monthly and 
yearly variation. Consistently with this, the yearly turnover of fun-
gal taxa in nests was higher than that of bacteria. Furthermore, the 
number of bacterial GOH taxa, consistently present in all samples, 
was almost twofold compared to the fungal taxa. This is consistent 
with a lower turnover of taxa and signals higher temporal stability 
of the bacterial communities. The diversity of the bacterial and 
fungal communities remained stable across both months and years 
as measured based on the OTU data. However, based on the T-RF 
data, bacterial diversity varied across years. The turnover of spe-
cies does not necessarily affect the diversity, or the number of 
taxa, as long as the number of taxa that disappear each year is ap-
proximately the same as the number of new taxa. The difference 
between the OTU data and the T-RF data in the temporal variation 
of fungal community composition may also partly be explained by 
the smaller sample size of the OTU data set. Furthermore, as one 
taxon can be represented by several different T-RF peaks, and one 
T-RF peak can stand for several taxa, the estimates of diversity 
and species count based on T-RFLP may differ from those ob-
tained based on the OTU data (Avis et al., 2006). The lower num-
ber of fungal taxa, compared to bacteria, may have many causes, 
but one potentially important factor is that the insides of F. ex-
secta nests are dry. Drought in general is associated with lower 
fungal diversity in soil (Bahram et al., 2018). However, fungi also 

respond quicker than bacteria to changes in humidity, which may 
contribute to their lower spatial and temporal stability (Hawkes 
et al., 2011).

4.2  |  Community composition

The 45 consistent bacterial and 16 fungal taxa that were present in all 
nest samples throughout the sampling period belonged to eight bacte-
rial (Acidobacteria, Actinobacteria, Armatimonadetes, Bacterioidetes, 
Planctomycetes, Proteobacteria, TM7, and Verrucomicrobia), and two 
fungal (Ascomycota and Basidiomycota) phyla. All these taxa were also 
detected in at least some of the reference soil samples. The overall 
number of taxa was also similar in the nests and the reference soils. 
However, the comprehensive sampling of the same nests across three 
years should reduce such errors. The abundances of some taxa may 
be under- or overestimated due to the limitations involved with the 
use of sequence read number as a measure for abundance (Degnan 
& Ochman, 2012), or some rarer taxa may have been overlooked due 
to the rarefying procedure (McMurdie & Holmes, 2014). Another po-
tential caveat is that the nest samples covered several years, and thus 
a larger total number of samples than those from the reference soils, 
which were collected only in 2015. Thus, the total number of taxa is 
likely to be inflated in the nest samples, compared to the reference soil 
samples. However, the abundances (measured as the fraction of total 
abundance) differed in some cases between the nest and the refer-
ence soils, such that some taxa were enriched in the nests, compared 
to the reference soils. Given that the percentage of TA is corrected for 
sample size, the calculated differences in fold ratios should hold.

Of the bacterial taxa which we identified as consistent and 
enriched in the nests, all belonged to the phyla of Actinobacteria 
or Proteobacteria. Several studies have recorded close associa-
tions between ants and Actinobacteria (Barke et al., 2010; Lucas 
et al., 2017; Matarrita-Carranza et al., 2017; Seipke et al., 2012), 
and the high percentage of the enriched Actinobacterial taxa 
in the F. exsecta nests (covering over 18% of the TA) indeed sug-
gests similar associations. Of the enriched bacterial taxa, four 
genera (Actinomycetospora, Streptomyces, Methylobacterium, and 
Burkholderia), and one unidentified taxon belonging to the family of 
Acetobacteraceae, have previously been recorded as core indicators 
of ant nests (Table A3 and references therein). Species belonging to 
Acetobacteraceae and Burkholderia have also been detected in the 
F. exsecta transcriptome (Johansson et al., 2013). A further two en-
riched bacteria (Mycobacterium and Brevundimonas) have known as-
sociations with ants and other social Hymenoptera, but also some of 
the non-enriched, but consistent taxa (Conexibacter, Rhizomicrobium, 
Caulobacter, Phenylobacterium, Sphingomonas, one unidentified genus 
belonging to Chitinophagaceae, and one to Bradyrhizobiaceae) had 
similar associations. The remaining bacterial taxa are mostly decom-
posers, or associated with plants or lichen, whereas the function of 
some remains undisclosed (Table A3 and references therein).

All consistent fungal taxa belonged to the phylum of Ascomycota, 
but somewhat surprisingly, none of the fungal taxa showed 
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significant enrichment in the nest material. This does not preclude 
the existence of important functions in ant nests and is consistent 
with our observation that fungi showed stronger temporal variation 
and signs of higher temporal turnover. Indeed, four of the fungal 
genera (Oidiodendron, Exophiala, Cryptococcus, and Cladosporium) 
have previously been identified as core indicators of the nests, and 
Oidiodendron represents a considerable fraction of the fungal com-
munity in this study (Table A4 and references therein). Furthermore, 
the genus Cryptococcus has previously been detected in the F. ex-
secta transcriptome (Johansson et al., 2013). Conversely, Penicillium 
and Trichoderma have no recorded associations with ants. Similar 
to bacteria, the function of some of the consistent fungal taxa is 
unknown.

4.3  |  Characteristics and processes of the ant nests 
that potentially influence the microbes

We found the bacterial communities of the F. exsecta nests to be 
temporally stable, whereas the fungal communities showed more 
fluctuation across months and years. The temporal shifts in the 
microbial species composition and abundance in soils are consid-
ered to be primarily controlled by plants (Kaiser et al., 2016; Lata 
et al., 2010; Zhou et al., 2017). However, the nest mounds of F. 
exsecta nests are mainly void of live plants. The absence of plant 
material selects for microbiota, which is not dependent on shifts 
in plant root exudates, nor the resource-dependent cycles of fun-
gal guilds. The cycles of saprotrophic taxa in forest soil follow the 
volume and quality of available litter, usually peaking in autumn 
(Žifčáková et al., 2016), but the litter input into ant nests does not 
follow the same cycle as the surrounding forest floor, as the ants 
actively add litter to the nest throughout the ant active season. 
Therefore, temporal fluctuations in the abundance of decompos-
ers in the nests could be much lower than in the surrounding soil, 
which promotes the consistency of several microbial taxa. In gen-
eral, fungi are the major decomposers in forest soil, often showing 
more distinct succession in litter-like material, compared to bac-
teria (Baldrian, 2017b), which could explain the somewhat higher 
temporal variability of fungi in F. exsecta nests. However, studies 
including reference soil samples from more years would be needed 
to determine this.

Temperature is considered to be another main driver of the 
structure and composition of microbial communities (Hawkes et al., 
2011; Lladó et al., 2018; Rousk & Bååth, 2011). For example, the 
abundance of Acidobacteria and Proteobacteria increases with in-
creased temperature (Lladó et al., 2017). In ant nests, the tempera-
ture is maintained on a steady and high level, for a longer period 
than in the surrounding forest floor (Frouz & Jilková, 2008; Katzerke 
et al., 2010). This is partly due to the insulating effects of the nest 
(Frouz & Jilková, 2008), selectively built-in spots of high solar radi-
ation (Katzerke et al., 2010), but also as a result of the ongoing de-
composition process (Laakso & Setälä, 1998). In boreal or subarctic 
soils, the nest could therefore affect the microbial communities, not 

only due to a generally higher and more stable temperature but also 
by prolonging the periods with above-zero temperatures, compared 
to the surrounding soil. Both the intensity and length of the varying 
temperature shape the patterns of microbial diversity (Margesin & 
Miteva, 2011). Moreover, ants can alter the levels of N, P, and C in 
the nests (Jurgensen et al., 2008; Lenoir et al., 2001). Formica ants 
prey on aphids and other invertebrates, and they also use honeydew 
from the aphids for food (Domisch et al., 2009). The residues of the 
food, together with ant excrements, affect the nutrient levels in the 
nests (Jílková et al., 2012; Kilpeläinen et al., 2007). This creates tem-
porally different resource patterns for microbial communities inside 
the nest mounds compared to those prevailing in the surrounding 
soil.

5  |  CONCLUSIONS

Our study shows that ant nests can provide an environment with mi-
crobial communities distinct from the surrounding soil, both in time 
and space. This differential is likely brought about by the activities 
of ants that on the one hand allow unique biochemical processes in 
the absence of plants, and on the other hand, create opportunities 
for symbiotic interactions between the ants and the microbes. The 
stable nest environment could thus act as a reservoir, where inocula 
of microbial taxa, less tolerant of climatic fluctuation, could survive 
through unfavorable seasons. Over time the microbial communities 
may come to diverge, due to drift and selection, especially given the 
potentially long lifespan of the ant colonies, up to 30 years (Pamilo, 
1991; Sundström personal observation). Several of the taxa found in 
this study have been found in association with ants in general, and 
some specifically with F. exsecta (Johansson et al., 2013). We also 
found that a subset of the bacterial taxa was enriched in the nests, 
compared to the reference soils outside the nests, whereas other 
taxa, albeit consistently present, were not enriched. Taken together, 
these findings may reflect mutualistic interactions between the ants 
and the microbes, but with the present data further conjectures on 
this would be premature.
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APPENDIX 1

TA B L E  A 1 The number of reads, the number of OTUs identified from the reads, and the inferred number of taxa identified at the level of 
genus or any higher taxonomic level (GOH)

Bacteria Fungi

Nests Soil Nests Soil

Reads

Unrarefied 1,371,127 1,061,232 1,765,128 199,875

Rarefied 633,204 219,186 382,018 131,017

OTUs

2013 11,248 2435

2014 12,484 3132

2015 9848 3776 2922 3764

Total 33,580 3776 8489 3764

No. GOH taxa

2013 331 233

2014 311 235

2015 309 340 192 216

Unique 383 294

Sampling time

Shannon–Wiener H′ Number

OTU T-RF
Taxa 
(GOH) T-RFs OTUs

Bacteria

2013 3.81 (0.59) 2.21 (0.93) 187 (66) 20 (12) 1406 (601)

2014 3.62 (0.59) 2.73 (0.29) 176 (61) 39 (12) 1387 (551)

2015 3.61 (0.55) 2.37 (0.24) 166 (60) 18 (6) 1094 (392)

May (2013–2015) 3.78 (0.61) 2.35 (0.62) 184 (61) 22 (14) 1432 (584)

June (2013–2015) 3.74 (0.60) 2.45 (0.76) 188 (66) 28 (17) 1436 (559)

August 
(2013–2015)

3.50 (0.48) 2.55 (0.24) 157 (56) 28 (11) 1023 (318)

Fungi

2013 2.82 (0.48) 2.20 (0.62) 96 (29) 19 (12) 304 (127)

2014 2.56 (0.57) 2.52 (0.34) 104 (25) 30 (13) 348 (127)

2015 2.28 (0.51) 2.37 (0.72) 87 (16) 27 (11) 325 (66)

May (2013–2015) 2.30 (0.71) 2.40 (0.71) 96 (30) 28 (14) 330 (114)

June (2013–2015) 2.64 (0.46) 2.31 (0.40) 107 (23) 23 (11) 383 (89)

August 
(2013–2015)

2.70 (0.39) 2.39 (0.63) 85 (15) 26 (13) 272 (96)

TA B L E  A 2 Average (SD) species 
diversity and richness indices across years 
or months
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F I G U R E  A 1 Proportional abundances of the 20 most abundant bacterial (a), and all fungal (b) GOH-taxa, that were consistently detected 
in all nest samples or reference soil samples.
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