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Abstract: Rangelands provide significant socioeconomic and environmental benefits to humans.
However, climate variability and anthropogenic drivers can negatively impact rangeland produc-
tivity. The main goal of this study was to investigate structural and productivity changes in range-
land ecosystems in New Mexico (NM), in the southwestern United States of America during the
1984–2015 period. This goal was achieved by applying the time series segmented residual trend
analysis (TSS-RESTREND) method, using datasets of the normalized difference vegetation index
(NDVI) from the Global Inventory Modeling and Mapping Studies and precipitation from Param-
eter elevation Regressions on Independent Slopes Model (PRISM), and developing an assessment
framework. The results indicated that about 17.6% and 12.8% of NM experienced a decrease and an
increase in productivity, respectively. More than half of the state (55.6%) had insignificant change
productivity, 10.8% was classified as indeterminant, and 3.2% was considered as agriculture. A
decrease in productivity was observed in 2.2%, 4.5%, and 1.7% of NM’s grassland, shrubland, and
ever green forest land cover classes, respectively. Significant decrease in productivity was observed
in the northeastern and southeastern quadrants of NM while significant increase was observed
in northwestern, southwestern, and a small portion of the southeastern quadrants. The timing of
detected breakpoints coincided with some of NM’s drought events as indicated by the self-calibrated
Palmar Drought Severity Index as their number increased since 2000s following a similar increase
in drought severity. Some breakpoints were concurrent with some fire events. The combination of
these two types of disturbances can partly explain the emergence of breakpoints with degradation
in productivity. Using the breakpoint assessment framework developed in this study, the observed
degradation based on the TSS-RESTREND showed only 55% agreement with the Rangeland Pro-
ductivity Monitoring Service (RPMS) data. There was an agreement between the TSS-RESTREND
and RPMS on the occurrence of significant degradation in productivity over the grasslands and
shrublands within the Arizona/NM Tablelands and in the Chihuahua Desert ecoregions, respectively.
This assessment of NM’s vegetation productivity is critical to support the decision-making process
for rangeland management; address challenges related to the sustainability of forage supply and
livestock production; conserve the biodiversity of rangelands ecosystems; and increase their re-
silience. Future analysis should consider the effects of rising temperatures and drought on rangeland
degradation and productivity.

Keywords: NDVI; precipitation; drought; breakpoints and timeseries analysis; ecosystem structural
change; BFAST
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1. Introduction

Land degradation affects ecosystem productivity and threatens its capacity to sustain
human, livestock, and wildlife population specially in dryland environments. Drylands
that are susceptible to desertification occupy 39.7% (~5.2 billion ha) of the global terrestrial
ecosystems (~13 billion ha) [1,2]. Of this, sever land degradation is prevalent in over
10–20% of the dryland ecosystems [1–3]. For these reasons, land degradation in dryland
ecosystems is recognized as one of the major environmental and socioeconomic challenges
that can alter ecosystem services and human wellbeing [4–7]. Thus, understanding the rate,
expansion, and severity of drylands degradation has received (and will continue to receive)
considerable attention, due to their pivotal role in food production and water availability
for more than 2 billion people in the world [3,8–11].

The main causes of drylands degradation are principally associated with population
growth, overgrazing, inappropriate land and water use practices, and climate change
impacts [1,11,12]. As a result, noticeable and persistent loss of vegetation cover and biomass
productivity, reduction in forage and crop production, and decline in carrying capacity of
rangelands are becoming common in these ecosystem [3,13,14]. Future predictions showed
that climate change impacts (i.e., increase in surface air temperature and evapotranspiration,
and decrease in precipitation) are expected to worsen poverty and inequality in developing
countries [15,16].

Changes in above-ground biomass in drylands on which forage production and other
life securing ecosystem services depend on can be measured by the net primary production
(NPP) [13,17]. Several studies used temporal changes in NPP as an indicator of land
degradation [2,18–20]. Nevertheless, the measurements and estimation of land degradation
have been characterized by arbitrary assumptions, qualitative and inconsistent judgment,
unreliable and spurious estimations [7,21,22]. Several studies have been criticized for
underestimating the extent and severity of rangeland degradation [3,8,23]. The main
reasons being the climate of dryland ecosystems (i.e., low annual precipitation and its
increased interannual variability) [19,24], the successive occurrence of degradation for
many decades at regional or continental scales [20], and the lack of objective measurements
that quantify the extent and severity of all forms of degradation [4]. These reasons further
complicate the identification of changes in dryland productivity either due to human
activities (grazing and cropping) or natural variability [13,17]. Hence, the assessment of
drylands degradation requires techniques that encompass spatial and temporal properties
that strongly adhere to the measurement principles of repetitiveness, objectivity, and
consistency [21,25]. In this regard, earth observations (OE) proved to be the only feasible
means for long time and large-scale monitoring of vegetation productivity [8,9,18,24].

Vegetation indices (VIs) such as the normalized difference vegetation index (NDVI)
have been used as proxy to detect and quantify long-term land degradation in dry-
lands [6,7,11,17,18,21,25]. Two main categories of methodology have been employed to
assess land degradation in drylands [7,22]—the first one observes changes in relationships
between climate variables (i.e., precipitation and temperature) and VIs (i.e., measure of
vegetation greenness and productivity) [8,22,23]. The second category analyzes vegeta-
tion phenology to detect structural change caused by processes such as deforestation and
long-term trends [22,24]. Within each category, various methods have been applied. For
example, the methods in the first category aim to control the influence of precipitation
and/or temperature trends to detect permanent degradation [7,23]. The rain use efficiency
(RUE) as proposed by [19]—the ratio of NPP to rainfall—has been used as an indicator of
degradation [7,17,20,26,27] and ecosystem functioning [18,28]. The residual trend analysis
(RESTREND) method as proposed by [11] was used frequently to estimate changes in pro-
ductivity by relating annual maximum NDVI and precipitation [11,13,25,29]. In the second
category, the breaks for additive and seasonal and trend (BFAST) developed by [30,31],
have been employed to assess change in vegetation phenology with time (e.g., [32]).

Both RESTREND and BFAST, however, have limitations in accurately detecting land
degradation when the relationship between vegetation and climate breaks and due to over
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sensitiveness in areas where natural climate variabilities are prevalent, respectively [5,8,22].
Over sensitiveness is represented by the detection of false breakpoints using BFAST when
dryland vegetation skips phonological cycles in response to drought while the ecosystem
is healthy. The time series segmented residual trend analysis (TSS-RESTREND) method
was developed by [8,22,23] to address this limitation by combining BFAST and RESTREND
to detect the breakpoints where the relationship between vegetation and precipitation or
temperature changes [8,23]. The TSS-RESTREND leverages the ability of BFAST in detecting
breakpoints in NDVI long timeseries [5,8]. The TSS-RESTREND was applied to detect land
degradation in Australia and its results were qualitatively evaluated using wildfire data [8].
However, the TSS-RESTREND lacked in providing a quantitative assessment of detected
breakpoints [8].

About 40% of the United States of America (USA) land is classified as drylands [33].
The largest portion of these drylands is rangelands—comprising 31% of the USA land [34]—
which are mostly situated in the Western USA [35]. Rangelands support livestock produc-
tion particularly beef cattle and major local economies in the Great Plains, the Intermoun-
tain West, and the Southwest rely heavily on this industry [36]. Since the pre-settlement
era, about 34% of the USA rangelands have been permanently modified by human activi-
ties [37]. Woody plants encroachment, invasive species, prolonged drought, low resilience
and management of rangelands could be the most critical factors that can affect current and
future rangeland productivity [37,38]. Further, urban development, energy extraction (i.e.,
oil and gas), and expansion in agricultural lands are expected to contribute to rangelands
fragmentation [39]. The degree to which climate variables (e.g., interannual variability of
precipitation) can cause structural changes and affect forage productivity in New Mex-
ico’s (NM) rangeland ecosystems has not been adequately studied. Structural change in
an ecosystems can be described as the significant change in the pattern of organization
of the ecosystem necessary for functioning [35]. A structural change of rangeland was
considered as when a pixel has a significant break in its vegetation- precipitation relation-
ships (VPR) that leads to irreversible degradation or significant increase in productivity.
Moreover, quantitative assessment of rangeland degradation and its impacts on NM’s
food-water-energy systems is critical for the sustainable use of its resources.

The goal of this study was to identify long-term structural and productivity changes in
rangeland ecosystems due to interannual climate variability based on precipitation in New
Mexico during the 1982–2015 period. Taking advantage of the consistent NDVI timeseries of
Global Inventory Modeling and Mapping Studies (GIMMS), the study tested the hypothesis
that there is no significant change in rangeland productivity in NM between 1982–2015 by
evaluating the prevalence of significant difference in NM’s rangelands mean productivity
before and after the years where the VPR breaks were occurred. The specific objectives
were to: (1) characterize changes in rangeland productivity in terms of (a) direction of,
and (b) type of structural changes in NPP as represented by NDVI using TSS-RESTREND;
(2) develop an assessment framework for the identified changes in productivity; (3) use the
assessment framework along with independent productivity data to identify areas affected
by significant structural changes in NM’s rangeland ecosystems.

2. Data
2.1. Study Area

The study area was the state of New Mexico, USA, which covers a total land area of
314,918 km2 (Figure 1). NM’s climate is dominated by arid and semi-arid conditions with
an average annual precipitation ranging from less than 254 mm in the southern desert to
more than 500 mm in higher elevations in the northern part of the state [40]. The mean
annual air temperature ranges from less than 4.4 ◦C in high mountains and valleys in the
northern to 18 ◦C in the southern parts of the state.
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Figure 1. A map showing the location of the New Mexico, the contiguous USA (red polygon), and the nine ecoregions
within New Mexico [41].

NM’s land cover encompasses nine ecoregions that include the Chihuahua Deserts
(22%) in south, southwestern part of NM, Southwestern Tablelands (22%) and Western
High Plains (10%) in central, West and in the northwest parts of NM, Arizona/New Mexico
Mountains (14%), Arizona/New Mexico Plateau (19%), Madrean Archipelago and southern
Rockies [41] (Figure 1). Three major types of vegetation biomes (i.e., forest, shrubland and
grassland) comprise the respective ecoregions [42].

2.2. Vegetation Cover

NM’s grassland biomes, particularly in the Desert Grassland Association—desert
plain grassland and mixed grassland or mixed prairie—are dominated by black grama
grass (Bouteloua eriopoda) and tobosa grass (Hilaria mutica) in the desert plains. Bluestem
(Andropogon scoparius), san blue stem (A. halli), and Indian Grass (Sorghastrum nutans)
are parts of mixed grassland or mixed prairie. Woodland biome can be found within a
range of 1371 m to 2286 m elevation (amsl) and consists of one-seed juniper (Juniperus
monosperma) and pinon pine (Pinus edulis) sometimes with oak (Quercus spp.) with an
understory of grassland, forbs, and shrubs. Coniferous forest biomes can be found within
a range of 2590 to 3658 m amsl in Petran subalpine and petran montane dominated by
Enngelman spruce (Picea engel- mannii) and subalpine fir (Abies lasiocarpa). Petran montane
forest association (2591.8 to 2896 m a.m.s.l) covers an extensive area of the state dominated
Douglas fir, and white fir species. The land use/land cover data used in this analysis
included the National Land Cover Dataset of 2011 [43] as well as the state’s ecoregions [41]
and quadrants. These datasets were overlayed with the identified breakpoints to be related
to changes in productivity over these different land cover types.

2.3. GIMMS NDVI

To study temporal changes in rangelands’ structure (i.e., significant changes in NPP
trend), long-term NDVI timeseries was used as a proxy to NPP. Specifically, the GIMMS
NDVI product based on the third generation Global Inventory Modeling and Mapping
Studies NDVI (GIMM NDVIv3.1g) data was used in this study. These data was based on
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the Advanced Very High Resolution Radiometer (AVHRR) sensors [5,8] and it is of the
most accurate datasets currently available. This version of the data corrected for calibration
errors in a previous one [22]. The GIMMS NDVI data is available for the 1981–2015 period
only at spatial and temporal resolutions of 8 km and 16 days, respectively. The GIMMS
NDVI dataset was obtained from ECOCAST [44].

2.4. Rangeland Productivity

Rangeland productivity for the USA was obtained from the Rangeland Production
Monitoring Service (RPMS) dataset developed by the United State Forest Service [45]. The
dataset was prepared using NDVI from the Thematic Mapper for the 1984–2020 period
at 250-meter pixels. The dataset provides estimates of annual production of rangeland
vegetation in pounds per acre, which is useful in understanding trends and variability
of rangeland forage resources [45]. The RPMS dataset was coupled with the assessment
framework (Section 3.2) to evaluate the significance of rangeland productivity changes
compared to those identified by the TSS-RESTREND method.

2.5. Precipitation, Drought, and Fire

Gridded precipitation data developed by Parameter-elevation Regressions on Inde-
pendent Slopes Model (PRISM) was obtained from PRISM Climate Group [46]. Monthly
precipitation at ~4 km pixels was used. To evaluate the accuracy of breakpoints in terms
of timing, extent, and direction of change relative to potential disturbances, historical
drought and fire events were compared with the breakpoints. Mean monthly and annual
self-calibrated Palmar Drought Severity Index (PDSI) was acquired from [47]. Fire data
were obtained from New Mexico Resources Geographic Information System (RGIS) [48].

3. Methods

This analysis followed three main steps—data preparation, the application of TSS-
RESTREND, and the development and application of an assessment framework to evaluate
the detected breakpoints and changes in productivity (Figure 2). The first step involved
data acquisition, projection, resampling, and extraction of pixel values of GIMMS NDVI,
PRISM precipitation, and RPMS productivity. The second step (Section 3.1) involved the
application of the TSS-RESTREND method to identify breakpoints in space and time, their
significance, and their structural changes. The last step provided a framework (Section 3.2)
to evaluate the detected breakpoints using the RPMS—an approach that was lacking in the
work by [8,23].

3.1. Characterization of Change in Productivity Using TSS-RESTREND
3.1.1. NDVI and Precipitation Relationships

The Bimonthly GIMMS NDVI data were filtered using a quality control (QC) proce-
dure to remove non-reliable values based on a quality flag [49,50]. Pixels with at least 75%
reliable values were used. Non-vegetated pixels were excluded based on a threshold of a
median NDVI of less than 0.1 [50,51]. Out of 4474 pixels, a total of 4454 pixel were used in
the analysis. Complete mean monthly timeseries of NDVI (ctsNDVI) was assessed over
each pixel. The PRISM precipitation data was resampled using a bilinear method to match
the spatial resolution of the GIMMS NDVI and assessed at monthly time scale.

An ordinary Least Square regression (OLS) was used to develop the relationships
between the ctsNDVI and the complete timeseries of optimal accumulated precipitation for
each pixel for the 1982–2015 period (referred to as ctsVPR) [8]. The optimal accumulated
precipitation was determined by identifying the pairs of ctsNDVI and accumulated precip-
itation that provide the highest correlation coefficient. The correlation coefficients of all
possible OLS relationships between ctsNDVI and a matrix of precipitation accumulation
period (1–12 months) with offset period (0–3 months) were evaluated following [8]. The
relationships with the highest correlation coefficients were used to calculate the residual
between the observed and predicted ctsNDVI (referred to as ctsVPR-residual).
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Figure 2. Depreciation of TSS-RESTRND analysis and validation of breakpoints. In step 1, Data preparation which includes
(i.e., acquisition of NPP data, precipitation, and productivity data), projection, resampling, and extraction of pixel level
values. In Step II (TSS-RESTREND): method of residual fit, p-vector, trend of productivity change (i.e., decreasing, increasing,
non-significance change and indeterminant), and ecosystem structure change were detected. In Step III (Evaluation), include
stratified random sampling for validation, Welch’s t test on randomly selected pixels (i.e., to test the significant change of
productivity before and after the break years).

3.1.2. Identification of Breakpoints

The BFAST method was applied on the ctsVPR-residual to list potential breakpoints.
Briefly, the BFAST method decomposes the timeseries into season, trend, and reminder
components—an approach that allows to detect changes in the season and trend compo-
nents [52,53]. The list of potential breakpoints identified by the BFAST method [8] based on
the ctsVPR-Residuals were further evaluated for their significance in the VPR—allowing to
assess their impact on NPP as represented by the maximum NDVI timeseries. A Chow test
was applied on the VPR-Residuals on all pixels with significant VPR (α = 0.05). Based on
this test, all pixels that have no significant breakpoints in the VPR-Residual (α = 0.05) but
have significant VPR (α = 0.05) were further assessed using the standard RESTREND by
developing a regression between the VPR-Residuals and time (Equation (1)) [8].

yi = β0 + β1 x (RESTREND) (1)

where β0 is intercept, β1 is slope, and x is year
Pixels that showed significant breakpoints in VPR-Residuals (based on the Chow

test above) and had significant VPR were further evaluated for the significance of these
breakpoints but in the VPR also using Chow test. Pixels with significant breakpoints in VPR-
Residuals but not in the VPR were further assessed using the Segmented RESTREND by
developing a multivariate regression between VPR-Residual, time, and a dummy variable
(Equation (2))

yi = β0 + β1xi + β2zi + β3xizi (Segmented RESTREND) (2)

where β0 is intercept, x is year, z is value of dummy variable (0 or 1), β1 is slope, β2 is
offset at the breakpoint, and β3 is the change in the slope at the breakpoint.
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Pixels that showed significant breakpoints in VPR-Residuals and in VPR may indicate
the presence of significant structural changes and thus the assumption of stationarity
of the accumulation and offset periods used in the calculations of optimal accumulated
precipitation before and after a breakpoint [5,54]. The set if the NDVImax and precipitation
timeseries before and after a breakpoint was separated to recalculate new and independent
VPR on either side of the breakpoints [8]. The precipitation data were standardized to
account for the differences in the accumulation and offset periods among the breakpoints
(Equation (3)).

zi =
(xi − u)

δ
(3)

where z is the standard score, xi is observed values, µ is the mean, and δ is the standard
deviation. The NDVImax and standard score timeseries were further evaluated by fitting a
multivariant regression (Equation (4)) [5,8].

Yi = β0 + β1xi + β2zi + β3xizi (Segmented VPR) (4)

where x is the standardized precipitation for year i, z the value of the dummy variable
(0 or 1), β0 is intercept, β1 is slope, β2 is the offset at the breakpoint, and β3 the change in
the slope at the breakpoint.

Pixels that did not meet any of the above conditions were classified as indeterminant—
met the following conditions: (1) had no significant VPR and no significant breakpoints
in VPR; or (2) no significant VPR, significant breakpoints in VPR, and no significant
breakpoints in segmented VPR.

3.1.3. Identification of Structural Changes

Structural changes of each pixel within NM ecosystems were identified based on
three properties that include the significance of the breakpoints, direction of change (i.e.,
increasing and decreasing in productivity), and method of detection (as described in
Section 3.1.2). With the regard to the significance level and direction of change, all pixels
were classified into nine categories as shown in (Table 1) following [55] and similar to other
dryland degradation studies in Australia [8] and China [5].

Table 1. Categories of threshold for vegetation change.

Category Direction of Change Significance Description

I1

Slope > 0

p < 0.01
Pixels with significant

increasing trend of residual
at four classes of p levels
(0.01, 0.025, 0.05 and 0.1)

I2 0.01 ≤ p < 0.025

I3 0.025 ≤ p < 0.05

INC 0.05 ≤ p < 0.1

DI

Slope < 0

p < 0.01
Pixels with significant

decreasing trend of residual
at four classes of p levels
(0.01, 0.025, 0.05 and 0.1)

D2 0.01 ≤ p < 0.025

D3 0.025 ≤ p < 0.05

DNC 0.05 ≤ p < 0.1

NSC p ≥ 0.1 No significant change in
productivity

INC = Increase No Change, DNC = Decrease No Change, I1 = increasing trend in productivity level 1,
I2 = increasing trend in productivity level 2, I3 = increasing trend in productivity level 3, D1 = Decreasing
trend in productivity level 1, Decreasing trend in productivity level 2, D3 = Decreasing trend in productivity level
3, NSC = Non-significant Change.

Consequently, a pixel can be considered having:

• Non-reversable degradation or initiation of degradation if it exhibited a breakpoint
with p < 0.05 and a negative change (Table 1) in productivity as detected by Segmented
VPR or Segmented RESTREND, respectively,
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• Reversal or initiation of reversal in degradation, if it met the previous conditions except
with a positive as detected by Segmented VPR or Segmented RESTREND, respectively,

• Stable increase in productivity, if it exhibited a breakpoint with p < 0.05 and a positive
change as detected by RESTREND,

• Stable decrease in productivity if the opposite of the previous condition was detected
(a condition that can be considered as an initiation of degradation) [11,13].

• Non-significant change (NSC) in productivity irrespective of the detection technique
used (i.e., Segmented VPR, Segmented RESTREND, RESTREND, or Indeterminant), if
it had a breakpoint with p > 0.1 and a constant direction change (i.e., 0),

• Indeterminate change if it had p = 0 and slope = 0.

A summary of the pixels based on these structural change categories was presented
relative to NM’s total area, quadrant, ecoregions, and major land use/land cover classes.

3.2. Breakpoints Assessment Framework

The TSS-RESTREND method by [8] provided only a qualitative assessment of break-
points with other independent data in terms of significance and direction of changes. These
two properties are important to properly characterize changes in productivity. A frame-
work was developed in this study to address this gap by proposed means to quantitatively
assess these properties. This framework consisted of four steps: (1) Develop random
samples within the identified significant breakpoints; (2) Select and use independent pro-
ductivity data; (3) Evaluate the random samples at the pixel level; and (4) Group and
evaluate all random samples that fall within identified ecoregions—allowing to identify
whether the changes in productivity at the individual pixels are reflective of consistent
regional changes.

Random Samples: A set of random samples in terms of size and location can be
developed following [56,57]. To estimate the size of random samples, a prior knowledge of
image accuracy/variability is required [57]. The degree of variability in the RPMS data is
unknown, thus it was assumed that the maximum variability would be about 50% with 95%
confidence level and ±5% precision [56]. This criterion helps to determine representative
sample pixels using a stratified random sampling approach [58]. The strata were developed
based on ecoregions, land use/land cover, and direction of change. Based on the formula
from [57], the sample size was calculated as (Equation (5)).

no=
Z2 pq

e2 (5)

where no is the sample size, Z is the selected critical value of desired confidence level (1.96),
p is the estimated proportion of an attribute that is present in the population (0.5), and
q = 1 − p (0.5) with p and e (0.5) represent the desired level of precision.

The allocation of the random sample was based on the majority of the identified
breakpoints in each method (Section 3.1.2). The random samples can be broadly allocated
based on the direction of change and land cover within the identified significant breakpoints
in the two main categories—the Segmented VPR and Segment RESTREND. Ecoregions
and land use/land cover (NLCD 2011) [43] maps were overlaid to identify the locations of
the pixels within these regions for further assessment.

Selection of independent data: The productivity data from the RPMS [45] was used
to evaluate the accuracy of the identified breakpoints based on the TSS-RESTREND in
terms of direction and significance of change in productivity. The data was resampled
to match that of GIMMS NDVI [44,58]. Using the coordinates of GIMMS NDVI pixels,
the corresponding RPMS productivity was extracted. The rangeland productivity was
converted from pound per acre per year to kilogram per hectare per year. this process
allowed to prepare a dataset that include RPMS productivity and with the corresponding
TSS-RESTREND estimates of timing and direction of change, significance of breakpoints,
and method of detection for each random sample.
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Pixel level assessment: Using the location of the randomly selected samples (break-
point pixels) and their identified year of breaks, the mean annual productivity for each pixel
based on the RPMS data can be calculated for before and after the break years. Over each
pixel, the number of years before and after the breaks were different and thus these mean
values had different sample sizes. These mean values before and after the breaks over each
pixel were then statistically compared using the Welch’s student-test for the significance in
their difference and direction of change. The Welch’s t test was conducted assuming that
the variances were not equal before and after the breaks [58,59]. The obtained results based
on RPMS data using the Welch’s test were compared with those from the TSS-RESTREND
method. A summary of the agreement of this comparison was provided over these pixels
as well as over the representative land cover classes.

Ecoregion level assessment: a similar approach was followed in this step of the
framework except in this case the randomly selected pixels were grouped to represent
ecoregions—all sampled pixels within each ecoregion represent a single entity (analysis
unit). The mean values of productivity based on RPMS of each group before their individual
breaks were further averaged and compared to the corresponding average after the break.
The averages were assessed for their significance and direction of change using the Welch’s
student-test. The results were then compared with those obtained based on the TSS-
RESTREND over the equivalent ecoregions.

4. Results
4.1. Characteristics of Change
4.1.1. Breakpoints and Direction of Change

The number of significant breakpoints detected (increased and decreased productivity)
and precipitation anomalies between 1982 and 2015 were shown in Figure 3. Out of all the
analyzed pixels (i.e., 4454), 814 (18.3% or ~50,000 km2) had significant breakpoints—with ei-
ther increasing or decreasing trends—were detected over different land cover types. The re-
maining pixels that showed insignificant change (NSC), indeterminant, or identified as Agri-
cultural represented about 55.6% (158,591 km2), 10.8% (30,656 km2) and 3.2% (9122 km2)
of NM’s area (~315,900 km2). The distribution of these pixels is shown in Figure 4. Out of
the 814 significant breakpoints, 52.3% (26,176 km2) and 46.5% (23,232 km2) had negative
(decreasing) and positive (increasing) change in productivity, respectively (Table 2). The
areas that showed significant increasing trends in productivity as I1, I2 and I3 were about
10,752 km2 (3.8%), 9408 km2 (3.3%), and 3072 km2 (1.1%) respectively. The areas that
showed decreasing trend in productivity with D1, D2, and D3 level of significance were
about 9088 km2 (3.2%), 13,056 km2 (4.6%), and 3776 km2 (1.3%), respectively.

Table 2. A summary of the identified direction of change in productivity based on the TSS-
RESTREND method in New Mexico during the 1982–2015 period.

Method
Direction of Change (% Relative to 4454 Pixels)

Total
Deceasing Increasing NSC * Agriculture Indeterminant

TSS-
RESTREND 17.6 12.8 55.6 3.2 10.8 100

* NSC = Non-Significant Change.

From all significant breakpoints, 58%, 20%, and 15.7% were observed in shrubland,
grassland, and evergreen forest ecosystems, respectively (Figure 5). The highest number of
detected breakpoints was 250 (or 31% out of 814) in 2005. Among them, shrublands and
grasslands combined accounted for 87.6% (219), out of which 72.8% and 14.8% were over
shrublands and grasslands, respectively.
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Figure 4. The spatial distribution, significance, and direction of change in productivity using TSS-
RESTREND (1982–2015). Bands of red (D1, D2, D3, D4) and green (I1, I2, I3, and INC) pixels
indicate those with decreasing and increasing trends in productivity, respectively. NSC (yellow) and
indeterminant (gray) pixels were those with non-significant and unidentified change, respectively.
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cover types between 1982 and 2015 in NM categorized by the Segmented RESTREND and Segmented VPR methods.

4.1.2. Observed Types of Structural Changes

In general, identified breakpoints by the Segmented VPR method indicate significant
ecosystem structural change—either decrease (i.e., irreversible degradation) or increase in
productivity. Those identified with the Segmented RESTREND method indicate changes—
either decrease (initiation of degradation) or increase (reversal from degradation)—in
productivity that are not significant enough to alter the ecosystem structure.

From all obtained 814 significant breakpoints, 62.7% and 37.3% were identified using
Segmented VPR and Segmented RESTREND methods, respectively. From those identified
by Segmented RESTREND method, 20.8%, 10.5%, 3.4%, and 2.6% were over shrubland,
grassland, evergreen forest, and other land cover classes, respectively. From those identified
by Segmented VPR method, 37.3%, 12.3%, 9.5%, and 3.6% were over shrubland, evergreen
forest, grassland, and other land cover classes, respectively.

The total number of pixels identified by the different methods and their direction of
change were presented in Table 3. Those showed decreased (significant or insignificant)
productivity were 786 or 17.6% (46,976 km2) out of 4454. About 4.9% (~14,016 km2) were
identified using the Segmented VPR method; 4.3% (~12,160 km2) were identified using
the Segmented RESTREND method; and the remaining 8.5% were identified using the
RESTREND method (insignificant decrease or increase in productivity).

Table 3. A summary of the pixels (in % relative to 4454 pixels) and methods used to identify the
direction of change in productivity in New Mexico during the 1982–2015 period.

Method of Change Detection Decreasing Increasing NSC Total

RESTREND 8.5 4.6 54.8 67.9
Segmented RESTREND 4.3 2.5 0.0 6.8

Segmented VPR 4.9 5.7 0.8 11.4
Total 17.6 12.8 55.6 86.1

NSC = Non-Significant Change.

From all pixels that showed increased productivity (12.8% or 570 pixels, 34,816 km2),
5.7% (16,320 km2) were identified using the Segmented VPR method (i.e., significant
gradual increase), 4.6% (12,992 km2) were identified using the RESTREND method (i.e.,
insignificant increase), and the remaining 2.5% (7168 km2) were identified using the Seg-
mented RESTREND method (i.e., reversal of degradation).

More than half of NM’s area (55.6%~158,592 km2) show insignificant change in pro-
ductivity based on the total number of pixels that fell within the NSC category (p ≥ 0.1).
The pixels identified with the RESTREND method that accounted for 25.8% (~73,472 km2),
and the remaining 29% were considered indeterminate.

Regionally, non-reversible decrease in productivity (i.e., degradation) was mostly
observed in the northeastern (1.8%~5184 km2), northwestern (1.2%~3456 km2), and south-
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eastern (0.99%~2816 km2) quadrants NM (Figure 6). Moreover, the initiation of degradation
(i.e., decreasing trend based on the Segmented RESTREND method) was mostly detected
in northeastern (1.8%~4992 km2), and southeastern (2.1%~5888 km2) quadrants, with a
negligible initiation of degradation in the northwestern and southwestern NM (Figure 6).
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graded vegetation or gradual increase) and Segmented RESTREND (reversal and initiation of
degradation) methods.

From all analyzed pixels (i.e., 4454 pixels), the ones that showed increasing trends in
productivity based on the Segmented VPR method (i.e., 5.7% or ~16,320 km2) were detected
mostly in the southwestern (2.27%~6464 km2), southeastern (2%~5824 km2), and north-
western (1.3%~3712 km2) quadrants (Figure 6). Furthermore, 2.51% of the pixels (7168 km2)
revealed reversal from degradation—increased productivity based on the Segmented RE-
STREND method (Figure 6). From which, 0.45% and 0.92% were in the northeastern and
southeastern quadrants, respectively (Figure 6). The largest number of pixels that showed
NSC was detected in northwestern (46,144 km2), while southeastern quadrant exhibited
the least (32,256 km2~11.1%). Northeastern (40,896 km2) and southwestern (39,296 km2)
NM revealed an equal number of NSC pixels during the study period.

4.2. Dominant Land Cover Class Changes

Significant trends (increasing or decreasing) in productivity (irreversible degradation,
initiation in degradation, reversal in degradation, and initiation in reversal of degradation)
were observed on NM’s dominant land cover classes that include shrubland, grassland,
and evergreen forest (Figure 7).

From all analyzed pixels (i.e., 4454), 2.2% of NM’s grassland (6336 km2), 4.5% of the
shrubland (12,800 km2), and 1.7% of the evergreen forest pixels (4800 km2) showed signifi-
cant decreasing trends in productivity–either with a complete or initiation of degradation.
From all analyzed pixels, ~1.4% (3840 km2) and 0.88% (2496 km2) of NM’s grasslands that
showed significant decrease in productivity were attributed to initiation of degradation (i.e.,
the Segmented RESTREND method) and non-reversal degradation (i.e., the Segmented
VPR method), respectively (Figure 7).

Similarly, from all analyzed pixels, 2.2% (6336 km2) and 2.3% (6464 km2) of NM’s
shrublands that showed significant decrease in productivity were attributed to initiation of
degradation and non-reversal degradation, respectively. The degradation of shrublands
was dominant in the northwestern (2048 km2) and southeastern (2112 km2) quadrants,
while the degradation in grasslands was notably observed in northwestern (512 km2) and
northeastern (1664 km2) quadrants.
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Figure 7. Area and direction of change in productivity in grasslands, shrublands, and evergreen
forests in New Mexico as identified using the Segmented VPR (degraded vegetation or gradual
increase) and Segmented RESTREND (reversal and initiation of degradation) methods.

On the other hand, 5.7% (out of the 4454 pixels) of NM’s shrubland pixels (16,248 km2),
1.3% of the grassland pixels (3648 km2), and 0.92% of the evergreen forest pixels (2624 km2)
experienced either significant gradual increase in productivity or reversal of degradation
(Figure 8). From all analyzed pixels, 1600 km2 (0.56%) and 2048 km2 (0.72%) of the
grasslands that showed significant increase in productivity were attributed to reversal
in degradation (using the Segmented RESTREND method) and significant increase in
productivity (using the Segmented VPR method), respectively.

4.3. Assessment of Breakpoints

This section provides a summary of the results obtained based on the breakpoints
assessment framework described in Section 3.2.

4.3.1. Identified Random Samples

The total number of breakpoints based on the Segmented RESTREND and Segmented
VPR methods were about 304 and 510, respectively. From which, 384 samples were ran-
domly selected with 165 and 219 were based on the Segmented RESTREND and Segmented
VPR methods, respectively (Tables A1 and A2 in Appendix A). Since the Segmented VPR
had more significant breakpoints with a noticeable change in productivity, only those pixels
were subjected to the random selection. Only 155 samples out of the 219 (or 71%) showed
significant difference in productivity before and after the break years (either decreasing or
increasing) (Figure 9). The remaining 64 samples did not meet the criteria for significance
and were not considered. From the 155 samples, 24% and 76% were obtained over grass-
lands and shrublands, respectively. The distribution of the grassland samples (i.e., 24%)
represented the Southwestern (SW) Tablelands (46%), Arizona/New Mexico (AZ/NM)
Plateau (35%), and Chihuahua Desert (16%) ecoregions. Similarly, 58%, 25%, and 11% of
the shrubland samples (i.e., 76%) represented the Chihuahua Desert, AZ/NM Plateau, and
SW Tablelands ecoregions, respectively.

4.3.2. Changes in Productivity at Pixel Level

A summary of the comparison of the significance of the differences in mean productiv-
ity before and after the breakpoints between the Segmented VPR and the RPMS data was
shown in Table 4 along with the direction (increase or decrease) of change in productivity.
The results were presented as the percent of pixels that fell within each category relative to
the number of the random samples (i.e., 155).
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(d) initiation of reversal from degradation along with the corresponding methods used.

Based on the Segmented VPR method, all the 155 randomly selected samples indicated
significant difference in productivity before and after the break years. However, based on
the RPMS only 55% of them showed significant differences in mean productivity before
and after the break years until 2019, respectively (Table 4). From the 155 samples, 37% and
18% showed persistent decreasing and increasing in mean productivity after the break
years until 2019 on RPMS data, respectively. About 36% and 9% showed increasing and
decreasing trends before and after the break years on the RPMS data, respectively.

From the 37% of the sampled pixels that exhibited persistent decrease in mean pro-
ductivity after the break years, 13% were in the Chihuahua Desert, and 18% in the SW
Tablelands ecoregions. From the 18% of the sampled pixels that exhibited significant
and consistent increase in mean productivity after break years, AZ/NM Mountains and
AZ/NM Plateau ecoregions accounted for 3% and 15%, respectively. From the 36% of the
sampled pixels with increased but insignificant difference in mean productivity before and
after the break years, 35% were over the Chihuahua Desert ecoregion, and the remaining
were equally obtained over AZ/NM Mountains and AZ/NM Plateau (Table 4). From the
9% of the sampled pixels with decreasing trend but insignificant difference in productivity
before and after the break years, 5% were over AZ/NM Plateau.
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Table 4. The percentages of pixels with decreasing and increasing trends in productivity as estimated
from the RPMS data relative to randomly selected pixels (155) based on the Segmented VPR method
categorized based on their significance of difference in mean productivity before and after the break
years over major ecoregions in New Mexico.

Ecoregion
Insignificant Difference Significant Difference

Total
Decrease Increase Decrease Increase

Arizona/New Mexico
Mountains 2 0.5 0 3 5.5

Arizona/New Mexico Plateau 5 0.5 6 15 26.5
Chihuahua Desert 1 35 13 0 49

Southwest Tablelands 1 0 18 0 19

Total 9 36 37 18 100

In the sampled grasslands and shrublands pixels (i.e., 24% and 76% of the 155 samples,
respectively) with either decreased or increased productivity, the difference in mean pro-
ductivity before and after the break years was insignificant in 5% and 40%, respectively on
RPMS (Table A3 in Appendix B). The grassland (12% of the samples) and shrubland pixels
(26% of the samples) with decreased productivity had significant lower mean productivity
before the break years on RPMS data. Similarly, out of the pixels that showed increased
trend on productivity, 7% from grasslands and 11% from shrublands had significantly
higher mean production than that before the break years on RPMS (Table A3).

4.3.3. Changes in Productivity at Ecoregion Level

A summary of the comparison between the Segmented VPR and RPMS at the ecore-
gion level (Section 3.2) including grassland and shrubland cover classes based on the
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sampled pixels (i.e., 155) was provided in Table A5 (Appendix C)—allows to highlight
whether the changes at the individual pixels are reflective of those at the regional level.

Based on the RPMS data, a continuous and significant decrease in shrublands’ mean
productivity after the break years in the Chihuahua (Welch’s test p ≤ 0.0001) and the
AZ/NM Plateau (p = 0.0397) ecoregions was observed. Similarly, significant decline in
mean productivity of grasslands of the SW Tablelands (p ≤ 0.0001) and AZ/NM (p = 0.019)
ecoregions were observed after break years. The shrublands within the AZ/NM Mountains
and the SW Tableland ecoregions and the grassland in Chihuahua and the AZ/NM Plateau
ecoregions exhibited insignificant differences in mean productivity between before and
after the break years—stable ecosystem productivity during the study period.

In contrary, the sampled pixels over the shrublands in the Chihuahua Desert (p = 0.0194)
and the AZ/NM (p = 0.00765). Mountain ecoregions showed significant increase in mean
productivity after the break years (Table A5). There was a significant increase in mean
productivity in the grasslands within AZ/NM Plateau ecoregions after the break years.
However, sampled shrubland and grassland pixels in the AZ/NM Plateau and the Chi-
huahua Desert, respectively, showed insignificant difference in mean productivity before
and after the break years, suggesting a negligible increase in mean productivity after the
break years during the study period.

5. Discussion
5.1. Characteristics of Change

The significance of the breakpoints as identified by the TSS-RESTREND methods
can be interpreted relative to observed ecosystem structural changes [8,13]. Out of 67.9%
of the pixels that met the criteria of RESTREND [13], 8.5% and 4.6% showed decreased
and increased productivity, respectively. These pixels exhibited gradual change as their
VPR remined consistent over time with no major ecosystem structural changes [13,60].
The behavior of the pixels that were identified by the Segmented VPR method (11.6%)
experiencing irreversible degradation (4.9%) or increased productivity (5.7%) can partially
be attributed to abrupt land use changes (decreeing or increasing) induced by human
activities and climate variability [13,61] such as overgrazing or easing of drought condi-
tions [62]. More than half of NM that did not experience significant change in productivity
(NSC = 55.6%—Table 2) was dominantly in the western part of the state. This can par-
tially be explained by the fact that western NM is the driest region in the state. Thus, it
experiences weaker interactions related to climate variability and human activities—thus
minimal effects on productivity. The pixels that were identified as indeterminant (10.8%)
were those that none of the methods was able to fit their observed behavior [8,55] and there
was no clear explanation for such behavior.

There were relatively higher human activities in northeastern, northwestern and
southeastern NM represented by crude oil and natural gas production and livestock
grazing practices. The prevalence of irreversible degradation and initiation of degradation
were apparent in these regions [63]. On the other hand, significant changes in productivity
(i.e., increase) was observed mostly in southwestern and northwestern NM, where forest
were minimally influenced by human activities. On landscapes where human activities
were dominant, i.e., southeastern NM, significant increase in productivity can be associated
with parallel restoration activities and land use management practices [55,64].

Overall, there was a consistent increase in the number of detected significant break-
points during the 1980s, 1990s, and 2000s, with 9.5%, 19.2%, and 71.4%, respectively
(Figure 10). Again, the combined effects of climate change and anthropogenic factors can
explain this increase [65]. For example, NM’s precipitation remained close to the long-term
average (only recently showed increased variability) since 1920 while air temperature
showed an increasing trend since 1970s [63,66,67] with a simultaneous increase in fossil
fuel production activities since 1980s.
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It is challenging to identify a single factor that can be considered as the direct cause
of these breakpoints and ecosystem structural changes [8,68]. However, it was possible
to compare these breakpoints with some observed ecosystem structural changes whether
gradual (e.g., land use management and climate change) or abrupt (e.g., wildfire). Such a
comparison can help in evaluating the accuracy of these breakpoints in terms of timing,
distribution, and direction of change [8,53].

5.2. Land Cover Changes Relative to Drought and Wildfire

Some of the major drivers of change in NM’s dryland ecosystems were identified
as climate (e.g., drought) which is influenced by increased concentration of atmospheric
greenhouse gases (GHG) (e.g., CO2); wildfire; grazing practices (i.e., livestock density); and
land use conversion [21,35,68] were used here to highlight their effects on the breakpoints.

5.2.1. Detected Changes Compared to Previous Studies and Current Restoration Activities

The significant decrease in grasslands and shrublands was mostly observed in north-
western, northeastern, and southeastern NM—consistent with [4] that indicated that degra-
dation was mostly over grassland-savanna. Degradation of grasslands, in some cases, was
directly linked to increased productivity of shrublands. In NM, increased productivity
in shrublands was noticed southwestern deserts and plains. This increase was attributed
to land cover conversion from black grama and other valuable grasses-dominated areas
to bushes due to over grazing and drought [69]. The evident climate warming, expected
increase interannual precipitation variability, and projected increase in aridity can further
enhance the growth of shrubs (i.e., encroachments of woody plants) over grasses since the
later are heavily depended on transient surface moisture [70,71]. It was also argued that
increased CO2 concentration in the atmosphere can improve plant CO2 uptake and reduce
water loss through plant’s stomata thus increasing the photosynthesis process and this
mechanism actually favor woody vegetation over non-woody ones [72,73].

The general notion that was suggested in some studies was that encroachments of
shrublands to grasslands can be considered as one stage of degradation that can threaten
the integrity of the rangelands [74]. However, it was argued that, shrublands are not
necessarily degraded, nor do they necessarily represent “degradation” due to their ability
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to support valued ecosystem services [71,75], and they also have a long-term mean annual
above ground NPP—equivalent to that of grasslands [76]. In NM, there have been a number
of restoration and brush management efforts undertaken to control invasive species, and
retain favored shrub species [64]. This suggested that the attribution of drivers to changes
in productivity in environmental studies remains challenging owing to the diversity of
driving forces and limited sources of ground truth data for validation [77].

The increased productivity in grasslands that was observed in western NM can par-
tially be attributed to local scale successful restoration efforts by the Bureau of Land
Management [64]. These efforts targeted the replacement of Creosote and mesquite by
healthy grasslands, and reclamation of surfaces resulted from oil and gas extraction oper-
ations. According to Powell [78], gradual improvements in range conditions (increased
productivity) in southwestern NM was not only related to the results of better moisture,
but also cumulative efforts on rangeland management, such as proper stocking, vastly
improved grazing distribution, and brush management.

5.2.2. Breakpoints and Drought

The sc-PSDI for NM and the detected significant breakpoints with decreasing and in-
creasing trends were shown in Figure 10. A weighted average of the sc-PDSI was calculated
over the breakpoints with decreasing and decreasing trends separately to evaluate their
timing against drought events. Some previous findings suggested that extended periods of
drought (or relatively dry conditions) can introduce lasting negative impacts (degradation)
on rangelands and other ecosystems [8,79]. Based on Figure 10, it was noticed that from
all the detected breakpoints during the study period (1982–2015), 67.9% were observed
only in 2000s from which 38.2% exhibited decreased trend in productivity (Figure 10a).
Coincidently, these breakpoints overlapped with frequent and extended periods of drought
events in NM that were also observed regionally in the southwest USA during 2000s. The
impact of this regional drought had resulted in a decrease in productivity in more than 30%
of the coterminous USA, out of which ~15% (equivalent to more than 41 million ha) was
rangelands [37].

The increased number of breakpoints after 2000 suggested a permanent degradation
or damage to ecosystems which mechanistically can occur when these ecosystems have
little to no time to recover from a previous consecutive drought event. A recovery period
from a drought event as defined by [79] is the return of an ecosystem to pre-drought values
of GPP and can vary from immediate to multiple years depending on vegetation, climate,
disturbance, and drought. It was indicated that dryland ecosystems such as those in NM,
had experienced increased recovery periods that were highly sensitive to precipitation
and temperature [79]. With the expected future projections of rising temperature and drier
conditions, the drought recovery of dry ecosystems would even be longer. When droughts
have shorter return period (or more frequent) this makes ecosystems more susceptible to
drought or ecosystem degradation continues and builds up until a threshold is reached and
the degradation become irreversible (or permanent), a condition that was referred to in [79]
as a tipping point. This study suggested that these thresholds may have been reached as
represented by the detected breakpoints. This explains, to some extent, the appearance
of breakpoints compared to drought events. The timing of these breakpoints suggested
the accumulation of dry conditions that impact ecosystem functions until reaching tipping
points. Further analysis is needed to understand the timing or emergence of the breakpoints
and drought accumulation periods and the response of ecosystems relative to vegetation
type and climate.

Moreover, these recent exceptionally drought conditions in NM (during 2000–2015)
also varied in spatial extent, duration, and intensity [80]. These variations may have
contributed to the occurrence of 38% breakpoints with decreasing trends (i.e., initiation
and irreversible degradation) in southeastern (Eddy, Lea, Chaves, and Otero counties);
northeastern (Colfax, De Bacca, and San Miguel counties); and northwestern NM (San Juan
county). From all pixels that experienced significant decrease in productivity, 35% were
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observed in De bacca, San Miguel, San Juan, and Otero counties as drought might have a
profound influence in reducing vegetation productivity (e.g., plant mortality) [81,82].

On the other hand, reversal from degradation and significant increase in produc-
tivity was dominantly observed in the northwestern, southeastern, and southwestern
NM (Figure 8). In NM, wetter years were observed from 1986 to the end of 1990s, followed
by drier years from 1999–2003 and 2005 (Figure 10). Significant breakpoints with increase
in productivity were identified during 2000s dry years in Otero, Dona Anna, Luna, San
Juan and Socorro counties. About 13.5% of these breakpoints were observed in the first
four of counties. This can partially be attributed to the fact that precipitation remained near
the long-term mean after the drier years over these counties that resulted in reversal from
degradation or significant increase in productivity, respectively (Figure 10).

5.2.3. Breakpoints and Wildfire

Wildfire generally reduces plant cover, alters habitat structures, decrease rangeland
conditions, and requires much longer recovery period [83]. The significant breakpoints
with decreased productivity (i.e., irreversible degradation based on Segmented VPR) that
coincided with fire events are shown in Figures 11 and 12. Major wildfire incidents
occurred in 1989 and 1994 followed by a consistent increase in frequency each year since
2001. This increase was noticeably concurrent with drought events. The number and
time of some breakpoints mostly followed these of the fire incidents. The alignment of
fire incidents with breakpoints can indicate the ability of TSS-RESTREND to detect the
timing of ecosystem changes as suggested by [8]. However, based on Figures 11 and 12,
it appeared that only a small number of breakpoints coincided with fire incidents during
the study period—suggested that fire may have a limited contribution to the development
of breakpoints. While, the timing of these fire incidents can partly explain the occurrence
of the breakpoints, it was not rationale to state that these fire incidents were the only
direct cause of the breakpoints. Other factors need to be considered to provide a rational
explanation of the remaining breakpoints such as vegetation types and their response to
environmental and climate disturbance (drought). The accumulation of successive dry
conditions can push an ecosystem to pass a threshold of permanent damage of vegetation—
ideal fire-prone conditions. Further analysis is needed to identify the causes of breakpoints
relative the fire and was out of the scope of this analysis.
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5.3. Breakpoints and the RPMS

Based on the RPMS data, a decrease in the mean annual productivity was detected
over the pixels with significant breakpoints (i.e., identified by Segmented VPR method)
during the 1984–2019 period (Figure 13). The mean productivity of these pixels was lower
than that of the long-term of the 36 years which was about 613.2 kg/ha. Moreover, the
variability in the annual productivity of these pixels ranged from 588 kg/ha in 1995 to
641 kg/ha in 2006.
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Figure 13. Productivity anomaly based on the Range land Production Monitoring Service (RPMS) [45] averaged over the
pixels that were identified with the Segmented VPR method with decreasing trend during the 1984–2019 period.

Of the sampled pixels that were evaluated for changes in productivity before and
after the break years, 38% with decreasing trend showed a significant difference in mean
productivity after the break years with 12% in grasslands (Table A3) and 26% in shrublands
(Table A4). Similar to this finding, [84,85] indicated that there was an apparent decline in
NPP in the southwestern USA that was attributed to the response of these ecosystems to
the combination of a warmer temperature and a decline in precipitation. The pixels that
showed significant decrease in productivity in NM’s rangeland (i.e., in Chihuahua Desert
and AZ/NM plateau ecoregions) coincided with those from [45] that showed a similar
behavior (Table A5). The difference in the productivity before and after the break years
might be substantiated by the xeric nature of the southwestern USA and southeastern
Great Plains in response to interannual variability of the precipitation [86]. On the other
hand, 8% and 36% of sampled pixels with decreased and increased productivity (i.e., based
on the Segmented VPR), respectively showed insignificant difference in mean productivity
before and after the break years based on the RPMS data [45]. These findings were in
agreement with those by [83] which suggested that the structure and composition of semi-
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arid and arid regions of the southwestern USA have undergone noticeable changes over
the last two decades.

6. Limitation and Future Work

As the study aimed to detect degradation of vegetation, rangelands (i.e., shrubland
and grasslands), the authors acknowledged some limitations that need to be considered
when using these findings. The TSS-RESTREND was able to identify the breakpoints, their
location, time, and type and direction of change in productivity at the state level. Due to the
limited availability of ground biomass data, pixels that exhibited significant changes were
validated using derived productivity from the RPMS [45] that showed only 55% agreement.
Ground-based data can be more accurate means in assessing the identified breakpoints.
Another important factor that can contribute to degradation is the temperature which can
significantly affect NM’s dryland ecosystems.

For future, the authors would address some of these limitations using ground observa-
tions (when available) for example from the long-term rangeland monitoring observatories
at the Jornada Experimental Range. The obtained breakpoints seemed consistent with some
of the disturbances (drought and fire). However, the authors would consider the combined
use of temperature and precipitation to improve the detection of breakpoints such as the
pixels that have been classified as indeterminant. Additional quantitative analysis would
be conducted to determine how drought may affect the timing of breakpoints, rangeland
condition, and productivity, which can be useful in developing rangeland management
practices to adapt and mitigate drought impacts.

7. Conclusions

This study evaluated the degradation of New Mexico’s rangelands during the 1984
2015 period with respect to climate using an NDVI timeseries—as a surrogate of NPP—
and precipitation to represent climate variability. These datasets were evaluated using
the TSS-RESTREN method to detect breakpoints in the NDVI timeseries, direction and
significance of change in productivity at each pixel. The study developed a breakpoint
assessment framework that allowed to quantitively evaluate the identified changes that
used an independent productivity data (i.e., RPMS). A qualitative assessment of the changes
against land management activities, drought, and wildfire was also conducted.

The study indicated that about 17.6% of New Mexico experienced a decrease in
productivity while 12.8% of the state experienced an increase in productivity. More than
half of the state (55.6%) had insignificant change productivity, 10.8% was classified as
indeterminant, and the remaining 3.2% was considered as agriculture was not evaluated.

The degradation in productivity was observed in about 2.2%, 4.5%, and 1.7% of NM’s
grassland, shrubland, and evergreen forest land cover classes, respectively. Simultaneously,
about 5.7%, 1.3%, and 0.92% of NM’s shrublands, grasslands, and evergreen forests were
characterized by an increase in productivity, respectively. Regionally, significant decrease
in productivity was observed in the northeaster and southeastern quadrants of the state
while significant increase was observed in northwestern, southwestern, and a small portion
in southeastern quadrants. The timing and number of detected breakpoints coincided with
NM’s drought frequency and severity and some fire incidents.

The TSS-RESTREN showed 55% agreement with the RPMS data over areas with
significant decrease in productivity based on randomly selected pixels. Regionally, there
was an agreement between the TSS-RESTREND and RPMS on the occurrence of significant
degradation in productivity over the grasslands and shrublands within the Arizona/New
Mexico Tablelands and in the Chihuahua Desert ecoregions, respectively.

A long timeseries assessment of rangeland productivity in New Mexico is critical
to support decisions related to ecosystems management and conservation. The findings
of this study can be used to address some of the rangeland degradation challenges that
directly impact rangeland conditions, forage supply in the region, and New Mexican’s
livelihood as these systems support livestock production. In areas where degradation was
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prevalent (i.e., northeastern, and southeastern NM), special intervention would be needed
to conserve the biodiversity of rangeland and increase the resilience of these ecosystems.
As this study considered only precipitation, it was noticed that the rising temperature can
play a significant role in vegetation. Thus, future analysis should consider its effects on
rangeland productivity. Future research should also pay more attention to the association
of degradation and productivity with recurring droughts.
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Appendix A

Proportional allocation of the randomly sampled pixels as identified by Segmented
VPR and Segmented RESTREND is shown in Table A1.

Table A1. Allocation of the randomly selected pixels as identified with Segmented VPR method over the different land
cover classes based on the National Land Cover Dataset of 2011 (NLCD 2011) along the corresponding ecoregions.

Ecoregions
Decreasing Increasing NSC

Total
52 71 82 31 42 52 71 82 42 52 71

Arizona/New Mexico Mountains 1 1 0 0 1 10 1 0 0 0 1 16
Arizona/New Mexico Plateau 13 4 0 0 0 16 7 0 1 2 0 43

Chihuahua Desert 21 1 0 1 0 73 6 0 0 5 0 106
Colorado Plateaus 4 0 0 0 0 2 0 0 0 1 0 6

High Plains 4 1 1 0 0 1 1 0 0 0 2 11
Madrean Archipelago 0 0 0 0 0 3 1 1 0 1 0 5

Southwestern Tablelands 10 16 0 0 0 1 1 0 0 1 1 31

Total 53 24 1 1 1 106 18 1 1 9 4 219

31 = Bareland, 42 = Evergreen Forest, 52 = Shrub/Scrub, 71 = Grassland/Herbaceous, 82 = Cultivated Crops.

Table A2. Allocation of the randomly selected pixels as identified with Segmented RESTREND method over the different
land cover classes based on the National Land Cover Dataset of 2011 (NLCD 2011) along with the corresponding ecoregions.

Ecoregions
Decreasing Increasing

Total
22 52 71 90 95 42 52 71 52

Arizona/New Mexico Mountains 0 1 0 0 0 0 3 2 0 6
Arizona/New Mexico Plateau 0 1 2 1 0 0 6 4 0 13

Chihuahua Desert 1 37 1 0 1 0 25 4 0 68
Colorado Plateaus 0 1 0 0 0 0 1 0 0 1

High Plains 0 9 6 1 0 0 1 0 0 16
Madrean Archipelago 0 1 0 0 0 0 0 0 0 1
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Table A2. Cont.

Ecoregions
Decreasing Increasing

Total
22 52 71 90 95 42 52 71 52

Southern Rockies 0 0 1 0 0 0 0 0 0 1
Southwestern Tablelands 0 15 30 0 1 1 4 6 1 58

Total 1 65 39 1 1 1 40 16 1 165

22 = Low Intensity Developed, 52 = Shrub/Scrub, 71 = Grassland/Herbaceous, 90 = Woody Wetlands, 95 = Emergent Herbaceous Wetlands.

Appendix B

The percentages of the randomly selected pixels (i.e., 155 identified by Segmented-
VPR method) over grasslands and shrublands that were evaluated for their significance of
the difference in mean productivity between before and after the break years at the pixel
level using the Rangeland Production Monitoring Service (RPMS) data.

Table A3. The percentages of the randomly selected grassland pixels with respect to their significance in the difference in
mean productivity before and after the break years based on the RPMS data along with their identified direction of change
over the major ecoregions in New Mexico.

Ecoregions
Insignificant Difference Significant Difference

Total
Decreasing Increasing Decreasing Increasing

Arizona/New Mexico Mountains 1 0 0 0 1
Arizona/New Mexico Plateau 0 0 1 7 8

Chihuahua Desert 0 3 1 0 4
Southwestern Tablelands 1 0 10 0 11

Total 2 3 12 7 24

Table A4. The percentages of the randomly selected shrublands pixels with respect to their significance in the difference in
mean productivity before and after the break years based on the RPMS data along with their identified direction of change
over the major ecoregions in New Mexico.

Ecoregions
Insignificant Difference Significant Difference

Total
Decreasing Increasing Decreasing Increasing

Arizona/New Mexico Mountains 1 1 0 3 5
Arizona/New Mexico Plateau 5 1 5 8 19

Chihuahua Desert 1 32 12 0 45
Southwestern Tablelands 0 0 8 0 8

Total 6 33 26 11 76

Appendix C

A summary of the statistical significance test result of the difference in mean in
productivity before and after the break years using the randomly selected pixels (i.e., 155
identified by Segmented-VPR method) based on the Rangeland Production Monitoring
Service (RPMS) data at the ecoregion level.
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Table A5. Significance of the difference in mean productivity before and after the break years based on the on increasing
and decreasing shrublands and grassland randomly selected pixels using RPMS data at the ecoregion level.

Trend Ecoregion
Shrublands Grasslands

Welch’s t-
Statistic df p Welch’s t-

Statistic df p

Decreasing

Chihuahua Desert −4.35 1379 ≤0.0001 s −1.23 39 0.227
Arizona/New Mexico Mountains 0.33 119 0.742 −1.98 69.6 0.0516

Southwestern Tablelands −1.79 735 0.0745 −4.35 1053 ≤0.0001 ***
Arizona/New Mexico Plateau 2.06 1122 0.0397 * 2.38 126 0.019 *

Increasing

Chihuahua Desert 2.34 2178 0.0194 * 1.47 196 0.143
Arizona/New Mexico Mountains 2.72 108 0.00765 ** - - -

Southwestern Tablelands - - - - - -
Arizona/New Mexico Plateau 1.42 857 0.157 2.4 736 0.065 *

*** p values less than or equal to 0.0001, ** p values less than 0.001, * p values less than 0.05.
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