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ABSTRACT
Neurotrophic factors, particularly BDNF (brain-derived neurotrophic factor), have been associated with depression
and antidepressant drug action. A variety of preclinical and clinical studies have implicated impaired BDNF signaling
through its receptor TrkB (neurotrophic receptor tyrosine kinase 2) in the pathophysiology of mood disorders, but
many of the initial findings have not been fully supported by more recent meta-analyses, and more both basic and
clinical research is needed. In contrast, increased expression and signaling of BDNF has been repeatedly implicated
in the mechanisms of both typical and rapid-acting antidepressant drugs, and recent findings have started to
elucidate the mechanisms through which antidepressants regulate BDNF signaling. BDNF is a critical regulator of
various types of neuronal plasticities in the brain, and plasticity has increasingly been connected with antidepressant
action. Although some equivocal data exist, the hypothesis of a connection between neurotrophic factors and
neuronal plasticity with mood disorders and antidepressant action has recently been further strengthened by
converging evidence from a variety of more recent data reviewed here.

https://doi.org/10.1016/j.biopsych.2021.05.008
Several lines of evidence link BDNF (brain-derived neuro-
trophic factor) and its receptor TrkB (neurotrophic receptor
tyrosine kinase 2) with mood disorders and antidepressant
effects [reviewed in (1–4)]. Duman’s group (5,6) was the first to
discover a connection between BDNF, depression, and anti-
depressant action. They first showed that BDNF levels are
increased by electroconvulsive treatment in rats and that an-
tidepressants also increase BDNF expression in the hippo-
campus and cortex (5), a finding that has subsequently been
confirmed by several groups (1). The work of the Duman lab-
oratory has been a major contributor to the field ever since
(1,7). We review here the role of BDNF signaling in mood dis-
orders and the antidepressant effects. While there is a large
amount of convergent evidence suggesting reduced BDNF
signaling in mood disorders, not all evidence supports this
conclusion, and a reduction in BDNF signaling is not specific to
mood disorders. On the other hand, the evidence for the crit-
ical role for BDNF signaling in the antidepressant responses is
convincing and has recently been further strengthened.

BDNF is a critical mediator of activity-dependent neuronal
plasticity in the brain (8,9). It has a major impact on neuronal
morphology and physiology, increasing neurite sprouting and
synapse stabilization and promoting long-term potentiation (9).
Synthesis and release of BDNF are regulated by neuronal ac-
tivity, which is consistent with the role of BDNF as a major
mediator of activity-dependent neuronal plasticity. Recent data
suggest that BDNF may also be linked to spontaneous,
activity-independent transmission. The blockade of post-
synaptic NMDA receptors involved in spontaneous trans-
mission can rapidly increase BDNF protein translation, which
can produce an increase in synaptic potentiation that
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resembles homeostatic scaling. This connection between
spontaneous transmission and BDNF that triggers a novel form
of plasticity has been linked to the rapid antidepressant action
of ketamine (10–13).
BDNF-TrkB SIGNALING IN MOOD DISORDERS

BDNF signaling has been implicated in the pathophysiology of
mood disorders in humans. Levels of BDNF messenger RNA
(mRNA) and protein have been found to be reduced in post-
mortem samples taken from brains of depressed patients (14),
in particular in the hippocampus (15–17) and amygdala (18).
BDNF levels have also consistently been found to be reduced
in brain samples of people who died as a result of suicide
(19–24). Conversely, antidepressant treatment increases BDNF
expression in brains of depressed patients (21). However, the
numbers of examined cases are generally low, and reduction in
BDNF is not specific to mood disorders, as similar reductions
have been observed in other neuropsychiatric disorders, such
as schizophrenia and dementia (25,26).

DNA methylation of BDNF gene promoters has been shown
to be increased in peripheral blood mononuclear cells of
depressed patients (27–29), which is consistent with a reduc-
tion in BDNF expression. A similar increase in BDNF promoter
methylation has also been observed in brain samples from
people who died by suicide (30), suggesting dysregulation of
BDNF expression. This suggests that the findings in blood
cells may perhaps be extrapolated to neuronal tissue, although
this requires further investigation.

In addition to BDNF, levels of TrkB and TrkB mRNA have
also been found to be decreased in postmortem samples of
ticle under the
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depressed patients (19,31), and genetic variants in the TrkB
gene NTRK2 are associated with suicide attempts (32).
Furthermore, the activated, phosphorylated forms of TrkB have
been found to be decreased in brain samples from depressed
patients (20).

Genetic Association Between BDNF and
Depression

Valine is the predominant amino acid at position 66 of BNDF,
but 25% to 50% of individuals in different populations have
methionine at this position (Val66Met) (33,34). Mechanistically,
this polymorphism influences intracellular BDNF trafficking and
activity-dependent BDNF release (33,35), and the Met allele
has been shown to impair dendritic transportation of BDNF
mRNA (36). As the activity-dependent synaptic release of
BDNF is critical for its action on certain types of neuronal
plasticity, Met66BDNF might impede plasticity. Early studies
suggested that the Met allele might be a risk factor for a
number of neuropsychiatric disorders (37). However, subse-
quent larger studies failed to replicate these effects, and the
latest meta-analyses do not support the role of BDNF Val66-
Met polymorphism in mood disorders (38,39) [reviewed in (4)],
with perhaps an exception of increased risk of depression in
male Met-carriers (40). In addition to Val66Met, several other
single nucleotide polymorphisms have been detected in the
human BDNF gene, and initial studies associated some of
them with depression (4,41–43). However, also here, meta-
analyses have not supported the initial findings (4,38).

There is evidence that Val66Met polymorphism might
modulate the effects of early life adversity (44–47) or chronic
stress on depression in adulthood (48). Indeed, a recent meta-
analysis that examined the interaction between the Val66Met
polymorphism and stressful life events or childhood adversity
in more than 20,000 participants in 31 independent studies
concluded that Met carriers have significantly higher risk of
developing depression when exposed to stress either during
childhood or in adulthood (49).

Activity-dependent BDNF release is suggested to be
important for the antidepressant response. Consistently,
behavioral as well as plasticity-related responses to antide-
pressants were lost in a mouse model of Val66Met poly-
morphism (35,50). Furthermore, increased spine formation in
responses to ketamine and its metabolite (2R,6R)-hydrox-
ynorketamine were lost in these mice (51,52). However, similar
loss has not been observed in human studies, and the
Met allele, if anything, improves the response to antidepres-
sants (53–56), and patients heterozygous for Val66Met appear
to show a better response to antidepressants than patients
homozygous for either the Val or the Met allele (57).

Serum BDNF and Mood Disorders

Levels of BDNF are high in human serum; however, levels in
plasma and cerebrospinal fluid are orders of magnitude lower
(58–61). More than 90% of BDNF found in blood is contained
in platelets (58,59,62–64). Although it has been suggested that
circulating BDNF could be derived from brain (65), it is by now
clear that serum BDNF is derived from blood platelets that
release it on platelet activation (58,59,62). Within platelets,
BDNF is contained within the alpha granules and in the
Biological
cytoplasm (60,66), and on stimulation, less than half of BDNF
within platelets is released, probably representing the alpha-
granule pool. Platelet BDNF is derived from megakaryocytes
that transport BDNF into newly formed platelets (67,68).
Whether platelets also take up BDNF from plasma is unclear;
platelets do not express BDNF receptors, but uptake of labeled
BDNF into platelets has been reported (64). Interestingly,
mouse megakaryocytes do not synthesize BDNF, and,
consequently, BDNF levels in mouse serum and plasma are
very low, below detection limit (68), which speaks against
uptake from plasma as a significant source of platelet BDNF.

Several studies have observed that serum or plasma BDNF
levels are abnormally low in depressed patients (69) and that
the levels increase back to baseline after successful treatment
with antidepressants (70–79) or electroconvulsive treatment
(80,81), but not after repetitive transcranial magnetic stimula-
tion or vagus nerve stimulation (82). Although a recent meta-
analysis found reduced effect sizes in more recent studies,
reduction in serum BDNF remained highly significant in un-
treated depressed patients compared with successfully
treated patients or healthy individuals (83). Unfortunately, high
interindividual and intraindividual variation in serum BDNF
levels (84) prevents its use as a diagnostic marker for
depression. However, as serum levels of proBDNF are not
reduced in depressed patients while those of mature BDNF are
(85), a ratio between mature BDNF and proBDNF has been
suggested as a biomarker for bipolar disorder (86) and for
discriminating between bipolar and major depressive disorder
with reasonable sensitivity (87). Notably, a decrease in serum
BDNF levels is not specific to depression: serum BDNF levels
have been reported to be decreased also in schizophrenia
(88–90) and in autism (91,92).

While serum BDNF levels were low in patients with
depression and schizophrenia, whole-blood BDNF levels were
not different between patients and control subjects (72,88).
Therefore, the difference between patients and control sub-
jects is not in the amount of BDNF in platelets, but in the ability
of platelets to release it. Authors have proposed that instead of
serum BDNF levels, a ratio between BDNF in serum and whole
blood, which represents BDNF release from platelets, should
be reported (72). Interestingly, serotonin is concentrated into
platelets through the serotonin transporter, the target of
serotonin-selective antidepressants (selective serotonin reup-
take inhibitors), and, as is the case for BDNF, serotonin release
is reduced in depressed patients (60,93), suggesting a link
between BDNF and serotonin release. Molecular pathways
that regulate vesicular release in the brain and in platelets
share many components (94). It is therefore possible that
reduced release from platelets could reflect compromised
BDNF release also in the brain.

Susceptibility to depression can be influenced by genetic,
epigenetic, and environmental risk factors. Stressful life events
may contribute to an individual’s developing depression, while
some individuals display resilience. In preclinical models,
stress paradigms are often used to model depression-related
behavior. However, the type and duration of stress can pro-
duce a range of effects on the hypothalamic-pituitary-adrenal
axis, metabolism, and epigenetic and genetic effects as well
as behavior. Stress has been shown to decrease BDNF
expression in many brain regions, but increased expression
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has also been observed in certain brain regions depending on
the type and duration of stress. Given the complexity of the
relationship between stress and neurotrophins, the reader is
referred to articles in this special issue focusing on stress and
its role in the transcriptome by Girgenti et al. (95) and the
neurobiology of stress by Ploski and Vaidya (96).

Taken together, while several studies indicate abnormal
expression and function of BDNF in depressed patients and a
return to normal on recovery, many other studies, including
genetic association studies, have failed to show a consistent
relationship between BDNF and mood disorders. Therefore, a
causal role for BDNF in depression remains equivocal.
BDNF EXPRESSION AND TrkB SIGNALING ARE
REQUIRED FOR ANTIDEPRESSANT DRUG ACTION

Given the evidence that BDNF signaling may be reduced in
depression, the finding that antidepressant drugs increase
BDNF levels has generated interest. Duman’s laboratory was
the first to find that electroconvulsive treatment as well as tri-
cyclic and selective serotonin reuptake inhibitor antidepres-
sants increase BDNF expression in rodent brain (5,6), which
has been confirmed in numerous studies [reviewed in (1,3,97)].
Antidepressant-induced increase in BDNF levels has also been
observed in human postmortem brain samples (21) as well as
in serum of depressed patients (see above).

BDNF levels are increased quickly after electroconvulsive
treatment, but only after several days of continuous antide-
pressant treatment (1,5). However, antidepressants activated
TrkB autophosphorylation and downstream signaling within an
hour after treatment in mice (98,99), indicating that antide-
pressants may initially promote BDNF release and TrkB
signaling and that the increase in BDNF expression takes place
only later, but it has been unclear how antidepressants activate
TrkB. A recent study demonstrated that antidepressants
belonging to different classes, such as fluoxetine, imipramine,
and ketamine, directly bind to TrkB (100). Dimerized TrkB
transmembrane domains cross each other in the trans-
depressants (ADs) promote TrkB translocation to and retention at the plasma memb
of active synapses efficiently signal through TrkB at the cell surface, but TrkB rece
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membrane domain and create a pocket for antidepressants.
Antidepressant binding stabilizes TrkB in synaptic membranes
and promotes BDNF-mediated TrkB signaling (Figure 1) (100).
The affinity of antidepressants to TrkB is much lower than their
affinity to the serotonin transporter, but antidepressants
accumulate in brain, and concentrations needed for TrkB
binding are achieved in human brain after several weeks of
treatment (101), which might contribute to the slow action
onset of typical antidepressants. These findings suggest a
provocative hypothesis that the primary site of action of anti-
depressants is direct binding to TrkB instead of monoamine
transporters and other classical targets.

BDNF signaling through TrkB is required for the behavioral
effects of antidepressants (98,102), and several studies have
investigated the brain regions and cell types where BDNF-TrkB
signaling mediates antidepressant effects. Adachi et al. (103)
found that deletion of BDNF from the dentate gyrus cells of
mice inhibits the effects of antidepressants in behavioral par-
adigms. Similarly, deletion of TrkB from the progenitor cells of
dentate granule neurons, but not from the mature granule
neurons, prevents the effects of antidepressants on the forced
swim test as well as on induced neurogenesis (104), sug-
gesting that TrkB in the progenitor cells is the target of BDNF
released from the dentate granule neurons. Cortical in-
terneurons have been implicated as the target for both typical
(105) and fast-acting (106–108) antidepressants, especially
parvalbumin-containing interneurons and perineuronal nets
that encase them (109–115), but somatostatin-containing
neurons have also been implicated in the antidepressant ac-
tion (106,116). Finally, BDNF infused into the midbrain pro-
duced an antidepressant effect in rats (117), suggesting that
this effect may be mediated through monoaminergic neurons.
In a recent study using an adeno-associated virus approach to
inject Cre recombinase into the dorsal raphe, either BDNF or
TrkB was deleted in adult mice. The deletion of BDNF did not
impact antidepressant responses in behavioral paradigms, but
the loss of TrkB resulted in an attenuated response to anti-
depressants (118), revealing a critical role for TrkB in the dorsal
Figure 1. Direct binding of antidepressants to TrkB
(neurotrophic receptor tyrosine kinase 2). (A) Two TrkB
receptors cross each other within the transmembrane
region, creating a binding site for fluoxetine (inset,
blue) at the outer opening of the crossed dimer of
TrkB. Image courtesy of M. Girych and G. Enkavi. (B)
The configuration of TrkB dimers is dependent on
membrane thickness, which is regulated by choles-
terol concentration. (Left panel) In moderate choles-
terol concentrations, the configuration is favorable for
signaling. (Right panel) At high cholesterol concen-
trations, such as in synaptic membranes, the crossed
dimers assume a more parallel orientation, which is
not compatible with signaling, and the residence time
of TrkB in these membranes is short. Binding of
fluoxetine (Flx) acts as a wedge that maintains the
crossed transmembrane domain orientation that is
compatible with signaling, which increases a proba-
bility of BDNF (brain-derived neurotrophic factor)
binding and signaling. (C) Allosteric activation of
BDNF signaling by antidepressants. (Left panel) Anti-

rane. (Right panel) BDNF (B) released from presynaptic and postsynaptic sites
ptors in inactive synapses remain silent because no BDNF is released.

urnal
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raphe in conventional antidepressant action and suggesting a
noncell autonomous role for BDNF in the dorsal raphe in
conventional antidepressant action. However, direct deletion
of TrkB in serotonergic neurons did not prevent the
antidepressant-like effects of fluoxetine (119), suggesting that
the target for BDNF may be nonserotonergic neurons in the
raphe nuclei. Taken together, these data suggest that BDNF-
TrkB signaling through several different neuronal systems
can mediate different effects of antidepressant drugs.

Typical Antidepressants Increase Other Growth
Factors

While numerous studies have linked BDNF to antidepressant
action, VEGF (vascular endothelial growth factor) and its
tyrosine kinase receptor, Flk1 (fetal liver kinase 1), have also
been suggested to play a critical role, although with more
limited findings. VEGF is a growth factor that is important in
hippocampal neurogenesis (120), although it is unclear if this is
how it contributes to antidepressant action. Similar to BDNF,
VEGF expression is increased by electroconvulsive and con-
ventional antidepressant treatment (121). Conversely, phar-
macological approaches that block VEGF-Flk1 signaling block
the behavioral effects of conventional antidepressants, sug-
gesting a crucial role in antidepressant-like action (121–123).
Curiously, the antidepressant-like effects of BDNF and VEGF
appear mutually dependent on each other (124). While addi-
tional studies are necessary to delineate the mechanistic role
of VEGF in antidepressant drug action, nevertheless these data
further strengthen the importance of neurotrophic factors in
antidepressant action.

Rapid Antidepressants Require BDNF

The rather unexpected finding that ketamine, an NMDA re-
ceptor antagonist, produces rapid antidepressant action pro-
vides an opportunity to delineate intracellular signaling
involved in the behavioral effects. Three main hypotheses have
been put forth to explain the mechanism of action of ketamine.
The first is often referred to as the disinhibition hypothesis. In
this model, ketamine is postulated to block NMDA receptors
on inhibitory neurons, which increases extracellular glutamate
levels and activates AMPA receptors. This in turn causes the
release of BDNF, which triggers downstream effects, such as
activation of mTOR (mechanistic target of rapamycin), and
ultimately synaptogenesis (106,125–128). In support of this
hypothesis, it was shown that blocking mTOR with an infusion
of rapamycin, an mTOR inhibitor, in the cortex blocked ket-
amine’s antidepressant-like effects and synaptogenesis (129).
These studies suggested that mTOR was required for rapid
antidepressant action and that compounds that promote
mTOR activation may have therapeutic potential as rapid an-
tidepressants. However, a separate group demonstrated that
administration of rapamycin via intraperitoneal injection, to
better mimic potential clinical approaches, did not prevent
ketamine’s rapid antidepressant action (10). More recently, a
small clinical study administered rapamycin intravenously to
patients and found that it did not block ketamine’s rapid anti-
depressant action but rather may augment the long-term ef-
fects (130). These clinical data call into question the necessity
of mTOR in the rapid antidepressant action of ketamine.
Biological
The second hypothesis focuses on how ketamine works
through intracellular signaling to produce the antidepressant
effects and identifies a novel form of synaptic plasticity
strongly correlated with the behavioral action. Ketamine, via
blockade of NMDA receptors, blocks calcium entry through
these receptors, which results in the inhibition of the calcium/
calmodulin-dependent kinase eEF2K (eukaryotic elongation
factor 2 kinase), dephosphorylation of its sole target, eEF2
(eukaryotic elongation factor 2), and a resulting rapid increase
in protein synthesis of BDNF as well as other synaptic proteins
(10). This study showed that loss of BDNF or TrkB in broad
forebrain regions blocked ketamine’s antidepressant action,
demonstrating a requirement for BDNF-TrkB signaling in the
rapid antidepressant-like effects in animal models. Anisomy-
cin, a protein synthesis inhibitor, was also shown to block
ketamine’s rapid antidepressant action, thus demonstrating a
key role for protein translation that was due to eEF2K in the
fast-acting behavioral effects. Ketamine, in an eEF2K-
dependent manner, was also shown to trigger the insertion
of AMPA receptors that resulted in an expected effect on
synaptic plasticity, namely, synaptic potentiation at hippo-
campal Schaffer collateral inputs to CA1 synapses (10,11). The
notion that an NMDA receptor antagonist produces an
augmentation of synaptic responses at CA3-CA1 synapses is
at first perplexing, as data over the past 2 decades have shown
that brief applications of NMDA receptor antagonists on hip-
pocampal slices results in no detectable synaptic effects.
However, when ketamine is perfused for 30 minutes on a
hippocampal slice, similar to the time of the ketamine infusion,
and then washed out, a robust augmentation of field excitatory
postsynaptic potentials is observed at CA3-CA1 synapses.
This augmentation is observed by blocking NMDA receptors,
suggesting that it is due to a form of homeostatic, non-
Hebbian type of plasticity (13). This form of homeostatic
synaptic plasticity is closely associated with ketamine’s anti-
depressant effects in that deletion of eEF2K inhibits ketamine’s
antidepressant-like action and the augmented synaptic
potentiation. Deletion of BDNF also blocks ketamine’s
antidepressant-like effects as well as the synaptic potentiation.
This body of work has built a crucial link between synaptic
transmission and antidepressant action. The identification of
the engagement of homeostatic plasticity by ketamine pro-
vides an avenue to an understanding of how ketamine may
compensate circuit dysfunction or activate dormant mecha-
nisms of patients with depression that are not evoked under
normal physiological circumstances.

A third hypothesis for how ketamine exerts antidepressant
effects suggests direct binding to the TrkB receptor. As
described above, typical antidepressants were found to
directly bind to a site formed by two transmembrane domains
of TrkB within the plasma membrane, which promotes the
synaptic localization TrkB, thereby increasing the probability of
BDNF binding to TrkB and activating it (Figure 1) (100). Un-
expectedly, ketamine and esketamine displace fluoxetine from
this binding site with an affinity that is in the same range as the
affinity of ketamine to NMDA receptors, suggesting that they,
too, bind to this same site on TrkB. This study also reported
that the Y433F mutation of the TrkB receptor blocks the
binding and antidepressant-like effects of typical antidepres-
sants as well as those of ketamine (100). This TrkB receptor
Psychiatry July 15, 2021; 90:128–136 www.sobp.org/journal 131
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mutation also blocked ketamine’s effects on surface localiza-
tion of AMPA receptors, indicating that increased AMPA
signaling is a downstream effect of TrkB activation (100).
Moreover, (2R,6R)-hydroxynorketamine, the ketamine metab-
olite reported to be NMDA receptor–independent (131) [but see
(132)], directly binds to TrkB with an affinity comparable to that
of ketamine, but clearly higher than its affinity to NMDA re-
ceptor, and this binding is lost in the Y433F TrkB mutants.
Collectively, these data suggest that direct binding to TrkB
may be a common mechanism of action for typical as well as
rapid-acting antidepressants (100).

It is intriguing that these three main hypotheses on the rapid
antidepressant effects of ketamine all involve a critical role for
BDNF and/or TrkB signaling. In support of this premise, dele-
tion of BDNF or TrkB in broad forebrain regions of mice blocks
ketamine’s antidepressant-like behavioral effects as well as the
hippocampal synaptic potentiation that has been suggested as
a key correlate of rapid antidepressant action (11,133). Other
studies have also reported a key role for BDNF in the antide-
pressant action of ketamine (134,135). In addition, BDNF
signaling has been implicated in the effects of other anesthetic
agents with putative antidepressant effects (136,137). More-
over, knock-in mice expressing the BDNF Val66Met poly-
morphism, which have impaired BDNF mRNA trafficking to
dendrites, do not show antidepressant-like responses to ke-
tamine (51). However, studies examining ketamine action in
patients with a Met allele compared with individuals with the
Val/Val allele have yielded conflicting data. An initial study
examined ketamine response in depressed patients and re-
ported an increase in the likelihood of response in individuals
with the BDNF Val/Val allele compared with patients with a
Met allele (138). However, a larger study did not find any dif-
ference in ketamine response between depressed patients
with the Val/Val allele and patients the Met allele (139). While
more research is necessary to elucidate the role of BDNF
signaling in the antidepressant response of patients, it will also
be important to identify the full scope of genetic determinants
that influence antidepressant responsiveness.

We have focused on the three main hypotheses of ketamine
action; however, others have been proposed that were not
discussed owing to space limitations. While there is still much
work to be done to understand ketamine’s mechanism of ac-
tion, the current models provide testable hypotheses that will
hopefully contribute to the development of faster-acting anti-
depressants without the associated side effects. One key
consideration when comparing studies is the dose of ketamine
administered, which can often vary widely and provide con-
flicting data. Preclinical work has shown that a low dose of
ketamine produces an antidepressant-like response, while
increasing doses curtail antidepressant responses, intracellular
signaling, and the synaptic potentiation in the hippocampus
(140). Another key issue to consider is that ketamine’s anti-
depressant effects are not mimicked by the closely related
NMDA receptor antagonist memantine (141–143). The second
model described above can explain why ketamine exerts an-
tidepressant effects while memantine cannot (12). Therefore,
alternative proposals should also include memantine as a
negative control. Work over the next several years will hope-
fully provide critical insight into rapid antidepressant action as
well as whether these effects can be extended.
132 Biological Psychiatry July 15, 2021; 90:128–136 www.sobp.org/jo
CONCLUSIONS

Twenty-five years have passed since Duman’s group (1,5,6)
proposed the connection between neurotrophic factors, mood
disorders, and the antidepressant effect. Since then,
converging data from a variety of preclinical and clinical
studies implicate impaired BDNF signaling through TrkB in the
pathophysiology of mood disorders, although especially ge-
netic evidence has recently not supported this notion, and
deficiencies in BDNF signaling are not specific to mood dis-
orders. However, there is solid evidence to indicate that
increased expression and signaling of BDNF is critical in the
mechanisms of both typical and rapid-acting antidepressant
drugs. As BDNF is a critical mediator of various types of
synaptic plasticity, these data suggest that restricted plasticity
may underlie depression and that promotion of plasticity en-
hances mood recovery. As plastic networks need experience-
dependent activity to guide their selection (13,144,145), these
data suggest a new paradigm for the treatment of mood dis-
orders, where pharmacological and psychological approaches
are closely intertwined, emphasizing the need for the active
participation of the patient in successful antidepressant drug
treatment.
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