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Abstract15

Data are currently being used, and reused, in ecological research at an16

unprecedented rate. To ensure appropriate reuse however, we need to ask the17

question: “Are aggregated databases currently providing the right information to18

enable effective and unbiased reuse?” We investigate this question, with a focus on19

designs that purposefully favour the selection of sampling locations (upweighting the20

probability of selection of some locations). These designs are common and examples21

are those designs that have uneven inclusion probabilities or are stratified. We22

perform a simulation experiment by creating datasets with progressively more uneven23

inclusion probabilities, and examine the resulting estimates of the average number of24

individuals per unit area (density). The effect of ignoring the survey design can be25

profound, with biases of up to 250% in density estimates when naive analytical26

methods are used. This density estimation bias is not reduced by adding more data.27

Fortunately, the estimation bias can be mitigated by using an appropriate estimator or28

an appropriate model that incorporates the design information. These are only29

available however, when essential information about the survey design is available:30

the sample location selection process (e.g. inclusion probabilities), and/or covariates31

used in their specification. The results suggest that such information must be stored32

and served with the data to support meaningful inference and data reuse.33

Key Words: Bias, Survey Design, Database, Population Density Estimate, Model,34

Horvitz-Thompson, FAIR, Reuse, Data, Inclusion Probability35

36

1 Introduction37

Ecology and other environmental sciences, like most scientific disciplines, are currently utilising38

an unprecedented volume of data (e.g. LaDeau et al., 2017) and are poised to make use of even39
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more (e.g. Culina et al., 2018). In our opinion, this trend is due to two parts: the increase in40

publicly available databases, and the realisation that incorporating data from many sources41

increases the information available for any particular study (Fletcher Jr. et al., 2019). The42

intended and desirable outcomes from this trend are that individual ecological studies are now43

broadening their ecological scale (e.g. global studies: Phillips et al., 2019; McKenzie et al., 2020;44

Gagné et al., 2020), or are shedding brighter lights on smaller scales so that data-poor systems can45

be quantitatively studied (e.g. Kindsvater et al., 2018; Fletcher Jr. et al., 2019).46

The quality of the inferences from these analyses is only as good as the data that goes into47

them (e.g. Dobson et al., 2020). For aggregated data this means the quality of the contributing48

datasets and how well they can relate to each other. This is well recognised, and endeavours have49

been undertaken to improve data quality, with primary focus on two aspects: FAIR (Findable,50

Accessible, Interoperable, Reusable; Wilkinson et al., 2016; Stall et al., 2019), and51

standardisation of collection methods (e.g. Przeslawski et al., 2019). Undoubtedly, these will52

increase data reusability. However, are there any other hitherto overlooked aspects that will53

impede the reusability of ecological data?54

All ecological data are the result of some sort of sampling process, and this process is based on55

a survey plan that describes where and how to collect samples. Many surveys do not consider56

these aspects in sufficient detail before implementation (Legg and Nagy, 2006). Recent modelling57

efforts with data aggregated from multiple surveys have suggested that survey information, such58

as the survey plan and sampling gear, should be taken into account to help data ‘speak’ to one59

another (Fletcher Jr. et al., 2019, and references therein). Without this information, it is hard to60

understand the meaning of the data and further (potentially wrong) assumptions are required for61

analysis and interpretation. Indeed, the survey information, or survey metadata, is sometimes not62

even available to users as the data themselves are. The importance of this omission may be63

under-appreciated, and it is yet unknown how much of an effect this has on subsequent analyses.64

In this work, we investigate what effect ignoring survey design information can have on65

analysis outputs. We make our inference from a simulation experiment based on a 2018 survey of66
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deep-water corals, which was formally and purposefully designed to increase information content67

by modifying the selection process for sample locations (Foster et al., 2020). The specific68

questions we ask are: 1) If these data were contributed to databases that aggregate multiple69

surveys, would naive reuse generate a false picture of the ecology or provide misleading70

information for management? and 2) How much, if any, modification of the sample location71

selection process (away from complete randomisation) is tolerable before data reuse needs to72

incorporate survey design information? We discuss what survey design information is needed to73

be stored within aggregated databases.74

2 Methods75

2.1 Deep-Water Corals76

A population of the deep-water stony coral Solenosmilia variabilis is located in the Huon77

Australia Marine Park, which contains geomorphological features known as the Tasmanian78

seamounts, located south of Tasmania, Australia. The distribution of S. variabilis in this region is79

not well understood, except in vague terms – it prefers outcropping locations within a80

partially-known depth ranges (Thresher et al., 2011). To rectify this knowledge gap, a scientific81

survey was undertaken in late 2018 (Williams et al., 2018, 2020), which follows a 2010 survey in82

a comparable region (Williams et al., 2010). The design for the 2018 survey is outlined in Foster83

et al. (2020) and consisted of favouring sample locations where S. variabilis presence/abundance84

is thought to be uncertain.85

The method used to create the survey was to sample potential sampling locations with86

specified uneven inclusion probabilities (e.g. Thompson, 2012). For the 2018 seamount survey,87

these probabilities were expert derived and up-weight the locations that: 1) are within the broad88

species bathymetric range; and 2) are locally elevated in relation to neighbouring locations,89

measured by the topographic position index (TPI; Weiss, 2001) – see Fig. 1. Only those locations90

within 485 m and 2015 m deep were considered for sampling.91
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[Figure 1 about here.]92

In this work, we utilise the 2018 survey’s uneven inclusion probabilities defined in Foster et al.93

(2020, Table 2), which links our simulation to procedures used in practice. These inclusion94

probabilities are highly skewed as the area covered by seamounts is comparatively small (See Fig.95

1). The distribution of inclusion probabilities is given in Appendix S1: Fig. S2. To simplify96

computation, we only use the survey area within the Huon Marine Park, which also contains97

many of the seamounts in the broader region.98

We also utilise data on S. variablilis from a 2010 survey described in Williams et al. (2010).99

The survey design for the 2010 survey was less formal but did target the coral’s depth range and100

sites with higher TPI. For modelling purposes, we assume that the 2010 design is ignorable once101

the depth and TPI are included as covariates (Gelman et al., 2013). These data were generated102

from a camera towed along the seafloor, and later quantified by counting the number of live S.103

variabilis coral heads within regularly spaced images. The size of the seafloor covered by the104

quantification area, within each image is also recorded. Overall, in the Huon park there are 1517105

images spaced along 19 transects with the longest transect having 212 images and the shortest 12.106

Images from the 2018 survey were not used in this work as, at the time of writing, the images are107

not yet quantified.108

2.2 A Model for Coral Distribution109

To analyse the 2010 image data, we use a geostatistical model. In particular, we use the ‘SPDE’110

approach, which is implemented using the ‘INLA’ approximation (Rue et al., 2009; Lindgren and111

Rue, 2015) implemented for R (R Core Team, 2019). This approach to computing is relatively112

fast, so that many models can be fitted. We notate each of the (i = 1 . . .1517) observed S.113

variabilis coral abundance data as yi, and model all observations as a function of geographical114

position (si), bathymetry, and TPI. That is:115

log [E(yi|θθθ ,b(si), t(si))] = β0 +β1b(si)+β2b(si)
2 +β3t(si)+u(si)+ log(Ai) , (1)
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where β j is a regression parameter, b(si) and t(si) are bathymetry and TPI covariates respectively,116

u(si) is a spatial random variable, Ai is the area that the ith image sampled, and all effects are117

gathered into the parameter vector θθθ . A quadratic effect for depth was assumed to reflect the118

belief that the S. variabilis depth-niche was covered by the data, whereas it is thought that there is119

no upper limit to TPI preference. We assume that the conditional distribution of yyyi|θθθ ,b(si), t(si) is120

Poisson and that the spatial random variable, u(si), is assumed to follow a Matérn Gaussian121

process with mean zero and smoothness ν = 1. This model gives the spatial covariance of the122

random effect as123

cov [u(si),u(si′)] = σ2κ||si − s′i||K1(κ||si − s′i||),

which has standard deviation (σ ) and scaling parameter (κ). The function K1(·) is the modified124

Bessel function of the second kind and order 1. The Matérn process has effective range of
√

8/κ ,125

which is the empirically derived spatial distance where correlation is γ ≈ 0.1 (Lindgren et al.,126

2011; Lindgren and Rue, 2015). We specify a penalised complexity prior (Simpson et al., 2017)127

where there is Pr(σ > 5) = 0.1, which penalises overly flexible spatial processes. The effective128

range (γ) of the process has a prior such that Pr(γ < 50m) = 0.05 so that the spatial dependence is129

unlikely to be very short. Priors for the regression coefficients are chosen to penalise extreme130

values.We define these to be normal distributions with zero mean and variance equal to 5. Both131

covariates were standardised to have mean zero and variance 1 before analysis.132

2.3 Simulation Experiment133

The base form of the simulation experiment is: 1) vary inclusion probabilities to be more and less134

severe than the 2018 inclusion probabilities, 2) generate a survey design from these inclusion135

probabilities, 3) simulate data at the sampling locations generated (using the model fitted to the136

2010 image data), 4) analyse the simulated data with naive (ignoring sampling probabilities) and137

more sophisticated methods that account for the survey design, and 5) summarise the simulations’138
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analyses as a response to variation in the unevenness of inclusion probabilities. This approach139

will inform if the survey data can be naively reused in the analysis of aggregated data.140

To vary the inclusion probabilities for the N= 8840 sites that define the sampling area, we start141

with the inclusion probabilities used to design the 2018 survey, and we arrange these probabilities142

into an N ×1 vector ppp. The N sites are arranged on a 300m × 300m grid and match the grid of143

the covariates (see Fig. 1). This was chosen to match that used in Foster et al. (2020), who used144

this as a compromise between accuracy and computational expense. The inclusion probabilities145

for the simulation experiment are defined as146

pppα = max(ppp∗α ,000)/K, where

ppp∗α , [111p̄+α (ppp−111p̄)] ,

p̄ = (111⊤ppp)/N is the mean of ppp, K = 111⊤pppα is a normalising constant, and the maximum function is147

applied element-wise. If an inclusion probability is zero, then that site will not be chosen in the148

sample. The parameter α indexes the severity of the unevenness in the inclusion probabilities,149

with α = 0 corresponding to even inclusion probabilities (and completely randomised sampling),150

α = 1 corresponding to the 2018 survey’s inclusion probabilities and α > 1 giving inclusion151

probabilities more extreme. We allow α to vary from 0 to 2 in increments of 0.1. For each α ,152

J = 1000 surveys were simulated, each consisting of n = 50,100,200 observations from the N153

sites withing the sampling area. The locations of the observations where chosen at random using154

pppα .155

For each simulated survey, data were simulated at the n selected locations using parameters156

drawn from the posterior distribution of the model in Section 2.2, fitted to the 2010 data. This157

ensures that all modelled aspects of the 2010 data, including variability, are incorporated into the158

simulation study. The marginal posterior distribution of the covariate effects is presented in159

Appendix S1: Fig. S3.160

Each simulated data set is analysed using design-based and model-based estimators. The target161
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metric in each of these analyses is the average number of corals per 20m2 image (coral density).162

Theoretically, it is useful to consider the bias in the average density for both design-based and163

model-based analyses: design-based estimates are intended to be unbiased for the average, and164

the average is also the Bayes estimate under quadratic loss for model-based methods. We note165

that other summaries could be of interest, like the maximum coral density, but the average is a166

very common summary, almost ubiquitously so. The design-based analyses were a naive mean167

(1/n ∑yi), and the Horvitz-Thompson (HT) estimator (see Thompson, 2012) of the form ∑ yi/npαi168

where the sum is over the n samples. The HT estimator is only available when the inclusion169

probabilities for the samples are known, and it should (theoretically) produce unbiased estimates,170

even when inclusion probabilities are unequal. The naive mean should (theoretically) only be171

unbiased when the inclusion probabilities are equal (Thompson, 2012).172

The model in Section 2.2 was used to analyse each simulated data set along with three173

simplifications. These models are used to investigate the effect of only making part of the design174

information available to the analysis process. The models are:175

Covariates + Spatial The full model in Section 2.2.176

Spatial Covariates unavailable or neglected and only the spatial effects are included.177

Covariates Spatial effects are omitted. The analyst assumes that the observations are178

independent given the covariates.179

Bathymetry/TPI The third simplification is to drop each of the covariates (bathymetry and TPI)180

in turn, with no spatial effect.181

For all models, the ‘true’ average density of the jth simulation, µ j, was calculated by taking182

the mean of the set of predictions formed at a grid of N locations throughout the study region.183

The same set of draws of the parameters (from the posterior that conditions on the 2010 data,184

Section 2.2) were used to calculate the set of µ j. For a given value of α , the average density185

estimate of the kth estimation method was assessed by calculating a percentage difference186
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between the estimated average density (µ̂ jk) and the quantity it is estimating (µ j). Formally, for187

the jth simulation replicate and the kth estimation method, the percentage difference is188

dp( j,k) = 100
µ̂ jk −µ j

µ j
.

For each value of α and for each estimation method, there are J estimates of average coral189

density. We summarise this information using the median and mean absolute deviation (MAD;190

see Venables and Ripley, 2002). These are relatively robust measures of location and scale that191

are not unduly affected by extreme values (outliers). We take the median of the naive mean192

estimates, when the inclusion probabilities were even (α = 0), as the reference value for193

comparison against all other estimators and all other values of α . The naive mean has well known194

and desirable properties when sampling is even (α = 0).195

3 Results196

Fitting the model to the 2010 image data, see Section 2.2, suggested that coral density peaked197

around 1350 m deep, and had a much reduced expectation outside of the range (-1700 to -1000198

m). Increasing TPI increased the density of corals (about 12 times increase from flat areas to the199

extremely elevated). The spatial dependence was short with E(γ|yyy) = 333 m (SD(γ|yyy) = 72.3 m),200

and the spatial standard deviation was E(σ |yyy) = 2.8 (SD(σ |yyy) = 0.4). Posterior distributions for201

all parameters defined in (1) are presented in Appendix S1: Fig. S3. Posterior predictions from202

this model are presented in Fig. 1 and show the effect of depth, which is smooth over the survey203

area, and the relatively patchy effects of TPI and spatial noise.204

Results for the simulation experiment, described in Section 2.3, are presented in Fig. 2.205

Overall, it is clear that ignoring the inclusion probability information can induce substantial bias206

in average coral density estimates. It is evident though, that even those estimation methods that do207

incorporate inclusion probabilities can perform badly but in general they work as intended (Fig.208

2).209
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The naive mean is an increasing function of α , implying that the mean increases as more210

favourable environments are sampled with greater inclusion probabilities. The naive mean also211

has very high variation, presumably due to not taking the appropriate weighting of each212

observation. The HT estimator, which does account for unequal inclusion probabilities, decreased213

with α and did so sharply just past α = 1 after agreeing with the reference well for all sample214

sizes for α < 1.215

[Figure 2 about here.]216

The simulation illustrated that model-based analyses can produce unbiased estimates of the217

average density (Fig. 2). The form of the model appears to be important though. The model with218

no covariates (just a spatial term) and the model with only the bathymetry covariate had219

undesirable performance, with a trend similar to, but not as extreme as, the naive mean estimate220

(Fig. 2). When the full model (covariates and spatial) and the TPI-only model were used to221

analyse the simulated data sets, Section 2.2, the median of the estimates for average density were222

comparatively unbiased albeit after having high values for very small α with n = 50 (Fig. 2). A223

similar pattern was observed for the model with both covariates, but this exhibited a slight224

positive bias.225

The full model (with random spatial effects) consistently exhibits small variation in the226

distribution of estimates, except for n = 50 and for small α (Fig. 2, right column). This result is227

linked to the extrapolation/leverage issues (see Discussion). The covariates model and the TPI228

model also suffer from this behaviour, at n = 50 and α = 0, but do not have the low variability in229

the distribution of estimates, which is exhibited by the full model.230

4 Summary and Discussion231

For data to be FAIR it must be reusable (Wilkinson et al., 2016; Stall et al., 2019). For it to be232

reusable the relevant information must be made available about how to reuse it. Without this233
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information assumptions must be made, with the naive assumption (equal probability random234

sample) often being wrong.235

In this study we investigated the effect of ignoring survey-design information using a236

simulation experiment based on a 2018 survey design, and 2010 image data, for a chain of237

seamounts in southern Australia. We found that ignoring survey design information can induce a238

substantial bias in estimates of average population density when a naive or an inappropriate239

analysis method is used; the median of the simulations’ average density estimates can be up to240

∼ 250% biased and estimates for individual data sets even worse. The potentially large bias has241

the potential to make seemingly straightforward inferences wrong and misleading. We note that242

the density bias does not disappear with increased sample sizes (Fig. 2), so ‘big-data’ are no243

panacea. Even worse, big-data may lead to confident, but biased, inferences.244

The simulation experiment showed that some analysis methods performed better than others245

with uneven inclusion probabilities. The naive mean estimate for population density was the246

worst performer and some model-based estimators also produced consistently poor results (Fig.247

2). The bias was alleviated by incorporating survey design information into the analysis, either248

through inclusion probabilities for the Horvitz-Thompson (HT) estimator, or through inclusion of249

the appropriate covariates in a model-based analysis. The sudden appearance of bias in the HT250

estimator at α = 1 is suspected to be caused by the introduction of sites with inclusion251

probabilities of zero at α = 1 (see Methods Section) and the associated severe right skew in the252

distribution of inclusion probabilities (Appendix S1: Fig. S2). We stress that obtaining bias by253

ignoring design information is not a new result, see Gelman et al. (2013, Chapter 8), Diggle et al.254

(2010) and Pati et al. (2011). However, this is perhaps under-appreciated by those who deal with255

ecological data (but see Pennino et al., 2018; Dobson et al., 2020). In fisheries, the problem is256

receiving recent attention for commercial catch data (e.g. Trenkel et al., 2013).257

The poor performance of the models with covariates for smaller sample sizes is likely to be258

due to insufficient sampling of covariate space (top panel of Appendix S1: Fig. S1, α . 0.2). The259

insufficient sampling of covariates potentially leads to survey data that must be extrapolated, in260
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covariate space, to predict to all locations (to calculate the average density). This extrapolation in261

covariates may be erratic and of low-quality. The poor sampling of covariates potentially also262

leads to samples that have undue leverage, which can distort the model estimates. The263

supplementary study in Appendix S1: Section S1 indicates that small sample sizes underestimate264

the range of both the bathymetry and TPI covariates. A second reason for poor performance is265

poor sampling of the spatial extent and hence poor prediction of the spatial random effect266

throughout the entire region. However, the spatial effect has a relatively small effective range so it267

is likely that only the largest sample sizes will cover the area sufficiently.268

Survey designs are often based on covariates. To account for the influence of the survey design269

on the model’s predictions, these covariates should be included in any model utilising the survey270

data (Gelman et al., 2013). If there is no information about how the survey was designed, then it271

may be most appropriate to include the covariates that the analysts assumes to be important in the272

design, or to use a preferential sampling model (Diggle et al., 2010). We stress that not including273

any covariates makes the assumption that there were no design-covariates – corresponding to the274

naive mean in our simulation study – which may be a very inappropriate assumption. We are also275

aware that this simple advice may be hard to implement in certain situations; an example is when276

all covariates are not available for all surveys utilised in a particular reuse. In these situations,277

careful and skilful analyses must be undertaken, which will rest on assumptions that are necessary278

to describe both the sampling process and ecological processes (Diggle et al., 2010; Pati et al.,279

2011; Liu and Vanhatalo, 2020). We note that including a spatial random effect in the southern280

seamount simulation is not an effective replacement for covariates and that all the design281

covariates need to be included (Fig. 2). Both these results are likely to be due to the relatively282

noisy, patchy and spatially non-smooth geographical distribution of TPI.283

The southern seamount survey example is quite extreme in its patchy topography and hence284

the unevenness of the inclusion probabilities. This is why we chose this survey design – to285

investigate how bad things could be if ignored. However, altering the amount of unevenness286

(varying α , Section 2.3) and coupling to the more general theoretical results (e.g. Gelman et al.,287
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2013; Diggle et al., 2010) suggest that our results are generalisable to any survey. Of course, the288

severity will depend on the amount of variation in the inclusion probabilities, the sample size289

(Fig. 2), and the survey design (through specification of inclusion probabilities/strata, Fig. 2).290

To ensure the ability to reuse data, we suggest that database managers should facilitate the291

storage and serving of information about survey design, perhaps even incorporated into formal292

data formats. Reusers of data should be encouraged, perhaps by changing default function293

settings, to download this information with the data. Data reusers should also be educated about294

the importance of survey design information. To be clear, this information at minimum should295

consist of a detailed description of, or accurate reference to, the survey design procedure.296

Additionally, it is highly desirable to also include: 1) the inclusion probabilities (the H-T297

estimator only needs these at the sampled locations), and 2) the values of the covariates at each298

location within the well-defined study region. We note that the inclusion probabilities could be299

stored as a field in the data (architecturally similar to another biological measurement), and that300

the covariates could be part of a meta-data record (or a link to them).301

A corollary to this work is that it is best, and in many ways practically necessary, to have a302

formal survey design if the data are to be reused. Whilst it is possible to model the data from303

surveys without formal designs, the process becomes more complex (see the variety of models in304

Diggle et al. 2010 and Gelman et al. 2013, Chapter 8), and is liable to ambiguity through the305

necessity of making assumptions that are oftentimes untestable. The data may end up being306

unusable, produce ambiguous results, and their curation and analysis may create a large, hidden307

research cost (Dobson et al., 2020).308

We recommend that surveys should be formally designed and importantly: the survey design309

should be stored along with the data. This work serves as a cautionary tale for those who wish to310

use and reuse data: Do not ignore how the data were obtained, unless you are confident that there311

is no intentional, or unintentional, specification of unequal inclusion probabilities in the survey312

design. Further, this work demonstrates what is needed to interpret survey data: information313

about the survey design employed to collect the data.314
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Figure 1: Detail of the sampling locations within the Huon Australian Marine Park, located south

of Tasmania, Australia. These locations are those that are within the depth range of 485 m and

2015 m. Bathymetry is water depth (m), and TPI is ‘topographic position index’ and gives an

indication of how elevated each cell is with respect to its neighbours (units of TPI are metres). The

inclusion probabilities are those used to draw the sampling locations for the survey. The predicted

values are from the model defined in Section 2.2, fitted to the original survey data whose locations

are grey ’+’ on the bathymetry map. The image-frame size for prediction (20m2) is arbitrary. The

coordinate reference system used is WGS 84 / UTM zone 55S, with units of metres east and north.
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Figure 2: Results of the simulation experiment based on the survey of the Huon Australian Marine

Park. Top row is for surveys with n = 50 sample locations, middle row with n = 100 and bottom

row with n = 200. Left panels give, for each method and for each α , the median of the estimates

from each of the J = 1000 simulated data sets. Right panels show the mean absolute deviation

(MAD) estimate of variation of the same estimates. See Methods Section for the definition of

percent difference and for the choice of reference. Solid grey line is 0% difference and dashed

grey line is the median of the naive mean at α = 0 (an unbiased estimator). Small values of α give

more even inclusion probabilities.
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