
Quantum-Inspired Keyword Search on Multi-Model
Databases

Gongsheng Yuan1,2, Jiaheng Lu1 , and Peifeng Su3

1 Department of Computer Science, University of Helsinki, FI-00014, Helsinki, Finland
{gongsheng.yuan,jiaheng.lu}@helsinki.fi

2 School of Information, Renmin University of China, Beijing 100872, China
3 Department of Geosciences and Geography, University of Helsinki, FI-00014, Helsinki, Finland

peifeng.su@helsinki.fi

Abstract. With the rising applications implemented in different domains, it is
inevitable to require databases to adopt corresponding appropriate data models
to store and exchange data derived from various sources. To handle these data
models in a single platform, the community of databases introduces a multi-model
database. And many vendors are improving their products from supporting a single
data model to being multi-model databases. Although this brings benefits, spending
lots of enthusiasm to master one of the multi-model query languages for exploring
a database is unfriendly to most users. Therefore, we study using keyword searches
as an alternative way to explore and query multi-model databases. In this paper, we
attempt to utilize quantum physics’s probabilistic formalism to bring the problem
into vector spaces and represent events (e.g., words) as subspaces. Then we employ
a density matrix to encapsulate all the information over these subspaces and use
density matrices to measure the divergence between query and candidate answers
for finding top-k the most relevant results. In this process, we propose using pattern
mining to identify compounds for improving accuracy and using dimensionality
reduction for reducing complexity. Finally, empirical experiments demonstrate the
performance superiority of our approaches over the state-of-the-art approaches.

1 Introduction

In the past decades, due to an explosion of applications with the goal of helping users
address various transactions in different domains, there are increasing needs to store and
query data produced by these applications efficiently. As a result, researchers have pro-
posed diverse data models for handling these data, including structured, semi-structured,
and graph models. Recently, to manage these data models better, the community of
databases introduces an emerging concept, multi-model databases [16], which not only
embraces a single and unified platform to manage both well-structured and NoSQL data,
but also satisfies the system demands for performance, scalability, and fault tolerance.

Although multi-model database systems provide a way to handle various data models
in a unified platform, users have to learn corresponding specific multi-model query
languages to access different databases (e.g., using AQL to access ArangoDB [2], SQL++
for AsterixDB [1], and OrientDB SQL for OrientDB [19]). Moreover, users also need to
understand complex and possibly evolving multi-model data schemas as background

2 G. Yuan et al.

Order (JSON)

customer
id

product
id

rate comment

p1 pro1 perfect

This computer game help
study computer architecture.
This computer game is funny
and this focuses on learning.

p4 pro2 great
I like this book. It tells me how

to love people.

p2 pro3 great
I am fond of this movie
especially leading role.

p3 pro3 good It is useful.

p3 pro4 perfect
I really like this produt. I

recommend it to my friend.

p3 pro5 perfect
This product really fits me. I

like it very much.

FeedBack (Relation)

 {
 id : o1,
 customer id : p1,
 total price : 135,
 items: [
 { product id : pro1,
 brand : Blizzard },
 product id : pro2,
 brand : Sierra }
]
 }

Social Network (Graph)

Person

id: 2

Name:

Ron

Weasley

Friend

Person
id:p3

Name:
Hermione
Granger

Friend

Person

id:p4

Name:

Rubeus

Hagrid

Friend Person
id:p1

Name:
Harry
Potter

Fig. 1. An Example of Multi-model Data.

knowledge for using these query language. This is unfriendly to most users because it
usually with a steeper learning curve. For example, Fig. 1 depicts multi-model data in
social commerce. Suppose we want to find Rubeus Hagrid’s friends who have bought
Blizzard and given a perfect rating. It won’t be an easy job to write a multi-model query
involving social network (Graph), order (JSON), and feedback (Relation) for novices
to achieve this goal. Therefore, in this paper, we study using keyword searches as an
alternative way to explore and query multi-model databases, which does not require
users to have strong background knowledge.

After reviewing the literature, we find that most existing works [27] only restrict
keyword searches over a specific database supporting a single data model (e.g., relational,
XML, and graph databases). Unfortunately, there is a lack of relevant research literature
for the issue of performing keyword searches on multi-model databases. However, we
think it is a promising research topic that remains a big challenge. This is because a
trivial solution, which firstly performs a keyword search on individual data models by
conventional methods and then combines results by assembling the previous results,
cannot work well. The reason is that it may miss results that consist of multiple models
simultaneously.

Facing this challenge, previous researchers used graph methods [14] to solve it.
However, there are several matters needing attention in this method. Firstly, when we
use a graph to represent these heterogeneous data, this graph may be vast and complex.
So we need to divide this graph into many subgraphs, which is a graph partition problem.
And if we perform keyword searches on these graphs to find answers, this means we need
to find some subgraphs relating to partial keywords or all as the answer. Therefore, this
involves subgraph matching and subgraph relevance ranking problems. And lastly, we
need to consider how to take the dependencies among keywords and schema information
into consideration when doing keyword searches. We could see all these problems have
a significant influence on the final returned results. This means we should be careful to
choose the corresponding solutions for these graph problems.

To avoid these graph issues, we start by introducing the “quantum-inspired” frame-
work into the database community [28], in which we utilize the probabilistic formalism
of quantum physics to do keyword searches. In quantum probability, the probabilistic
space is naturally encapsulated in a vector space. Based on the notion of information

Quantum-Inspired Keyword Search on Multi-Model Databases 3

need vector space, we could regard the data in multi-model databases as the information
(statements) collection, define events (e.g., words) as subspaces, use a density matrix
(probability distribution) to encapsulate all the information over these subspaces for
measuring the relevance of the candidate answers to the user’s information need.

For this framework, the idea behind the quantum-inspired approach to disciplines
other than physics is that, although macroscopic objects cannot exhibit the quantum
properties manifested by particles such as photons, some phenomena can be described by
the language or have some features of the phenomena (e.g., superposition) represented
by the quantum mechanical framework in physics [24]. Therefore, except for the above
theoretical method introduction, there are two other reasons underlying this attempt. One
is that the similarity between the quantum mechanical framework to predict the values
which can only be observed in conditions of uncertainty [24] and the decision about the
relevance of the content of a text to an information need is subject to uncertainty [18].
Another one is that increasing works support the notion that quantum-like phenomena
exist in human natural language and text, cognition and decision making [22], all related
to the critical features of keyword searches.

Besides, the pioneering work [24] formalized quantum theory as a formal language
to describe the objects and processes in information retrieval. Based on this idea, we use
this mathematical language to describe relational, JSON, and graph data in the database
community as information collection. Next, we transform keyword searches from a
querying-matching work into a calculating-ranking task over this information collection
and return the most relevant top-k results. And we take the possible relevance among
input query keywords and database schema information into consideration, which helps
the framework understand the user’s goal better. Now, we summarize our contributions
as follows:

1. Based on quantum theory, we attempt to use a quantum-inspired framework to do
keyword searches on multi-model databases, utilizing quantum physics’ probabilistic
formalism to bring the problem into information need vector space. We want to
take advantage of the ability of quantum-inspired framework in capturing potential
semantics of candidate answers and query keywords for improving query accuracy.

2. In this process, we introduce the co-location concept to identify compounds for
enhancing the topic of statements. We want to use it to improve query performance
(precision, recall, and F-measure).

3. By analyzing the existing quantum-inspired method, we propose constructing a query
density vector instead of a density matrix to reduce the framework’s complexity. And
we present an algorithm to perform keyword searches on multi-model databases.

4. Finally, we perform extensive empirical experiments that demonstrate our ap-
proaches’ overall performance is better than the state-of-the-art approaches. The
F-measure is at least nearly doubled.

2 Preliminaries

For the sake of simplicity, we assume the vector space is Rn in this paper. A unit
vector ~u ∈ Rn is defined as |u〉 and termed as ket on the basis of Dirac notation. Its

4 G. Yuan et al.

 Transform
ation

Index

Eigensystem
Collector

User

Keywords

Keywords

Score
Function

Top-k
Results

Query Density Vector

Candidate
AnswersRelation

Graph Online Keyword Searches
Offline Transformation

Fig. 2. The Framework of Quantum-Inspired Keyword Search

conjugate transpose~uH =~uT is written as 〈u| and called bra. The inner product between
two vectors is denoted as 〈u|v〉= ∑

n
i=1 uivi. The outer product between two vectors is

denoted as |u〉〈v| and called dyad. When the vector has a unitary length (i.e., ‖~u‖2 = 1),
a special operator can be defined as the outer product between two vectors. We call this
operator projector. To explain this, suppose |u〉 is a vector; the projector corresponding
to this vector is a dyad written as |u〉〈u|. For example, if there is |u1〉 = (1,0)T , the

projector corresponding to this ket is transforming it into |u1〉〈u1|=
(

1 0
0 0

)
. Due to the

projector, |u〉 could be mapped to the generalized probability space. In this space, each
rank-one dyad |u〉〈u| can represent a quantum elementary event and each dyad |κ〉〈κ|
represent a superposition event, where |κ〉= ∑

p
i=1 σi |ui〉, the coefficients σi ∈ R satisfy

∑i σ2
i = 1. And density matrices ρ are interpreted as generalized probability distributions

over the set of dyads when its dimension greater than 2 according to Gleason’s Theorem
[7]. A real density matrix ρ is a positive semidefinite (ρ ≥ 0) Hermitian matrix (ρ =
ρH = ρT) and has trace 1 (Tr(ρ) = 1). It assigns a generalized probability to each dyad
|u〉〈u|, whose formula is:

µρ(|u〉〈u|) = Tr(ρ |u〉〈u|). (1)

For example, ρ1 =

(
0.75 0

0 0.25

)
, ρ2 =

(
0.5 0.5
0.5 0.5

)
, density matrix ρ2 assigns a prob-

ability value Tr(ρ2 |u1〉〈u1|) = 0.5 to the event |u1〉〈u1|. If ρ is unknown, we could
utilize the Maximum Likelihood (MaxLik) estimation to get it. Finally, through the value
of negative Von-Neumann Divergence (VND) between ρq (query) and ρc (candidate
answer), we could get their difference. Its formalization is:

−∆V N(ρq||ρc)
rank
= ∑

i
λqi ∑

j
(logλc j

〈
qi
∣∣c j
〉2
). (2)

3 The framework of the Quantum-inspired Keyword search

An overview of this entire framework is shown in Fig. 2, which has two functional
modules. One is offline transformation. We will use quantum language to represent

Quantum-Inspired Keyword Search on Multi-Model Databases 5

heterogeneous data in a uniform format. Another one is online keyword searches with
generalized probabilities for finding the most relevant results to answer keyword searches.

3.1 Transformation

Here we consider three kinds of data. They are relational, JSON, and graph data. For the
relational data model, it is natural to think of a tuple with schema in tables as a state-
ment (a piece of information). To avoid information explosion (caused by information
fragmentation), we observe the JSON file in a coarse granularity and treat each object
in JSON as an integral statement. For each node in the graph data, we put information
about all of its neighbor nodes in the same statement, including itself information. In
this way, it can keep complete neighbor relationships and node information.

Only considering these discrete data is not enough. We need to take join into consid-
eration to get complete information in our framework. For this problem, there are many
methods. For example, we could mine the relationship among different data models with
[5], then join them. Or we could choose meaningfully related domains to do equi-join
operations based on expert knowledge, which is a quite straightforward and easy way
for finding meaningful joins and cutting down the search space by avoiding generating a
lot of useless intermediate results. Since this part is not the focus of this paper, we will
use the later one to continue our work.

Now we have gotten a statement collection. Next, we use the mathematical language
of quantum theory to represent these statements. To achieve this goal, we first use an
elementary event to represent a single word and use a superposition event to represent a
compound. In this process, to construct proper superposition events to enhance the topic
of statement for improving query accuracy (i.e., choose appropriate compounds κ from
a given statement and determine the value of each coefficient σi in κ), we introduce a
special spatial pattern concept called co-location pattern [12]. After this process, we
could get an event set Pst for each statement. Then, we learn a density matrix from
each event set Pst with MaxLik estimation and use this density matrix to represent the
corresponding statement. Here, we use a RρR algorithm, which is an iterative schema
of MaxLik outlined in the [17]. And this iterative schema has been used in the [23] for
getting density matrices. Finally, we could use VND to measure the difference between
different statements by their density matrices and use VND’ values to rank them.

To get an event set Pst for each statement, we introduce a special spatial pattern
concept called co-location pattern [12] to help construct compounds κ . Next, we will
start by redefining some concepts in the field of co-location to adapt our problem for
identifying compounds. When a word set c = {w1, ...,wp},‖c‖= p, appears in any order
in a fixed-window of given length L, we say there is a relationship R among these words.
For any word set c, if c satisfies R in a statement, we call c co-location compound.

Definition 1. Participation ratio (PR) PR(c,wi) represents the participation ratio of
word wi in a co-location compound c = {w1, ...,wp}, i.e.

PR(c,wi) =
T (c)
T (wi)

wi ∈ c, (3)

where T (c) is how many times the c is observed together in the statement , T (wi) is the
number of word wi in the whole statement.

6 G. Yuan et al.

Table 1. Example about identifying compound κ

Wst = {This computer game help study computer architecture
this computer game is funny and this focuses on learning. }

c1 = { computer, game }
PR(c1, computer)
PR(c1, game)

2
3
2
2

PI(c1) 2
3

c2 = { game, architecture }
PR(c2, game)
PR(c2, architecture)

1
2
1
1

PI(c2) 1
2

c3 = { computer, architecture }
PR(c3, computer)
PR(c3, architecture)

1
3
1
1

PI(c3) 1
3

c4 = { computer, game, architecture }
PR(c4, computer)
PR(c4, game)
PR(c4, architecture)

1
3
1
2
1
1

PI(c4) 1
3

PI(c1) ≥ min_threshold = 0.6, c1 is a compound κ

Definition 2. Participation index (PI) PI(c) of a co-location compound c is defined as:

PI(c) =
p

min
i=1
{PR(c,wi)}. (4)

Given a minimum threshold min_threshold, a co-location compound c is a compound
κ if and only if PI(c)≥ min_threshold. It is obvious that when min_threshold = 0, all
the co-location compounds are compounds. Based on the method of estimating whether
c is a compound κ , with each appearance of word wi ∈ c in the statement, there has
been a great effect on calculating value of PR which determines whether PI(c) is
greater than or equal to min_threshold. This is to say each appearance of word wi
plays an important role in the statement for expressing information. Therefore, when
we set a value for the coefficient σi of |wi〉 in κ , we need to take the above situation
into consideration. A natural way is to set σ2

i = T (wi)/∑
p
j=1 T (w j) for each wi in a

compound κ = {w1, ...,wp},1≤i≤ p, where T (wi) is the number of times that word wi
occurs in this statement. We call it co-location weight.

For example, we assume “This computer game help study ...” is a statement Wst ,
which is in the table FeedBack of Fig. 1. Given c1, c2, c3, and c4 (see Table 1), if
min_threshold = 0.6, thus c1 is a compound. This helps our framework to have a better
understanding of this statement whose theme is about the computer game, not computer
architecture. Meanwhile, with co-location weight we could set σ2

computer = 3/5, σ2
game =

2/5 for the κ = {computer, game}. According to the related state-of-the-art work [4],
the fixed-window of Length L could be set to l||c||. And it provides a robust pool for l.
Here, we select l = 1 from the robust pool. Because if one decides to increase l, more
inaccurate relations will be detected, and performance will deteriorate.

Next, we could use an iterative schema of MaxLikmatrix [23] to learn a density matrix
from each event set Pst . However, unfortunately, both dyads and density matrices are
n×n matrices, i.e., their dimensions depend on n, the size of word space V . When n is

Quantum-Inspired Keyword Search on Multi-Model Databases 7

bigger, the cost of calculating is higher, especially in the field of databases. Therefore,
we need to find a way to reduce complexity.

According to the Equation (1), the probability of quantum event Π is Tr(ρΠ).
Through Tr(ρΠ), we could get the dot product of two vectors, i.e.,

Tr(ρΠ) =~ρ.~Π 2, (5)

where ~ρ = (β1, β2, . . ., βn), we call it density vector. If we assume ~Π = ((∑n
i=1 ui1vi1),

(∑n
i=1 ui1vi2), . . ., (∑n

i=1 ui1vin)), then ~Π 2 = ((∑n
i=1 ui1vi1)

2, (∑n
i=1 ui1vi2)

2, . . ., (∑n
i=1 ui1vin)

2).

Definition 3. Density vector A density vector is a real vector~ρ =
(
β1,β2, . . . ,βn

)
, noted

by 〈ρ|, where βi ≥ 0, and β1 +β2 + . . .+βn = 1.

For example, density vector 〈ρ3| = (0.2, 0.1, 0.7). Next, we will use a density vector
instead of a density matrix in the rest of this paper. This is because it has three advantages.

– Firstly, density vectors have a more concise way of calculating quantum probabilities
than density matrices’ (comparing Equation 1 with Equation 6);

– Secondly, when one calculates VND between two density vectors, it is faster to get
the value of VND than density matrices do (comparing Equation 2 with Equation 7);

– Thirdly, comparing with density matrices, learning a query density vector from the
input keywords is easier.

Based on the generated density matrices, we could get val (the list of all eigenvalues)
and vec (the list of eigenvectors, each eigenvector corresponding to its own eigenvalue)
through eigendecomposition of density matrices. To simplify our framework further,
we use the Principal Component Analysis (PCA) method to take the first h largest
eigenvalues and require that the sum of these values is greater than or equal to a threshold.
Based on the research concerning PCA [10], we could set threshold = 85%, which is
enough for our work. This is because if one increases threshold, a higher threshold may
have a higher chance to cause the increase of the number of vali instead of precision
of framework and deteriorate the performance of the framework. Then, we store h
eigenvalues and corresponding eigenvectors veci (termed as {val,vec}) into the set of
density systems, SdenSys (the component, "Eigensystem Collector" in Fig.2).

We have now transformed all kinds of data into eigenvalues (density vectors)
and eigenvectors (mapping directions) and converted querying-matching problem into
calculating-ranking. In this way, we eliminate heterogeneous data and convert the
querying-matching problem into calculating-ranking. Next, we will consider how to do
keyword searches on these density vectors online.

3.2 Online Keyword Search Query

In this module, when users submit their queries, there are two data flows about queries.

– The first one is from users to "Transformation", which will construct query density
vectors from input keywords. This step will consider the relationship between input
keywords instead of treating keywords as mutually independent entities.

8 G. Yuan et al.

– Another one is from users to index structure for getting candidate answers, which
will reduce the query scope through our index structure (inverted list).

In the above data flows, it involves constructing query density vectors. Before doing
it, we propose the new representation for single words and compounds in query keywords.
Through analyzing Equation (5), we could represent each word wi ∈ V by |ei〉, where
|ei〉, the standard basis vector, is an one-hot vector. Based on this new representation,
we present compound by |κ〉 = ∑

p
i=1 σi |ewi〉, where κ = {w1, ...,wp}, the coefficients

σi ∈ R satisfy ∑
p
i=1 σ2

i = 1 to guarantee the proper normalization of |κ〉.
For example, Considering n = 3 and V = {computer, science, department}, if κcs

= {computer, science} and |κcs〉 =
√

2/3 |ec〉 +
√

1/3 |es〉, then we could get:

∣∣ecomputer
〉
=

1
0
0

 , |escience〉=

0
1
0

 , |κcs〉=
√

2
3

1
0
0

+

√
1
3

0
1
0

=

√

2
3√
1
3

0

 .

Next, we still use the iterative schema of Maximum Likelihood (MaxLik) estimation
for getting the query density vector. We would also use the following formula to get the
quantum probability of event |Π〉 at MaxLik estimation.

ProbabilityΠ =
〈
ρ
∣∣Π 2〉 . (6)

Finally, we propose Algorithm 1 to do online keyword searches, in which we use line
1 - 9 to get candidate density system set CdenSys through the index. Then we use them
to help get corresponding query density vectors and regard them as the score function
(VND) inputs to answer queries (line 10 - 26).

Firstly, we could classify the input keywords into two groups according to whether or
not wi is relevant to the database schema. For the group Kschema, we use the union to get
a candidate density system set Cschema in line 4, where Cwi can be gotten by the inverted
list, which is relevant to the input word wi. For the Knon_schema, we use intersection to
get Cnon_schema. Then we could get the candidate density system set CdenSys through
difference (line 9). We use these operations to take advantage of the schema for helping
users explore more potential possibilities about answers.

Line 10 - 26 are going to get top-k results. Firstly, we use every mapping direction
vecst of {val,vec}st in the candidate density systems CdenSys to transform original events
into new representations so that the algorithm could learn a query density vector from
these new events. The above transforming could guarantee that each constructed query
density vector and corresponding density vector valst in one coordinate system. Then we
could calculate the divergence between 〈ρ|q and 〈ρ|st (valst) by Equation 7 in line 23.

−∆V N(〈ρ|q || 〈ρ|st)
rank
= ∑

i
βqi logβsti , where βqi ∈ 〈ρ|q ,βsti ∈ 〈ρ|st . (7)

Considering the previous problem "Suppose we want to find Rubeus Hagrid’s friends
who have bought Blizzard and given a perfect rating.", we take {Rubeus Hagrid friends
Blizzard perfect} as Algorithm 1 inputs and perform keyword searches on the Fig. 1.

Quantum-Inspired Keyword Search on Multi-Model Databases 9

Algorithm 1 Answer Keyword Searches with Density Vectors
Input: Input keywords K = {w1, . . . , wt}
Output: the top-k most relevant statements about queries
1: {Kschema, Knon_schema} = Classi f ication(K)
2: Cschema ← Φ

3: for each wi ∈ Kschema do
4: Cschema ←Cschema ∪ (Cwi ⊂ SdenSys)
5: end for
6: for all w j ∈ Knon_schema do
7: Cnon_schema ←Cw1 ∩ , . . . , ∩Cw j

8: end for
9: CdenSys ←Cnon_schema - Cschema

10: SResult ← Φ

11: for each {val,vec}st ∈CdenSys do
12: Pq ← Φ

13: for each wi ∈ K do
14: Get event ~Πwi through rotating the |ei〉 (wi) into a new coordinate by vecst
15: Pq ←Pq ∪ ~Πwi

16: end for
17: for each c in K do
18: if PI(c) ≥ min_threshold then
19: Pq ←Pq ∪ |κc〉
20: end if
21: end for
22: Learn a query density vector 〈ρ|q from Pq by MaxLik
23: scorest = ScoreFunction(〈ρ|q, valst)
24: SResult ← SResult ∪ scorest
25: end for
26: Sort SResult and return top-k results

And we could get the result in which a person named Harry Potter bought Blizzard and
gave a perfect rating, and he is Rubeus Hagrid’s friend. The original result is “social
network person id p1 name harry potter friend person id p4 name rubeus hagrid order
id o1 custom id p1 total price 135 item product id pro1 brand blizzard feedback rate
perfect comment this computer game help study computer architecture this computer
game is funny and this focuses on learning”. And its score is -2.665.

4 Experiment

4.1 Data Sets

We use synthetic data (UniBench) and real data (IMDB and DBLP) to evaluate our
approaches. The statistics about them are listed in Table 2.

UniBench [29] is a multi-model benchmark, including data of relational, JSON, and
graph models. It simulates a social commerce scenario that combines the social network
with the E-commerce context. The relational model includes the structured feedback

10 G. Yuan et al.

Table 2. The number of records/objects in different data models

Relational JSON Graph-entity Graph-relation
UniBench 150 000 142 257 9 949 375 620

IMDB 494 295 84 309 113 858 833 178
DBLP 1 182 391 435 469 512 768 3 492 502

Table 3. Queries employed in the experiments

ID Queries

(a) Queries on DBLP
Q1 Soni Darmawan friends
Q2 Gerd Hoff friends’ rank 1 paper
Q3 Slawomir Zadrozny rank 1 paper
Q4 Phebe Vayanos phdthesis paper
Q5 neural sequence model
Q6 Brian Peach 2019 papers
Q7 Performance of D2D underlay and overlay for multi-class elastic traffic. authors
Q8 Carmen Heine rank Modell zur Produktion von Online-Hilfen.
Q9 Exploring DSCP modification pathologies in the Internet.
Q10 The papers of Frank Niessink

(b) Queries on UniBench
Q11 Abdul Rahman Budjana friends BURRDA feedback perfect
Q12 Shmaryahu Alhouthi order Li-Ning Powertec Fitness Roman Chair
Q13 Kamel Abderrahmane Topeak Dual Touch Bike Storage Stand
Q14 Alexandru Bittman whether has friend Ivan Popov
Q15 Mohammad Ali Forouhar Oakley Radar Path Sunglasses
Q16 Soft Air Thompson 1928 AEG Airsoft Gun and Genuine Italian Officer’s Wool Blanket
Q17 Roberto Castillo Total Gym XLS Trainer and Reebok
Q18 Who Kettler, Volkl and Zero Tolerance Combat Folding Knife
Q19 Francois Nath Nemo Cosmo Air with Pillowtop Sleeping Pad
Q20 Hernaldo Zuniga Advanced Elements AdvancedFrame Expedition Kayak and TRYMAX

(c) Queries on IMDB
Q21 Lock, Stock and Two Smoking Barrels actors
Q22 Forrest Gump
Q23 The title and imdbVote of films of Bruce Willis
Q24 The films of director Robert Zemeckis
Q25 films in 1997 Genre Action, Adventure, Family
Q26 The Legend of 1900 awards
Q27 Scent of a Woman imdbRating
Q28 The film of Dustin Hoffman with Tom Cruise
Q29 Morgan Freeman friends
Q30 Aamir Khan films

Quantum-Inspired Keyword Search on Multi-Model Databases 11

information; The JSON model contains the semi-structured orders; The social network
is modeled as a graph, which contains one entity and one relation, i.e., customer, and
person knows person. These also have correlations across the data models. For instance,
the customer makes transactions (Graph correlates with JSON).

The IMDB dataset is crawled from website4 by OMDB API. Through extracting inner
relationships and potential information, we generate several data models to represent the
original data. The relational data includes performing information and rating information,
which are stored in different tables; The JSON model is made up of film information
(e.g., imdbID, title, and year); The graph is about cooperative information, where two
actors would be linked together if they have ever worked for the same movie.

The DBLP5 data consists of bibliography records in computer science. Each record
in DBLP is associated with several attributes such as authors, year, and title. The raw
data is in XML format. Here we describe it in three data models. The publication records
are presented in relational data, including author id, paper id, and the author’s rank
in the author list. A subset of the papers’ attributes (e.g., paper id, key, and title) are
represented in JSON. We also construct a co-authorship (friend) graph where two authors
are connected if they publish at least one paper together.

Table 4. Presion, Recall, F-measure on DBLP

AKSDV EASE
min_threshold 0 0.2 0.4 0.6 0.8 1.0 non

Precision 0.830 0.847 0.847 0.847 0.847 0.847 0.797 0.090
Recall 0.867 0.917 0.917 0.917 0.917 0.917 0.817 0.500

F-measure 0.834 0.861 0.861 0.861 0.861 0.861 0.794 0.141

4.2 Queries and Answers

In the experiments, three groups of keyword queries, as shown in Table 3, are proposed
by a few people randomly to evaluate our methods on the DBLP, UniBench, and IMDB
datasets, respectively. Each keyword query involves one or more than one data model to
test the ability of our methods in capturing potential semantics of keywords and search
accuracy. Besides, the corresponding AQL query for each Qi is issued in ArangoDB, and
the output answers are used to evaluate the results produced by the algorithm, Answer
Keyword Searches with Density Vectors (AKSDV), and EASE [14]. EASE models
heterogeneous data as graphs and aims at finding r-radius Steiner graphs as query results.
In this method, each returned Steiner graph includes at least two keywords.

The experiments are implemented in Java except for eigendecomposition by Matlab
(offline work). The experiments are run on a desktop PC with an Intel(R) Core(TM)
i5-6500 CPU of 3.19 GHz and 16GB RAM. Note that all operations are done in memory,

4 https://www.omdbapi.com/
5 https://dblp.uni-trier.de/xml/

12 G. Yuan et al.

Table 5. Presion, Recall, F-measure on UniBench

AKSDV EASE
min_threshold 0 0.2 0.4 0.6 0.8 1.0 non

Precision 0.902 0.902 0.917 0.922 0.922 0.922 0.897 0.220
Recall 0.883 0.883 0.885 0.886 0.886 0.886 0.882 0.136

F-measure 0.844 0.844 0.848 0.850 0.850 0.850 0.842 0.061

Table 6. Presion, Recall, F-measure on IMDB

AKSDV EASE
min_threshold 0 0.2 0.4 0.6 0.8 1.0 non

Precision 0.753 0.753 0.753 0.758 0.758 0.758 0.758 0.548
Recall 0.782 0.782 0.782 0.784 0.784 0.784 0.784 0.466

F-measure 0.657 0.657 0.657 0.661 0.661 0.661 0.661 0.269

and the standard NLP pre-processing such as dropping the stop words and stemming
are conducted in advance. In the experiments, we measure the precision, recall, and
F-measure for the top-20 returned results.

4.3 Results Analysis

Table 4 shows the comparison of the average precision, recall, and F-measure of AKSDV
with EASE’s. This comparison result demonstrates that our proposed methods out-
perform EASE on the DBLP dataset. Table 5 and Table 6 show that the performance
of AKSDV also outperforms EASE’s on the UniBench and IDMB dataset. And the
F-measure of AKSDV is at least nearly twice EASE’s on these datasets. These high
accuracy values show that our framework could understand the potential semantics
underlying the statements and get the most relevant statements about queries.

For example, Q9 wants to find all information about the paper “Exploring DSCP
modification pathologies in the Internet”. EASE returns a Steiner graph consisting of a
single node that includes the paper name itself. AKSDV could find all of the information
about this paper; Q11 wants to look for Abdul Rahman’s friends who have bought
BURRDA and given a perfect rating. For EASE, it returns answers mainly about "Abdul
Rahman". But AKSDV could return the relevant information which users want to find.

In these three tables, the “min_threshold” decides which co-location compounds
will be regarded as compounds κ = {w1, ..., wp}. Each column corresponds to the
performance of keyword searches when assigned a value to min_threshold. For example,
in Table 4, the second column illustrates that when we set min_threshold = 0, the values
of average precision, recall, and F-measure of AKSDV on the DBLP data set are 0.830,
0.867, and 0.834, respectively. In general, our method of identifying compounds works
well on these datasets for improving query performance.

Column “non” means that we assign an average weight (σ2
i = 1/p, ||κ|| = p) to each

wi in the compound κ instead of considering which word will have more contributions to
the compound (without using co-location weight). Column “0” and “non” regard all the

Quantum-Inspired Keyword Search on Multi-Model Databases 13

Fig. 3. Execution time of Qi

40% 60% 80% 100%
0

10

20

Loading Percentage

Av
er

ag
e

T
im

e(
m

s)

(1) DBLP dataset

AKSDV

40% 60% 80% 100%
0

20

40

60

80

Loading Percentage

(2) UniBench dataset

AKSDV

40% 60% 80% 100%
0

2

4

6

8

Loading Percentage

(3) IMDB dataset

AKSDV

Fig. 4. Scalability

1 2 3 4 5 6 7 8 910111213141516171819202122232425
0

100

200

300

C′denSys

T
he

nu
m

be
ro

fe
ig

en
va

lu
es

h

(1) DBLP (n: 283 253)

1 2 3 4 5 6 7 8 910111213141516171819202122232425
0

100

200

300

C′denSys

(2) UniBench (n: 5666)

1 2 3 4 5 6 7 8 910111213141516171819202122232425
0

100

200

300

C′denSys

(3) IMDB (n: 249 353)

Fig. 5. The change in value of h on different datasets

co-location compounds as compounds. The difference between them is whether using
co-location weight when constructing compounds. Table 4 and Table 5 demonstrate our
co-location weight is better than the average weight method on the DBLP and UniBench
dataset. In Table 6, the performance of column “0” is little less than the column “non”s.

4.4 Time and Scalability Analysis

In this part of the experiments, firstly, we analyze the time cost of AKSDV and EASE.
The reported time cost values are collected by executing each query several times to
take the median value. Fig. 3 gives executing time of AKSDV (min_threshold = 0.6)
and EASE. In Fig. 3, there is a different fluctuation in the scales of time about different

14 G. Yuan et al.

queries, which is caused by the queries of complexity involving different data models.
But in general, comparing with EASE, AKSDV has a good time performance.

Now, we focus on the scalability of AKSDV. To test the scalability, we load different
proportions of metadata into our framework, respectively. And we let the correct results
increase as loading more data for each query. Then, we perform all queries in table 3
on these datasets having different sizes to get a median time after executing several
times. Finally, we calculate the average time on these datasets, respectively. Fig. 4 (1)-(3)
show the results of experiments on the DBLP, Unibench, and IMDB dataset. In general,
AKSDV has a good scalability performance on these datasets. The UniBench dataset,
due to existing mass joins as the loading percentage increases, shows the query time
increases faster than others. But generally, it is within an acceptable range.

4.5 The Dimension of Density Vectors Analysis

Unlike the word embedding in the machine learning community, which needs a toolkit
using lots of time and samples to train vector space models, we only need to extend
the events’ dimension. And elementary events still keep disjoint feature. Although the
dimensions of events have increased, the query’s cost still depends on the h (the number
of eigenvalues of density matrices). The Fig. 5 shows the change in values of h on the
candidate statement set C′eigen, where C′eigen ⊂ Ceigen and Ceigen is made of candidate
statements about all the queries on different datasets in Table 3, and C′eigen is made of
selected 25 candidate answers from the corresponding Ceigen randomly. In Fig. 5, we
can see the values of h are much less than the word space n, even less than 200 in most
situations. It guarantees the complexity of our framework at the appropriate level.

5 Related works

Keyword search has been well known as a user-friendly way of satisfying users’ infor-
mation needs with few keywords in diverse fields such as Information Retrieval (IR) and
database. Unfortunately, finding a fundamental axiomatic formulation of the IR field
has proven tricky, maybe because of the intrinsic role humans play in the process [3].
However, due to information having proven considerably easier to capture mathemat-
ically than “meaning”, researchers are investigating how to apply quantum theory to
attack the various IR challenges, which can be traced back to [21]. Piwowarski et al. [20]
used the probabilistic formalism of quantum theory to build a principled interactive IR
framework. Frommholz et al. [6] utilized poly representation and quantum measurement
[25] to do keyword searches in a quantum-inspired interactive framework.

Considering the power of quantum-inspired framework and the similarity of keyword
searches between databases and IR, we attempt to use the quantum-inspired method
to support keyword searches on multi-model databases. Hence our research work also
conforms to the current trend of seamlessly integrating database and information retrieval
[26]. The keyword search on the database is particularly appealing. From relation, XML
to graph databases, there are already many exciting proposals in the scientific literature
[13,11,8,9]. However, most of the existing keyword search works are designed for
specific data models. Through review literature, the only complete relevant current work

Quantum-Inspired Keyword Search on Multi-Model Databases 15

is EASE [14]. They returned r-radius Steiner graphs as results to users for answering
keyword searches on heterogeneous data. In addition, there is another work [15], which
presented an architecture to support keyword searches over diverse data sources. Due to
lacking complete performance analysis, we temporarily do not compare it in this paper.

6 Conclusion

This paper has proposed using the quantum probability mechanism to solve the keyword
search problem on multi-model databases. To reduce complexity and improve perfor-
mance, we introduced new representations of events and the density vector concept. We
also used the spatial pattern to help improve query accuracy and used PCA to support
the framework to work well further. Finally, extensive experiments have demonstrated
the superiority of our methods over state-of-the-art works.

Acknowledgements. The work is partially supported by the China Scholarship Council
and the Academy of Finland project (No. 310321). We would also like to thank all the
reviewers for their valuable comments and helpful suggestions.

References

1. Altwaijry, S., Behm, A., Carey, V.B.Y.B.M., Cheelangi, I.C.M., Faraaz, K., Heilbron,
E.G.R.G.Z., Vernica, P.P.V.T.R., Wen, J., Westmann, T.: Asterixdb: A scalable, open source
bdms. Proceedings of the VLDB Endowment 7(14) (2014)

2. ArangoDB: Three major nosql data models in one open-source database. (2016), http:
//www.arangodb.com/

3. Ashoori, E., Rudolph, T.: Commentary on Quantum-Inspired Information Retrieval. arXiv
e-prints arXiv:1809.05685 (Sep 2018)

4. Bendersky, M., Croft, W.B.: Modeling higher-order term dependencies in information retrieval
using query hypergraphs. In: SIGIR (2012)

5. Bergamaschi, S., Domnori, E., Guerra, F., Lado, R.T., Velegrakis, Y.: Keyword search over
relational databases: a metadata approach. In: SIGMOD ’11 (2011)

6. Frommholz, I., Larsen, B., Piwowarski, B., Lalmas, M., Ingwersen, P., Van Rijsbergen, K.:
Supporting polyrepresentation in a quantum-inspired geometrical retrieval framework. In:
Proceedings of the third symposium on Information interaction in context. pp. 115–124 (2010)

7. Gleason, A.M.: Measures on the closed subspaces of a hilbert space. Journal of mathematics
and mechanics pp. 885–893 (1957)

8. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: Xrank: Ranked keyword search over
xml documents. In: Proceedings of the 2003 ACM SIGMOD international conference on
Management of data. pp. 16–27 (2003)

9. He, H., Wang, H., Yang, J., Yu, P.S.: Blinks: ranked keyword searches on graphs. In: Pro-
ceedings of the 2007 ACM SIGMOD international conference on Management of data. pp.
305–316 (2007)

10. Holland, S.M.: Principal components analysis (pca). Department of Geology, University of
Georgia, Athens, GA pp. 30602–2501 (2008)

11. Hristidis, V., Papakonstantinou, Y., Balmin, A.: Keyword proximity search on xml graphs. In:
Proceedings 19th International Conference on Data Engineering (Cat. No. 03CH37405). pp.
367–378. IEEE (2003)

http://www.arangodb.com/
http://www.arangodb.com/

16 G. Yuan et al.

12. Huang, Y., Shekhar, S., Xiong, H.: Discovering colocation patterns from spatial data sets: a
general approach. IEEE Transactions on Knowledge and data engineering 16(12), 1472–1485
(2004)

13. Kargar, M., An, A., Cercone, N., Godfrey, P., Szlichta, J., Yu, X.: Meaningful keyword search
in relational databases with large and complex schema. In: 2015 IEEE 31st International
Conference on Data Engineering. pp. 411–422. IEEE (2015)

14. Li, G., Feng, J., Ooi, B.C., Wang, J., Zhou, L.: An effective 3-in-1 keyword search method
over heterogeneous data sources. Information Systems 36(2), 248–266 (2011)

15. Lin, C., Wang, J., Rong, C.: Towards heterogeneous keyword search. In: Proceedings of the
ACM Turing 50th Celebration Conference-China. pp. 1–6 (2017)

16. Lu, J., Holubová, I.: Multi-model databases: a new journey to handle the variety of data. ACM
Computing Surveys (CSUR) 52(3), 1–38 (2019)

17. Lvovsky, A.: Iterative maximum-likelihood reconstruction in quantum homodyne tomography.
Journal of Optics B: Quantum and Semiclassical Optics 6(6), S556 (2004)

18. Melucci, M.: Deriving a quantum information retrieval basis. The Computer Journal 56(11),
1279–1291 (2013)

19. OrientDB, D.: Orientdb. hybrid document-store and graph nosql database (2017)
20. Piwowarski, B., Frommholz, I., Lalmas, M., Van Rijsbergen, K.: What can quantum theory

bring to information retrieval. In: Proceedings of the 19th ACM international conference on
Information and knowledge management. pp. 59–68 (2010)

21. van Rijsbergen, C.J.: Towards an information logic. In: Proceedings of the 12th annual
international ACM SIGIR conference on Research and development in information retrieval.
pp. 77–86 (1989)

22. Song, D., Lalmas, M., Van Rijsbergen, K., Frommholz, I., Piwowarski, B., Wang, J., Zhang,
P., Zuccon, G., Bruza, P., Arafat, S., et al.: How quantum theory is developing the field of
information retrieval. In: 2010 AAAI Fall Symposium Series (2010)

23. Sordoni, A., Nie, J.Y., Bengio, Y.: Modeling term dependencies with quantum language
models for ir. In: Proceedings of the 36th international ACM SIGIR conference on Research
and development in information retrieval. pp. 653–662 (2013)

24. Van Rijsbergen, C.J.: The geometry of information retrieval. Cambridge University Press
(2004)

25. Wang, J., Song, D., Kaliciak, L.: Tensor product of correlated text and visual features. QI’10
(2010)

26. Weikum, G.: Db & ir: both sides now (keynote). In: Proceedings of the 2007 ACM
SIGMOD International Conference on Management of Data (2007)

27. Yu, J.X., Qin, L., Chang, L.: Keyword search in databases. Synthesis Lectures on Data
Management 1(1), 1–155 (2009)

28. Yuan, G.: How the quantum-inspired framework supports keyword searches on multi-model
databases. In: Proceedings of the 29th ACM International Conference on Information &
Knowledge Management. pp. 3257–3260 (2020)

29. Zhang, C., Lu, J., Xu, P., Chen, Y.: Unibench: A benchmark for multi-model database man-
agement systems. In: Technology Conference on Performance Evaluation and Benchmarking.
pp. 7–23. Springer (2018)

	Quantum-Inspired Keyword Search on Multi-Model Databases

