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1 |  INTRODUCTION

The sensorimotor beta rhythm is mainly generated in the 
primary sensorimotor (SMI) cortex (Bardouille et al., 2019; 
Cheyne et al., 2003; Gaetz & Cheyne, 2006; Jurkiewicz et al., 
2006), and it is known to be modulated by tactile (Cheyne 
et al., 2003; Gaetz & Cheyne, 2006; Illman et al., 2020; 
Parkkonen et al., 2015), electrical (Houdayer et al., 2006; 

Salenius et al., 1997; Salmelin & Hari, 1994), and proprio-
ceptive stimulation (i.e., passive movement; Alegre et al., 
2002; Illman et al., 2020; Parkkonen et al., 2015), as well 
as active movement (Cassim et al., 2000; Feige et al., 1996; 
Fry et al., 2016), action observation (Hari et al., 1998), or 
imagining motor action (Hari et al., 1998; Pfurtscheller et al., 
2006; Schnitzler et al., 1997), and even by brief auditory or 
visual stimuli (Piitulainen et al., 2015). These stimuli and 
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Abstract
Beta rhythm modulation has been used as a biomarker to reflect the functional state 
of the sensorimotor cortex in both healthy subjects and patients. Here, the effect of 
reduced alertness and active attention to the stimulus on beta rhythm modulation was 
investigated. Beta rhythm modulation to tactile stimulation of the index finger was 
recorded simultaneously with MEG and EEG in 23 healthy subjects (mean 23, range 
19─35 years). The temporal spectral evolution method was used to obtain the peak 
amplitudes of beta suppression and rebound in three different conditions (neutral, 
snooze, and attention). Neither snooze nor attention to the stimulus affected signifi-
cantly the strength of beta suppression nor rebound, although a decrease in suppres-
sion and rebound strength was observed in some subjects with a more pronounced 
decrease of alertness. The reduction of alertness correlated with the decrease of sup-
pression strength both in MEG (left hemisphere r = 0.49; right hemisphere r = 0.49, 
*p < 0.05) and EEG (left hemisphere r = 0.43; right hemisphere r = 0.72, **p < 0.01). 
The results indicate that primary sensorimotor cortex beta suppression and rebound 
are not sensitive to slightly reduced alertness nor active attention to the stimulus at 
a group level. Hence, tactile stimulus- induced beta modulation is a suitable tool for 
assessing the sensorimotor cortex function at a group level. However, subjects’ alert-
ness should be maintained high during recordings to minimize individual variability.
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tasks, induce a rapid reduction (suppression or event- related 
desynchronization, ERD) which is followed by a more de-
layed increase (rebound or event- related synchronization, 
ERS) in the strength of rhythmic oscillations with respect to 
the baseline level (Pfurtscheller, 2001). It has been suggested 
that the suppression reflects cortical activation of the SMI 
cortex related to sensory afference and/or, movement prepa-
ration or initiation (Neuper et al., 2006; Pfurtscheller, 2001; 
Pfurtscheller & Lopes da Silva, 1999; Pfurtscheller et al., 
1996). The rebound is thought to be associated with reduced 
excitability or active inhibition of the SMI cortex (Cassim 
et al., 2001; Chen et al., 1998; Engel & Fries, 2010; Gaetz 
et al., 2011; Pfurtscheller et al., 1996; Salmelin et al., 1995).

The beta rebound has been proposed to reflect the func-
tional state of the SMI cortex in various neurological diseases 
such as stroke (Laaksonen et al., 2012; Parkkonen et al., 2017; 
Tang et al., 2020), schizophrenia (Brookes et al., 2015; Liddle 
et al., 2016), Parkinson's disease (Degardin et al., 2009; Hall 
et al., 2014; Vinding et al., 2019), and cerebral palsy (Demas 
et al., 2019; Pihko et al., 2014). However, patients are prone 
to changes in their alertness during MEG/EEG recordings, 
which may alter the oscillatory activity, and thus potentially 
affect the estimated cortical level of excitability. Alertness 
may easily decrease during MEG/EEG recordings in healthy 
individuals, and even more so in patients, for example, in 
acute stroke patients and patients suffering from cognitive 
disorders. In this study, we simulated clinical MEG and EEG 
measurement protocols to quantify the effect of alertness and 
active attention to the stimuli on the level of SMI beta rhythm 
modulation in healthy subjects. This new information is im-
portant for all future clinical and basic research studies that 
attempt to utilize the beta rhythm modulation to assess the 
SMI cortex function.

2 |  METHODS

2.1 | Subjects

Twenty- three healthy subjects (12 females, age 19─35, 
mean 23 ± 4 yrs) participated in the experiment. All subjects 
were right- handed according to the Edinburgh Handedness 
Inventory (Oldfield, 1971).

The study was approved by the local ethics committee 
of Aalto University in accordance with the Declaration of 
Helsinki. Prior to the study, all participants signed written 
informed consent.

2.2 | Stimuli and experimental design

Cerebral signals were recorded during three conditions to 
examine how the level of vigilance affects SMI cortex beta 

rhythm modulation. The conditions were selected from a 
practical point of view, as some patients may not be able to 
follow instructions during the MEG or EEG recordings. In 
the neutral condition, participants were fixating on a pic-
ture in front of them (size 12 × 15 cm, a distance of 2.2 m). 
The participants were instructed not to pay attention to the 
stimuli, and to think whatever comes into their mind. In the 
attention condition, the participants were fixating at the same 
picture as in the neutral condition, counting quietly in their 
mind the total number of the received tactile stimuli. The 
number of received stimuli was asked immediately after the 
attention task to ensure the subjects’ focus on the stimuli. 
During the snooze condition, the participants kept their eyes 
closed, without paying attention to the stimuli, and were al-
lowed to fall asleep. The duration of all conditions was about 
nine to ten minutes and the conditions were measured in ran-
domized order.

Modulation of beta rhythm was induced by tactile stimuli 
that were delivered alternately to both index fingertips with 
an interstimulus interval (ISI) of 6 s for a given finger (3 s 
between right and left side stimulation). The stimuli were 
mechanically induced by pneumatic diaphragms driven by 
compressed air. The duration of the stimulus was 180  ms, 
peaking at 40 ms. During the stimulation periods, the par-
ticipants held their hands relaxed on a pillow (Figure 1). 
Earplugs were used throughout the measurements to prevent 
possible stimulus- induced noise artifacts.

2.3 | Data acquisition

The simultaneous MEG and EEG measurements were car-
ried out in a magnetically shielded room (Imedco AG, 
Hägendorf, Switzerland), with a 306- channel (204 pla-
nar gradiometers, 102 magnetometers) whole- head MEG 
system (Vectorview, Elekta Oy, Helsinki, Finland) at the 
MEG Core, Aalto NeuroImaging, Aalto University. Scalp 
EEG was recorded simultaneously with a MEG- compatible 

F I G U R E  1  Tactile stimulus setup for beta rhythm modulation
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60- channel EEG- cap (ANT Neuro waveguard™original), 
where the Ag- AgCl surface electrodes were placed accord-
ing to the international 10– 20 system. During the measure-
ments, the participants were seated comfortably with their 
heads in the helmet- shaped MEG sensor array. Prior to the 
measurement, five indicator coils were attached to the EEG- 
cap (three to the forehead and two above the ears) to define 
the subject's head position with respect to the MEG sensors. 
The location of the indicator coils, anatomical landmarks 
(left and right preauricular points and nasion), and 100– 200 
additional points from the scalp surface, were determined 
with a 3- D digitizer (Fastrak 3SF0002, Polhemus Navigator 
Sciences, Colchester, VT, USA). At the beginning of each 
measurement session, the head position inside the MEG 
helmet was measured with respect to the sensor array, and 
continuous head position tracking was monitored through-
out the whole measurement. Eye movements were recorded 
with two vertical electrooculogram electrodes (EOG).

All data were recorded at a sampling frequency of 
1000 Hz, and the MEG and EEG signals were band- pass fil-
tered to 0.1– 330 Hz. The impedance of the EEG electrodes 
was verified to be below 5 kΩ prior to the recordings.

2.4 | MEG and EEG signal processing

2.4.1 | Preprocessing

To improve the comparability of the different measurement 
conditions, MEG raw signals were transformed to the same 
average head- coordinate system within each subject. The 
data was preprocessed off- line using the temporal signal- 
space- separation method (tSSS) with head movement com-
pensation (Taulu & Kajola, 2005; Taulu & Simola, 2006) 
implemented in the MaxFilter software (v2.2; Elekta Oy, 
Helsinki, Finland).

Further analyses of MEG and EEG data were done using 
MNE python 0.17 (Gramfort et al., 2013). The original EEG 
data (unipolar referential AFz) was re- referenced with a 
common average reference overall electrodes (excluding bad 
channels). The average reference was chosen because our pre-
vious study indicated that this approach produced the highest 
signal- to- noise ratio and thus the strongest beta rhythm mod-
ulation (Illman et al., 2020). Artifacts related to eye blinks 
(two magnetometer and two gradiometer components) were 
removed with principal component analysis (PCA; Uusitalo 
& Ilmoniemi, 1997).

2.4.2 | Spectral analysis

Power spectral density (PSD) was calculated to observe 
changes in rhythmic brain oscillations at theta (4– 7  Hz), 

alpha (8– 12 Hz), and beta (13– 25 Hz) frequencies during the 
different conditions. However, these PSDs do not represent 
spontaneous rhythmic brain oscillations, as they are affected 
by tactile stimulation. PSDs were computed for the neutral, 
attention, and snooze conditions by using the Welch method, 
with a sliding 2048- point fast Fourier transform (FFT) with a 
non- overlapping Hanning window. The peak power of theta, 
alpha, and beta frequencies was determined from the PSDs 
over the right and left SMI cortex and occipital area.

2.4.3 | Beta rhythm modulation

Time- frequency representations (TFRs) were calculated to 
visualize changes in rhythmic activity in the three differ-
ent conditions. TFRs for each subject were computed using 
a Morlet wavelet transformation in the frequency range of 
2– 40 Hz for a time window from – 700 to 3200 ms with re-
spect to stimulus onset (Tallon- Baudry et al., 1997). Using 
wavelets, spectral and temporal resolution at different fre-
quencies can be balanced by scaling the number of cycles 
by frequency. For this purpose, we set the number of cycles 
to f/2.

The strength of SMI cortex beta rhythm modulation 
was determined by computing the temporal spectral evolu-
tion (TSE) with respect to the onset of the tactile stimulus 
(Engemann & Gramfort, 2015; Hari & Salmelin, 1997). 
First, the pre- processed raw data was bandpass filtered to 13– 
25 Hz. This 12- Hz wide frequency band was chosen as our 
previous study (Illman et al., 2020) showed that individually 
selected 10 Hz frequency bands between 13 and 25 Hz (13– 
23 or 15– 25  Hz) capture the strongest beta rhythm modu-
lation. However, comparing individually selected frequency 
bands with common 13– 25  Hz frequency band (capturing 
both the lower (β1) and higher (β2) beta bands) resulted in 
similar beta modulation curves. Therefore, we used in the 
present study the 13– 25 Hz beta band for all the subjects, as 
standardized parameters particularly important in future clin-
ical use. After filtering, interfering somatosensory evoked 
responses were subtracted from the raw data (David et al., 
2006). A Hilbert transform was applied to the data to obtain 
the envelope signal, and the data were averaged with respect 
to stimulus onset. TSE curves were calculated from – 500 to 
3000 ms with respect to stimulus onset. The peak latencies 
and amplitudes of beta suppression and rebound were deter-
mined from the most representative MEG and EEG channels 
over the left and right SMI cortices. One or two channels 
with the strongest modulation were selected from both hemi-
spheres (two channels were selected if the strongest suppres-
sion and rebound were seen over the different channels). 
Relative peak values (in %) of suppression (negative peak) 
and rebound (positive peak) were calculated with respect to 
the pre- stimulus baseline (– 500 to – 100 ms).
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2.5 | Evaluation of alertness

2.5.1 | Questionnaire

The participants were asked to complete a questionnaire 
right after the MEG- EEG measurement, to determine their 
overall alertness throughout the study. In the questionnaire, 
the participants evaluated their alertness subjectively dur-
ing the three different conditions on a seven- step Likert 
scale; 0 = Fell asleep, 1 = Fully tired, 2 = Moderately tired, 
3 = Slightly tired, 4 = Slightly alert, 5 = Moderately alert, 
6 = Fully alert.

2.5.2 | Sleep stage scoring

As the main purpose of the study was to clarify the effect 
of alertness on the modulation of the beta rhythm, the stage 
of alertness during the snooze condition was explored fur-
ther. Sleep stages in the snooze condition were scored 
according to the AASM manual (American Academy 
of Sleep Medicine Manual for the Scoring of Sleep and 
Associated Events; Berry et al., 2012). The sleep stage 
was estimated from channels of the central, occipital and 
frontal regions, throughout the snooze condition in 30  s 
epochs. EOG channels were included in the sleep stage 
evaluation. Only Stage W, Stage N1, and Stage N2 were 
observed due to the short recording time. Stage W rep-
resents alert wakefulness to drowsiness (>50% of alpha 
rhythm and visible eye blinks), Stage N1 indicates sleep 
onset (vertex sharp waves, >50% of low voltage mixed 
frequency (LVMF) and slow eye movements), and Stage 
N2 light sleep (LVMF and K- complexes or sleep spin-
dles). Results are expressed in percentage with respect to 
the total snooze condition.

2.6 | Statistical analysis

The non- parametric Wilcoxon test was used to test differ-
ences in subjects’ self- assessment of alertness between the 
neutral, attention, and snooze conditions. Normal distri-
bution of relative peak values of beta suppression and re-
bound, and spectral peak amplitudes and frequencies, were 
tested with the Shapiro– Wilk test (IBM SPSS Statistics 
26), resulting in a non- normal distribution of the data. 
Statistical differences of suppression and rebound between 
the three different conditions were tested with the nonpara-
metric Wilcoxon signed- rank test. Spectral amplitudes of 
alpha, beta, and theta amplitudes were strongly skewed, and 
therefore the amplitudes were transformed logarithmically 
before the t- test. In contrast, the nonparametric Wilcoxon 
signed- rank test was used to test the frequencies, since the 

logarithmic correction had a minor effect on the normality 
of the data.

Correlation between the state of alertness (%) and the 
change in beta suppression/rebound strength in the neutral 
versus snooze conditions was tested with Spearman's cor-
relation coefficient. The percentage decrease in alertness in 
the snooze condition was determined by summing the sleep 
stages N1 and N2 (weighting N2 by two).

A p- value <0.05 was considered statistically significant in 
all tests. Bonferroni correction was used to correct the effect 
of multiple tests.

3 |  RESULTS

The measurements were performed successfully for all sub-
jects and the quality of the obtained MEG and EEG data was 
good, despite a few poorly functioning MEG (2 channels) 
and EEG (1– 3 channels) channels. In the attention condition, 
the subjects were highly focused on the stimuli, and all of 
them responded correctly to the number of stimuli at the end 
of the attention task. Most subjects (21 out of 23) had pre-
vious experience in participating in a MEG study, hence it 
was easy for them to relax in the snooze condition. For the 
TSE analysis, 95 ± 2 (mean ± SEM) averaged events were 
obtained in the neutral, 94 ± 1 in the attention, and 95 ± 1 in 
the snooze condition.

3.1 | Level of alertness

Questionnaire. According to the questionnaire, the par-
ticipants felt clearly more tired (mean ± SD) in the snooze 
condition (1.6 ± 0.4) compared with the neutral (3.7 ± 0.3, 
p < 0.01), and attention condition (3.8 ± 0.4, p < 0.01); see 
Figure 2a.

Sleep stage scores. Figure 2b presents the subjects’ sleep-
ing stages during the snooze condition. Due to the short mea-
surement session, only three different stages of sleep were 
observed: Stage W, Stage N1, and Stage N2. On average, the 
subjects were in the awake stage 70 ± 7%, sleep stage N1 
26 ± 6%, and sleep stage N2 4 ± 2% of the total time of the 
snooze condition.

3.2 | Peak power of theta, alpha, and beta 
frequencies during the different conditions

Figure 2c illustrates grand averaged (n  =  23) power spec-
tra over left and right SMI and occipital areas in the three 
conditions both in MEG and EEG. The peak power differed 
between the conditions in the theta and alpha frequencies, 
but not in the beta frequency band. The peak power over 
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the occipital area was significantly stronger in the snooze 
vs. neutral conditions both in the alpha (MEG 1572 ± 266 
vs. 659  ±  134 (fT/cm)2, **p  <  0.01; EEG 32.6  ±  0.6 vs. 
15.1  ±  3.4 (µV)2, *p  <  0.05), and theta frequency band 
(MEG 238 ± 24 vs. 121 ± 16 (fT/cm)2, ***p < 0.001, EEG 
3.9 ± 0.6 vs. 2.7 ± 0.6 (µV)2, **p < 0.01). The frequency 
of the peak power within the theta, alpha, and beta bands 
did not differ significantly between the conditions. Table 1 
represents the peak power and frequency for each band and 
condition.

3.3 | Modulation of the beta rhythm

The modulation of the beta rhythm followed a similar pat-
tern in all conditions both in MEG and EEG. An initial 

suppression of the beta rhythm peaked at around 300 ms after 
tactile stimulation, followed by a rebound at around 700– 
800 ms (Figure 3b). Beta rhythm suppression and rebound to 
tactile finger stimulation were observed bilaterally in sensors 
over the SMI cortices both in MEG and EEG. Suppression 
and rebound latencies did not differ significantly between 
the conditions (Table 2). As expected, the responses were 
clearly stronger in the contralateral hemisphere with respect 
to the stimulated hand, and therefore, the following results 
are provided only for the contralateral responses.

3.3.1 | Time- frequency representation

Figure 3a illustrates the grand average (n  =  23) strength 
and temporal behavior of the beta rhythm with respect to 

F I G U R E  2  Assessment of participants’ alertness during the different conditions. (a) Participants’ subjective assessment of the alertness 
in the Neutral, Attention and Snooze conditions based on a questionnaire (Likert scale: 0 = I fell asleep, 1 = Fully tired, 2 = Moderately tired, 
3 = Slightly tired, 4 = Slightly Alert, 5 = Moderately alert, 6 = Fully alert). (b) Sleep stage scores (in %) during the snooze condition according 
to the AASM manual (American Academy of Sleep Medicine Manual for Scoring of Sleep and Associated Events) based on the EEG recordings. 
(c) Grand averaged (n = 23) power spectra over left (LH) and right (RH) sensorimotor and occipital (OCC) areas during the Neutral, Attention, 
and Snooze conditions. The spectra have been calculated over the entire condition, including the changes of rhythmic activity caused by tactile 
stimulation
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stimulus onset in all three different conditions. Both in 
MEG and EEG, the temporal behavior of the beta sup-
pression and rebound was similar in all three conditions. 
However, the strengths of suppression and rebound appear 
slightly diminished in the snooze compared to the attention 
and neutral conditions, especially in MEG. In the attention 
condition, the rebound appeared somewhat prolonged com-
pared to the neutral and snooze conditions, especially in the 
left hemisphere.

3.3.2 | Beta rhythm modulation

Figure 3b illustrates the grand average (n = 23) TSE curves 
over the contralateral SMI cortex with respect to the stimu-
lated hand during the neutral, attention, and snooze condi-
tions. Figure 3c shows that the contralateral relative peak 
strengths of beta suppression and rebound did not differ sig-
nificantly between the conditions. In MEG, the rebound ap-
peared to be lower in the snooze condition compared to the 
neutral condition (34 ± 5 vs. 44 ± 7 in the left and 50 ± 7 
vs. 59  ±  8 right hemisphere), although the difference was 
not significant. Table 2 shows the mean strengths of the beta 
rhythm modulation.

Figure 4 shows the individual relative peak strengths of 
suppression and rebound for all subjects. The subjects were di-
vided into two groups "Alertness unchanged" and "Alertness 
decreased", indicating a pronounced reduction of the sup-
pression and rebound in the snooze condition in the subjects 
with decreased alertness (n = 8) compared to subjects whose 
alertness did not change remarkably. However, the individ-
ual variation between different situations is worthy to note. 
Furthermore, Figure 5 illustrates the correlations between the 
level of alertness during the snooze condition and the change 
in suppression and rebound strength between the neutral and 
snooze conditions. Reduced alertness correlated significantly 
with the reduction of suppression strength in the right hemi-
sphere in all subjects both in MEG r = 0.49, *p < 0.05 and 
EEG right hemisphere r = 0.72, **p < 0.01, hence, the larger 
the change in alertness the stronger the reduction in suppres-
sion strength. In contrast, no correlations between changes in 
alertness and changes in rebound strengths were observed.

3.3.3 | Baseline beta power

Table 3 shows mean (± SEM) baseline beta power values 
from – 500 to – 100 ms during the neutral, attention, and snooze 

T A B L E  1  Peak power and its frequency (mean ±SEM) for theta (4– 7 Hz), alpha (8– 12 Hz), and beta (14– 25 Hz) bands during neutral, 
attention, and snooze conditions. The alpha frequency was determined for left and right sensorimotor (SMI) and occipital (OCC) areas, beta for left 
and right SMI areas, and theta for OCC area

Theta Alpha Beta

OCC Left SMI
Right 
SMI OCC Left SMI

Right 
SMI

MEG

Peak frequency (Hz)

Neutral condition 5.3 ± 0.1 10.3 ± 0.3 9.9 ± 0.3 10.2 ± 0.1 18.5 ± 0.6 18.0 ± 0.6

Attention condition 5.1 ± 0.2 10.3 ± 0.3 9.8 ± 0.3 10.0 ± 0.2 18.5 ± 0.7 18.1 ± 0.6

Snooze condition 5.4 ± 0.1 9.9 ± 0.3 9.7 ± 0.3 10.2 ± 0.2 17.9 ± 0.6 17.3 ± 0.5

Power (fT/cm)2

Neutral condition 121 ± 16 496 ± 93 393 ± 60 659 ± 134 148 ± 31 138 ± 35

Attention condition 140 ± 20 397 ± 71 368 ± 66 828 ± 197 130 ± 30 119 ± 24

Snooze condition 238 ± 24 531 ± 71 531 ± 78 1572 ± 266 141 ± 30 128 ± 20

EEG

Peak frequency (Hz)

Neutral condition 5.2 ± 0.2 9.8 ± 0.3 9.8 ± 0.3 10.1 ± 0.2 17.2 ± 0.4 17.7 ± 0.5

Attention condition 5.2 ± 0.2 10.0 ± 0.3 9.9 ± 0.3 9.9 ± 0.2 17.5 ± 0.5 16.8 ± 0.5

Snooze condition 5.1 ± 0.2 10.0 ± 0.3 9.6 ± 0.2 10.0 ± 0.2 17.8 ± 0.6 17.5 ± 0.6

Power (µV)2

Neutral condition 2.7 ± 0.6 6.0 ± 1.3 6.1 ± 1.4 15.1 ± 3.4 1.0 ± 0.2 1.1 ± 0.2

Attention condition 2.9 ± 0.6 6.5 ± 1.8 6.7 ± 1.9 22.6 ± 5.5 0.9 ± 0.2 1.1 ± 0.2

Snooze condition 3.9 ± 0.6 8.1 ± 1.8 8.6 ± 1.8 32.6 ± 6.0 1.1 ± 0.3 1.3 ± 0.3
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conditions. The baseline beta power remains stable between dif-
ferent conditions, with exception of the left hemisphere in MEG, 
which showed a significant difference between the neutral and 
attention conditions (p = 0.02). Figure 6 illustrates all subjects’ 
individual baseline changes in different conditions. The sub-
jects are further divided into the "Alertness unchanged" and 
"Alertness decreased" groups, showing that baseline changes 
are larger in the "Alertness decreased" group in MEG.

As the baseline values showed some differences between 
the conditions, the beta suppression and rebound strengths 
were analyzed from absolute values (Table 2). In line with the 
results obtained from the analysis of relative peak strengths, 
the absolute suppression and rebound strengths did not show 
significant differences between the conditions.

In summary, at the group level, the strength of suppres-
sion and rebound did not differ between the three conditions. 

F I G U R E  3  Modulation of beta rhythm during the Neutral, Attention, and Snooze conditions. (a) Grand averaged (n = 23) TFR images, and 
(b) TSE curves of the contralateral responses with respect to tactile stimulation in MEG and EEG. Zero point indicates the start of the stimulus. 
(c) Relative peak amplitudes (%) of beta suppression and rebound to tactile stimulation in the Neutral, Attention, and Snooze condition. The figure 
illustrates the responses of the contralateral hemisphere to the stimulated hand. 50% of the data points are inside the grey boxes and the white 
horizontal lines inside the boxes indicate the median values of beta suppression and rebound. Outliers of the data are shown by crosses
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However, there was a weak correlation between reductions in 
alertness and beta suppression strength.

4 |  DISCUSSION

To our knowledge, this is the first study investigating the 
effect of change in alertness on beta rhythm modulation. 
At the group level, reduced alertness or active attention to 
the received tactile somatosensory stimulus did not signifi-
cantly affect the SMI beta rhythm modulation. However, in 
some subjects with a pronounced reduction in alertness, a 
remarkable decrease of suppression and rebound strength 
was observed. Moreover, reduced alertness correlated with 
changes in suppression strength, indicating that at the indi-
vidual level changes in alertness may affect the strength of 

rhythmic modulation. This is an important topic especially 
as the beta modulation has been proposed to serve as a bio-
marker of the functional state of the SMI cortex in several 
neurological conditions, where the alertness may often be 
reduced.

4.1 | Power spectra

Spontaneous rhythmic brain activity changes remarkably be-
tween stages of alertness and from a sleep stage to another. 
Spontaneous alpha and beta rhythms are predominant dur-
ing wakefulness. When a person enters into a light sleep, 
the alpha rhythm is reduced, while slower rhythmic activ-
ity (theta 4– 7 Hz and delta 1– 4 Hz) enhances (Broughton & 
Hasan, 1995), predominantly in the frontal cortex (Marzano 

T A B L E  2  Beta rhythm modulation strengths (relative to baseline) and latencies (mean ±SEM) in three different conditions for contra (CH) and 
ipsilateral (IH) hemispheres.

Right stimulation Left stimulation

MEG CH EEG CH MEG IH EEG IH MEG IH EEG IH
MEG 
CH EEG CH

Rebound

Neutral

Relative amplitude (%) 44 ± 7 35 ± 4 24 ± 4 16 ± 3 27 ± 4 23 ± 3 59 ± 8 37 ± 5

Peak latency (ms) 740 ± 33 759 ± 47 790 ± 38 773 ± 46 793 ± 37 728 ± 36 714 ± 30 667 ± 38

Absolute amplitudea 16.3 ± 4 0.89 ± 0.1 15.8 ± 3 0.91 ± 0.1

Attention

Relative amplitude (%) 45 ± 7 33 ± 6 23 ± 4 16 ± 3 20 ± 4 18 ± 3 57 ± 8 39 ± 4

Peak latency (ms) 829 ± 48 761 ± 44 812 ± 46 808 ± 48 793 ± 47 737 ± 43 702 ± 32 682 ± 32

Absolute amplitudea 15.1 ± 3 0.79 ± 0.1 15.2 ± 3 0.90 ± 0.1

Snooze

Relative amplitude (%) 34 ± 5 30 ± 4 24 ± 4 19 ± 3 22 ± 3 22 ± 3 50 ± 7 35 ± 4

Peak latency (ms) 773 ± 41 711 ± 41 729 ± 33 729 ± 38 801 ± 44 700 ± 28 703 ± 32 656 ± 26

Absolute amplitudea 10.7 ± 2 0.72 ± 0.1 13.4 ± 2 0.86 ± 0.1

Suppression

Neutral

Relative amplitude (%) – 25 ± 2 – 20 ± 2 – 25 ± 2 – 19 ± 2 – 19 ± 2 – 16 ± 2 – 31 ± 2 – 18 ± 2

Peak latency (ms) 298 ± 15 326 ± 20 320 ± 13 327 ± 21 343 ± 26 321 ± 17 293 ± 20 288 ± 19

Absolute amplitudea – 10.4 ± 2 – 0.58 ± 0.1 – 9.6 ± 2 −0.51 ± 0.1

Attention

Relative amplitude (%) – 22 ± 2 – 17 ± 2 – 23 ± 2 – 17 ± 1 – 20 ± 2 – 16 ± 2 – 29 ± 2 – 17 ± 2

Peak latency (ms) 269 ± 20 266 ± 19 314 ± 20 302 ± 20 318 ± 19 275 ± 26 255 ± 22 272 ± 19

Absolute amplitudea – 7.9 ± 1 – 0.47 ± 0.1 – 8.7 ± 2 – 0.46 ± 0.1

Snooze

Relative amplitude (%) – 20 ± 2 – 17 ± 2 – 21 ± 2 – 13 ± 2 – 15 ± 2 – 12 ± 1 – 26 ± 2 – 15 ± 2

Peak latency (ms) 235 ± 17 270 ± 21 275 ± 17 313 ± 24 300 ± 22 329 ± 20 250 ± 18 275 ± 218

Absolute amplitudea – 6.3 ± 1 – 0.43 ± 0.1 – 7.5 ± 1 – 0.38 ± 0.1
aMEG, fT/cm; EEG, uV. 
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et al., 2013). Our observed increase in theta rhythm strength 
in the snooze condition confirms that our results are reflect-
ing well the effect of reduced alertness on rhythmic brain 
activity. In contrast, the increased alpha rhythm during the 
snooze condition is most likely due to the well- known ef-
fect of eyes closure at the beginning of the snooze condition 
before falling asleep. MEG measurements in a quiet envi-
ronment of the magnetically shielded room may cause the 
experience of boredom, sustained attention, or even mental 
fatigue, which can affect a variety of brain rhythms (Lal & 
Craig, 2001; Langner & Eickhoff, 2013; Shigihara et al., 
2013; Tanaka et al., 2012, 2014). Low vigilance has been 
described to reduce the power of spontaneous beta oscilla-
tions in the SMI cortex (Belyavin & Wright, 1987), but such 
changes in the beta rhythm were not observed in the current 
study. However, in the present study, the actual spontaneous 
data were not recorded as the data was contaminated with the 
tactile stimuli.

Natural inter- individual variation of beta rhythm peak fre-
quency and strength is expansive, and heritability regulated 
(Salmelin & Hari, 1994; Smit et al., 2005). The circadian reg-
ulation has an effect on the spontaneous beta power, which has 
been described to be weakest in the morning and increasing 

towards the afternoon (Cacot et al., 1995; Toth et al., 2007). 
Such circadian changes have also been described to have an 
effect on the modulation of the beta power, primarily on the 
beta suppression (Wilson et al., 2014). To control for circa-
dian changes in rhythmic activity, in the present study, the 
measurements were recorded between 11 am and 5 pm, a time 
span, where the rhythm is supposed to be strongest.

4.2 | Effects of alertness on the 
modulation of the SMI beta rhythm

At the group level, reduced alertness did not significantly affect 
the strength of SMI beta rhythm modulation. Although reduc-
tions in suppression and rebound strengths were observed in 
some subjects with markedly reduced alertness, changes in the 
opposite directions were also observed, and thus the changes 
were not consistent across the examined subjects. Inter- 
individual variation in the level of alertness may have had an 
effect on the large variability of the results. Furthermore, the 
eyes closure in the snooze condition may have affected the re-
sults. However, an earlier study indicated that eye closure alone 
does not alter the strength of beta rhythm modulation (Rimbert 

F I G U R E  4  Individual relative peak 
strengths of the beta suppressions and 
rebounds for all subjects in the Neutral, 
Attention, and Snooze conditions. Subjects 
are divided into two categories; “Alertness 
reduced” (n = 8) and “Alertness unchanged” 
group (n = 15), based on sleep state scores 
and alertness self- assessment in the snooze 
condition. Subjects with more than 35% 
of sleep stages N1 and N2 and who also 
reported falling asleep during the snooze 
condition according to self- assessment, were 
included in the “Alertness reduced” group
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et al., 2018). The correlation analysis between changes in alert-
ness and changes in beta modulation indicated that decreased 
alertness affected mainly the strength of beta suppression but 
not rebound. This is an interesting finding as, in contrast, the 
beta rebound has previously shown to be more sensitive to 
changes in stimulus modality (such as tactile vs. electrical 
stimulus or speed and range of movement Cassim et al., 2000; 
Fry et al., 2016; Houdayer et al., 2006; Parkkonen et al., 2015; 
Pfurtscheller et al., 1998; Salenius et al., 1997; Salmelin & 
Hari, 1994) than the suppression. The suppression and rebound 

are thought to arise from separate neuronal populations, and to 
have distinct functional roles (Cassim et al., 2000; Chen et al., 
1998; Hall et al., 2011; Jurkiewicz et al., 2006; Salmelin et al., 
1995). The current study is in line with these earlier findings as 
the suppression and rebound appeared to respond to changes in 
alertness in distinct ways.

Based on the results, decreased alertness does not signifi-
cantly affect the strength of beta modulation, especially the 
beta rebound, at the group level. These findings support the re-
liability of group- level findings of changes in beta suppression/

F I G U R E  5  Correlations between 
the level of alertness in the snooze 
condition and changes in the strength of 
beta suppression and rebound between the 
neutral and snooze condition. The change 
in alertness is described by the percentage 
of summed sleep stages N1 and N2 (N2 
weighted by two)
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Change in alertness (%)

MEG (fT/cm) LH RH EEG (µV) LH RH

Neutral 37.7 ± 3 29.2 ± 3 Neutral 2.6 ± 0.3 2.4 ± 0.3

Attention 33.8 ± 3* 28.9 ± 3 Attention 2.5 ± 0.3 2.4 ± 0.3

Snooze 31.9 ± 3 28.0 ± 2 Snooze 2.4 ± 0.2 2.4 ± 0.2

*p < 0.05. 

T A B L E  3  Baseline (– 500 to −100 ms) 
beta power values (mean ±SEM) from 
TSE curves over left (LH) and right (RH) 
sensorimotor cortex during the neutral, 
attention, and snooze conditions in MEG 
and EEG
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rebound, that is, in different clinical conditions. Especially the 
minimal effect of reduced alertness on the strength of beta re-
bound is important, as the beta rebound has been suggested 
as a biomarker of the functional state of the SMI cortex after 
stroke (Laaksonen et al., 2012; Parkkonen et al., 2017, 2018; 
Tang et al., 2020). However, at the individual level, alterations 
in alertness may affect beta rhythm modulation, especially beta 
suppression, which should be taken into account in longitudi-
nal experiments to avoid misinterpretations.

In the present study, the level of alertness was assessed in 
three different ways, which all confirmed a decrease in alert-
ness in the snooze condition. Although drowsiness of healthy 
subjects is not equivalent to reduced alertness of an acutely ill 
patient, the results clearly indicate that beta modulation is suit-
able as a biomarker also in acute patients. In our experience, 
only some acute stroke patients had challenges in maintaining 
alertness during measurement. Taken together, the possible ef-
fect of decreased alertness on beta modulation is not significant 
at the group level. However, it is advisable to monitor changes in 
the level of alertness during measurements and to encourage the 
study subjects to be eyes open and keep their vigilance as good 
as possible. Moreover, it is recommended that measurements 
are taken at the time of day when subjects are most alert.

4.3 | Effects of active attention to the 
stimulus on the modulation of the SMI rhythms

In general, attention to a sensory stimulus has been shown to 
alter rhythmic brain activity. Visual alpha is most extensively 

studied, and it has been shown to reduce brain regions pri-
marily engaged in visual tasks and enhance in regions that are 
less involved (Van Diepen et al., 2019; Foxe & Snyder, 2011; 
Klimesch, 2012; Palva & Palva, 2007). These spatial modu-
lations in alpha power are thought to reflect a general mecha-
nism of attentional gating in the cortical processing involved 
and inhibition in various other brain regions. Much less is 
known about the effects of attention on the beta rhythm of the 
Rolandic sensorimotor cortex. Beta band power has shown 
to be negatively correlated with the dorsal attention network 
including the sensorimotor area (Sadaghiani et al., 2010). 
Beta rhythm decreases during the attention task associated 
with multisensory stimuli (Friese et al., 2016; Misselhorn 
et al., 2019), and to increase in relation to faster reaction 
time (i.e., increased alertness) to visual stimuli (Kaminski 
et al., 2012), as well as during enhanced attention to tactile 
stimuli (Bardouille et al., 2010). More focused attention to 
a tactile stimulus either increased (Bardouille et al., 2010; 
Dockstader et al., 2010) or decreased (Bauer et al., 2006) the 
strength of beta suppression and rebound. The expectation 
of an upcoming tactile stimulus has been shown to produce 
the suppression prior to the stimulus (van Ede et al., 2010), 
however, the attention- related beta suppression was not seen 
prior to the stimulus onset in our study. These varying results 
indicate that active attention affects the sensorimotor cortex 
beta rhythm, but the large variety of stimuli and tasks used 
in the studies may have different impacts on the beta rhythm. 
The simple attention task used in the present study addition-
ally showed a prolonged beta rebound in the left hemisphere, 
which may reflect that vigilance is more regulated in the left 

F I G U R E  6  Baseline beta power in TSE for all subjects during the Neutral, Attention, and Snooze conditions. Subjects in the “Alertness 
reduced” group had over 35% of sleep stages N1 and N2 and they also reported to fall asleep according to self- assessment during the snooze 
condition
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hemisphere, as has also been shown in a previous study (Kim 
et al., 2017). However, the current study indicates that the 
unwanted attention to the regularly repetitive tactile stimula-
tion has only inconsistent minor changes on the beta rhythm 
modulation, and thus the unfavorable behavior of subjects 
does not distort the results.

4.4 | Baseline beta power

In line with some earlier studies (Anderson & Ding, 2011; 
van Ede et al., 2010, 2011; Jones et al., 2010), a slightly de-
creased pre- stimulus baseline was observed in the attention 
condition compared to the other conditions, which may have 
an effect on the relative suppression and rebound strengths. 
However, the difference was significant only in the left hemi-
sphere. As any baseline differences between different con-
ditions may affect the results, the suppression and rebound 
strengths were revised from the absolute strengths (as done, 
e.g., in Muthukumaraswamy et al., 2013). The absolute mod-
ulation strengths did not differ between the conditions in line 
with the results obtained from the relative values. Therefore, 
the effect of the baseline power appeared to be negligible, 
and the baseline normalized relative values are appropriate 
also for clinical use.

5 |  CONCLUSION

The present study simulated the measurement protocol of 
acute stroke patients to study the effect of alertness and at-
tention to the stimulus on SMI beta modulation. Neither 
reduced alertness nor active attention to the stimulus had 
a significant effect on the strength of suppression or re-
bound of the beta rhythm at the group level. This impor-
tant observation shows that minor changes in alertness 
do not significantly affect the results of beta modulation 
studies. However, the effect of alertness on beta modula-
tion was individual and may be stronger in some subjects 
and patients. Thus, individual results should be evaluated 
with caution. It is also important to minimize the effects of 
changes in alertness in longitudinal patient studies, where 
the risk of changes in alertness can be substantial between 
measurements.
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