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Urban forests host rich polypore assemblages in a Nordic metropolitan area 
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H I G H L I G H T S  

• Polypore species richness was dependent mainly on the abundance of dead wood. 
• Both forest fragmentation and dense human population decreased red-listed species occurrences. 
• Accounting for urbanization was not important in predicting individual species occurrences.  
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A B S T R A C T   

Urban forests are often remnants of former larger forested areas, and traditionally considered as degraded 
habitats due to negative effects of urbanization. However, recent studies have shown that urban forests managed 
for recreational purposes can be structurally close to natural forests and may provide habitat features, such as 
dead wood, that are scarce in intensively managed forest landscapes. In this study, we assessed how urbanization 
affects polypore species richness and the number of red-listed polypore species in forest stands, and the occur
rences of polypore species on individual units of dead wood. Spruce-inhabiting polypore assemblages and their 
associations to urbanization, local habitat connectivity and dead-wood abundance were investigated in southern 
Finland. The effects of urbanization on polypore species richness and individual species were largely negligible 
when other environmental variability was accounted for. Several red-listed polypore species were found in dead- 
wood hotspots of urban forests, though urbanization had a marginally significant negative effect on their rich
ness. The main driver of total species richness was dead-wood abundance while the number of red-listed species 
was also strongly dependent on local habitat connectivity, implying that a high degree of fragmentation can 
decrease their occurrence in urban forests. We conclude that the highest potential for providing habitats for 
threatened species in the urban context lies in large peri-urban recreational forests which have been preserved 
for recreational purposes around many cities. On the other hand, overall polypore diversity can be increased 
simply by increasing dead-wood abundance, irrespective of landscape context.   

1. Introduction 

Urban forests are often remnants of previously larger, contiguous 
forested areas. They have traditionally been considered as low-value 
habitats due to negative effects of urbanization (e.g. Cavin, 2013). 
However, as urban forests are managed primarily for recreational pur
poses and not for wood production, they can be structurally close to 
natural forests and maintain important habitat features, such as dead 
wood, that are scarce in intensively managed forest landscapes 

(Hedblom & Söderström, 2008; Korhonen, Siitonen, Kotze, Immonen, & 
Hamberg, 2020). Urban forests may therefore provide important habi
tats for different taxa in human-modified landscapes (Alvey, 2006; 
Croci, Butet, Georges, Aguejdad, & Clergeau, 2008; Ives et al., 2016; 
Soanes et al., 2019). 

Forested urban greenspaces and recreational forests are usually set 
aside from wood production and offer more freedom for biodiversity- 
oriented management than commercially managed forests (Gundersen 
et al., 2005; Hedblom & Söderström, 2008). In the boreal zone of 
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northern Europe, replenishment of dead wood is one of the key goals in 
ecological restoration of forests (Similä & Junninen, 2012). Dead wood 
is a vital resource for ca. 20–25% of forest species in the region, and the 
quantities of coarse woody debris have been reduced by over 90% from 
the levels found in natural forests because of intensive wood harvesting 
(Siitonen, 2001). Along with decreased amount of old forests and old 
trees, decreased amount of dead wood is among the leading causes of 
threat for forest species in Finland (Hyvärinen et al., 2019). Urban for
ests represent areas where dead wood could be retained with relatively 
low economic costs. However, only a few studies have addressed the 
potential effects of urbanization on dead-wood inhabiting species di
versity (see Fattorini & Galassi, 2016; Meyer, Rusterholz, & Baur, 2021). 

Among dead-wood dependent organisms, polypore fungi (a form 
group of Basidiomycota characterized by poroid hymenophores) play a 
key role in the decomposition process of the woody material in boreal 
forests (Niemelä, 2016). Diverse decay processes employed by different 
species also contribute to the diversity of dead-wood microhabitats and 
saproxylic diversity (Niemelä, Renvall, & Penttilä, 1995; Lindner et al., 
2011; Dickie, Fukami, Wilkie, Allen, & Buchanan, 2012; Birkemoe et al., 
2018). Because polypores are sensitive to dead-wood availability, they 
have often been targeted in biodiversity studies, and they are commonly 
used as indicators of conservation value in boreal forests (Kotiranta & 
Niemelä, 1996; Nitare, 2000). In the boreal zone, species richness of 
polypores generally correlates with local abundance and diversity of 
dead-wood substrates (e.g. Penttilä, Siitonen, & Kuusinen, 2004; Similä, 
Kouki, Mönkkönen, Sippola, & Huhta, 2006; Hottola, Ovaskainen, & 
Hanski, 2009). However, distribution and history of suitable habitats 
over larger regional scales also play a role in shaping polypore com
munities (e.g. Penttilä, Lindgren, Miettinen, Rita, & Hanski, 2006; 
Nordén et al., 2013). 

In urbanized areas, forest fragments are situated within a heteroge
nous matrix. Environmental conditions in small forest fragments may 
thus be strongly affected by the proximity of adjacent built-up areas. 
Urban environmental stress factors include edge effects (Harper et al., 
2005), trampling (Hamberg, Lehvävirta, Minna, Rita, & Kotze, 2008), 
aerial pollution and high nitrogen deposition (e.g. Lovett et al., 2000; 
Bettez & Groffman, 2013; Andrew et al., 2018), and their intensity is 
expected to increase along the rural-to-urban gradient (McDonnell & 
Pickett, 1990). These stress factors are known to alter forest vegetation, 
but their significance for wood-inhabiting fungal communities has not 
been studied. However, studies in rural forest landscapes have demon
strated that wood-inhabiting fungi can be sensitive to highly contrasting 
edges (Snäll & Jonsson, 2001; Selonen, Ahlroth, & Kotiaho, 2005; Sii
tonen, Lehtinen, & Siitonen, 2005; Ylisirniö, Mönkkönen, Hallikainen, 
Ranta-Maunus, & Kouki, 2016) that are also characteristic to urban 

forests in built-up landscapes. 
In this study, we assess the significance of urbanization in shaping 

the species richness and species composition of spruce-associated poly
pores by using fruiting body inventory data from urban, peri-urban and 
rural forest stands in southern Finland. We analyzed urbanization as a 
landscape gradient quantified by resident human population density. To 
separate the effect of urbanization from other variability in habitat 
quality, we accounted for dead-wood abundance and local cover of 
mature forest. Our hypothesis was that urbanization has an added effect 
on polypore species communities that can be distinguished from the 
variability due to the effects of other habitat variables. Firstly, we looked 
for this effect in terms of (1) total species richness and (2) the number of 
red-listed species at the forest stand level. The effect of urbanization was 
disentangled from other stand-level variability with the use of general
ized additive models. Secondly, we applied joint species distribution 
modeling to reveal species-specific responses to urbanization and other 
environmental variables down to the level of individual dead-wood 
units. 

2. Material and methods 

2.1. Study sites 

Study sites were distributed in and around the Helsinki metropolitan 
area in southern Finland (Fig. 1). The Helsinki metropolitan area is the 
main urban conglomeration in this region, consisting of the cities of 
Helsinki (area 214 km2, population density 3060 per km2), Espoo (312 
km2, 930 per km2) and Vantaa (240 km2, 990 per km2) with a combined 
population of ca. 1.2 million National Land Survey of Finland, 2020; 
Statistics Finland, 2020a). By European standards, a large proportion of 
green space remains between residential areas in the Helsinki metro
politan area (Kasanko et al., 2006). In the city of Helsinki, forests cover 
ca. 22% of the land area (Erävuori et al., 2019). The study area is situ
ated at the southern edge of the Fennoscandian boreal zone (Ahti, 
Hämet-Ahti, & Jalas, 1968), and forests in the area are predominantly 
conifer-dominated. 

Study sites were selected based on the following criteria: 1) vegeta
tion type was herb-rich to mesic heathland forest, corresponding to the 
Oxalis-Myrtillus type (OMT) or Myrtillus type (MT) (Cajander, 1926), 2) 
the dominating tree species was Norway spruce (Picea abies), and 3) the 
age of dominating trees was at least 60 years. 

To cover different degrees of urbanization and dead-wood resource 
abundance, we sampled forests in five different categories: randomly 
selected urban forests (n = 17), valuable urban forests (n = 24), 
randomly selected production forests (n = 16), valuable production 

Fig. 1. Locations of studied forest stands in southern Finland. Forest stands sampled in the different forest categories are indicated by different colors. Size of the dot 
reflects the number of dead-wood units inventoried in the stand. 
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forests (n = 15) and semi-natural forests (n = 9). Randomly selected 
urban and production forests were sampled from forest stand data ob
tained from the city of Helsinki and National Forest Inventory data, 

respectively. Furthermore, we also included valuable urban sites across 
the Helsinki metropolitan area (cities of Helsinki, Vantaa and Espoo) 
that were known to be rich in dead wood. These sites were necessary to 

Fig. 2. Species prevalence (proportion of dead-wood units occupied by polypore species) in investigated forest categories. N denotes the number of inventoried dead- 
wood units in each category. Data from random urban (number of studied dead-wood units, n = 73) and valuable urban (n = 668) forests and from random pro
duction (n = 238) and valuable production (n = 444) forests have been pooled. 

Table 1 
Generalized additive model results concerning polypore species richness at the stand level. Models followed Poisson distribution with a log-link function. Deviance 
explained, parameter estimates with standard errors in transformed scale and p values are given. P values with < 0.05 significance level are in bold and those with 0.05 
≤ p < 0.10 significance level are underlined. (n = 81).   

Deviance 
explained (%) 

Parametric coefficients Smooth term   

Intercept Human population 
density 

Heat sum Naturalnessa Dead-wood abundance (m3 ha− 1) and 
mature forest cover within 200 m radiusb   

Est. ± SE p Est. ± SE p Est. ±
SE 

p Est. ±
SE 

p p 

Total species 
richness  

79.8 2.33 ±
0.06  

<0.001 − 0.01 ±
0.03  

0.600 0.11 ±
0.04  

0.003 –  –  <0.001 

Number of red- 
listed species  

57.6 − 0.66 ±
0.30  

0.027 − 0.26 ±
0.15  

0.091 –  – 0.34 ±
0.59  

0.563  0.002  

a Forest naturalness was included as a two-level factor indicating whether a site was semi-natural (1) or not (0). 
b The effects of dead-wood abundance and surrounding mature forest cover were modelled conjointly with a tensor product smooth. See Fig. 3 for graphical results. 
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distinguish the effects of dead-wood abundance from the effect of ur
banization on polypore species diversity. These sites were chosen based 
on forest site type characterizations in polypore species inventory re
ports commissioned by the cities (Savola & Wikholm, 2005; Kinnunen, 
2006; Savola 2015). Valuable production forests were selected from 
sites included in the Forest Biodiversity Programme for Southern 
Finland (METSO). These sites were either permanently or provisionally 
protected under the METSO programme which started in 2008, and they 
represent former production forests where natural-like characteristics, 
such as dead wood, have developed to varying degrees (Syrjänen et al., 
2016). Furthermore, nine semi-natural stands were selected from the 
best available representatives of natural-like old spruce forests with 
large amounts of dead wood. These stands were situated within rural 
protected areas and had no visible signs of forest management or only 
minimal signs of past selective logging. 

2.2. Inventory plots and polypore survey 

Inventory plots were delimited and recorded in GPS tracks by 
following natural boundaries of each forest stand, so that the forest 
vegetation type and stand structure within the plot remained homoge
nous. Stand boundaries were set at forest edges or at transition zones 
where tree stand composition or the type of field layer vegetation 
changed. Therefore, inventory area varied from stand to stand between 
0.23 and 4.9 ha (mean 1.2 ha). In semi-natural forest sites, that often 
have large stands with unclear boundaries, inventory plots of ca. 1 ha 
were located within the stands in random places to keep the sampling 
effort within reasonable limits. 

Polypore fruiting bodies were surveyed once in each stand during 

September-November of 2009, 2010, 2013–2015 and 2018–2019. 
Within the inventory plots, all pieces of dead Norway spruce (Picea 
abies), that were at least 15 cm in basal diameter and 1.3 m long and in 
middle stages of decay (classes 2–4; Renvall, 1995), were surveyed. 
Wood in the earliest and latest stages of decay, i.e. classes 1 and 5, 
supports polypore fruiting infrequently (Renvall, 1995) and was not 
included in the inventories. Dead wood units on the edges of the in
ventory plot were included only if the basal part of the unit was inside 
the inventory plot. All surveyed dead wood units were inspected for 
living fruiting bodies of polypore fungi (Niemelä, 2016) and one corti
cioid indicator species Phlebia centrifuga (hereafter included under the 
collective term polypores). Occurrences were recorded as pre
sence–absence data on the level of individual dead-wood units (data 
available in Korhonen et al. (2021)). 

2.3. Dead-wood measurement and volume calculation 

Each surveyed dead-wood unit was measured for volume calculation 
and assigned to a decay class following Renvall’s (1995) classification 
that is based on knife penetration into the wood. Plots depicting volume 
and decay class distribution of surveyed dead-wood units in forest 
category groups are provided in Appendix A Fig. A1. 

Diameter at breast height (DBH, 1.3 m) was measured for entire 
fallen trees. Basal diameter and height (length) were measured for snags 
(standing dead trees with missing tops), pieces of logs, cut bolts, and 
fallen or cut tops. Volumes of dead wood units were calculated using the 
KPL program (Heinonen, 1994). Volume equations based on DBH and 
length (Laasasenaho, 1982) were applied for calculating the volume of 
entire dead trees. The volume of pieces of dead trees was calculated 

Fig. 3. Predicted total polypore species richness (left column) and number of red-listed polypore species (right column) as contours within 1 ha, across gradients of 
dead-wood abundance in m3 ha− 1 (Dead wood), proportion of surrounding mature forest cover within 200 m radius (Mature forest) and urbanization as human 
population density per km2 from 50 to 5000 (rows from top to bottom). Heat sum, included in the model for total species richness, was set to mean value (1562). 
Predictions for red-listed species richness are for forests that are assumed to have recent management history, i.e. not considered as semi-natural. 
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based on the basal diameter and length of each piece by means of taper 
curve functions (Laasasenaho, 1982). Heights of entire trees required for 
volume calculations were estimated from previously collected sample 
tree data from similar forest types in the study region (1625 measured 
Norway spruce trees). 

2.4. Stand-level environmental variables 

We used resident human population density to measure the degree of 
urbanization (see e.g. Kuussaari et al., 2021). Higher human population 
density is generally associated with increased land cover alteration and 
intensity of land use (McDonnell et al., 1997). Values of population 
density were extracted from 1 km × 1 km population grid data (Statistics 
Finland, 2020b) from the year 2018 and assigned to inventory plots 
based on their location on the grid. For analyses, values were log- 
transformed in order to make them more normally and evenly distrib
uted across study sites. 

Local abundance of dead wood was measured as the pooled volume 
of dead-wood units within the inventory plot, calculated per hectare 
(m3 ha− 1). The amount of potential habitat in the near neighborhood of 
the inventory plot was calculated as the proportion (0–1) of mature, i.e. 
at least 60 y old forest within a 200 m radius from the center of the 
inventory plot. Spatial data of forest stand age estimates was attained 
from multi-source national forest inventory maps (Mäkisara et al., 
2019). Graphical representation of the spatial scales of data collection 
are provided in Appendix B Fig. B1. Distributions of stand-level envi
ronmental variables among forest categories and variable in
tercorrelations are provided in Appendix C Figs. C1 and C2. 

To account for variation in weather conditions between inventory 
sites and years (Abrego, Halme, Purhonen, & Ovaskainen, 2016), we 
calculated the cumulative heat sum for each inventory plot from the 
beginning of the year to the inventory date, measured at the nearest 
weather station (Finnish Meteorological Institute, 2020). Heat sum was 
defined as the sum of the positive differences between diurnal mean 
temperatures and 5 ◦C. 

2.5. Polypore data and species richness 

In total, the data consisted of 4604 fruiting body observations 
belonging to 58 taxa (Fig. 2), distributed on 2017 dead-wood units in 81 
forest stands. In taxonomic nomenclature, we followed Kotiranta et al. 
(2020) but considered some recently revised species complexes collec
tively. Those included Leptoporus mollis coll. (including L. erubescens 
(Fr.) Bourdot & Galzin and L. mollis s.str. (Pers.: Fr.) Quél.), Oligoporus 
sericeomollis coll. (including O. romellii (M.Pieri & B.Rivoire) Niemelä 
and O. sericeomollis s.str. (Romell) Jülich), Phellinus chrysoloma coll. 
(including Ph. abietis (P. Karst.) Jahn and Ph. chrysoloma s.str. (Fr.) 
Donk), Postia caesia coll. (see Miettinen, Vlasák, Rivoire, & Spirin, 
2018), Po. leucomallella coll. (Po. calvenda nom. Prov. and Po. rufescens 
nom. Prov.), Skeletocutis brevispora coll. (S. brevispora s.str. Niemelä and 
S. delicata Miettinen & Niemelä) and Skeletocutis kuehneri coll. (S. exilis 
Miettinen & Niemelä and S. kuehneri A. David). 

We quantified species richness in forest stands with two measures: 
total number of all observed species and the number of red-listed spe
cies. Species assessed as at least near threatened (IUCN classification; 
Kotiranta et al., 2019) were included in the red-listed species. Observed 

Fig. 4. Predictive power of the joint species distribution models with and without accounting for urbanization (left panel) and variance partitioning of the full model 
among measured environmental explanatory variables and random effects (right panel). Predictive power is based on four-fold cross-validation where data was 
partitioned over forest stands so that random effects were excluded. Therefore, predictive power was solely based on inference with fixed effects, i.e. measured 
environmental variability. Variance (Tjur’s R2) explained by the full joint species distribution model was partitioned among grouped environmental variables (fixed 
effects) and random effects. Fixed effects have been grouped into substrate-level variables (decay class, volume) and stand-level variables (dead-wood abundance, 
surrounding forest cover, naturalness, heat sum and urbanization). Total length of the bar indicates how much of variance was explained by the model for each 
species in total. Length of the colored sections indicate how much of the explained variation is attributed to measured environmental variability (fixed effects: red and 
blue) and how much to unmeasured variability captured by the random effects (grey). In the calculation of variance partitioning, covariances among variables have 
been accounted for within each group but not for between groups (Ovaskainen and Abrego 2020). Old-forest indicator species are denoted with an asterisk. 
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red-listed species included Amylocystis lapponica (near threatened), 
Anomoloma albolutescens (near threatened), Antrodia piceata (vulner
able), Antrodiella citrinella (near threatened), Fomitopsis rosea (near 
threatened), Perenniporia subacida (near threatened), Skeletocutis brevis
pora coll. (including Sk. brevispora s.str. and Sk. delicata, both near 
threatened), Sk. cummata A. Korhonen & Miettinen (vulnerable, assessed 
with misapplied name Sk. ochroalba Niemelä), Sk. odora (near threat
ened), Sk. stellae (vulnerable) and Steccherinum collabens (near threat
ened). Observations of Sidera vulgaris (near threatened) were excluded 
from the analyses because its distribution covers only the southernmost 
part of the study area (Niemelä, 2016). The complete list of species with 
information about Red List status, causes of threat, old-forest indicator 
status (Niemelä, 2016) and numbers of observations are provided in 
Appendix D Table D1. 

2.6. Analyses of stand-level species richness 

To study the effects of urbanization on stand-level species richness, 
we estimated generalized additive models that allow fitting of curvi
linear relationships between response and explanatory variables. Models 

were estimated with R (v.4.0.2; R core team, 2020) package mgcv 
v.1.8–33 (Wood, 2017). Models following Poisson distribution with a 
log-link function were initially fitted with all environmental variables, i. 
e. human population density (inhabitants per 1 km2, log-transformed) 
describing urban–rural gradient, local dead-wood abundance (m3 

ha− 1), surrounding mature forest cover (proportion within 200 m 
radius) and heat sum (centered and scaled to unit standard deviation). In 
addition, we included a categorical control variable indicative of man
agement history of the site (semi-natural stand or not) in the model for 
red-listed species. This variable was added to account for potential over- 
representation of red-listed species in semi-natural sites due to longer 
historical habitat continuity (Penttilä et al. 2004; Berglund, Hottola, 
Penttilä, & Siitonen, 2011; Nordén et al., 2018). Inventory area (log- 
transformed) was included as an offset term to account for differences 
between the sizes of studied areas. After estimating the initial models, 
we reduced model complexity for red-listed species by excluding heat 
sum that had a statistically insignificant effect. Other explanatory vari
ables were kept in the models regardless of statistical significance. 

The effects of dead-wood abundance and mature forest cover were 
assumed to be interconnected, so that the positive effect of dead-wood 

Table 2 
Species niches based on standardized model coefficients (posterior means) from the joint species distribution model. Red color indicates positive and blue negative 
effect of an explanatory variable on the probability of occurrence of an investigated species. Darker colors indicate 95% posterior probability and lighter colors 90% 
posterior probability for coefficients deviating from 0 (white cells indicate non-significant effects). Coefficient explanations: interaction is between dead-wood 
abundance and mature forest cover, naturalness refers to forest management history, i.e. semi-natural stand (1) or not (0), urbanization is human population den
sity (log-transformed). Old-forest indicator species (Niemelä 2016) are denoted with an asterisk. (For interpretation of the references to color in this table legend, the 
reader is referred to the web version of this article.)  
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abundance would be greater in a plot that has more mature forest in the 
surroundings compared to one that has less. To take this potential 
interaction into account, the effect of dead-wood abundance and mature 
forest cover was modelled jointly with a tensor product smooth (Wood, 
2006). Population density (log-transformed) and heat sum were 
included in the models as linear terms. 

2.7. Analysis of species-specific responses to urbanization 

To examine the significance of substrate-level and landscape-level 
environmental predictors in explaining species composition in more 
detail, we fitted joint species distribution models with Hierarchical 
Modeling of Species Communities (implemented with R package Hmsc 
v.3.0–6; Tikhonov et al., 2020). The response variable in the models was 
species presence or absence on a dead-wood unit that was modelled with 
a binomial distribution with a probit-link function. We included species 
with a minimum of 40 occurrences (representing 91% of all fruiting 
body observations) amounting to 18 species in total. Those species 
included six old-forest indicator species (Niemelä, 2016), one of which 
was also red-listed (Fomitopsis rosea). 

To evaluate the significance of urbanization in explaining species 
occurrences specifically, we fitted two different model variants, one 
with and one without accounting for human population density while 
including all other relevant environmental variables in both models. 
Models were estimated at the level of individual dead-wood units, and 
environmental variables included in the models were volume (m3, log- 
transformed) and decay class (three categories) for each dead-wood 
unit, stand-level dead-wood abundance (m3 ha− 1 calculated without 
the volume of the focal dead-wood unit), mature forest cover (within a 
200 m radius around the stand), interaction between the last two, heat 
sum and forest naturalness (semi-natural or not). We included two 
random factors reflecting the nested sampling design: the dead-wood 
unit and the inventory plot. The dead-wood unit as a random factor 
takes into account the fact that more than one polypore species may 
have been recorded from the same growth substrate and the plot-level 
random factor that several polypore observations were recorded 
within the same stand instead of totally random sampling. In addition, 
we included information on the phylogenetic relationships with a 
taxonomy-based tree (Ovaskainen & Abrego, 2020) following the clas
sifications of Justo et al. (2017) for Polyporales and Niemelä (2016) for 
other groups. The applied taxonomy is provided in Appendix E Table E1. 

We fitted the models with two Markov Chain Monte Carlo (MCMC) 
chains, each of which consisted of 150,000 iterations, out of which we 
discarded the first 50,000 as burn-in and thinned the remaining by 100 
to yield in total 2000 posterior samples. We assessed the convergence of 
the MCMC chains by examining the distribution of the potential scale 
reduction factor over the parameters that measure the responses of the 
species to the fixed effects included in the model. Model performance 
was evaluated by calculating Tjur’s R2 (also known as the coefficient of 
discrimination; Tjur, 2009) and area under the receiver operating 
characteristics curve (AUC; Pearce & Ferrier, 2000). Predictive power 
was calculated by four-fold cross-validation. Sampling units were 
divided into four folds over inventory plots which eliminated the effects 
of both random factors (dead-wood unit and inventory plot), and 
therefore, predictions were based solely on fixed effects. 

3. Results 

3.1. Stand-level species richness 

After accounting for other environmental variability, the effect of 
urbanization (human population density) was insignificant for total 
species richness (p = 0.596) but marginally significant and negative for 
the number of red-listed species (p = 0.091) (Table 1). Red-listed species 
were observed in 42% of valuable urban forests, 25% of random pro
duction forests, 40% of valuable production forests and in all semi- 

natural forests. None were observed in random urban forests. Red- 
listed species observed in valuable urban forests included Antrodia 
piceata, Antrodiella citrinella, Fomitopsis rosea, Skeletocutis brevispora s.str. 
and S. delicata, and Sidera vulgaris which was not included in the 
analyses. 

Looking more closely at the effects of dead-wood abundance and the 
surrounding forests landscape (Fig. 3), both total species richness and 
the number of red-listed species were consistently increased by dead- 
wood abundance. Highest species richness was expected in stands 
with highest dead-wood abundances and the largest amount of mature 
forest in the surroundings. However, with low dead-wood abundances 
more species were expected in stands with a lower amount of mature 
forest. The occurrence of red-listed species was strongly related to the 
amount of mature forest in the surroundings. No red-listed species were 
expected to occur in a stand (of 1 ha) below dead-wood abundances of 
ca. 30 m3 ha− 1 and surrounding mature forest cover of ca. 50%, even 
when human population density was low (Fig. 3). Increasing population 
density further decreased the occurrence of red-listed species. In addi
tion to habitat characteristics, heat sum was positively associated to 
total species richness (p = 0.003). 

3.2. Species-specific responses 

Accounting for urbanization (human population density) generally 
didn’t affect the capability to predict polypore species occurrences. 
Mean cross-validated predictive power averaged over all 18 included 
species was 0.70 in AUC and 0.06 in Tjur’s R2 for both model variants, 
one accounting for urbanization and the other not. Differences in pre
dictive power for individual species were generally negligible between 
the models (Fig. 4). Urbanization improved predictive power notably 
(41% relative increase in AUC) only for Postia stiptica, but the predictive 
power for that species remained poor (AUC = 0.60). AUC > 0.70, 
indicating useful predictive capability (Berglund, O’Hara, & Jonsson, 
2009), was achieved for nine species: Phlebia centrifuga, Phellinus viticola, 
Trichaptum abietinum, Phe. nigrolimitatus, Pycnoporellus fulgens, Phe. fer
rugineofuscus, Skeletocutis carneogrisea, Fomitopsis pinicola and Fomitopsis 
rosea with both model variants, i.e. both models had good predictive 
capability, but the effect of urbanization was negligible. 

For half of the species, more variance was explained by the random 
effects, that capture the effects of unaccounted variability, than by fixed 
effects representing measured environmental variability (Fig. 4). Stand- 
level fixed effects, accounting for the effects of dead-wood abundance, 
surrounding mature forest cover, urbanization and heat sum, explained 
on average more variation (35.8%) than stand-level random effects 
(11.6%). However, the largest proportion of the explained variance was 
attributed to substrate-level effects, 18.5% being explained by fixed ef
fects, i.e. volume and decay class, and 34.0% by random effects. 

The estimated effect size of urbanization on species occurrence was 
generally small but statistically significant for four species with mini
mum 95% posterior probability and two additional species with mini
mum 90% posterior probability (Table 2). The effect was positive for 
Postia fragilis and Po. stiptica and negative for Fomitopsis pinicola, Heter
obasidion parviporum, Phellinus viticola and Trichaptum abietinum. Other 
model coefficients, when compared between the two model variants, 
were very close to each other (Appendix E Table E2), indicating that 
they were not seriously affected by the inclusion or exclusion of ur
banization in the model. Overall, the largest effect sizes were attributed 
to the surrounding cover of mature forest with a positive effect for all 
species except T. abietinum. The effect sizes of local dead-wood abun
dance and its interaction with mature forest cover were small, but for 
most non-indicator species, the interaction was significantly negative. 
For old-forest indicator species, this interaction term was not significant 
or marginally positive. Niche specialization in terms of decay class 
varied among species but most showed positive responses to increasing 
volume of the dead-wood unit, except for Ph. viticola. 
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4. Discussion 

4.1. Urbanization 

Our results suggest that the urbanization gradient (McDonnell & 
Pickett, 1990) itself has only minor importance in explaining patterns of 
spruce (Picea abies) associated polypore species diversity in the context 
of a Nordic metropolitan area. After accounting for the effects of local 
habitat quality, i.e. dead-wood abundance and mature forest cover in 
the near surroundings, the effects of urbanization on total species rich
ness was negligible. Similarly, species specific habitat models, 
comprising 18 of the most abundant species and including six old-forest 
indicators, revealed only minimal effects related to urbanization at the 
species-level. 

However, even after accounting for other habitat variables and forest 
management history, the richness of red-listed species was negatively 
affected by urbanization, albeit with marginal statistical significance. 
Negative effects of urbanization on wood-inhabiting species have also 
been demonstrated by Meyer et al. (2021) who showed that abundances 
of several saproxylic insect groups and species richness of fungi in fine 
woody debris decreased along a gradient from rural to urban forest 
environments. In densely populated urbanized landscapes, with high 
proportions of non-vegetated built surfaces, forest patches can be sus
ceptible to severe and deeply penetrating edge effects (Noreika & Kotze, 
2012). Associated increases in temperature and humidity fluctuations 
(Crockatt, 2012; Ylisirniö et al., 2016) have been associated with 
reduced fungal species richness in dead spruce (Pouska, Macek, 
Zíbarová, & Ostrow, 2017). Red-listed species in our data were mostly 
represented by old-forest specialists (Niemelä, 2016; Kotiranta et al., 
2019) that may be specifically adapted to interior forest conditions (cf. 
Ruete, Snäll, & Jönsson, 2016). Therefore, these species could be 
particularly vulnerable to urban-associated environmental changes. 

Secondly, the observed trend of lower occurrence of red-listed spe
cies in more densely populated areas might be related to forest man
agement history and isolation of urban forests at a larger spatial scale 
than what was accounted for in our analyses. In the city of Helsinki for 
example, old forests were relatively rare in the 1950s (Saukkonen, 
2011), meaning that habitat availability for old-forest species in urban 
landscapes has probably been lower in recent history compared to the 
present day. Consequently, habitat patches in urban forests may be, on 
average, further away from colonization sources of red-listed species 
than rural forests. Furthermore, the high degree of habitat fragmenta
tion in urban landscapes can make it difficult for rare and specialized 
species to colonize urban forests due to poor dispersal ability (Jönsson, 
Edman, & Jonsson, 2008) and competitive exclusion by prevalent 
generalist species that are more competitive when resources are sparsely 
distributed (Nordén et al., 2013; Moor et al., 2020). However, forest 
fragmentation is not a uniquely urban phenomenon, as rural land con
version and forestry use can result in habitat fragmentation as well. 

Our results show that the effects of surrounding forest landscape, 
reflecting the connectivity of the focal forest stand, were particularly 
strong for the number of red-listed species even when dead-wood 
abundance in the stand was high. This effect may be related to 
increasing edge effects as discussed above, as surrounding forest area is 
reduced. In addition, the cover of mature forest may carry information 
about the unmeasured dead-wood resource availability around the in
ventory plot. For red-listed species, resource availability on this 
extended spatial scale could be particularly important, as their coloni
zation success has been found to be sensitive to the loss of local substrate 

connectivity (Penttilä et al., 2006; Nordén et al., 2013; Moor et al., 
2020). In highly fragmented stands, even high local dead-wood abun
dances may not guarantee the continuity of suitable dead-wood sub
strates for red-listed species that tend to be highly specialized in resource 
use (Nordén et al., 2013). 

The effect of forest fragmentation on total polypore species richness 
in forest stands depended on dead-wood abundance. Highest species 
richness was expected in dead-wood rich stands in intact forest land
scapes, which is consistent with the importance of habitat connectivity 
for old-forest specialist species, as discussed above. However, when 
dead-wood abundance was low, slightly higher species richness was 
expected in fragmented forest landscapes. This trend may be related to 
larger prevalence of edge-specialist species (cf. Lövei, Magura, 
Tóthmérész, & Ködöböcz, 2006) or larger variability in habitat micro
sites in fragmented forests, which could have increased species richness 
especially when the total number of species was low. Nevertheless, 
species-specific habitat models indicated that surrounding mature forest 
cover had a relatively strong positive effect on the occurrence of almost 
every one of the analyzed species, suggesting that even common 
generalist species occurred more frequently in larger intact forest areas. 

4.2. Dead-wood abundance 

Our results are in line with the conclusions of several earlier studies 
(e.g. Penttilä et al. 2004, Similä et al. 2006) in that dead-wood abun
dance is a key aspect in determining the stand-level species richness of 
polypores. Larger amounts of dead-wood substrates can be expected to 
increase species richness through more comprehensive sampling from 
regional species pools and by supporting larger and more resilient 
populations of species (Carnicer, Brotons, Sol, & De Cáceres, 2008). 
Dead-wood quantity is also generally correlated with the diversity of 
dead wood (Similä et al. 2006), providing habitats for a larger variety of 
specialized species (Siitonen, 2001). 

The threshold value for dead-wood abundance, ca. 30–40 m3 ha− 1 of 
coarse woody debris of spruce, below which the occurrence of spruce- 
associated red-listed polypore species becomes unlikely, was compara
ble to values of 20 m3 ha− 1 or higher and 29 m3 ha− 1 suggested by 
Penttilä et al. (2004) and by Nordén et al. (2018), respectively. In 
general, these values are well above those typical for managed urban 
forests in this study area (mean 3.3 m3 ha− 1 in random urban forests). 

Furthermore, Nordén et al. (2018) suggested that when dead-wood 
abundance is high, old-forest specialist fungi can become abundant 
enough to influence non-indicator fungi through competitive in
teractions. Accordingly, our results also suggest that there was a slight 
but significant negative effect from the interaction between dead-wood 
abundance and surrounding mature forest cover on many common 
generalist species (but also two successor species, Pycnoporellus fulgens 
which is also considered an old-forest indicator (Niemelä, 2016), and 
Skeletocutis carneogrisea), indicating that high stand-level dead-wood 
abundance reduced their occurrence when the forest stand was also well 
connected. This effect was possibly due to increased competition with 
old-forest specialists (such as Fomitopsis rosea, Phellinus spp., Phlebia 
centrifuga as well as other species that could not be included in the joint 
species distribution model). 

4.3. Conclusions and practical considerations 

Our results suggest that urbanized forests are largely comparable to 
rural forests as habitats for boreal spruce-associated polypore species 
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when accounting for variability in primary habitat characteristics, i.e. 
amount of dead wood and local forest connectivity. Overall, species 
richness of polypores can be increased by increasing local dead-wood 
abundance, while the effect of the surrounding landscape setting is 
only minor. The potential for increasing habitat for dead-wood depen
dent biodiversity in urban forests can be high due to low commercial 
production demands (Hedblom & Söderström, 2008) and high relative 
abundance of large-diameter trees (Gulsrud et al., 2018; Korhonen et al., 
2020) that are necessary for the formation of ecologically valuable large- 
diameter dead-wood substrates (Tikkanen, Martikainen, Hyvärinen, 
Junninen, & Kouki, 2006; Berglund et al., 2011). 

In terms of red-listed old-forest species, the best habitat potential lies 
in large forest patches that are most likely to be found in peri-urban 
areas. Larger forest areas could also provide more locations where 
dead-wood abundance could be increased significantly without 
compromising recreational value. This potential is available especially 
in many Nordic cities where extensive recreational forest areas have 
been retained around urban cores (Borges et al., 2017). Our results in the 
Helsinki metropolitan area also confirm that red-listed species already 
occur in the dead-wood hotspots of the urban forest landscape. 

In conclusion, our results add to the increasing understanding of the 
potential value of urban forests in biodiversity conservation (Ives et al., 
2016; Soanes et al., 2019). Optimally, urban forests could function as 

integral parts of regional ecological networks, in which they comple
ment and connect natural and protected forest areas (see e.g. Jalkanen, 
Toivonen, & Moilanen, 2020). Realization of this potential will depend 
on cities’ capacity to maintain urban forests under increasing population 
pressure and to improve their ecological condition, e.g. by increasing the 
quantity of dead wood. 
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Appendix A. Volume and decay class distribution of surveyed 
dead-wood units in forest categories.  

Fig. A1. Volume and decay class distribution of surveyed dead-wood units in forest categories. Data from random and valuable urban forests and from random and 
valuable production forests have been pooled. N denotes the number of surveyed dead-wood units in each category. 
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Appendix B. Schematic representation of a study plot and the 
spatial scales of data collection.  

Appendix C. Values of environmental variables among forest 
stands and forest categories.  

Fig. B1. Schematic representation of a study plot and the spatial scales of data collection. Polypores were inventoried in ca. 1 ha plots of mature spruce forests 
delimited by natural boundaries (shown in yellow). Proportion of mature forest (map pixels shaded with green and blue) was measured within 200 m radius from the 
inventory plot center (area inside the pink circle). Information about human population density was acquired from 1 km × 1 km grid data (white lines depicting grid 
boundaries). Background photo from National Land Survey of Finland aerial photographs database 01/2021. 

Fig. C1. Values of environmental variables among forest stands and forest categories. For each forest category, medians and first (Q1) and third (Q3) quartiles are 
indicated in boxplots with lines denoting range between Q1-1.5*interquartile range and Q3+1.5*interquartile range. Individual sites are overlaid as points. N denotes 
the number of inventoried stands in each forest category. 
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Fig. C2. Correlations between urbanization and mature forest cover (top) and dead-wood abundance (middle) and between mature forest cover and dead-wood 
abundance (bottom). Points depict study sites. 
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Appendix D. Observed polypore species.  

Table D1 
Observed polypore species. For each species, information is given about Finnish Red List (2019) status, causes of threat, old-forest indicator species status and the 
number of observations in different forest categories. Data from random and valuable urban forests and from random and valuable production forests have been 
pooled. N denotes the number of surveyed dead-wood units in each category.   

Finnish IUCN Red List status 
2019a 

Causes of 
threatb 

Old-forest indicator 
statusc 

Urban (n =
741) 

(Former) production (n =
682) 

Semi-natural (n =
594) 

Amylocystis lapponica NT Mv, Ml virgin forest 0 0 3 
Anomoloma albolutescens NT Ml  0 3 1 
Antrodia piceata VU Mv, Ml  2 1 0 
Antrodia serialis    233 182 222 
Antrodia sinuosa    40 43 38 
Antrodia xantha    3 0 4 
Antrodiella citrinella NT Mv, Ml virgin forest 2 2 9 
Butyrea luteoalba    2 10 17 
Byssoporia terrestris    0 0 1 
Canopora subfuscoflavida    1 8 1 
Climacocystis borealis    3 0 1 
Fibroporia gossypium    2 0 1 
Fomitopsis pinicola    286 299 307 
Fomitopsis rosea NT Mv, Ml  10 4 38 
Gloeophyllum sepiarium    8 21 3 
Gloeophyllym odoratum    2 1 2 
Heterobasidion 

parviporum    
48 103 52 

Ischnoderma benzoinum    21 19 11 
Leptoporus mollis coll   old forest 7 4 15 
Oligoporus rennyi    1 4 0 
Oligoporus sericeomollis 

coll    
8 9 8 

Osteina undosa    15 5 15 
Perenniporia subacida NT Ml, Mv old forest 0 0 1 
Phellinus chrysoloma coll   old forest 2 0 1 
Phellinus ferrugineofuscus   old forest 60 34 106 
Phellinus nigrolimitatus   old forest 14 14 58 
Phellinus viticola   old forest 1 23 98 
Phlebia centrifuga   virgin forest 13 0 75 
Physisporinus 

sanguinolentus    
1 0 1 

Physisporinus vitreus    1 0 0 
Porpomyces mucidus    1 4 1 
Postia caesia coll    130 141 140 
Postia floriformis    2 0 0 
Postia fragilis    42 21 20 
Postia hibernica    1 0 2 
Postia leucomallella coll    3 1 6 
Postia ptychogaster    14 6 17 
Postia stiptica    27 14 6 
Postia tephroleuca    85 87 50 
Pycnoporellus fulgens   old forest 36 34 24 
Rhodonia placenta   old forest 0 1 4 
Sidera vulgaris NT Ml  8 0 0 
Sistotrema alboluteum    0 0 1 
Sistotrema dennisii    1 0 0 
Sistotrema muscicola    1 0 0 
Skeletocutis amorpha    4 6 6 
Skeletocutis biguttulata    3 10 2 
Skeletocutis brevispora 

coll 
NT Ml, Mv  2 4 15 

Skeletocutis carneogrisea    49 116 37 
Skeletocutis cummata VU Ml  0 0 1 
Skeletocutis kuehneri coll    6 26 6 
Skeletocutis odora NT Ml, Mv old forest 0 2 2 
Skeletocutis papyracea    2 1 0 
Skeletocutis stellae VU Ml, Mv virgin forest 0 0 1 
Steccherinum collabens NT Mv, Ml virgin forest 0 1 8 
Trechispora hymenocystis    19 22 25 
Trechispora mollusca    13 1 1 
Trichaptum abietinum    150 296 170  

a NT = near threatened, VU = vulnerable (Kotiranta et al., 2019). 
b Ml = decreasing amounts of decaying wood, Mv = reduction of old-growth forests and the decreasing number of large trees (Kotiranta et al., 2019). 
c Niemelä 2016. 
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Appendix E. Supporting information on species distribution modelling.  

Table E1 
Classification of taxa included in the joint species distribution models. All included taxa belong to the class Agaricomycetes (Basidiomycota).  

Species Genusa Familyb Order 

Antrodia serialis Antrodia serialis cladea Fomitopsidaceae Polyporales 
Antrodia sinuosa Amyloporia cladea Amyloporia-Fibroporia clade Polyporales 
Fomitopsis pinicola Fomitopsis Fomitopsidaceae Polyporales 
Fomitopsis rosea Rhodofomesa Fomitopsidaceae Polyporales 
Heterobasidion parviporum Heterobasidion Bondartzewiaceae Russulales 
Ischnoderma benzoinum Ischnoderma Ischnodermataceae Polyporales 
Phellinus ferrugineofuscus Phellinidiuma Hymenochaetaceae Hymenochaetales 
Phellinus nigrolimitatus Phellopilusa Hymenochaetaceae Hymenochaetales 
Phellinus viticola Fuscoporiaa Hymenochaetaceae Hymenochaetales 
Phlebia centrifuga Phlebia Meruliaceae Polyporales 
Postia caesia coll Postia Dacryobolaceae Polyporales 
Postia fragilis Postia Dacryobolaceae Polyporales 
Postia stiptica Postia Dacryobolaceae Polyporales 
Postia tephroleuca Postia Dacryobolaceae Polyporales 
Pycnoporellus fulgens Pycnoporellus Polyporales incertae sedis Polyporales 
Skeletocutis carneogrisea Skeletocutis Incrustoporiaceae Polyporales 
Trechispora hymenocystis Trechispora Hydnodontaceae Trechisporales 
Trichaptum abietinum Trichaptum Hymenochaetales incertae sedis Hymenochaetales  

a Genus-level classification of species follows Niemelä 2016. Note that Antrodia s.l., Fomitopsis s.l. and Phellinus s.l. are divided into more narrowly defined (monophyletic) genera or groups following Niemelä (2016) and 
Justo et al. (2017). 

b Family-level classification of genera in Polyporales follows Justo et al. (2017). 
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Table E2 
Standardized model coefficients (posterior means) from the joint species distribution models estimated with (upper values) and without (values below) urbanization 
(residend human population density). Red color indicates positive and blue negative effect of an explanatory variable on the probability of occurrence of an inves
tigated species. Darker colors indicate 95% posterior probability and lighter colors 90% posterior probability for coefficients deviating from 0 (white cells indicate non- 
significant effects). Coefficient explanations: interaction is between dead-wood abundance and mature forest cover, naturalness refers to forest management history, i. 
e. semi-natural stand (1) or not (0), urbanization is human population density (log-transformed). (For interpretation of the references to color in this table legend, the 
reader is referred to the web version of this article.)  
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